Linux 2.6.20.7
[linux/fpc-iii.git] / drivers / char / epca.c
bloba0f822c9d74def65e14f97fb319d782b305ef19d
1 /*
4 Copyright (C) 1996 Digi International.
6 For technical support please email digiLinux@dgii.com or
7 call Digi tech support at (612) 912-3456
9 ** This driver is no longer supported by Digi **
11 Much of this design and code came from epca.c which was
12 copyright (C) 1994, 1995 Troy De Jongh, and subsquently
13 modified by David Nugent, Christoph Lameter, Mike McLagan.
15 This program is free software; you can redistribute it and/or modify
16 it under the terms of the GNU General Public License as published by
17 the Free Software Foundation; either version 2 of the License, or
18 (at your option) any later version.
20 This program is distributed in the hope that it will be useful,
21 but WITHOUT ANY WARRANTY; without even the implied warranty of
22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23 GNU General Public License for more details.
25 You should have received a copy of the GNU General Public License
26 along with this program; if not, write to the Free Software
27 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29 --------------------------------------------------------------------------- */
30 /* See README.epca for change history --DAT*/
33 #include <linux/module.h>
34 #include <linux/kernel.h>
35 #include <linux/types.h>
36 #include <linux/init.h>
37 #include <linux/serial.h>
38 #include <linux/delay.h>
39 #include <linux/ctype.h>
40 #include <linux/tty.h>
41 #include <linux/tty_flip.h>
42 #include <linux/slab.h>
43 #include <linux/ioport.h>
44 #include <linux/interrupt.h>
45 #include <asm/uaccess.h>
46 #include <asm/io.h>
47 #include <linux/spinlock.h>
48 #include <linux/pci.h>
49 #include "digiPCI.h"
52 #include "digi1.h"
53 #include "digiFep1.h"
54 #include "epca.h"
55 #include "epcaconfig.h"
57 /* ---------------------- Begin defines ------------------------ */
59 #define VERSION "1.3.0.1-LK2.6"
61 /* This major needs to be submitted to Linux to join the majors list */
63 #define DIGIINFOMAJOR 35 /* For Digi specific ioctl */
66 #define MAXCARDS 7
67 #define epcaassert(x, msg) if (!(x)) epca_error(__LINE__, msg)
69 #define PFX "epca: "
71 /* ----------------- Begin global definitions ------------------- */
73 static int nbdevs, num_cards, liloconfig;
74 static int digi_poller_inhibited = 1 ;
76 static int setup_error_code;
77 static int invalid_lilo_config;
79 /* The ISA boards do window flipping into the same spaces so its only sane
80 with a single lock. It's still pretty efficient */
82 static DEFINE_SPINLOCK(epca_lock);
84 /* -----------------------------------------------------------------------
85 MAXBOARDS is typically 12, but ISA and EISA cards are restricted to
86 7 below.
87 --------------------------------------------------------------------------*/
88 static struct board_info boards[MAXBOARDS];
91 /* ------------- Begin structures used for driver registeration ---------- */
93 static struct tty_driver *pc_driver;
94 static struct tty_driver *pc_info;
96 /* ------------------ Begin Digi specific structures -------------------- */
98 /* ------------------------------------------------------------------------
99 digi_channels represents an array of structures that keep track of
100 each channel of the Digi product. Information such as transmit and
101 receive pointers, termio data, and signal definitions (DTR, CTS, etc ...)
102 are stored here. This structure is NOT used to overlay the cards
103 physical channel structure.
104 -------------------------------------------------------------------------- */
106 static struct channel digi_channels[MAX_ALLOC];
108 /* ------------------------------------------------------------------------
109 card_ptr is an array used to hold the address of the
110 first channel structure of each card. This array will hold
111 the addresses of various channels located in digi_channels.
112 -------------------------------------------------------------------------- */
113 static struct channel *card_ptr[MAXCARDS];
115 static struct timer_list epca_timer;
117 /* ---------------------- Begin function prototypes --------------------- */
119 /* ----------------------------------------------------------------------
120 Begin generic memory functions. These functions will be alias
121 (point at) more specific functions dependent on the board being
122 configured.
123 ----------------------------------------------------------------------- */
125 static void memwinon(struct board_info *b, unsigned int win);
126 static void memwinoff(struct board_info *b, unsigned int win);
127 static void globalwinon(struct channel *ch);
128 static void rxwinon(struct channel *ch);
129 static void txwinon(struct channel *ch);
130 static void memoff(struct channel *ch);
131 static void assertgwinon(struct channel *ch);
132 static void assertmemoff(struct channel *ch);
134 /* ---- Begin more 'specific' memory functions for cx_like products --- */
136 static void pcxem_memwinon(struct board_info *b, unsigned int win);
137 static void pcxem_memwinoff(struct board_info *b, unsigned int win);
138 static void pcxem_globalwinon(struct channel *ch);
139 static void pcxem_rxwinon(struct channel *ch);
140 static void pcxem_txwinon(struct channel *ch);
141 static void pcxem_memoff(struct channel *ch);
143 /* ------ Begin more 'specific' memory functions for the pcxe ------- */
145 static void pcxe_memwinon(struct board_info *b, unsigned int win);
146 static void pcxe_memwinoff(struct board_info *b, unsigned int win);
147 static void pcxe_globalwinon(struct channel *ch);
148 static void pcxe_rxwinon(struct channel *ch);
149 static void pcxe_txwinon(struct channel *ch);
150 static void pcxe_memoff(struct channel *ch);
152 /* ---- Begin more 'specific' memory functions for the pc64xe and pcxi ---- */
153 /* Note : pc64xe and pcxi share the same windowing routines */
155 static void pcxi_memwinon(struct board_info *b, unsigned int win);
156 static void pcxi_memwinoff(struct board_info *b, unsigned int win);
157 static void pcxi_globalwinon(struct channel *ch);
158 static void pcxi_rxwinon(struct channel *ch);
159 static void pcxi_txwinon(struct channel *ch);
160 static void pcxi_memoff(struct channel *ch);
162 /* - Begin 'specific' do nothing memory functions needed for some cards - */
164 static void dummy_memwinon(struct board_info *b, unsigned int win);
165 static void dummy_memwinoff(struct board_info *b, unsigned int win);
166 static void dummy_globalwinon(struct channel *ch);
167 static void dummy_rxwinon(struct channel *ch);
168 static void dummy_txwinon(struct channel *ch);
169 static void dummy_memoff(struct channel *ch);
170 static void dummy_assertgwinon(struct channel *ch);
171 static void dummy_assertmemoff(struct channel *ch);
173 /* ------------------- Begin declare functions ----------------------- */
175 static struct channel *verifyChannel(struct tty_struct *);
176 static void pc_sched_event(struct channel *, int);
177 static void epca_error(int, char *);
178 static void pc_close(struct tty_struct *, struct file *);
179 static void shutdown(struct channel *);
180 static void pc_hangup(struct tty_struct *);
181 static void pc_put_char(struct tty_struct *, unsigned char);
182 static int pc_write_room(struct tty_struct *);
183 static int pc_chars_in_buffer(struct tty_struct *);
184 static void pc_flush_buffer(struct tty_struct *);
185 static void pc_flush_chars(struct tty_struct *);
186 static int block_til_ready(struct tty_struct *, struct file *,
187 struct channel *);
188 static int pc_open(struct tty_struct *, struct file *);
189 static void post_fep_init(unsigned int crd);
190 static void epcapoll(unsigned long);
191 static void doevent(int);
192 static void fepcmd(struct channel *, int, int, int, int, int);
193 static unsigned termios2digi_h(struct channel *ch, unsigned);
194 static unsigned termios2digi_i(struct channel *ch, unsigned);
195 static unsigned termios2digi_c(struct channel *ch, unsigned);
196 static void epcaparam(struct tty_struct *, struct channel *);
197 static void receive_data(struct channel *);
198 static int pc_ioctl(struct tty_struct *, struct file *,
199 unsigned int, unsigned long);
200 static int info_ioctl(struct tty_struct *, struct file *,
201 unsigned int, unsigned long);
202 static void pc_set_termios(struct tty_struct *, struct ktermios *);
203 static void do_softint(struct work_struct *work);
204 static void pc_stop(struct tty_struct *);
205 static void pc_start(struct tty_struct *);
206 static void pc_throttle(struct tty_struct * tty);
207 static void pc_unthrottle(struct tty_struct *tty);
208 static void digi_send_break(struct channel *ch, int msec);
209 static void setup_empty_event(struct tty_struct *tty, struct channel *ch);
210 void epca_setup(char *, int *);
212 static int get_termio(struct tty_struct *, struct termio __user *);
213 static int pc_write(struct tty_struct *, const unsigned char *, int);
214 static int pc_init(void);
215 static int init_PCI(void);
218 /* ------------------------------------------------------------------
219 Table of functions for each board to handle memory. Mantaining
220 parallelism is a *very* good idea here. The idea is for the
221 runtime code to blindly call these functions, not knowing/caring
222 about the underlying hardware. This stuff should contain no
223 conditionals; if more functionality is needed a different entry
224 should be established. These calls are the interface calls and
225 are the only functions that should be accessed. Anyone caught
226 making direct calls deserves what they get.
227 -------------------------------------------------------------------- */
229 static void memwinon(struct board_info *b, unsigned int win)
231 (b->memwinon)(b, win);
234 static void memwinoff(struct board_info *b, unsigned int win)
236 (b->memwinoff)(b, win);
239 static void globalwinon(struct channel *ch)
241 (ch->board->globalwinon)(ch);
244 static void rxwinon(struct channel *ch)
246 (ch->board->rxwinon)(ch);
249 static void txwinon(struct channel *ch)
251 (ch->board->txwinon)(ch);
254 static void memoff(struct channel *ch)
256 (ch->board->memoff)(ch);
258 static void assertgwinon(struct channel *ch)
260 (ch->board->assertgwinon)(ch);
263 static void assertmemoff(struct channel *ch)
265 (ch->board->assertmemoff)(ch);
268 /* ---------------------------------------------------------
269 PCXEM windowing is the same as that used in the PCXR
270 and CX series cards.
271 ------------------------------------------------------------ */
273 static void pcxem_memwinon(struct board_info *b, unsigned int win)
275 outb_p(FEPWIN|win, b->port + 1);
278 static void pcxem_memwinoff(struct board_info *b, unsigned int win)
280 outb_p(0, b->port + 1);
283 static void pcxem_globalwinon(struct channel *ch)
285 outb_p( FEPWIN, (int)ch->board->port + 1);
288 static void pcxem_rxwinon(struct channel *ch)
290 outb_p(ch->rxwin, (int)ch->board->port + 1);
293 static void pcxem_txwinon(struct channel *ch)
295 outb_p(ch->txwin, (int)ch->board->port + 1);
298 static void pcxem_memoff(struct channel *ch)
300 outb_p(0, (int)ch->board->port + 1);
303 /* ----------------- Begin pcxe memory window stuff ------------------ */
305 static void pcxe_memwinon(struct board_info *b, unsigned int win)
307 outb_p(FEPWIN | win, b->port + 1);
310 static void pcxe_memwinoff(struct board_info *b, unsigned int win)
312 outb_p(inb(b->port) & ~FEPMEM,
313 b->port + 1);
314 outb_p(0, b->port + 1);
317 static void pcxe_globalwinon(struct channel *ch)
319 outb_p( FEPWIN, (int)ch->board->port + 1);
322 static void pcxe_rxwinon(struct channel *ch)
324 outb_p(ch->rxwin, (int)ch->board->port + 1);
327 static void pcxe_txwinon(struct channel *ch)
329 outb_p(ch->txwin, (int)ch->board->port + 1);
332 static void pcxe_memoff(struct channel *ch)
334 outb_p(0, (int)ch->board->port);
335 outb_p(0, (int)ch->board->port + 1);
338 /* ------------- Begin pc64xe and pcxi memory window stuff -------------- */
340 static void pcxi_memwinon(struct board_info *b, unsigned int win)
342 outb_p(inb(b->port) | FEPMEM, b->port);
345 static void pcxi_memwinoff(struct board_info *b, unsigned int win)
347 outb_p(inb(b->port) & ~FEPMEM, b->port);
350 static void pcxi_globalwinon(struct channel *ch)
352 outb_p(FEPMEM, ch->board->port);
355 static void pcxi_rxwinon(struct channel *ch)
357 outb_p(FEPMEM, ch->board->port);
360 static void pcxi_txwinon(struct channel *ch)
362 outb_p(FEPMEM, ch->board->port);
365 static void pcxi_memoff(struct channel *ch)
367 outb_p(0, ch->board->port);
370 static void pcxi_assertgwinon(struct channel *ch)
372 epcaassert(inb(ch->board->port) & FEPMEM, "Global memory off");
375 static void pcxi_assertmemoff(struct channel *ch)
377 epcaassert(!(inb(ch->board->port) & FEPMEM), "Memory on");
381 /* ----------------------------------------------------------------------
382 Not all of the cards need specific memory windowing routines. Some
383 cards (Such as PCI) needs no windowing routines at all. We provide
384 these do nothing routines so that the same code base can be used.
385 The driver will ALWAYS call a windowing routine if it thinks it needs
386 to; regardless of the card. However, dependent on the card the routine
387 may or may not do anything.
388 ---------------------------------------------------------------------------*/
390 static void dummy_memwinon(struct board_info *b, unsigned int win)
394 static void dummy_memwinoff(struct board_info *b, unsigned int win)
398 static void dummy_globalwinon(struct channel *ch)
402 static void dummy_rxwinon(struct channel *ch)
406 static void dummy_txwinon(struct channel *ch)
410 static void dummy_memoff(struct channel *ch)
414 static void dummy_assertgwinon(struct channel *ch)
418 static void dummy_assertmemoff(struct channel *ch)
422 /* ----------------- Begin verifyChannel function ----------------------- */
423 static struct channel *verifyChannel(struct tty_struct *tty)
424 { /* Begin verifyChannel */
425 /* --------------------------------------------------------------------
426 This routine basically provides a sanity check. It insures that
427 the channel returned is within the proper range of addresses as
428 well as properly initialized. If some bogus info gets passed in
429 through tty->driver_data this should catch it.
430 --------------------------------------------------------------------- */
431 if (tty) {
432 struct channel *ch = (struct channel *)tty->driver_data;
433 if ((ch >= &digi_channels[0]) && (ch < &digi_channels[nbdevs])) {
434 if (ch->magic == EPCA_MAGIC)
435 return ch;
438 return NULL;
440 } /* End verifyChannel */
442 /* ------------------ Begin pc_sched_event ------------------------- */
444 static void pc_sched_event(struct channel *ch, int event)
446 /* ----------------------------------------------------------------------
447 We call this to schedule interrupt processing on some event. The
448 kernel sees our request and calls the related routine in OUR driver.
449 -------------------------------------------------------------------------*/
450 ch->event |= 1 << event;
451 schedule_work(&ch->tqueue);
452 } /* End pc_sched_event */
454 /* ------------------ Begin epca_error ------------------------- */
456 static void epca_error(int line, char *msg)
458 printk(KERN_ERR "epca_error (Digi): line = %d %s\n",line,msg);
461 /* ------------------ Begin pc_close ------------------------- */
462 static void pc_close(struct tty_struct * tty, struct file * filp)
464 struct channel *ch;
465 unsigned long flags;
466 /* ---------------------------------------------------------
467 verifyChannel returns the channel from the tty struct
468 if it is valid. This serves as a sanity check.
469 ------------------------------------------------------------- */
470 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */
471 spin_lock_irqsave(&epca_lock, flags);
472 if (tty_hung_up_p(filp)) {
473 spin_unlock_irqrestore(&epca_lock, flags);
474 return;
476 /* Check to see if the channel is open more than once */
477 if (ch->count-- > 1) {
478 /* Begin channel is open more than once */
479 /* -------------------------------------------------------------
480 Return without doing anything. Someone might still be using
481 the channel.
482 ---------------------------------------------------------------- */
483 spin_unlock_irqrestore(&epca_lock, flags);
484 return;
485 } /* End channel is open more than once */
487 /* Port open only once go ahead with shutdown & reset */
488 BUG_ON(ch->count < 0);
490 /* ---------------------------------------------------------------
491 Let the rest of the driver know the channel is being closed.
492 This becomes important if an open is attempted before close
493 is finished.
494 ------------------------------------------------------------------ */
495 ch->asyncflags |= ASYNC_CLOSING;
496 tty->closing = 1;
498 spin_unlock_irqrestore(&epca_lock, flags);
500 if (ch->asyncflags & ASYNC_INITIALIZED) {
501 /* Setup an event to indicate when the transmit buffer empties */
502 setup_empty_event(tty, ch);
503 tty_wait_until_sent(tty, 3000); /* 30 seconds timeout */
505 if (tty->driver->flush_buffer)
506 tty->driver->flush_buffer(tty);
508 tty_ldisc_flush(tty);
509 shutdown(ch);
511 spin_lock_irqsave(&epca_lock, flags);
512 tty->closing = 0;
513 ch->event = 0;
514 ch->tty = NULL;
515 spin_unlock_irqrestore(&epca_lock, flags);
517 if (ch->blocked_open) { /* Begin if blocked_open */
518 if (ch->close_delay)
519 msleep_interruptible(jiffies_to_msecs(ch->close_delay));
520 wake_up_interruptible(&ch->open_wait);
521 } /* End if blocked_open */
522 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED |
523 ASYNC_CLOSING);
524 wake_up_interruptible(&ch->close_wait);
525 } /* End if ch != NULL */
526 } /* End pc_close */
528 /* ------------------ Begin shutdown ------------------------- */
530 static void shutdown(struct channel *ch)
531 { /* Begin shutdown */
533 unsigned long flags;
534 struct tty_struct *tty;
535 struct board_chan __iomem *bc;
537 if (!(ch->asyncflags & ASYNC_INITIALIZED))
538 return;
540 spin_lock_irqsave(&epca_lock, flags);
542 globalwinon(ch);
543 bc = ch->brdchan;
545 /* ------------------------------------------------------------------
546 In order for an event to be generated on the receipt of data the
547 idata flag must be set. Since we are shutting down, this is not
548 necessary clear this flag.
549 --------------------------------------------------------------------- */
551 if (bc)
552 writeb(0, &bc->idata);
553 tty = ch->tty;
555 /* ----------------------------------------------------------------
556 If we're a modem control device and HUPCL is on, drop RTS & DTR.
557 ------------------------------------------------------------------ */
559 if (tty->termios->c_cflag & HUPCL) {
560 ch->omodem &= ~(ch->m_rts | ch->m_dtr);
561 fepcmd(ch, SETMODEM, 0, ch->m_dtr | ch->m_rts, 10, 1);
563 memoff(ch);
565 /* ------------------------------------------------------------------
566 The channel has officialy been closed. The next time it is opened
567 it will have to reinitialized. Set a flag to indicate this.
568 ---------------------------------------------------------------------- */
570 /* Prevent future Digi programmed interrupts from coming active */
572 ch->asyncflags &= ~ASYNC_INITIALIZED;
573 spin_unlock_irqrestore(&epca_lock, flags);
575 } /* End shutdown */
577 /* ------------------ Begin pc_hangup ------------------------- */
579 static void pc_hangup(struct tty_struct *tty)
580 { /* Begin pc_hangup */
581 struct channel *ch;
583 /* ---------------------------------------------------------
584 verifyChannel returns the channel from the tty struct
585 if it is valid. This serves as a sanity check.
586 ------------------------------------------------------------- */
588 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if ch != NULL */
589 unsigned long flags;
591 if (tty->driver->flush_buffer)
592 tty->driver->flush_buffer(tty);
593 tty_ldisc_flush(tty);
594 shutdown(ch);
596 spin_lock_irqsave(&epca_lock, flags);
597 ch->tty = NULL;
598 ch->event = 0;
599 ch->count = 0;
600 ch->asyncflags &= ~(ASYNC_NORMAL_ACTIVE | ASYNC_INITIALIZED);
601 spin_unlock_irqrestore(&epca_lock, flags);
602 wake_up_interruptible(&ch->open_wait);
603 } /* End if ch != NULL */
605 } /* End pc_hangup */
607 /* ------------------ Begin pc_write ------------------------- */
609 static int pc_write(struct tty_struct * tty,
610 const unsigned char *buf, int bytesAvailable)
611 { /* Begin pc_write */
612 unsigned int head, tail;
613 int dataLen;
614 int size;
615 int amountCopied;
616 struct channel *ch;
617 unsigned long flags;
618 int remain;
619 struct board_chan __iomem *bc;
621 /* ----------------------------------------------------------------
622 pc_write is primarily called directly by the kernel routine
623 tty_write (Though it can also be called by put_char) found in
624 tty_io.c. pc_write is passed a line discipline buffer where
625 the data to be written out is stored. The line discipline
626 implementation itself is done at the kernel level and is not
627 brought into the driver.
628 ------------------------------------------------------------------- */
630 /* ---------------------------------------------------------
631 verifyChannel returns the channel from the tty struct
632 if it is valid. This serves as a sanity check.
633 ------------------------------------------------------------- */
635 if ((ch = verifyChannel(tty)) == NULL)
636 return 0;
638 /* Make a pointer to the channel data structure found on the board. */
640 bc = ch->brdchan;
641 size = ch->txbufsize;
642 amountCopied = 0;
644 spin_lock_irqsave(&epca_lock, flags);
645 globalwinon(ch);
647 head = readw(&bc->tin) & (size - 1);
648 tail = readw(&bc->tout);
650 if (tail != readw(&bc->tout))
651 tail = readw(&bc->tout);
652 tail &= (size - 1);
654 /* If head >= tail, head has not wrapped around. */
655 if (head >= tail) { /* Begin head has not wrapped */
656 /* ---------------------------------------------------------------
657 remain (much like dataLen above) represents the total amount of
658 space available on the card for data. Here dataLen represents
659 the space existing between the head pointer and the end of
660 buffer. This is important because a memcpy cannot be told to
661 automatically wrap around when it hits the buffer end.
662 ------------------------------------------------------------------ */
663 dataLen = size - head;
664 remain = size - (head - tail) - 1;
665 } else { /* Begin head has wrapped around */
667 remain = tail - head - 1;
668 dataLen = remain;
670 } /* End head has wrapped around */
671 /* -------------------------------------------------------------------
672 Check the space on the card. If we have more data than
673 space; reduce the amount of data to fit the space.
674 ---------------------------------------------------------------------- */
675 bytesAvailable = min(remain, bytesAvailable);
676 txwinon(ch);
677 while (bytesAvailable > 0)
678 { /* Begin while there is data to copy onto card */
680 /* -----------------------------------------------------------------
681 If head is not wrapped, the below will make sure the first
682 data copy fills to the end of card buffer.
683 ------------------------------------------------------------------- */
685 dataLen = min(bytesAvailable, dataLen);
686 memcpy_toio(ch->txptr + head, buf, dataLen);
687 buf += dataLen;
688 head += dataLen;
689 amountCopied += dataLen;
690 bytesAvailable -= dataLen;
692 if (head >= size) {
693 head = 0;
694 dataLen = tail;
696 } /* End while there is data to copy onto card */
697 ch->statusflags |= TXBUSY;
698 globalwinon(ch);
699 writew(head, &bc->tin);
701 if ((ch->statusflags & LOWWAIT) == 0) {
702 ch->statusflags |= LOWWAIT;
703 writeb(1, &bc->ilow);
705 memoff(ch);
706 spin_unlock_irqrestore(&epca_lock, flags);
707 return(amountCopied);
709 } /* End pc_write */
711 /* ------------------ Begin pc_put_char ------------------------- */
713 static void pc_put_char(struct tty_struct *tty, unsigned char c)
714 { /* Begin pc_put_char */
715 pc_write(tty, &c, 1);
716 } /* End pc_put_char */
718 /* ------------------ Begin pc_write_room ------------------------- */
720 static int pc_write_room(struct tty_struct *tty)
721 { /* Begin pc_write_room */
723 int remain;
724 struct channel *ch;
725 unsigned long flags;
726 unsigned int head, tail;
727 struct board_chan __iomem *bc;
729 remain = 0;
731 /* ---------------------------------------------------------
732 verifyChannel returns the channel from the tty struct
733 if it is valid. This serves as a sanity check.
734 ------------------------------------------------------------- */
736 if ((ch = verifyChannel(tty)) != NULL) {
737 spin_lock_irqsave(&epca_lock, flags);
738 globalwinon(ch);
740 bc = ch->brdchan;
741 head = readw(&bc->tin) & (ch->txbufsize - 1);
742 tail = readw(&bc->tout);
744 if (tail != readw(&bc->tout))
745 tail = readw(&bc->tout);
746 /* Wrap tail if necessary */
747 tail &= (ch->txbufsize - 1);
749 if ((remain = tail - head - 1) < 0 )
750 remain += ch->txbufsize;
752 if (remain && (ch->statusflags & LOWWAIT) == 0) {
753 ch->statusflags |= LOWWAIT;
754 writeb(1, &bc->ilow);
756 memoff(ch);
757 spin_unlock_irqrestore(&epca_lock, flags);
759 /* Return how much room is left on card */
760 return remain;
762 } /* End pc_write_room */
764 /* ------------------ Begin pc_chars_in_buffer ---------------------- */
766 static int pc_chars_in_buffer(struct tty_struct *tty)
767 { /* Begin pc_chars_in_buffer */
769 int chars;
770 unsigned int ctail, head, tail;
771 int remain;
772 unsigned long flags;
773 struct channel *ch;
774 struct board_chan __iomem *bc;
776 /* ---------------------------------------------------------
777 verifyChannel returns the channel from the tty struct
778 if it is valid. This serves as a sanity check.
779 ------------------------------------------------------------- */
781 if ((ch = verifyChannel(tty)) == NULL)
782 return(0);
784 spin_lock_irqsave(&epca_lock, flags);
785 globalwinon(ch);
787 bc = ch->brdchan;
788 tail = readw(&bc->tout);
789 head = readw(&bc->tin);
790 ctail = readw(&ch->mailbox->cout);
792 if (tail == head && readw(&ch->mailbox->cin) == ctail && readb(&bc->tbusy) == 0)
793 chars = 0;
794 else { /* Begin if some space on the card has been used */
795 head = readw(&bc->tin) & (ch->txbufsize - 1);
796 tail &= (ch->txbufsize - 1);
797 /* --------------------------------------------------------------
798 The logic here is basically opposite of the above pc_write_room
799 here we are finding the amount of bytes in the buffer filled.
800 Not the amount of bytes empty.
801 ------------------------------------------------------------------- */
802 if ((remain = tail - head - 1) < 0 )
803 remain += ch->txbufsize;
804 chars = (int)(ch->txbufsize - remain);
805 /* -------------------------------------------------------------
806 Make it possible to wakeup anything waiting for output
807 in tty_ioctl.c, etc.
809 If not already set. Setup an event to indicate when the
810 transmit buffer empties
811 ----------------------------------------------------------------- */
812 if (!(ch->statusflags & EMPTYWAIT))
813 setup_empty_event(tty,ch);
815 } /* End if some space on the card has been used */
816 memoff(ch);
817 spin_unlock_irqrestore(&epca_lock, flags);
818 /* Return number of characters residing on card. */
819 return(chars);
821 } /* End pc_chars_in_buffer */
823 /* ------------------ Begin pc_flush_buffer ---------------------- */
825 static void pc_flush_buffer(struct tty_struct *tty)
826 { /* Begin pc_flush_buffer */
828 unsigned int tail;
829 unsigned long flags;
830 struct channel *ch;
831 struct board_chan __iomem *bc;
832 /* ---------------------------------------------------------
833 verifyChannel returns the channel from the tty struct
834 if it is valid. This serves as a sanity check.
835 ------------------------------------------------------------- */
836 if ((ch = verifyChannel(tty)) == NULL)
837 return;
839 spin_lock_irqsave(&epca_lock, flags);
840 globalwinon(ch);
841 bc = ch->brdchan;
842 tail = readw(&bc->tout);
843 /* Have FEP move tout pointer; effectively flushing transmit buffer */
844 fepcmd(ch, STOUT, (unsigned) tail, 0, 0, 0);
845 memoff(ch);
846 spin_unlock_irqrestore(&epca_lock, flags);
847 wake_up_interruptible(&tty->write_wait);
848 tty_wakeup(tty);
849 } /* End pc_flush_buffer */
851 /* ------------------ Begin pc_flush_chars ---------------------- */
853 static void pc_flush_chars(struct tty_struct *tty)
854 { /* Begin pc_flush_chars */
855 struct channel * ch;
856 /* ---------------------------------------------------------
857 verifyChannel returns the channel from the tty struct
858 if it is valid. This serves as a sanity check.
859 ------------------------------------------------------------- */
860 if ((ch = verifyChannel(tty)) != NULL) {
861 unsigned long flags;
862 spin_lock_irqsave(&epca_lock, flags);
863 /* ----------------------------------------------------------------
864 If not already set and the transmitter is busy setup an event
865 to indicate when the transmit empties.
866 ------------------------------------------------------------------- */
867 if ((ch->statusflags & TXBUSY) && !(ch->statusflags & EMPTYWAIT))
868 setup_empty_event(tty,ch);
869 spin_unlock_irqrestore(&epca_lock, flags);
871 } /* End pc_flush_chars */
873 /* ------------------ Begin block_til_ready ---------------------- */
875 static int block_til_ready(struct tty_struct *tty,
876 struct file *filp, struct channel *ch)
877 { /* Begin block_til_ready */
878 DECLARE_WAITQUEUE(wait,current);
879 int retval, do_clocal = 0;
880 unsigned long flags;
882 if (tty_hung_up_p(filp)) {
883 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
884 retval = -EAGAIN;
885 else
886 retval = -ERESTARTSYS;
887 return(retval);
890 /* -----------------------------------------------------------------
891 If the device is in the middle of being closed, then block
892 until it's done, and then try again.
893 -------------------------------------------------------------------- */
894 if (ch->asyncflags & ASYNC_CLOSING) {
895 interruptible_sleep_on(&ch->close_wait);
897 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
898 return -EAGAIN;
899 else
900 return -ERESTARTSYS;
903 if (filp->f_flags & O_NONBLOCK) {
904 /* -----------------------------------------------------------------
905 If non-blocking mode is set, then make the check up front
906 and then exit.
907 -------------------------------------------------------------------- */
908 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
909 return 0;
911 if (tty->termios->c_cflag & CLOCAL)
912 do_clocal = 1;
913 /* Block waiting for the carrier detect and the line to become free */
915 retval = 0;
916 add_wait_queue(&ch->open_wait, &wait);
918 spin_lock_irqsave(&epca_lock, flags);
919 /* We dec count so that pc_close will know when to free things */
920 if (!tty_hung_up_p(filp))
921 ch->count--;
922 ch->blocked_open++;
923 while(1)
924 { /* Begin forever while */
925 set_current_state(TASK_INTERRUPTIBLE);
926 if (tty_hung_up_p(filp) ||
927 !(ch->asyncflags & ASYNC_INITIALIZED))
929 if (ch->asyncflags & ASYNC_HUP_NOTIFY)
930 retval = -EAGAIN;
931 else
932 retval = -ERESTARTSYS;
933 break;
935 if (!(ch->asyncflags & ASYNC_CLOSING) &&
936 (do_clocal || (ch->imodem & ch->dcd)))
937 break;
938 if (signal_pending(current)) {
939 retval = -ERESTARTSYS;
940 break;
942 spin_unlock_irqrestore(&epca_lock, flags);
943 /* ---------------------------------------------------------------
944 Allow someone else to be scheduled. We will occasionally go
945 through this loop until one of the above conditions change.
946 The below schedule call will allow other processes to enter and
947 prevent this loop from hogging the cpu.
948 ------------------------------------------------------------------ */
949 schedule();
950 spin_lock_irqsave(&epca_lock, flags);
952 } /* End forever while */
954 current->state = TASK_RUNNING;
955 remove_wait_queue(&ch->open_wait, &wait);
956 if (!tty_hung_up_p(filp))
957 ch->count++;
958 ch->blocked_open--;
960 spin_unlock_irqrestore(&epca_lock, flags);
962 if (retval)
963 return retval;
965 ch->asyncflags |= ASYNC_NORMAL_ACTIVE;
966 return 0;
967 } /* End block_til_ready */
969 /* ------------------ Begin pc_open ---------------------- */
971 static int pc_open(struct tty_struct *tty, struct file * filp)
972 { /* Begin pc_open */
974 struct channel *ch;
975 unsigned long flags;
976 int line, retval, boardnum;
977 struct board_chan __iomem *bc;
978 unsigned int head;
980 line = tty->index;
981 if (line < 0 || line >= nbdevs)
982 return -ENODEV;
984 ch = &digi_channels[line];
985 boardnum = ch->boardnum;
987 /* Check status of board configured in system. */
989 /* -----------------------------------------------------------------
990 I check to see if the epca_setup routine detected an user error.
991 It might be better to put this in pc_init, but for the moment it
992 goes here.
993 ---------------------------------------------------------------------- */
995 if (invalid_lilo_config) {
996 if (setup_error_code & INVALID_BOARD_TYPE)
997 printk(KERN_ERR "epca: pc_open: Invalid board type specified in kernel options.\n");
998 if (setup_error_code & INVALID_NUM_PORTS)
999 printk(KERN_ERR "epca: pc_open: Invalid number of ports specified in kernel options.\n");
1000 if (setup_error_code & INVALID_MEM_BASE)
1001 printk(KERN_ERR "epca: pc_open: Invalid board memory address specified in kernel options.\n");
1002 if (setup_error_code & INVALID_PORT_BASE)
1003 printk(KERN_ERR "epca; pc_open: Invalid board port address specified in kernel options.\n");
1004 if (setup_error_code & INVALID_BOARD_STATUS)
1005 printk(KERN_ERR "epca: pc_open: Invalid board status specified in kernel options.\n");
1006 if (setup_error_code & INVALID_ALTPIN)
1007 printk(KERN_ERR "epca: pc_open: Invalid board altpin specified in kernel options;\n");
1008 tty->driver_data = NULL; /* Mark this device as 'down' */
1009 return -ENODEV;
1011 if (boardnum >= num_cards || boards[boardnum].status == DISABLED) {
1012 tty->driver_data = NULL; /* Mark this device as 'down' */
1013 return(-ENODEV);
1016 if ((bc = ch->brdchan) == 0) {
1017 tty->driver_data = NULL;
1018 return -ENODEV;
1021 spin_lock_irqsave(&epca_lock, flags);
1022 /* ------------------------------------------------------------------
1023 Every time a channel is opened, increment a counter. This is
1024 necessary because we do not wish to flush and shutdown the channel
1025 until the last app holding the channel open, closes it.
1026 --------------------------------------------------------------------- */
1027 ch->count++;
1028 /* ----------------------------------------------------------------
1029 Set a kernel structures pointer to our local channel
1030 structure. This way we can get to it when passed only
1031 a tty struct.
1032 ------------------------------------------------------------------ */
1033 tty->driver_data = ch;
1034 /* ----------------------------------------------------------------
1035 If this is the first time the channel has been opened, initialize
1036 the tty->termios struct otherwise let pc_close handle it.
1037 -------------------------------------------------------------------- */
1038 globalwinon(ch);
1039 ch->statusflags = 0;
1041 /* Save boards current modem status */
1042 ch->imodem = readb(&bc->mstat);
1044 /* ----------------------------------------------------------------
1045 Set receive head and tail ptrs to each other. This indicates
1046 no data available to read.
1047 ----------------------------------------------------------------- */
1048 head = readw(&bc->rin);
1049 writew(head, &bc->rout);
1051 /* Set the channels associated tty structure */
1052 ch->tty = tty;
1054 /* -----------------------------------------------------------------
1055 The below routine generally sets up parity, baud, flow control
1056 issues, etc.... It effect both control flags and input flags.
1057 -------------------------------------------------------------------- */
1058 epcaparam(tty,ch);
1059 ch->asyncflags |= ASYNC_INITIALIZED;
1060 memoff(ch);
1061 spin_unlock_irqrestore(&epca_lock, flags);
1063 retval = block_til_ready(tty, filp, ch);
1064 if (retval)
1065 return retval;
1066 /* -------------------------------------------------------------
1067 Set this again in case a hangup set it to zero while this
1068 open() was waiting for the line...
1069 --------------------------------------------------------------- */
1070 spin_lock_irqsave(&epca_lock, flags);
1071 ch->tty = tty;
1072 globalwinon(ch);
1073 /* Enable Digi Data events */
1074 writeb(1, &bc->idata);
1075 memoff(ch);
1076 spin_unlock_irqrestore(&epca_lock, flags);
1077 return 0;
1078 } /* End pc_open */
1080 static int __init epca_module_init(void)
1081 { /* Begin init_module */
1082 return pc_init();
1085 module_init(epca_module_init);
1087 static struct pci_driver epca_driver;
1089 static void __exit epca_module_exit(void)
1091 int count, crd;
1092 struct board_info *bd;
1093 struct channel *ch;
1095 del_timer_sync(&epca_timer);
1097 if ((tty_unregister_driver(pc_driver)) ||
1098 (tty_unregister_driver(pc_info)))
1100 printk(KERN_WARNING "epca: cleanup_module failed to un-register tty driver\n");
1101 return;
1103 put_tty_driver(pc_driver);
1104 put_tty_driver(pc_info);
1106 for (crd = 0; crd < num_cards; crd++) { /* Begin for each card */
1107 bd = &boards[crd];
1108 if (!bd)
1109 { /* Begin sanity check */
1110 printk(KERN_ERR "<Error> - Digi : cleanup_module failed\n");
1111 return;
1112 } /* End sanity check */
1113 ch = card_ptr[crd];
1114 for (count = 0; count < bd->numports; count++, ch++)
1115 { /* Begin for each port */
1116 if (ch && ch->tty)
1117 tty_hangup(ch->tty);
1118 } /* End for each port */
1119 } /* End for each card */
1120 pci_unregister_driver (&epca_driver);
1123 module_exit(epca_module_exit);
1125 static const struct tty_operations pc_ops = {
1126 .open = pc_open,
1127 .close = pc_close,
1128 .write = pc_write,
1129 .write_room = pc_write_room,
1130 .flush_buffer = pc_flush_buffer,
1131 .chars_in_buffer = pc_chars_in_buffer,
1132 .flush_chars = pc_flush_chars,
1133 .put_char = pc_put_char,
1134 .ioctl = pc_ioctl,
1135 .set_termios = pc_set_termios,
1136 .stop = pc_stop,
1137 .start = pc_start,
1138 .throttle = pc_throttle,
1139 .unthrottle = pc_unthrottle,
1140 .hangup = pc_hangup,
1143 static int info_open(struct tty_struct *tty, struct file * filp)
1145 return 0;
1148 static struct tty_operations info_ops = {
1149 .open = info_open,
1150 .ioctl = info_ioctl,
1153 /* ------------------ Begin pc_init ---------------------- */
1155 static int __init pc_init(void)
1156 { /* Begin pc_init */
1157 int crd;
1158 struct board_info *bd;
1159 unsigned char board_id = 0;
1160 int err = -ENOMEM;
1162 int pci_boards_found, pci_count;
1164 pci_count = 0;
1166 pc_driver = alloc_tty_driver(MAX_ALLOC);
1167 if (!pc_driver)
1168 goto out1;
1170 pc_info = alloc_tty_driver(MAX_ALLOC);
1171 if (!pc_info)
1172 goto out2;
1174 /* -----------------------------------------------------------------------
1175 If epca_setup has not been ran by LILO set num_cards to defaults; copy
1176 board structure defined by digiConfig into drivers board structure.
1177 Note : If LILO has ran epca_setup then epca_setup will handle defining
1178 num_cards as well as copying the data into the board structure.
1179 -------------------------------------------------------------------------- */
1180 if (!liloconfig) { /* Begin driver has been configured via. epcaconfig */
1182 nbdevs = NBDEVS;
1183 num_cards = NUMCARDS;
1184 memcpy((void *)&boards, (void *)&static_boards,
1185 (sizeof(struct board_info) * NUMCARDS));
1186 } /* End driver has been configured via. epcaconfig */
1188 /* -----------------------------------------------------------------
1189 Note : If lilo was used to configure the driver and the
1190 ignore epcaconfig option was choosen (digiepca=2) then
1191 nbdevs and num_cards will equal 0 at this point. This is
1192 okay; PCI cards will still be picked up if detected.
1193 --------------------------------------------------------------------- */
1195 /* -----------------------------------------------------------
1196 Set up interrupt, we will worry about memory allocation in
1197 post_fep_init.
1198 --------------------------------------------------------------- */
1201 printk(KERN_INFO "DIGI epca driver version %s loaded.\n",VERSION);
1203 /* ------------------------------------------------------------------
1204 NOTE : This code assumes that the number of ports found in
1205 the boards array is correct. This could be wrong if
1206 the card in question is PCI (And therefore has no ports
1207 entry in the boards structure.) The rest of the
1208 information will be valid for PCI because the beginning
1209 of pc_init scans for PCI and determines i/o and base
1210 memory addresses. I am not sure if it is possible to
1211 read the number of ports supported by the card prior to
1212 it being booted (Since that is the state it is in when
1213 pc_init is run). Because it is not possible to query the
1214 number of supported ports until after the card has booted;
1215 we are required to calculate the card_ptrs as the card is
1216 is initialized (Inside post_fep_init). The negative thing
1217 about this approach is that digiDload's call to GET_INFO
1218 will have a bad port value. (Since this is called prior
1219 to post_fep_init.)
1221 --------------------------------------------------------------------- */
1223 pci_boards_found = 0;
1224 if(num_cards < MAXBOARDS)
1225 pci_boards_found += init_PCI();
1226 num_cards += pci_boards_found;
1228 pc_driver->owner = THIS_MODULE;
1229 pc_driver->name = "ttyD";
1230 pc_driver->major = DIGI_MAJOR;
1231 pc_driver->minor_start = 0;
1232 pc_driver->type = TTY_DRIVER_TYPE_SERIAL;
1233 pc_driver->subtype = SERIAL_TYPE_NORMAL;
1234 pc_driver->init_termios = tty_std_termios;
1235 pc_driver->init_termios.c_iflag = 0;
1236 pc_driver->init_termios.c_oflag = 0;
1237 pc_driver->init_termios.c_cflag = B9600 | CS8 | CREAD | CLOCAL | HUPCL;
1238 pc_driver->init_termios.c_lflag = 0;
1239 pc_driver->init_termios.c_ispeed = 9600;
1240 pc_driver->init_termios.c_ospeed = 9600;
1241 pc_driver->flags = TTY_DRIVER_REAL_RAW;
1242 tty_set_operations(pc_driver, &pc_ops);
1244 pc_info->owner = THIS_MODULE;
1245 pc_info->name = "digi_ctl";
1246 pc_info->major = DIGIINFOMAJOR;
1247 pc_info->minor_start = 0;
1248 pc_info->type = TTY_DRIVER_TYPE_SERIAL;
1249 pc_info->subtype = SERIAL_TYPE_INFO;
1250 pc_info->init_termios = tty_std_termios;
1251 pc_info->init_termios.c_iflag = 0;
1252 pc_info->init_termios.c_oflag = 0;
1253 pc_info->init_termios.c_lflag = 0;
1254 pc_info->init_termios.c_cflag = B9600 | CS8 | CREAD | HUPCL;
1255 pc_info->init_termios.c_ispeed = 9600;
1256 pc_info->init_termios.c_ospeed = 9600;
1257 pc_info->flags = TTY_DRIVER_REAL_RAW;
1258 tty_set_operations(pc_info, &info_ops);
1261 for (crd = 0; crd < num_cards; crd++)
1262 { /* Begin for each card */
1264 /* ------------------------------------------------------------------
1265 This is where the appropriate memory handlers for the hardware is
1266 set. Everything at runtime blindly jumps through these vectors.
1267 ---------------------------------------------------------------------- */
1269 /* defined in epcaconfig.h */
1270 bd = &boards[crd];
1272 switch (bd->type)
1273 { /* Begin switch on bd->type {board type} */
1274 case PCXEM:
1275 case EISAXEM:
1276 bd->memwinon = pcxem_memwinon ;
1277 bd->memwinoff = pcxem_memwinoff ;
1278 bd->globalwinon = pcxem_globalwinon ;
1279 bd->txwinon = pcxem_txwinon ;
1280 bd->rxwinon = pcxem_rxwinon ;
1281 bd->memoff = pcxem_memoff ;
1282 bd->assertgwinon = dummy_assertgwinon;
1283 bd->assertmemoff = dummy_assertmemoff;
1284 break;
1286 case PCIXEM:
1287 case PCIXRJ:
1288 case PCIXR:
1289 bd->memwinon = dummy_memwinon;
1290 bd->memwinoff = dummy_memwinoff;
1291 bd->globalwinon = dummy_globalwinon;
1292 bd->txwinon = dummy_txwinon;
1293 bd->rxwinon = dummy_rxwinon;
1294 bd->memoff = dummy_memoff;
1295 bd->assertgwinon = dummy_assertgwinon;
1296 bd->assertmemoff = dummy_assertmemoff;
1297 break;
1299 case PCXE:
1300 case PCXEVE:
1302 bd->memwinon = pcxe_memwinon;
1303 bd->memwinoff = pcxe_memwinoff;
1304 bd->globalwinon = pcxe_globalwinon;
1305 bd->txwinon = pcxe_txwinon;
1306 bd->rxwinon = pcxe_rxwinon;
1307 bd->memoff = pcxe_memoff;
1308 bd->assertgwinon = dummy_assertgwinon;
1309 bd->assertmemoff = dummy_assertmemoff;
1310 break;
1312 case PCXI:
1313 case PC64XE:
1315 bd->memwinon = pcxi_memwinon;
1316 bd->memwinoff = pcxi_memwinoff;
1317 bd->globalwinon = pcxi_globalwinon;
1318 bd->txwinon = pcxi_txwinon;
1319 bd->rxwinon = pcxi_rxwinon;
1320 bd->memoff = pcxi_memoff;
1321 bd->assertgwinon = pcxi_assertgwinon;
1322 bd->assertmemoff = pcxi_assertmemoff;
1323 break;
1325 default:
1326 break;
1328 } /* End switch on bd->type */
1330 /* ---------------------------------------------------------------
1331 Some cards need a memory segment to be defined for use in
1332 transmit and receive windowing operations. These boards
1333 are listed in the below switch. In the case of the XI the
1334 amount of memory on the board is variable so the memory_seg
1335 is also variable. This code determines what they segment
1336 should be.
1337 ----------------------------------------------------------------- */
1339 switch (bd->type)
1340 { /* Begin switch on bd->type {board type} */
1342 case PCXE:
1343 case PCXEVE:
1344 case PC64XE:
1345 bd->memory_seg = 0xf000;
1346 break;
1348 case PCXI:
1349 board_id = inb((int)bd->port);
1350 if ((board_id & 0x1) == 0x1)
1351 { /* Begin it's an XI card */
1353 /* Is it a 64K board */
1354 if ((board_id & 0x30) == 0)
1355 bd->memory_seg = 0xf000;
1357 /* Is it a 128K board */
1358 if ((board_id & 0x30) == 0x10)
1359 bd->memory_seg = 0xe000;
1361 /* Is is a 256K board */
1362 if ((board_id & 0x30) == 0x20)
1363 bd->memory_seg = 0xc000;
1365 /* Is it a 512K board */
1366 if ((board_id & 0x30) == 0x30)
1367 bd->memory_seg = 0x8000;
1369 } else printk(KERN_ERR "epca: Board at 0x%x doesn't appear to be an XI\n",(int)bd->port);
1370 break;
1372 } /* End switch on bd->type */
1374 } /* End for each card */
1376 err = tty_register_driver(pc_driver);
1377 if (err) {
1378 printk(KERN_ERR "Couldn't register Digi PC/ driver");
1379 goto out3;
1382 err = tty_register_driver(pc_info);
1383 if (err) {
1384 printk(KERN_ERR "Couldn't register Digi PC/ info ");
1385 goto out4;
1388 /* -------------------------------------------------------------------
1389 Start up the poller to check for events on all enabled boards
1390 ---------------------------------------------------------------------- */
1392 init_timer(&epca_timer);
1393 epca_timer.function = epcapoll;
1394 mod_timer(&epca_timer, jiffies + HZ/25);
1395 return 0;
1397 out4:
1398 tty_unregister_driver(pc_driver);
1399 out3:
1400 put_tty_driver(pc_info);
1401 out2:
1402 put_tty_driver(pc_driver);
1403 out1:
1404 return err;
1406 } /* End pc_init */
1408 /* ------------------ Begin post_fep_init ---------------------- */
1410 static void post_fep_init(unsigned int crd)
1411 { /* Begin post_fep_init */
1413 int i;
1414 void __iomem *memaddr;
1415 struct global_data __iomem *gd;
1416 struct board_info *bd;
1417 struct board_chan __iomem *bc;
1418 struct channel *ch;
1419 int shrinkmem = 0, lowwater ;
1421 /* -------------------------------------------------------------
1422 This call is made by the user via. the ioctl call DIGI_INIT.
1423 It is responsible for setting up all the card specific stuff.
1424 ---------------------------------------------------------------- */
1425 bd = &boards[crd];
1427 /* -----------------------------------------------------------------
1428 If this is a PCI board, get the port info. Remember PCI cards
1429 do not have entries into the epcaconfig.h file, so we can't get
1430 the number of ports from it. Unfortunetly, this means that anyone
1431 doing a DIGI_GETINFO before the board has booted will get an invalid
1432 number of ports returned (It should return 0). Calls to DIGI_GETINFO
1433 after DIGI_INIT has been called will return the proper values.
1434 ------------------------------------------------------------------- */
1436 if (bd->type >= PCIXEM) { /* Begin get PCI number of ports */
1437 /* --------------------------------------------------------------------
1438 Below we use XEMPORTS as a memory offset regardless of which PCI
1439 card it is. This is because all of the supported PCI cards have
1440 the same memory offset for the channel data. This will have to be
1441 changed if we ever develop a PCI/XE card. NOTE : The FEP manual
1442 states that the port offset is 0xC22 as opposed to 0xC02. This is
1443 only true for PC/XE, and PC/XI cards; not for the XEM, or CX series.
1444 On the PCI cards the number of ports is determined by reading a
1445 ID PROM located in the box attached to the card. The card can then
1446 determine the index the id to determine the number of ports available.
1447 (FYI - The id should be located at 0x1ac (And may use up to 4 bytes
1448 if the box in question is a XEM or CX)).
1449 ------------------------------------------------------------------------ */
1450 /* PCI cards are already remapped at this point ISA are not */
1451 bd->numports = readw(bd->re_map_membase + XEMPORTS);
1452 epcaassert(bd->numports <= 64,"PCI returned a invalid number of ports");
1453 nbdevs += (bd->numports);
1454 } else {
1455 /* Fix up the mappings for ISA/EISA etc */
1456 /* FIXME: 64K - can we be smarter ? */
1457 bd->re_map_membase = ioremap(bd->membase, 0x10000);
1460 if (crd != 0)
1461 card_ptr[crd] = card_ptr[crd-1] + boards[crd-1].numports;
1462 else
1463 card_ptr[crd] = &digi_channels[crd]; /* <- For card 0 only */
1465 ch = card_ptr[crd];
1466 epcaassert(ch <= &digi_channels[nbdevs - 1], "ch out of range");
1468 memaddr = bd->re_map_membase;
1470 /* -----------------------------------------------------------------
1471 The below assignment will set bc to point at the BEGINING of
1472 the cards channel structures. For 1 card there will be between
1473 8 and 64 of these structures.
1474 -------------------------------------------------------------------- */
1476 bc = memaddr + CHANSTRUCT;
1478 /* -------------------------------------------------------------------
1479 The below assignment will set gd to point at the BEGINING of
1480 global memory address 0xc00. The first data in that global
1481 memory actually starts at address 0xc1a. The command in
1482 pointer begins at 0xd10.
1483 ---------------------------------------------------------------------- */
1485 gd = memaddr + GLOBAL;
1487 /* --------------------------------------------------------------------
1488 XEPORTS (address 0xc22) points at the number of channels the
1489 card supports. (For 64XE, XI, XEM, and XR use 0xc02)
1490 ----------------------------------------------------------------------- */
1492 if ((bd->type == PCXEVE || bd->type == PCXE) && (readw(memaddr + XEPORTS) < 3))
1493 shrinkmem = 1;
1494 if (bd->type < PCIXEM)
1495 if (!request_region((int)bd->port, 4, board_desc[bd->type]))
1496 return;
1497 memwinon(bd, 0);
1499 /* --------------------------------------------------------------------
1500 Remember ch is the main drivers channels structure, while bc is
1501 the cards channel structure.
1502 ------------------------------------------------------------------------ */
1504 /* For every port on the card do ..... */
1506 for (i = 0; i < bd->numports; i++, ch++, bc++) { /* Begin for each port */
1507 unsigned long flags;
1508 u16 tseg, rseg;
1510 ch->brdchan = bc;
1511 ch->mailbox = gd;
1512 INIT_WORK(&ch->tqueue, do_softint);
1513 ch->board = &boards[crd];
1515 spin_lock_irqsave(&epca_lock, flags);
1516 switch (bd->type) {
1517 /* ----------------------------------------------------------------
1518 Since some of the boards use different bitmaps for their
1519 control signals we cannot hard code these values and retain
1520 portability. We virtualize this data here.
1521 ------------------------------------------------------------------- */
1522 case EISAXEM:
1523 case PCXEM:
1524 case PCIXEM:
1525 case PCIXRJ:
1526 case PCIXR:
1527 ch->m_rts = 0x02 ;
1528 ch->m_dcd = 0x80 ;
1529 ch->m_dsr = 0x20 ;
1530 ch->m_cts = 0x10 ;
1531 ch->m_ri = 0x40 ;
1532 ch->m_dtr = 0x01 ;
1533 break;
1535 case PCXE:
1536 case PCXEVE:
1537 case PCXI:
1538 case PC64XE:
1539 ch->m_rts = 0x02 ;
1540 ch->m_dcd = 0x08 ;
1541 ch->m_dsr = 0x10 ;
1542 ch->m_cts = 0x20 ;
1543 ch->m_ri = 0x40 ;
1544 ch->m_dtr = 0x80 ;
1545 break;
1547 } /* End switch bd->type */
1549 if (boards[crd].altpin) {
1550 ch->dsr = ch->m_dcd;
1551 ch->dcd = ch->m_dsr;
1552 ch->digiext.digi_flags |= DIGI_ALTPIN;
1554 else {
1555 ch->dcd = ch->m_dcd;
1556 ch->dsr = ch->m_dsr;
1559 ch->boardnum = crd;
1560 ch->channelnum = i;
1561 ch->magic = EPCA_MAGIC;
1562 ch->tty = NULL;
1564 if (shrinkmem) {
1565 fepcmd(ch, SETBUFFER, 32, 0, 0, 0);
1566 shrinkmem = 0;
1569 tseg = readw(&bc->tseg);
1570 rseg = readw(&bc->rseg);
1572 switch (bd->type) {
1574 case PCIXEM:
1575 case PCIXRJ:
1576 case PCIXR:
1577 /* Cover all the 2MEG cards */
1578 ch->txptr = memaddr + ((tseg << 4) & 0x1fffff);
1579 ch->rxptr = memaddr + ((rseg << 4) & 0x1fffff);
1580 ch->txwin = FEPWIN | (tseg >> 11);
1581 ch->rxwin = FEPWIN | (rseg >> 11);
1582 break;
1584 case PCXEM:
1585 case EISAXEM:
1586 /* Cover all the 32K windowed cards */
1587 /* Mask equal to window size - 1 */
1588 ch->txptr = memaddr + ((tseg << 4) & 0x7fff);
1589 ch->rxptr = memaddr + ((rseg << 4) & 0x7fff);
1590 ch->txwin = FEPWIN | (tseg >> 11);
1591 ch->rxwin = FEPWIN | (rseg >> 11);
1592 break;
1594 case PCXEVE:
1595 case PCXE:
1596 ch->txptr = memaddr + (((tseg - bd->memory_seg) << 4) & 0x1fff);
1597 ch->txwin = FEPWIN | ((tseg - bd->memory_seg) >> 9);
1598 ch->rxptr = memaddr + (((rseg - bd->memory_seg) << 4) & 0x1fff);
1599 ch->rxwin = FEPWIN | ((rseg - bd->memory_seg) >>9 );
1600 break;
1602 case PCXI:
1603 case PC64XE:
1604 ch->txptr = memaddr + ((tseg - bd->memory_seg) << 4);
1605 ch->rxptr = memaddr + ((rseg - bd->memory_seg) << 4);
1606 ch->txwin = ch->rxwin = 0;
1607 break;
1609 } /* End switch bd->type */
1611 ch->txbufhead = 0;
1612 ch->txbufsize = readw(&bc->tmax) + 1;
1614 ch->rxbufhead = 0;
1615 ch->rxbufsize = readw(&bc->rmax) + 1;
1617 lowwater = ch->txbufsize >= 2000 ? 1024 : (ch->txbufsize / 2);
1619 /* Set transmitter low water mark */
1620 fepcmd(ch, STXLWATER, lowwater, 0, 10, 0);
1622 /* Set receiver low water mark */
1624 fepcmd(ch, SRXLWATER, (ch->rxbufsize / 4), 0, 10, 0);
1626 /* Set receiver high water mark */
1628 fepcmd(ch, SRXHWATER, (3 * ch->rxbufsize / 4), 0, 10, 0);
1630 writew(100, &bc->edelay);
1631 writeb(1, &bc->idata);
1633 ch->startc = readb(&bc->startc);
1634 ch->stopc = readb(&bc->stopc);
1635 ch->startca = readb(&bc->startca);
1636 ch->stopca = readb(&bc->stopca);
1638 ch->fepcflag = 0;
1639 ch->fepiflag = 0;
1640 ch->fepoflag = 0;
1641 ch->fepstartc = 0;
1642 ch->fepstopc = 0;
1643 ch->fepstartca = 0;
1644 ch->fepstopca = 0;
1646 ch->close_delay = 50;
1647 ch->count = 0;
1648 ch->blocked_open = 0;
1649 init_waitqueue_head(&ch->open_wait);
1650 init_waitqueue_head(&ch->close_wait);
1652 spin_unlock_irqrestore(&epca_lock, flags);
1653 } /* End for each port */
1655 printk(KERN_INFO
1656 "Digi PC/Xx Driver V%s: %s I/O = 0x%lx Mem = 0x%lx Ports = %d\n",
1657 VERSION, board_desc[bd->type], (long)bd->port, (long)bd->membase, bd->numports);
1658 memwinoff(bd, 0);
1660 } /* End post_fep_init */
1662 /* --------------------- Begin epcapoll ------------------------ */
1664 static void epcapoll(unsigned long ignored)
1665 { /* Begin epcapoll */
1667 unsigned long flags;
1668 int crd;
1669 volatile unsigned int head, tail;
1670 struct channel *ch;
1671 struct board_info *bd;
1673 /* -------------------------------------------------------------------
1674 This routine is called upon every timer interrupt. Even though
1675 the Digi series cards are capable of generating interrupts this
1676 method of non-looping polling is more efficient. This routine
1677 checks for card generated events (Such as receive data, are transmit
1678 buffer empty) and acts on those events.
1679 ----------------------------------------------------------------------- */
1681 for (crd = 0; crd < num_cards; crd++)
1682 { /* Begin for each card */
1684 bd = &boards[crd];
1685 ch = card_ptr[crd];
1687 if ((bd->status == DISABLED) || digi_poller_inhibited)
1688 continue; /* Begin loop next interation */
1690 /* -----------------------------------------------------------
1691 assertmemoff is not needed here; indeed it is an empty subroutine.
1692 It is being kept because future boards may need this as well as
1693 some legacy boards.
1694 ---------------------------------------------------------------- */
1696 spin_lock_irqsave(&epca_lock, flags);
1698 assertmemoff(ch);
1700 globalwinon(ch);
1702 /* ---------------------------------------------------------------
1703 In this case head and tail actually refer to the event queue not
1704 the transmit or receive queue.
1705 ------------------------------------------------------------------- */
1707 head = readw(&ch->mailbox->ein);
1708 tail = readw(&ch->mailbox->eout);
1710 /* If head isn't equal to tail we have an event */
1712 if (head != tail)
1713 doevent(crd);
1714 memoff(ch);
1716 spin_unlock_irqrestore(&epca_lock, flags);
1718 } /* End for each card */
1719 mod_timer(&epca_timer, jiffies + (HZ / 25));
1720 } /* End epcapoll */
1722 /* --------------------- Begin doevent ------------------------ */
1724 static void doevent(int crd)
1725 { /* Begin doevent */
1727 void __iomem *eventbuf;
1728 struct channel *ch, *chan0;
1729 static struct tty_struct *tty;
1730 struct board_info *bd;
1731 struct board_chan __iomem *bc;
1732 unsigned int tail, head;
1733 int event, channel;
1734 int mstat, lstat;
1736 /* -------------------------------------------------------------------
1737 This subroutine is called by epcapoll when an event is detected
1738 in the event queue. This routine responds to those events.
1739 --------------------------------------------------------------------- */
1740 bd = &boards[crd];
1742 chan0 = card_ptr[crd];
1743 epcaassert(chan0 <= &digi_channels[nbdevs - 1], "ch out of range");
1744 assertgwinon(chan0);
1745 while ((tail = readw(&chan0->mailbox->eout)) != (head = readw(&chan0->mailbox->ein)))
1746 { /* Begin while something in event queue */
1747 assertgwinon(chan0);
1748 eventbuf = bd->re_map_membase + tail + ISTART;
1749 /* Get the channel the event occurred on */
1750 channel = readb(eventbuf);
1751 /* Get the actual event code that occurred */
1752 event = readb(eventbuf + 1);
1753 /* ----------------------------------------------------------------
1754 The two assignments below get the current modem status (mstat)
1755 and the previous modem status (lstat). These are useful becuase
1756 an event could signal a change in modem signals itself.
1757 ------------------------------------------------------------------- */
1758 mstat = readb(eventbuf + 2);
1759 lstat = readb(eventbuf + 3);
1761 ch = chan0 + channel;
1762 if ((unsigned)channel >= bd->numports || !ch) {
1763 if (channel >= bd->numports)
1764 ch = chan0;
1765 bc = ch->brdchan;
1766 goto next;
1769 if ((bc = ch->brdchan) == NULL)
1770 goto next;
1772 if (event & DATA_IND) { /* Begin DATA_IND */
1773 receive_data(ch);
1774 assertgwinon(ch);
1775 } /* End DATA_IND */
1776 /* else *//* Fix for DCD transition missed bug */
1777 if (event & MODEMCHG_IND) { /* Begin MODEMCHG_IND */
1778 /* A modem signal change has been indicated */
1779 ch->imodem = mstat;
1780 if (ch->asyncflags & ASYNC_CHECK_CD) {
1781 if (mstat & ch->dcd) /* We are now receiving dcd */
1782 wake_up_interruptible(&ch->open_wait);
1783 else
1784 pc_sched_event(ch, EPCA_EVENT_HANGUP); /* No dcd; hangup */
1786 } /* End MODEMCHG_IND */
1787 tty = ch->tty;
1788 if (tty) { /* Begin if valid tty */
1789 if (event & BREAK_IND) { /* Begin if BREAK_IND */
1790 /* A break has been indicated */
1791 tty_insert_flip_char(tty, 0, TTY_BREAK);
1792 tty_schedule_flip(tty);
1793 } else if (event & LOWTX_IND) { /* Begin LOWTX_IND */
1794 if (ch->statusflags & LOWWAIT)
1795 { /* Begin if LOWWAIT */
1796 ch->statusflags &= ~LOWWAIT;
1797 tty_wakeup(tty);
1798 wake_up_interruptible(&tty->write_wait);
1799 } /* End if LOWWAIT */
1800 } else if (event & EMPTYTX_IND) { /* Begin EMPTYTX_IND */
1801 /* This event is generated by setup_empty_event */
1802 ch->statusflags &= ~TXBUSY;
1803 if (ch->statusflags & EMPTYWAIT) { /* Begin if EMPTYWAIT */
1804 ch->statusflags &= ~EMPTYWAIT;
1805 tty_wakeup(tty);
1806 wake_up_interruptible(&tty->write_wait);
1807 } /* End if EMPTYWAIT */
1808 } /* End EMPTYTX_IND */
1809 } /* End if valid tty */
1810 next:
1811 globalwinon(ch);
1812 BUG_ON(!bc);
1813 writew(1, &bc->idata);
1814 writew((tail + 4) & (IMAX - ISTART - 4), &chan0->mailbox->eout);
1815 globalwinon(chan0);
1816 } /* End while something in event queue */
1817 } /* End doevent */
1819 /* --------------------- Begin fepcmd ------------------------ */
1821 static void fepcmd(struct channel *ch, int cmd, int word_or_byte,
1822 int byte2, int ncmds, int bytecmd)
1823 { /* Begin fepcmd */
1824 unchar __iomem *memaddr;
1825 unsigned int head, cmdTail, cmdStart, cmdMax;
1826 long count;
1827 int n;
1829 /* This is the routine in which commands may be passed to the card. */
1831 if (ch->board->status == DISABLED)
1832 return;
1833 assertgwinon(ch);
1834 /* Remember head (As well as max) is just an offset not a base addr */
1835 head = readw(&ch->mailbox->cin);
1836 /* cmdStart is a base address */
1837 cmdStart = readw(&ch->mailbox->cstart);
1838 /* ------------------------------------------------------------------
1839 We do the addition below because we do not want a max pointer
1840 relative to cmdStart. We want a max pointer that points at the
1841 physical end of the command queue.
1842 -------------------------------------------------------------------- */
1843 cmdMax = (cmdStart + 4 + readw(&ch->mailbox->cmax));
1844 memaddr = ch->board->re_map_membase;
1846 if (head >= (cmdMax - cmdStart) || (head & 03)) {
1847 printk(KERN_ERR "line %d: Out of range, cmd = %x, head = %x\n", __LINE__, cmd, head);
1848 printk(KERN_ERR "line %d: Out of range, cmdMax = %x, cmdStart = %x\n", __LINE__, cmdMax, cmdStart);
1849 return;
1851 if (bytecmd) {
1852 writeb(cmd, memaddr + head + cmdStart + 0);
1853 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1854 /* Below word_or_byte is bits to set */
1855 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1856 /* Below byte2 is bits to reset */
1857 writeb(byte2, memaddr + head + cmdStart + 3);
1858 } else {
1859 writeb(cmd, memaddr + head + cmdStart + 0);
1860 writeb(ch->channelnum, memaddr + head + cmdStart + 1);
1861 writeb(word_or_byte, memaddr + head + cmdStart + 2);
1863 head = (head + 4) & (cmdMax - cmdStart - 4);
1864 writew(head, &ch->mailbox->cin);
1865 count = FEPTIMEOUT;
1867 for (;;) { /* Begin forever loop */
1868 count--;
1869 if (count == 0) {
1870 printk(KERN_ERR "<Error> - Fep not responding in fepcmd()\n");
1871 return;
1873 head = readw(&ch->mailbox->cin);
1874 cmdTail = readw(&ch->mailbox->cout);
1875 n = (head - cmdTail) & (cmdMax - cmdStart - 4);
1876 /* ----------------------------------------------------------
1877 Basically this will break when the FEP acknowledges the
1878 command by incrementing cmdTail (Making it equal to head).
1879 ------------------------------------------------------------- */
1880 if (n <= ncmds * (sizeof(short) * 4))
1881 break; /* Well nearly forever :-) */
1882 } /* End forever loop */
1883 } /* End fepcmd */
1885 /* ---------------------------------------------------------------------
1886 Digi products use fields in their channels structures that are very
1887 similar to the c_cflag and c_iflag fields typically found in UNIX
1888 termios structures. The below three routines allow mappings
1889 between these hardware "flags" and their respective Linux flags.
1890 ------------------------------------------------------------------------- */
1892 /* --------------------- Begin termios2digi_h -------------------- */
1894 static unsigned termios2digi_h(struct channel *ch, unsigned cflag)
1895 { /* Begin termios2digi_h */
1896 unsigned res = 0;
1898 if (cflag & CRTSCTS) {
1899 ch->digiext.digi_flags |= (RTSPACE | CTSPACE);
1900 res |= ((ch->m_cts) | (ch->m_rts));
1903 if (ch->digiext.digi_flags & RTSPACE)
1904 res |= ch->m_rts;
1906 if (ch->digiext.digi_flags & DTRPACE)
1907 res |= ch->m_dtr;
1909 if (ch->digiext.digi_flags & CTSPACE)
1910 res |= ch->m_cts;
1912 if (ch->digiext.digi_flags & DSRPACE)
1913 res |= ch->dsr;
1915 if (ch->digiext.digi_flags & DCDPACE)
1916 res |= ch->dcd;
1918 if (res & (ch->m_rts))
1919 ch->digiext.digi_flags |= RTSPACE;
1921 if (res & (ch->m_cts))
1922 ch->digiext.digi_flags |= CTSPACE;
1924 return res;
1926 } /* End termios2digi_h */
1928 /* --------------------- Begin termios2digi_i -------------------- */
1929 static unsigned termios2digi_i(struct channel *ch, unsigned iflag)
1930 { /* Begin termios2digi_i */
1932 unsigned res = iflag & (IGNBRK | BRKINT | IGNPAR | PARMRK |
1933 INPCK | ISTRIP|IXON|IXANY|IXOFF);
1934 if (ch->digiext.digi_flags & DIGI_AIXON)
1935 res |= IAIXON;
1936 return res;
1938 } /* End termios2digi_i */
1940 /* --------------------- Begin termios2digi_c -------------------- */
1942 static unsigned termios2digi_c(struct channel *ch, unsigned cflag)
1943 { /* Begin termios2digi_c */
1945 unsigned res = 0;
1946 if (cflag & CBAUDEX) { /* Begin detected CBAUDEX */
1947 ch->digiext.digi_flags |= DIGI_FAST;
1948 /* -------------------------------------------------------------
1949 HUPCL bit is used by FEP to indicate fast baud
1950 table is to be used.
1951 ----------------------------------------------------------------- */
1952 res |= FEP_HUPCL;
1953 } /* End detected CBAUDEX */
1954 else ch->digiext.digi_flags &= ~DIGI_FAST;
1955 /* -------------------------------------------------------------------
1956 CBAUD has bit position 0x1000 set these days to indicate Linux
1957 baud rate remap. Digi hardware can't handle the bit assignment.
1958 (We use a different bit assignment for high speed.). Clear this
1959 bit out.
1960 ---------------------------------------------------------------------- */
1961 res |= cflag & ((CBAUD ^ CBAUDEX) | PARODD | PARENB | CSTOPB | CSIZE);
1962 /* -------------------------------------------------------------
1963 This gets a little confusing. The Digi cards have their own
1964 representation of c_cflags controling baud rate. For the most
1965 part this is identical to the Linux implementation. However;
1966 Digi supports one rate (76800) that Linux doesn't. This means
1967 that the c_cflag entry that would normally mean 76800 for Digi
1968 actually means 115200 under Linux. Without the below mapping,
1969 a stty 115200 would only drive the board at 76800. Since
1970 the rate 230400 is also found after 76800, the same problem afflicts
1971 us when we choose a rate of 230400. Without the below modificiation
1972 stty 230400 would actually give us 115200.
1974 There are two additional differences. The Linux value for CLOCAL
1975 (0x800; 0004000) has no meaning to the Digi hardware. Also in
1976 later releases of Linux; the CBAUD define has CBAUDEX (0x1000;
1977 0010000) ored into it (CBAUD = 0x100f as opposed to 0xf). CBAUDEX
1978 should be checked for a screened out prior to termios2digi_c
1979 returning. Since CLOCAL isn't used by the board this can be
1980 ignored as long as the returned value is used only by Digi hardware.
1981 ----------------------------------------------------------------- */
1982 if (cflag & CBAUDEX) {
1983 /* -------------------------------------------------------------
1984 The below code is trying to guarantee that only baud rates
1985 115200 and 230400 are remapped. We use exclusive or because
1986 the various baud rates share common bit positions and therefore
1987 can't be tested for easily.
1988 ----------------------------------------------------------------- */
1991 if ((!((cflag & 0x7) ^ (B115200 & ~CBAUDEX))) ||
1992 (!((cflag & 0x7) ^ (B230400 & ~CBAUDEX))))
1993 res += 1;
1995 return res;
1997 } /* End termios2digi_c */
1999 /* --------------------- Begin epcaparam ----------------------- */
2001 /* Caller must hold the locks */
2002 static void epcaparam(struct tty_struct *tty, struct channel *ch)
2003 { /* Begin epcaparam */
2005 unsigned int cmdHead;
2006 struct ktermios *ts;
2007 struct board_chan __iomem *bc;
2008 unsigned mval, hflow, cflag, iflag;
2010 bc = ch->brdchan;
2011 epcaassert(bc !=0, "bc out of range");
2013 assertgwinon(ch);
2014 ts = tty->termios;
2015 if ((ts->c_cflag & CBAUD) == 0) { /* Begin CBAUD detected */
2016 cmdHead = readw(&bc->rin);
2017 writew(cmdHead, &bc->rout);
2018 cmdHead = readw(&bc->tin);
2019 /* Changing baud in mid-stream transmission can be wonderful */
2020 /* ---------------------------------------------------------------
2021 Flush current transmit buffer by setting cmdTail pointer (tout)
2022 to cmdHead pointer (tin). Hopefully the transmit buffer is empty.
2023 ----------------------------------------------------------------- */
2024 fepcmd(ch, STOUT, (unsigned) cmdHead, 0, 0, 0);
2025 mval = 0;
2026 } else { /* Begin CBAUD not detected */
2027 /* -------------------------------------------------------------------
2028 c_cflags have changed but that change had nothing to do with BAUD.
2029 Propagate the change to the card.
2030 ---------------------------------------------------------------------- */
2031 cflag = termios2digi_c(ch, ts->c_cflag);
2032 if (cflag != ch->fepcflag) {
2033 ch->fepcflag = cflag;
2034 /* Set baud rate, char size, stop bits, parity */
2035 fepcmd(ch, SETCTRLFLAGS, (unsigned) cflag, 0, 0, 0);
2037 /* ----------------------------------------------------------------
2038 If the user has not forced CLOCAL and if the device is not a
2039 CALLOUT device (Which is always CLOCAL) we set flags such that
2040 the driver will wait on carrier detect.
2041 ------------------------------------------------------------------- */
2042 if (ts->c_cflag & CLOCAL)
2043 ch->asyncflags &= ~ASYNC_CHECK_CD;
2044 else
2045 ch->asyncflags |= ASYNC_CHECK_CD;
2046 mval = ch->m_dtr | ch->m_rts;
2047 } /* End CBAUD not detected */
2048 iflag = termios2digi_i(ch, ts->c_iflag);
2049 /* Check input mode flags */
2050 if (iflag != ch->fepiflag) {
2051 ch->fepiflag = iflag;
2052 /* ---------------------------------------------------------------
2053 Command sets channels iflag structure on the board. Such things
2054 as input soft flow control, handling of parity errors, and
2055 break handling are all set here.
2056 ------------------------------------------------------------------- */
2057 /* break handling, parity handling, input stripping, flow control chars */
2058 fepcmd(ch, SETIFLAGS, (unsigned int) ch->fepiflag, 0, 0, 0);
2060 /* ---------------------------------------------------------------
2061 Set the board mint value for this channel. This will cause hardware
2062 events to be generated each time the DCD signal (Described in mint)
2063 changes.
2064 ------------------------------------------------------------------- */
2065 writeb(ch->dcd, &bc->mint);
2066 if ((ts->c_cflag & CLOCAL) || (ch->digiext.digi_flags & DIGI_FORCEDCD))
2067 if (ch->digiext.digi_flags & DIGI_FORCEDCD)
2068 writeb(0, &bc->mint);
2069 ch->imodem = readb(&bc->mstat);
2070 hflow = termios2digi_h(ch, ts->c_cflag);
2071 if (hflow != ch->hflow) {
2072 ch->hflow = hflow;
2073 /* --------------------------------------------------------------
2074 Hard flow control has been selected but the board is not
2075 using it. Activate hard flow control now.
2076 ----------------------------------------------------------------- */
2077 fepcmd(ch, SETHFLOW, hflow, 0xff, 0, 1);
2079 mval ^= ch->modemfake & (mval ^ ch->modem);
2081 if (ch->omodem ^ mval) {
2082 ch->omodem = mval;
2083 /* --------------------------------------------------------------
2084 The below command sets the DTR and RTS mstat structure. If
2085 hard flow control is NOT active these changes will drive the
2086 output of the actual DTR and RTS lines. If hard flow control
2087 is active, the changes will be saved in the mstat structure and
2088 only asserted when hard flow control is turned off.
2089 ----------------------------------------------------------------- */
2091 /* First reset DTR & RTS; then set them */
2092 fepcmd(ch, SETMODEM, 0, ((ch->m_dtr)|(ch->m_rts)), 0, 1);
2093 fepcmd(ch, SETMODEM, mval, 0, 0, 1);
2095 if (ch->startc != ch->fepstartc || ch->stopc != ch->fepstopc) {
2096 ch->fepstartc = ch->startc;
2097 ch->fepstopc = ch->stopc;
2098 /* ------------------------------------------------------------
2099 The XON / XOFF characters have changed; propagate these
2100 changes to the card.
2101 --------------------------------------------------------------- */
2102 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2104 if (ch->startca != ch->fepstartca || ch->stopca != ch->fepstopca) {
2105 ch->fepstartca = ch->startca;
2106 ch->fepstopca = ch->stopca;
2107 /* ---------------------------------------------------------------
2108 Similar to the above, this time the auxilarly XON / XOFF
2109 characters have changed; propagate these changes to the card.
2110 ------------------------------------------------------------------ */
2111 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2113 } /* End epcaparam */
2115 /* --------------------- Begin receive_data ----------------------- */
2116 /* Caller holds lock */
2117 static void receive_data(struct channel *ch)
2118 { /* Begin receive_data */
2120 unchar *rptr;
2121 struct ktermios *ts = NULL;
2122 struct tty_struct *tty;
2123 struct board_chan __iomem *bc;
2124 int dataToRead, wrapgap, bytesAvailable;
2125 unsigned int tail, head;
2126 unsigned int wrapmask;
2128 /* ---------------------------------------------------------------
2129 This routine is called by doint when a receive data event
2130 has taken place.
2131 ------------------------------------------------------------------- */
2133 globalwinon(ch);
2134 if (ch->statusflags & RXSTOPPED)
2135 return;
2136 tty = ch->tty;
2137 if (tty)
2138 ts = tty->termios;
2139 bc = ch->brdchan;
2140 BUG_ON(!bc);
2141 wrapmask = ch->rxbufsize - 1;
2143 /* ---------------------------------------------------------------------
2144 Get the head and tail pointers to the receiver queue. Wrap the
2145 head pointer if it has reached the end of the buffer.
2146 ------------------------------------------------------------------------ */
2147 head = readw(&bc->rin);
2148 head &= wrapmask;
2149 tail = readw(&bc->rout) & wrapmask;
2151 bytesAvailable = (head - tail) & wrapmask;
2152 if (bytesAvailable == 0)
2153 return;
2155 /* ------------------------------------------------------------------
2156 If CREAD bit is off or device not open, set TX tail to head
2157 --------------------------------------------------------------------- */
2159 if (!tty || !ts || !(ts->c_cflag & CREAD)) {
2160 writew(head, &bc->rout);
2161 return;
2164 if (tty_buffer_request_room(tty, bytesAvailable + 1) == 0)
2165 return;
2167 if (readb(&bc->orun)) {
2168 writeb(0, &bc->orun);
2169 printk(KERN_WARNING "epca; overrun! DigiBoard device %s\n",tty->name);
2170 tty_insert_flip_char(tty, 0, TTY_OVERRUN);
2172 rxwinon(ch);
2173 while (bytesAvailable > 0) { /* Begin while there is data on the card */
2174 wrapgap = (head >= tail) ? head - tail : ch->rxbufsize - tail;
2175 /* ---------------------------------------------------------------
2176 Even if head has wrapped around only report the amount of
2177 data to be equal to the size - tail. Remember memcpy can't
2178 automaticly wrap around the receive buffer.
2179 ----------------------------------------------------------------- */
2180 dataToRead = (wrapgap < bytesAvailable) ? wrapgap : bytesAvailable;
2181 /* --------------------------------------------------------------
2182 Make sure we don't overflow the buffer
2183 ----------------------------------------------------------------- */
2184 dataToRead = tty_prepare_flip_string(tty, &rptr, dataToRead);
2185 if (dataToRead == 0)
2186 break;
2187 /* ---------------------------------------------------------------
2188 Move data read from our card into the line disciplines buffer
2189 for translation if necessary.
2190 ------------------------------------------------------------------ */
2191 memcpy_fromio(rptr, ch->rxptr + tail, dataToRead);
2192 tail = (tail + dataToRead) & wrapmask;
2193 bytesAvailable -= dataToRead;
2194 } /* End while there is data on the card */
2195 globalwinon(ch);
2196 writew(tail, &bc->rout);
2197 /* Must be called with global data */
2198 tty_schedule_flip(ch->tty);
2199 return;
2200 } /* End receive_data */
2202 static int info_ioctl(struct tty_struct *tty, struct file * file,
2203 unsigned int cmd, unsigned long arg)
2205 switch (cmd)
2206 { /* Begin switch cmd */
2207 case DIGI_GETINFO:
2208 { /* Begin case DIGI_GETINFO */
2209 struct digi_info di ;
2210 int brd;
2212 if(get_user(brd, (unsigned int __user *)arg))
2213 return -EFAULT;
2214 if (brd < 0 || brd >= num_cards || num_cards == 0)
2215 return -ENODEV;
2217 memset(&di, 0, sizeof(di));
2219 di.board = brd ;
2220 di.status = boards[brd].status;
2221 di.type = boards[brd].type ;
2222 di.numports = boards[brd].numports ;
2223 /* Legacy fixups - just move along nothing to see */
2224 di.port = (unsigned char *)boards[brd].port ;
2225 di.membase = (unsigned char *)boards[brd].membase ;
2227 if (copy_to_user((void __user *)arg, &di, sizeof (di)))
2228 return -EFAULT;
2229 break;
2231 } /* End case DIGI_GETINFO */
2233 case DIGI_POLLER:
2234 { /* Begin case DIGI_POLLER */
2236 int brd = arg & 0xff000000 >> 16 ;
2237 unsigned char state = arg & 0xff ;
2239 if (brd < 0 || brd >= num_cards) {
2240 printk(KERN_ERR "epca: DIGI POLLER : brd not valid!\n");
2241 return (-ENODEV);
2243 digi_poller_inhibited = state ;
2244 break ;
2245 } /* End case DIGI_POLLER */
2247 case DIGI_INIT:
2248 { /* Begin case DIGI_INIT */
2249 /* ------------------------------------------------------------
2250 This call is made by the apps to complete the initilization
2251 of the board(s). This routine is responsible for setting
2252 the card to its initial state and setting the drivers control
2253 fields to the sutianle settings for the card in question.
2254 ---------------------------------------------------------------- */
2255 int crd ;
2256 for (crd = 0; crd < num_cards; crd++)
2257 post_fep_init (crd);
2258 break ;
2259 } /* End case DIGI_INIT */
2260 default:
2261 return -ENOTTY;
2262 } /* End switch cmd */
2263 return (0) ;
2265 /* --------------------- Begin pc_ioctl ----------------------- */
2267 static int pc_tiocmget(struct tty_struct *tty, struct file *file)
2269 struct channel *ch = (struct channel *) tty->driver_data;
2270 struct board_chan __iomem *bc;
2271 unsigned int mstat, mflag = 0;
2272 unsigned long flags;
2274 if (ch)
2275 bc = ch->brdchan;
2276 else
2277 return -EINVAL;
2279 spin_lock_irqsave(&epca_lock, flags);
2280 globalwinon(ch);
2281 mstat = readb(&bc->mstat);
2282 memoff(ch);
2283 spin_unlock_irqrestore(&epca_lock, flags);
2285 if (mstat & ch->m_dtr)
2286 mflag |= TIOCM_DTR;
2287 if (mstat & ch->m_rts)
2288 mflag |= TIOCM_RTS;
2289 if (mstat & ch->m_cts)
2290 mflag |= TIOCM_CTS;
2291 if (mstat & ch->dsr)
2292 mflag |= TIOCM_DSR;
2293 if (mstat & ch->m_ri)
2294 mflag |= TIOCM_RI;
2295 if (mstat & ch->dcd)
2296 mflag |= TIOCM_CD;
2297 return mflag;
2300 static int pc_tiocmset(struct tty_struct *tty, struct file *file,
2301 unsigned int set, unsigned int clear)
2303 struct channel *ch = (struct channel *) tty->driver_data;
2304 unsigned long flags;
2306 if (!ch)
2307 return -EINVAL;
2309 spin_lock_irqsave(&epca_lock, flags);
2311 * I think this modemfake stuff is broken. It doesn't
2312 * correctly reflect the behaviour desired by the TIOCM*
2313 * ioctls. Therefore this is probably broken.
2315 if (set & TIOCM_RTS) {
2316 ch->modemfake |= ch->m_rts;
2317 ch->modem |= ch->m_rts;
2319 if (set & TIOCM_DTR) {
2320 ch->modemfake |= ch->m_dtr;
2321 ch->modem |= ch->m_dtr;
2323 if (clear & TIOCM_RTS) {
2324 ch->modemfake |= ch->m_rts;
2325 ch->modem &= ~ch->m_rts;
2327 if (clear & TIOCM_DTR) {
2328 ch->modemfake |= ch->m_dtr;
2329 ch->modem &= ~ch->m_dtr;
2331 globalwinon(ch);
2332 /* --------------------------------------------------------------
2333 The below routine generally sets up parity, baud, flow control
2334 issues, etc.... It effect both control flags and input flags.
2335 ------------------------------------------------------------------ */
2336 epcaparam(tty,ch);
2337 memoff(ch);
2338 spin_unlock_irqrestore(&epca_lock, flags);
2339 return 0;
2342 static int pc_ioctl(struct tty_struct *tty, struct file * file,
2343 unsigned int cmd, unsigned long arg)
2344 { /* Begin pc_ioctl */
2346 digiflow_t dflow;
2347 int retval;
2348 unsigned long flags;
2349 unsigned int mflag, mstat;
2350 unsigned char startc, stopc;
2351 struct board_chan __iomem *bc;
2352 struct channel *ch = (struct channel *) tty->driver_data;
2353 void __user *argp = (void __user *)arg;
2355 if (ch)
2356 bc = ch->brdchan;
2357 else
2358 return -EINVAL;
2360 /* -------------------------------------------------------------------
2361 For POSIX compliance we need to add more ioctls. See tty_ioctl.c
2362 in /usr/src/linux/drivers/char for a good example. In particular
2363 think about adding TCSETAF, TCSETAW, TCSETA, TCSETSF, TCSETSW, TCSETS.
2364 ---------------------------------------------------------------------- */
2366 switch (cmd)
2367 { /* Begin switch cmd */
2369 #if 0 /* Handled by calling layer properly */
2370 case TCGETS:
2371 if (copy_to_user(argp, tty->termios, sizeof(struct ktermios)))
2372 return -EFAULT;
2373 return 0;
2374 case TCGETA:
2375 return get_termio(tty, argp);
2376 #endif
2377 case TCSBRK: /* SVID version: non-zero arg --> no break */
2378 retval = tty_check_change(tty);
2379 if (retval)
2380 return retval;
2381 /* Setup an event to indicate when the transmit buffer empties */
2382 spin_lock_irqsave(&epca_lock, flags);
2383 setup_empty_event(tty,ch);
2384 spin_unlock_irqrestore(&epca_lock, flags);
2385 tty_wait_until_sent(tty, 0);
2386 if (!arg)
2387 digi_send_break(ch, HZ/4); /* 1/4 second */
2388 return 0;
2389 case TCSBRKP: /* support for POSIX tcsendbreak() */
2390 retval = tty_check_change(tty);
2391 if (retval)
2392 return retval;
2394 /* Setup an event to indicate when the transmit buffer empties */
2395 spin_lock_irqsave(&epca_lock, flags);
2396 setup_empty_event(tty,ch);
2397 spin_unlock_irqrestore(&epca_lock, flags);
2398 tty_wait_until_sent(tty, 0);
2399 digi_send_break(ch, arg ? arg*(HZ/10) : HZ/4);
2400 return 0;
2401 case TIOCGSOFTCAR:
2402 if (put_user(C_CLOCAL(tty)?1:0, (unsigned long __user *)arg))
2403 return -EFAULT;
2404 return 0;
2405 case TIOCSSOFTCAR:
2407 unsigned int value;
2409 if (get_user(value, (unsigned __user *)argp))
2410 return -EFAULT;
2411 tty->termios->c_cflag =
2412 ((tty->termios->c_cflag & ~CLOCAL) |
2413 (value ? CLOCAL : 0));
2414 return 0;
2416 case TIOCMODG:
2417 mflag = pc_tiocmget(tty, file);
2418 if (put_user(mflag, (unsigned long __user *)argp))
2419 return -EFAULT;
2420 break;
2421 case TIOCMODS:
2422 if (get_user(mstat, (unsigned __user *)argp))
2423 return -EFAULT;
2424 return pc_tiocmset(tty, file, mstat, ~mstat);
2425 case TIOCSDTR:
2426 spin_lock_irqsave(&epca_lock, flags);
2427 ch->omodem |= ch->m_dtr;
2428 globalwinon(ch);
2429 fepcmd(ch, SETMODEM, ch->m_dtr, 0, 10, 1);
2430 memoff(ch);
2431 spin_unlock_irqrestore(&epca_lock, flags);
2432 break;
2434 case TIOCCDTR:
2435 spin_lock_irqsave(&epca_lock, flags);
2436 ch->omodem &= ~ch->m_dtr;
2437 globalwinon(ch);
2438 fepcmd(ch, SETMODEM, 0, ch->m_dtr, 10, 1);
2439 memoff(ch);
2440 spin_unlock_irqrestore(&epca_lock, flags);
2441 break;
2442 case DIGI_GETA:
2443 if (copy_to_user(argp, &ch->digiext, sizeof(digi_t)))
2444 return -EFAULT;
2445 break;
2446 case DIGI_SETAW:
2447 case DIGI_SETAF:
2448 if (cmd == DIGI_SETAW) {
2449 /* Setup an event to indicate when the transmit buffer empties */
2450 spin_lock_irqsave(&epca_lock, flags);
2451 setup_empty_event(tty,ch);
2452 spin_unlock_irqrestore(&epca_lock, flags);
2453 tty_wait_until_sent(tty, 0);
2454 } else {
2455 /* ldisc lock already held in ioctl */
2456 if (tty->ldisc.flush_buffer)
2457 tty->ldisc.flush_buffer(tty);
2459 /* Fall Thru */
2460 case DIGI_SETA:
2461 if (copy_from_user(&ch->digiext, argp, sizeof(digi_t)))
2462 return -EFAULT;
2464 if (ch->digiext.digi_flags & DIGI_ALTPIN) {
2465 ch->dcd = ch->m_dsr;
2466 ch->dsr = ch->m_dcd;
2467 } else {
2468 ch->dcd = ch->m_dcd;
2469 ch->dsr = ch->m_dsr;
2472 spin_lock_irqsave(&epca_lock, flags);
2473 globalwinon(ch);
2475 /* -----------------------------------------------------------------
2476 The below routine generally sets up parity, baud, flow control
2477 issues, etc.... It effect both control flags and input flags.
2478 ------------------------------------------------------------------- */
2480 epcaparam(tty,ch);
2481 memoff(ch);
2482 spin_unlock_irqrestore(&epca_lock, flags);
2483 break;
2485 case DIGI_GETFLOW:
2486 case DIGI_GETAFLOW:
2487 spin_lock_irqsave(&epca_lock, flags);
2488 globalwinon(ch);
2489 if (cmd == DIGI_GETFLOW) {
2490 dflow.startc = readb(&bc->startc);
2491 dflow.stopc = readb(&bc->stopc);
2492 } else {
2493 dflow.startc = readb(&bc->startca);
2494 dflow.stopc = readb(&bc->stopca);
2496 memoff(ch);
2497 spin_unlock_irqrestore(&epca_lock, flags);
2499 if (copy_to_user(argp, &dflow, sizeof(dflow)))
2500 return -EFAULT;
2501 break;
2503 case DIGI_SETAFLOW:
2504 case DIGI_SETFLOW:
2505 if (cmd == DIGI_SETFLOW) {
2506 startc = ch->startc;
2507 stopc = ch->stopc;
2508 } else {
2509 startc = ch->startca;
2510 stopc = ch->stopca;
2513 if (copy_from_user(&dflow, argp, sizeof(dflow)))
2514 return -EFAULT;
2516 if (dflow.startc != startc || dflow.stopc != stopc) { /* Begin if setflow toggled */
2517 spin_lock_irqsave(&epca_lock, flags);
2518 globalwinon(ch);
2520 if (cmd == DIGI_SETFLOW) {
2521 ch->fepstartc = ch->startc = dflow.startc;
2522 ch->fepstopc = ch->stopc = dflow.stopc;
2523 fepcmd(ch, SONOFFC, ch->fepstartc, ch->fepstopc, 0, 1);
2524 } else {
2525 ch->fepstartca = ch->startca = dflow.startc;
2526 ch->fepstopca = ch->stopca = dflow.stopc;
2527 fepcmd(ch, SAUXONOFFC, ch->fepstartca, ch->fepstopca, 0, 1);
2530 if (ch->statusflags & TXSTOPPED)
2531 pc_start(tty);
2533 memoff(ch);
2534 spin_unlock_irqrestore(&epca_lock, flags);
2535 } /* End if setflow toggled */
2536 break;
2537 default:
2538 return -ENOIOCTLCMD;
2539 } /* End switch cmd */
2540 return 0;
2541 } /* End pc_ioctl */
2543 /* --------------------- Begin pc_set_termios ----------------------- */
2545 static void pc_set_termios(struct tty_struct *tty, struct ktermios *old_termios)
2546 { /* Begin pc_set_termios */
2548 struct channel *ch;
2549 unsigned long flags;
2550 /* ---------------------------------------------------------
2551 verifyChannel returns the channel from the tty struct
2552 if it is valid. This serves as a sanity check.
2553 ------------------------------------------------------------- */
2554 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2555 spin_lock_irqsave(&epca_lock, flags);
2556 globalwinon(ch);
2557 epcaparam(tty, ch);
2558 memoff(ch);
2559 spin_unlock_irqrestore(&epca_lock, flags);
2561 if ((old_termios->c_cflag & CRTSCTS) &&
2562 ((tty->termios->c_cflag & CRTSCTS) == 0))
2563 tty->hw_stopped = 0;
2565 if (!(old_termios->c_cflag & CLOCAL) &&
2566 (tty->termios->c_cflag & CLOCAL))
2567 wake_up_interruptible(&ch->open_wait);
2569 } /* End if channel valid */
2571 } /* End pc_set_termios */
2573 /* --------------------- Begin do_softint ----------------------- */
2575 static void do_softint(struct work_struct *work)
2576 { /* Begin do_softint */
2577 struct channel *ch = container_of(work, struct channel, tqueue);
2578 /* Called in response to a modem change event */
2579 if (ch && ch->magic == EPCA_MAGIC) { /* Begin EPCA_MAGIC */
2580 struct tty_struct *tty = ch->tty;
2582 if (tty && tty->driver_data) {
2583 if (test_and_clear_bit(EPCA_EVENT_HANGUP, &ch->event)) { /* Begin if clear_bit */
2584 tty_hangup(tty); /* FIXME: module removal race here - AKPM */
2585 wake_up_interruptible(&ch->open_wait);
2586 ch->asyncflags &= ~ASYNC_NORMAL_ACTIVE;
2587 } /* End if clear_bit */
2589 } /* End EPCA_MAGIC */
2590 } /* End do_softint */
2592 /* ------------------------------------------------------------
2593 pc_stop and pc_start provide software flow control to the
2594 routine and the pc_ioctl routine.
2595 ---------------------------------------------------------------- */
2597 /* --------------------- Begin pc_stop ----------------------- */
2599 static void pc_stop(struct tty_struct *tty)
2600 { /* Begin pc_stop */
2602 struct channel *ch;
2603 unsigned long flags;
2604 /* ---------------------------------------------------------
2605 verifyChannel returns the channel from the tty struct
2606 if it is valid. This serves as a sanity check.
2607 ------------------------------------------------------------- */
2608 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if valid channel */
2609 spin_lock_irqsave(&epca_lock, flags);
2610 if ((ch->statusflags & TXSTOPPED) == 0) { /* Begin if transmit stop requested */
2611 globalwinon(ch);
2612 /* STOP transmitting now !! */
2613 fepcmd(ch, PAUSETX, 0, 0, 0, 0);
2614 ch->statusflags |= TXSTOPPED;
2615 memoff(ch);
2616 } /* End if transmit stop requested */
2617 spin_unlock_irqrestore(&epca_lock, flags);
2618 } /* End if valid channel */
2619 } /* End pc_stop */
2621 /* --------------------- Begin pc_start ----------------------- */
2623 static void pc_start(struct tty_struct *tty)
2624 { /* Begin pc_start */
2625 struct channel *ch;
2626 /* ---------------------------------------------------------
2627 verifyChannel returns the channel from the tty struct
2628 if it is valid. This serves as a sanity check.
2629 ------------------------------------------------------------- */
2630 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2631 unsigned long flags;
2632 spin_lock_irqsave(&epca_lock, flags);
2633 /* Just in case output was resumed because of a change in Digi-flow */
2634 if (ch->statusflags & TXSTOPPED) { /* Begin transmit resume requested */
2635 struct board_chan __iomem *bc;
2636 globalwinon(ch);
2637 bc = ch->brdchan;
2638 if (ch->statusflags & LOWWAIT)
2639 writeb(1, &bc->ilow);
2640 /* Okay, you can start transmitting again... */
2641 fepcmd(ch, RESUMETX, 0, 0, 0, 0);
2642 ch->statusflags &= ~TXSTOPPED;
2643 memoff(ch);
2644 } /* End transmit resume requested */
2645 spin_unlock_irqrestore(&epca_lock, flags);
2646 } /* End if channel valid */
2647 } /* End pc_start */
2649 /* ------------------------------------------------------------------
2650 The below routines pc_throttle and pc_unthrottle are used
2651 to slow (And resume) the receipt of data into the kernels
2652 receive buffers. The exact occurrence of this depends on the
2653 size of the kernels receive buffer and what the 'watermarks'
2654 are set to for that buffer. See the n_ttys.c file for more
2655 details.
2656 ______________________________________________________________________ */
2657 /* --------------------- Begin throttle ----------------------- */
2659 static void pc_throttle(struct tty_struct * tty)
2660 { /* Begin pc_throttle */
2661 struct channel *ch;
2662 unsigned long flags;
2663 /* ---------------------------------------------------------
2664 verifyChannel returns the channel from the tty struct
2665 if it is valid. This serves as a sanity check.
2666 ------------------------------------------------------------- */
2667 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2668 spin_lock_irqsave(&epca_lock, flags);
2669 if ((ch->statusflags & RXSTOPPED) == 0) {
2670 globalwinon(ch);
2671 fepcmd(ch, PAUSERX, 0, 0, 0, 0);
2672 ch->statusflags |= RXSTOPPED;
2673 memoff(ch);
2675 spin_unlock_irqrestore(&epca_lock, flags);
2676 } /* End if channel valid */
2677 } /* End pc_throttle */
2679 /* --------------------- Begin unthrottle ----------------------- */
2681 static void pc_unthrottle(struct tty_struct *tty)
2682 { /* Begin pc_unthrottle */
2683 struct channel *ch;
2684 unsigned long flags;
2685 /* ---------------------------------------------------------
2686 verifyChannel returns the channel from the tty struct
2687 if it is valid. This serves as a sanity check.
2688 ------------------------------------------------------------- */
2689 if ((ch = verifyChannel(tty)) != NULL) { /* Begin if channel valid */
2690 /* Just in case output was resumed because of a change in Digi-flow */
2691 spin_lock_irqsave(&epca_lock, flags);
2692 if (ch->statusflags & RXSTOPPED) {
2693 globalwinon(ch);
2694 fepcmd(ch, RESUMERX, 0, 0, 0, 0);
2695 ch->statusflags &= ~RXSTOPPED;
2696 memoff(ch);
2698 spin_unlock_irqrestore(&epca_lock, flags);
2699 } /* End if channel valid */
2700 } /* End pc_unthrottle */
2702 /* --------------------- Begin digi_send_break ----------------------- */
2704 void digi_send_break(struct channel *ch, int msec)
2705 { /* Begin digi_send_break */
2706 unsigned long flags;
2708 spin_lock_irqsave(&epca_lock, flags);
2709 globalwinon(ch);
2710 /* --------------------------------------------------------------------
2711 Maybe I should send an infinite break here, schedule() for
2712 msec amount of time, and then stop the break. This way,
2713 the user can't screw up the FEP by causing digi_send_break()
2714 to be called (i.e. via an ioctl()) more than once in msec amount
2715 of time. Try this for now...
2716 ------------------------------------------------------------------------ */
2717 fepcmd(ch, SENDBREAK, msec, 0, 10, 0);
2718 memoff(ch);
2719 spin_unlock_irqrestore(&epca_lock, flags);
2720 } /* End digi_send_break */
2722 /* --------------------- Begin setup_empty_event ----------------------- */
2724 /* Caller MUST hold the lock */
2726 static void setup_empty_event(struct tty_struct *tty, struct channel *ch)
2727 { /* Begin setup_empty_event */
2729 struct board_chan __iomem *bc = ch->brdchan;
2731 globalwinon(ch);
2732 ch->statusflags |= EMPTYWAIT;
2733 /* ------------------------------------------------------------------
2734 When set the iempty flag request a event to be generated when the
2735 transmit buffer is empty (If there is no BREAK in progress).
2736 --------------------------------------------------------------------- */
2737 writeb(1, &bc->iempty);
2738 memoff(ch);
2739 } /* End setup_empty_event */
2741 /* --------------------- Begin get_termio ----------------------- */
2743 static int get_termio(struct tty_struct * tty, struct termio __user * termio)
2744 { /* Begin get_termio */
2745 return kernel_termios_to_user_termio(termio, tty->termios);
2746 } /* End get_termio */
2748 /* ---------------------- Begin epca_setup -------------------------- */
2749 void epca_setup(char *str, int *ints)
2750 { /* Begin epca_setup */
2751 struct board_info board;
2752 int index, loop, last;
2753 char *temp, *t2;
2754 unsigned len;
2756 /* ----------------------------------------------------------------------
2757 If this routine looks a little strange it is because it is only called
2758 if a LILO append command is given to boot the kernel with parameters.
2759 In this way, we can provide the user a method of changing his board
2760 configuration without rebuilding the kernel.
2761 ----------------------------------------------------------------------- */
2762 if (!liloconfig)
2763 liloconfig = 1;
2765 memset(&board, 0, sizeof(board));
2767 /* Assume the data is int first, later we can change it */
2768 /* I think that array position 0 of ints holds the number of args */
2769 for (last = 0, index = 1; index <= ints[0]; index++)
2770 switch(index)
2771 { /* Begin parse switch */
2772 case 1:
2773 board.status = ints[index];
2774 /* ---------------------------------------------------------
2775 We check for 2 (As opposed to 1; because 2 is a flag
2776 instructing the driver to ignore epcaconfig.) For this
2777 reason we check for 2.
2778 ------------------------------------------------------------ */
2779 if (board.status == 2) { /* Begin ignore epcaconfig as well as lilo cmd line */
2780 nbdevs = 0;
2781 num_cards = 0;
2782 return;
2783 } /* End ignore epcaconfig as well as lilo cmd line */
2785 if (board.status > 2) {
2786 printk(KERN_ERR "epca_setup: Invalid board status 0x%x\n", board.status);
2787 invalid_lilo_config = 1;
2788 setup_error_code |= INVALID_BOARD_STATUS;
2789 return;
2791 last = index;
2792 break;
2793 case 2:
2794 board.type = ints[index];
2795 if (board.type >= PCIXEM) {
2796 printk(KERN_ERR "epca_setup: Invalid board type 0x%x\n", board.type);
2797 invalid_lilo_config = 1;
2798 setup_error_code |= INVALID_BOARD_TYPE;
2799 return;
2801 last = index;
2802 break;
2803 case 3:
2804 board.altpin = ints[index];
2805 if (board.altpin > 1) {
2806 printk(KERN_ERR "epca_setup: Invalid board altpin 0x%x\n", board.altpin);
2807 invalid_lilo_config = 1;
2808 setup_error_code |= INVALID_ALTPIN;
2809 return;
2811 last = index;
2812 break;
2814 case 4:
2815 board.numports = ints[index];
2816 if (board.numports < 2 || board.numports > 256) {
2817 printk(KERN_ERR "epca_setup: Invalid board numports 0x%x\n", board.numports);
2818 invalid_lilo_config = 1;
2819 setup_error_code |= INVALID_NUM_PORTS;
2820 return;
2822 nbdevs += board.numports;
2823 last = index;
2824 break;
2826 case 5:
2827 board.port = ints[index];
2828 if (ints[index] <= 0) {
2829 printk(KERN_ERR "epca_setup: Invalid io port 0x%x\n", (unsigned int)board.port);
2830 invalid_lilo_config = 1;
2831 setup_error_code |= INVALID_PORT_BASE;
2832 return;
2834 last = index;
2835 break;
2837 case 6:
2838 board.membase = ints[index];
2839 if (ints[index] <= 0) {
2840 printk(KERN_ERR "epca_setup: Invalid memory base 0x%x\n",(unsigned int)board.membase);
2841 invalid_lilo_config = 1;
2842 setup_error_code |= INVALID_MEM_BASE;
2843 return;
2845 last = index;
2846 break;
2848 default:
2849 printk(KERN_ERR "<Error> - epca_setup: Too many integer parms\n");
2850 return;
2852 } /* End parse switch */
2854 while (str && *str) { /* Begin while there is a string arg */
2855 /* find the next comma or terminator */
2856 temp = str;
2857 /* While string is not null, and a comma hasn't been found */
2858 while (*temp && (*temp != ','))
2859 temp++;
2860 if (!*temp)
2861 temp = NULL;
2862 else
2863 *temp++ = 0;
2864 /* Set index to the number of args + 1 */
2865 index = last + 1;
2867 switch(index)
2869 case 1:
2870 len = strlen(str);
2871 if (strncmp("Disable", str, len) == 0)
2872 board.status = 0;
2873 else if (strncmp("Enable", str, len) == 0)
2874 board.status = 1;
2875 else {
2876 printk(KERN_ERR "epca_setup: Invalid status %s\n", str);
2877 invalid_lilo_config = 1;
2878 setup_error_code |= INVALID_BOARD_STATUS;
2879 return;
2881 last = index;
2882 break;
2884 case 2:
2885 for(loop = 0; loop < EPCA_NUM_TYPES; loop++)
2886 if (strcmp(board_desc[loop], str) == 0)
2887 break;
2888 /* ---------------------------------------------------------------
2889 If the index incremented above refers to a legitamate board
2890 type set it here.
2891 ------------------------------------------------------------------*/
2892 if (index < EPCA_NUM_TYPES)
2893 board.type = loop;
2894 else {
2895 printk(KERN_ERR "epca_setup: Invalid board type: %s\n", str);
2896 invalid_lilo_config = 1;
2897 setup_error_code |= INVALID_BOARD_TYPE;
2898 return;
2900 last = index;
2901 break;
2903 case 3:
2904 len = strlen(str);
2905 if (strncmp("Disable", str, len) == 0)
2906 board.altpin = 0;
2907 else if (strncmp("Enable", str, len) == 0)
2908 board.altpin = 1;
2909 else {
2910 printk(KERN_ERR "epca_setup: Invalid altpin %s\n", str);
2911 invalid_lilo_config = 1;
2912 setup_error_code |= INVALID_ALTPIN;
2913 return;
2915 last = index;
2916 break;
2918 case 4:
2919 t2 = str;
2920 while (isdigit(*t2))
2921 t2++;
2923 if (*t2) {
2924 printk(KERN_ERR "epca_setup: Invalid port count %s\n", str);
2925 invalid_lilo_config = 1;
2926 setup_error_code |= INVALID_NUM_PORTS;
2927 return;
2930 /* ------------------------------------------------------------
2931 There is not a man page for simple_strtoul but the code can be
2932 found in vsprintf.c. The first argument is the string to
2933 translate (To an unsigned long obviously), the second argument
2934 can be the address of any character variable or a NULL. If a
2935 variable is given, the end pointer of the string will be stored
2936 in that variable; if a NULL is given the end pointer will
2937 not be returned. The last argument is the base to use. If
2938 a 0 is indicated, the routine will attempt to determine the
2939 proper base by looking at the values prefix (A '0' for octal,
2940 a 'x' for hex, etc ... If a value is given it will use that
2941 value as the base.
2942 ---------------------------------------------------------------- */
2943 board.numports = simple_strtoul(str, NULL, 0);
2944 nbdevs += board.numports;
2945 last = index;
2946 break;
2948 case 5:
2949 t2 = str;
2950 while (isxdigit(*t2))
2951 t2++;
2953 if (*t2) {
2954 printk(KERN_ERR "epca_setup: Invalid i/o address %s\n", str);
2955 invalid_lilo_config = 1;
2956 setup_error_code |= INVALID_PORT_BASE;
2957 return;
2960 board.port = simple_strtoul(str, NULL, 16);
2961 last = index;
2962 break;
2964 case 6:
2965 t2 = str;
2966 while (isxdigit(*t2))
2967 t2++;
2969 if (*t2) {
2970 printk(KERN_ERR "epca_setup: Invalid memory base %s\n",str);
2971 invalid_lilo_config = 1;
2972 setup_error_code |= INVALID_MEM_BASE;
2973 return;
2975 board.membase = simple_strtoul(str, NULL, 16);
2976 last = index;
2977 break;
2978 default:
2979 printk(KERN_ERR "epca: Too many string parms\n");
2980 return;
2982 str = temp;
2983 } /* End while there is a string arg */
2985 if (last < 6) {
2986 printk(KERN_ERR "epca: Insufficient parms specified\n");
2987 return;
2990 /* I should REALLY validate the stuff here */
2991 /* Copies our local copy of board into boards */
2992 memcpy((void *)&boards[num_cards],(void *)&board, sizeof(board));
2993 /* Does this get called once per lilo arg are what ? */
2994 printk(KERN_INFO "PC/Xx: Added board %i, %s %i ports at 0x%4.4X base 0x%6.6X\n",
2995 num_cards, board_desc[board.type],
2996 board.numports, (int)board.port, (unsigned int) board.membase);
2997 num_cards++;
2998 } /* End epca_setup */
3001 /* ------------------------ Begin init_PCI --------------------------- */
3003 enum epic_board_types {
3004 brd_xr = 0,
3005 brd_xem,
3006 brd_cx,
3007 brd_xrj,
3011 /* indexed directly by epic_board_types enum */
3012 static struct {
3013 unsigned char board_type;
3014 unsigned bar_idx; /* PCI base address region */
3015 } epca_info_tbl[] = {
3016 { PCIXR, 0, },
3017 { PCIXEM, 0, },
3018 { PCICX, 0, },
3019 { PCIXRJ, 2, },
3022 static int __devinit epca_init_one (struct pci_dev *pdev,
3023 const struct pci_device_id *ent)
3025 static int board_num = -1;
3026 int board_idx, info_idx = ent->driver_data;
3027 unsigned long addr;
3029 if (pci_enable_device(pdev))
3030 return -EIO;
3032 board_num++;
3033 board_idx = board_num + num_cards;
3034 if (board_idx >= MAXBOARDS)
3035 goto err_out;
3037 addr = pci_resource_start (pdev, epca_info_tbl[info_idx].bar_idx);
3038 if (!addr) {
3039 printk (KERN_ERR PFX "PCI region #%d not available (size 0)\n",
3040 epca_info_tbl[info_idx].bar_idx);
3041 goto err_out;
3044 boards[board_idx].status = ENABLED;
3045 boards[board_idx].type = epca_info_tbl[info_idx].board_type;
3046 boards[board_idx].numports = 0x0;
3047 boards[board_idx].port = addr + PCI_IO_OFFSET;
3048 boards[board_idx].membase = addr;
3050 if (!request_mem_region (addr + PCI_IO_OFFSET, 0x200000, "epca")) {
3051 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3052 0x200000, addr + PCI_IO_OFFSET);
3053 goto err_out;
3056 boards[board_idx].re_map_port = ioremap(addr + PCI_IO_OFFSET, 0x200000);
3057 if (!boards[board_idx].re_map_port) {
3058 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3059 0x200000, addr + PCI_IO_OFFSET);
3060 goto err_out_free_pciio;
3063 if (!request_mem_region (addr, 0x200000, "epca")) {
3064 printk (KERN_ERR PFX "resource 0x%x @ 0x%lx unavailable\n",
3065 0x200000, addr);
3066 goto err_out_free_iounmap;
3069 boards[board_idx].re_map_membase = ioremap(addr, 0x200000);
3070 if (!boards[board_idx].re_map_membase) {
3071 printk (KERN_ERR PFX "cannot map 0x%x @ 0x%lx\n",
3072 0x200000, addr + PCI_IO_OFFSET);
3073 goto err_out_free_memregion;
3076 /* --------------------------------------------------------------
3077 I don't know what the below does, but the hardware guys say
3078 its required on everything except PLX (In this case XRJ).
3079 ---------------------------------------------------------------- */
3080 if (info_idx != brd_xrj) {
3081 pci_write_config_byte(pdev, 0x40, 0);
3082 pci_write_config_byte(pdev, 0x46, 0);
3085 return 0;
3087 err_out_free_memregion:
3088 release_mem_region (addr, 0x200000);
3089 err_out_free_iounmap:
3090 iounmap (boards[board_idx].re_map_port);
3091 err_out_free_pciio:
3092 release_mem_region (addr + PCI_IO_OFFSET, 0x200000);
3093 err_out:
3094 return -ENODEV;
3098 static struct pci_device_id epca_pci_tbl[] = {
3099 { PCI_VENDOR_DIGI, PCI_DEVICE_XR, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xr },
3100 { PCI_VENDOR_DIGI, PCI_DEVICE_XEM, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xem },
3101 { PCI_VENDOR_DIGI, PCI_DEVICE_CX, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_cx },
3102 { PCI_VENDOR_DIGI, PCI_DEVICE_XRJ, PCI_ANY_ID, PCI_ANY_ID, 0, 0, brd_xrj },
3103 { 0, }
3106 MODULE_DEVICE_TABLE(pci, epca_pci_tbl);
3108 int __init init_PCI (void)
3109 { /* Begin init_PCI */
3110 memset (&epca_driver, 0, sizeof (epca_driver));
3111 epca_driver.name = "epca";
3112 epca_driver.id_table = epca_pci_tbl;
3113 epca_driver.probe = epca_init_one;
3115 return pci_register_driver(&epca_driver);
3118 MODULE_LICENSE("GPL");