Linux 2.6.20.7
[linux/fpc-iii.git] / drivers / char / tty_io.c
blob237090899d3ecb02b024db2d41a6b5988cfb4fd6
1 /*
2 * linux/drivers/char/tty_io.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * 'tty_io.c' gives an orthogonal feeling to tty's, be they consoles
9 * or rs-channels. It also implements echoing, cooked mode etc.
11 * Kill-line thanks to John T Kohl, who also corrected VMIN = VTIME = 0.
13 * Modified by Theodore Ts'o, 9/14/92, to dynamically allocate the
14 * tty_struct and tty_queue structures. Previously there was an array
15 * of 256 tty_struct's which was statically allocated, and the
16 * tty_queue structures were allocated at boot time. Both are now
17 * dynamically allocated only when the tty is open.
19 * Also restructured routines so that there is more of a separation
20 * between the high-level tty routines (tty_io.c and tty_ioctl.c) and
21 * the low-level tty routines (serial.c, pty.c, console.c). This
22 * makes for cleaner and more compact code. -TYT, 9/17/92
24 * Modified by Fred N. van Kempen, 01/29/93, to add line disciplines
25 * which can be dynamically activated and de-activated by the line
26 * discipline handling modules (like SLIP).
28 * NOTE: pay no attention to the line discipline code (yet); its
29 * interface is still subject to change in this version...
30 * -- TYT, 1/31/92
32 * Added functionality to the OPOST tty handling. No delays, but all
33 * other bits should be there.
34 * -- Nick Holloway <alfie@dcs.warwick.ac.uk>, 27th May 1993.
36 * Rewrote canonical mode and added more termios flags.
37 * -- julian@uhunix.uhcc.hawaii.edu (J. Cowley), 13Jan94
39 * Reorganized FASYNC support so mouse code can share it.
40 * -- ctm@ardi.com, 9Sep95
42 * New TIOCLINUX variants added.
43 * -- mj@k332.feld.cvut.cz, 19-Nov-95
45 * Restrict vt switching via ioctl()
46 * -- grif@cs.ucr.edu, 5-Dec-95
48 * Move console and virtual terminal code to more appropriate files,
49 * implement CONFIG_VT and generalize console device interface.
50 * -- Marko Kohtala <Marko.Kohtala@hut.fi>, March 97
52 * Rewrote init_dev and release_dev to eliminate races.
53 * -- Bill Hawes <whawes@star.net>, June 97
55 * Added devfs support.
56 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 13-Jan-1998
58 * Added support for a Unix98-style ptmx device.
59 * -- C. Scott Ananian <cananian@alumni.princeton.edu>, 14-Jan-1998
61 * Reduced memory usage for older ARM systems
62 * -- Russell King <rmk@arm.linux.org.uk>
64 * Move do_SAK() into process context. Less stack use in devfs functions.
65 * alloc_tty_struct() always uses kmalloc() -- Andrew Morton <andrewm@uow.edu.eu> 17Mar01
68 #include <linux/types.h>
69 #include <linux/major.h>
70 #include <linux/errno.h>
71 #include <linux/signal.h>
72 #include <linux/fcntl.h>
73 #include <linux/sched.h>
74 #include <linux/interrupt.h>
75 #include <linux/tty.h>
76 #include <linux/tty_driver.h>
77 #include <linux/tty_flip.h>
78 #include <linux/devpts_fs.h>
79 #include <linux/file.h>
80 #include <linux/console.h>
81 #include <linux/timer.h>
82 #include <linux/ctype.h>
83 #include <linux/kd.h>
84 #include <linux/mm.h>
85 #include <linux/string.h>
86 #include <linux/slab.h>
87 #include <linux/poll.h>
88 #include <linux/proc_fs.h>
89 #include <linux/init.h>
90 #include <linux/module.h>
91 #include <linux/smp_lock.h>
92 #include <linux/device.h>
93 #include <linux/idr.h>
94 #include <linux/wait.h>
95 #include <linux/bitops.h>
96 #include <linux/delay.h>
98 #include <asm/uaccess.h>
99 #include <asm/system.h>
101 #include <linux/kbd_kern.h>
102 #include <linux/vt_kern.h>
103 #include <linux/selection.h>
105 #include <linux/kmod.h>
107 #undef TTY_DEBUG_HANGUP
109 #define TTY_PARANOIA_CHECK 1
110 #define CHECK_TTY_COUNT 1
112 struct ktermios tty_std_termios = { /* for the benefit of tty drivers */
113 .c_iflag = ICRNL | IXON,
114 .c_oflag = OPOST | ONLCR,
115 .c_cflag = B38400 | CS8 | CREAD | HUPCL,
116 .c_lflag = ISIG | ICANON | ECHO | ECHOE | ECHOK |
117 ECHOCTL | ECHOKE | IEXTEN,
118 .c_cc = INIT_C_CC,
119 .c_ispeed = 38400,
120 .c_ospeed = 38400
123 EXPORT_SYMBOL(tty_std_termios);
125 /* This list gets poked at by procfs and various bits of boot up code. This
126 could do with some rationalisation such as pulling the tty proc function
127 into this file */
129 LIST_HEAD(tty_drivers); /* linked list of tty drivers */
131 /* Mutex to protect creating and releasing a tty. This is shared with
132 vt.c for deeply disgusting hack reasons */
133 DEFINE_MUTEX(tty_mutex);
134 EXPORT_SYMBOL(tty_mutex);
136 #ifdef CONFIG_UNIX98_PTYS
137 extern struct tty_driver *ptm_driver; /* Unix98 pty masters; for /dev/ptmx */
138 extern int pty_limit; /* Config limit on Unix98 ptys */
139 static DEFINE_IDR(allocated_ptys);
140 static DECLARE_MUTEX(allocated_ptys_lock);
141 static int ptmx_open(struct inode *, struct file *);
142 #endif
144 extern void disable_early_printk(void);
146 static void initialize_tty_struct(struct tty_struct *tty);
148 static ssize_t tty_read(struct file *, char __user *, size_t, loff_t *);
149 static ssize_t tty_write(struct file *, const char __user *, size_t, loff_t *);
150 ssize_t redirected_tty_write(struct file *, const char __user *, size_t, loff_t *);
151 static unsigned int tty_poll(struct file *, poll_table *);
152 static int tty_open(struct inode *, struct file *);
153 static int tty_release(struct inode *, struct file *);
154 int tty_ioctl(struct inode * inode, struct file * file,
155 unsigned int cmd, unsigned long arg);
156 static int tty_fasync(int fd, struct file * filp, int on);
157 static void release_mem(struct tty_struct *tty, int idx);
160 * alloc_tty_struct - allocate a tty object
162 * Return a new empty tty structure. The data fields have not
163 * been initialized in any way but has been zeroed
165 * Locking: none
168 static struct tty_struct *alloc_tty_struct(void)
170 return kzalloc(sizeof(struct tty_struct), GFP_KERNEL);
173 static void tty_buffer_free_all(struct tty_struct *);
176 * free_tty_struct - free a disused tty
177 * @tty: tty struct to free
179 * Free the write buffers, tty queue and tty memory itself.
181 * Locking: none. Must be called after tty is definitely unused
184 static inline void free_tty_struct(struct tty_struct *tty)
186 kfree(tty->write_buf);
187 tty_buffer_free_all(tty);
188 kfree(tty);
191 #define TTY_NUMBER(tty) ((tty)->index + (tty)->driver->name_base)
194 * tty_name - return tty naming
195 * @tty: tty structure
196 * @buf: buffer for output
198 * Convert a tty structure into a name. The name reflects the kernel
199 * naming policy and if udev is in use may not reflect user space
201 * Locking: none
204 char *tty_name(struct tty_struct *tty, char *buf)
206 if (!tty) /* Hmm. NULL pointer. That's fun. */
207 strcpy(buf, "NULL tty");
208 else
209 strcpy(buf, tty->name);
210 return buf;
213 EXPORT_SYMBOL(tty_name);
215 int tty_paranoia_check(struct tty_struct *tty, struct inode *inode,
216 const char *routine)
218 #ifdef TTY_PARANOIA_CHECK
219 if (!tty) {
220 printk(KERN_WARNING
221 "null TTY for (%d:%d) in %s\n",
222 imajor(inode), iminor(inode), routine);
223 return 1;
225 if (tty->magic != TTY_MAGIC) {
226 printk(KERN_WARNING
227 "bad magic number for tty struct (%d:%d) in %s\n",
228 imajor(inode), iminor(inode), routine);
229 return 1;
231 #endif
232 return 0;
235 static int check_tty_count(struct tty_struct *tty, const char *routine)
237 #ifdef CHECK_TTY_COUNT
238 struct list_head *p;
239 int count = 0;
241 file_list_lock();
242 list_for_each(p, &tty->tty_files) {
243 count++;
245 file_list_unlock();
246 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
247 tty->driver->subtype == PTY_TYPE_SLAVE &&
248 tty->link && tty->link->count)
249 count++;
250 if (tty->count != count) {
251 printk(KERN_WARNING "Warning: dev (%s) tty->count(%d) "
252 "!= #fd's(%d) in %s\n",
253 tty->name, tty->count, count, routine);
254 return count;
256 #endif
257 return 0;
261 * Tty buffer allocation management
265 * tty_buffer_free_all - free buffers used by a tty
266 * @tty: tty to free from
268 * Remove all the buffers pending on a tty whether queued with data
269 * or in the free ring. Must be called when the tty is no longer in use
271 * Locking: none
274 static void tty_buffer_free_all(struct tty_struct *tty)
276 struct tty_buffer *thead;
277 while((thead = tty->buf.head) != NULL) {
278 tty->buf.head = thead->next;
279 kfree(thead);
281 while((thead = tty->buf.free) != NULL) {
282 tty->buf.free = thead->next;
283 kfree(thead);
285 tty->buf.tail = NULL;
286 tty->buf.memory_used = 0;
290 * tty_buffer_init - prepare a tty buffer structure
291 * @tty: tty to initialise
293 * Set up the initial state of the buffer management for a tty device.
294 * Must be called before the other tty buffer functions are used.
296 * Locking: none
299 static void tty_buffer_init(struct tty_struct *tty)
301 spin_lock_init(&tty->buf.lock);
302 tty->buf.head = NULL;
303 tty->buf.tail = NULL;
304 tty->buf.free = NULL;
305 tty->buf.memory_used = 0;
309 * tty_buffer_alloc - allocate a tty buffer
310 * @tty: tty device
311 * @size: desired size (characters)
313 * Allocate a new tty buffer to hold the desired number of characters.
314 * Return NULL if out of memory or the allocation would exceed the
315 * per device queue
317 * Locking: Caller must hold tty->buf.lock
320 static struct tty_buffer *tty_buffer_alloc(struct tty_struct *tty, size_t size)
322 struct tty_buffer *p;
324 if (tty->buf.memory_used + size > 65536)
325 return NULL;
326 p = kmalloc(sizeof(struct tty_buffer) + 2 * size, GFP_ATOMIC);
327 if(p == NULL)
328 return NULL;
329 p->used = 0;
330 p->size = size;
331 p->next = NULL;
332 p->commit = 0;
333 p->read = 0;
334 p->char_buf_ptr = (char *)(p->data);
335 p->flag_buf_ptr = (unsigned char *)p->char_buf_ptr + size;
336 tty->buf.memory_used += size;
337 return p;
341 * tty_buffer_free - free a tty buffer
342 * @tty: tty owning the buffer
343 * @b: the buffer to free
345 * Free a tty buffer, or add it to the free list according to our
346 * internal strategy
348 * Locking: Caller must hold tty->buf.lock
351 static void tty_buffer_free(struct tty_struct *tty, struct tty_buffer *b)
353 /* Dumb strategy for now - should keep some stats */
354 tty->buf.memory_used -= b->size;
355 WARN_ON(tty->buf.memory_used < 0);
357 if(b->size >= 512)
358 kfree(b);
359 else {
360 b->next = tty->buf.free;
361 tty->buf.free = b;
366 * tty_buffer_find - find a free tty buffer
367 * @tty: tty owning the buffer
368 * @size: characters wanted
370 * Locate an existing suitable tty buffer or if we are lacking one then
371 * allocate a new one. We round our buffers off in 256 character chunks
372 * to get better allocation behaviour.
374 * Locking: Caller must hold tty->buf.lock
377 static struct tty_buffer *tty_buffer_find(struct tty_struct *tty, size_t size)
379 struct tty_buffer **tbh = &tty->buf.free;
380 while((*tbh) != NULL) {
381 struct tty_buffer *t = *tbh;
382 if(t->size >= size) {
383 *tbh = t->next;
384 t->next = NULL;
385 t->used = 0;
386 t->commit = 0;
387 t->read = 0;
388 tty->buf.memory_used += t->size;
389 return t;
391 tbh = &((*tbh)->next);
393 /* Round the buffer size out */
394 size = (size + 0xFF) & ~ 0xFF;
395 return tty_buffer_alloc(tty, size);
396 /* Should possibly check if this fails for the largest buffer we
397 have queued and recycle that ? */
401 * tty_buffer_request_room - grow tty buffer if needed
402 * @tty: tty structure
403 * @size: size desired
405 * Make at least size bytes of linear space available for the tty
406 * buffer. If we fail return the size we managed to find.
408 * Locking: Takes tty->buf.lock
410 int tty_buffer_request_room(struct tty_struct *tty, size_t size)
412 struct tty_buffer *b, *n;
413 int left;
414 unsigned long flags;
416 spin_lock_irqsave(&tty->buf.lock, flags);
418 /* OPTIMISATION: We could keep a per tty "zero" sized buffer to
419 remove this conditional if its worth it. This would be invisible
420 to the callers */
421 if ((b = tty->buf.tail) != NULL)
422 left = b->size - b->used;
423 else
424 left = 0;
426 if (left < size) {
427 /* This is the slow path - looking for new buffers to use */
428 if ((n = tty_buffer_find(tty, size)) != NULL) {
429 if (b != NULL) {
430 b->next = n;
431 b->commit = b->used;
432 } else
433 tty->buf.head = n;
434 tty->buf.tail = n;
435 } else
436 size = left;
439 spin_unlock_irqrestore(&tty->buf.lock, flags);
440 return size;
442 EXPORT_SYMBOL_GPL(tty_buffer_request_room);
445 * tty_insert_flip_string - Add characters to the tty buffer
446 * @tty: tty structure
447 * @chars: characters
448 * @size: size
450 * Queue a series of bytes to the tty buffering. All the characters
451 * passed are marked as without error. Returns the number added.
453 * Locking: Called functions may take tty->buf.lock
456 int tty_insert_flip_string(struct tty_struct *tty, const unsigned char *chars,
457 size_t size)
459 int copied = 0;
460 do {
461 int space = tty_buffer_request_room(tty, size - copied);
462 struct tty_buffer *tb = tty->buf.tail;
463 /* If there is no space then tb may be NULL */
464 if(unlikely(space == 0))
465 break;
466 memcpy(tb->char_buf_ptr + tb->used, chars, space);
467 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
468 tb->used += space;
469 copied += space;
470 chars += space;
471 /* There is a small chance that we need to split the data over
472 several buffers. If this is the case we must loop */
473 } while (unlikely(size > copied));
474 return copied;
476 EXPORT_SYMBOL(tty_insert_flip_string);
479 * tty_insert_flip_string_flags - Add characters to the tty buffer
480 * @tty: tty structure
481 * @chars: characters
482 * @flags: flag bytes
483 * @size: size
485 * Queue a series of bytes to the tty buffering. For each character
486 * the flags array indicates the status of the character. Returns the
487 * number added.
489 * Locking: Called functions may take tty->buf.lock
492 int tty_insert_flip_string_flags(struct tty_struct *tty,
493 const unsigned char *chars, const char *flags, size_t size)
495 int copied = 0;
496 do {
497 int space = tty_buffer_request_room(tty, size - copied);
498 struct tty_buffer *tb = tty->buf.tail;
499 /* If there is no space then tb may be NULL */
500 if(unlikely(space == 0))
501 break;
502 memcpy(tb->char_buf_ptr + tb->used, chars, space);
503 memcpy(tb->flag_buf_ptr + tb->used, flags, space);
504 tb->used += space;
505 copied += space;
506 chars += space;
507 flags += space;
508 /* There is a small chance that we need to split the data over
509 several buffers. If this is the case we must loop */
510 } while (unlikely(size > copied));
511 return copied;
513 EXPORT_SYMBOL(tty_insert_flip_string_flags);
516 * tty_schedule_flip - push characters to ldisc
517 * @tty: tty to push from
519 * Takes any pending buffers and transfers their ownership to the
520 * ldisc side of the queue. It then schedules those characters for
521 * processing by the line discipline.
523 * Locking: Takes tty->buf.lock
526 void tty_schedule_flip(struct tty_struct *tty)
528 unsigned long flags;
529 spin_lock_irqsave(&tty->buf.lock, flags);
530 if (tty->buf.tail != NULL)
531 tty->buf.tail->commit = tty->buf.tail->used;
532 spin_unlock_irqrestore(&tty->buf.lock, flags);
533 schedule_delayed_work(&tty->buf.work, 1);
535 EXPORT_SYMBOL(tty_schedule_flip);
538 * tty_prepare_flip_string - make room for characters
539 * @tty: tty
540 * @chars: return pointer for character write area
541 * @size: desired size
543 * Prepare a block of space in the buffer for data. Returns the length
544 * available and buffer pointer to the space which is now allocated and
545 * accounted for as ready for normal characters. This is used for drivers
546 * that need their own block copy routines into the buffer. There is no
547 * guarantee the buffer is a DMA target!
549 * Locking: May call functions taking tty->buf.lock
552 int tty_prepare_flip_string(struct tty_struct *tty, unsigned char **chars, size_t size)
554 int space = tty_buffer_request_room(tty, size);
555 if (likely(space)) {
556 struct tty_buffer *tb = tty->buf.tail;
557 *chars = tb->char_buf_ptr + tb->used;
558 memset(tb->flag_buf_ptr + tb->used, TTY_NORMAL, space);
559 tb->used += space;
561 return space;
564 EXPORT_SYMBOL_GPL(tty_prepare_flip_string);
567 * tty_prepare_flip_string_flags - make room for characters
568 * @tty: tty
569 * @chars: return pointer for character write area
570 * @flags: return pointer for status flag write area
571 * @size: desired size
573 * Prepare a block of space in the buffer for data. Returns the length
574 * available and buffer pointer to the space which is now allocated and
575 * accounted for as ready for characters. This is used for drivers
576 * that need their own block copy routines into the buffer. There is no
577 * guarantee the buffer is a DMA target!
579 * Locking: May call functions taking tty->buf.lock
582 int tty_prepare_flip_string_flags(struct tty_struct *tty, unsigned char **chars, char **flags, size_t size)
584 int space = tty_buffer_request_room(tty, size);
585 if (likely(space)) {
586 struct tty_buffer *tb = tty->buf.tail;
587 *chars = tb->char_buf_ptr + tb->used;
588 *flags = tb->flag_buf_ptr + tb->used;
589 tb->used += space;
591 return space;
594 EXPORT_SYMBOL_GPL(tty_prepare_flip_string_flags);
599 * tty_set_termios_ldisc - set ldisc field
600 * @tty: tty structure
601 * @num: line discipline number
603 * This is probably overkill for real world processors but
604 * they are not on hot paths so a little discipline won't do
605 * any harm.
607 * Locking: takes termios_mutex
610 static void tty_set_termios_ldisc(struct tty_struct *tty, int num)
612 mutex_lock(&tty->termios_mutex);
613 tty->termios->c_line = num;
614 mutex_unlock(&tty->termios_mutex);
618 * This guards the refcounted line discipline lists. The lock
619 * must be taken with irqs off because there are hangup path
620 * callers who will do ldisc lookups and cannot sleep.
623 static DEFINE_SPINLOCK(tty_ldisc_lock);
624 static DECLARE_WAIT_QUEUE_HEAD(tty_ldisc_wait);
625 static struct tty_ldisc tty_ldiscs[NR_LDISCS]; /* line disc dispatch table */
628 * tty_register_ldisc - install a line discipline
629 * @disc: ldisc number
630 * @new_ldisc: pointer to the ldisc object
632 * Installs a new line discipline into the kernel. The discipline
633 * is set up as unreferenced and then made available to the kernel
634 * from this point onwards.
636 * Locking:
637 * takes tty_ldisc_lock to guard against ldisc races
640 int tty_register_ldisc(int disc, struct tty_ldisc *new_ldisc)
642 unsigned long flags;
643 int ret = 0;
645 if (disc < N_TTY || disc >= NR_LDISCS)
646 return -EINVAL;
648 spin_lock_irqsave(&tty_ldisc_lock, flags);
649 tty_ldiscs[disc] = *new_ldisc;
650 tty_ldiscs[disc].num = disc;
651 tty_ldiscs[disc].flags |= LDISC_FLAG_DEFINED;
652 tty_ldiscs[disc].refcount = 0;
653 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
655 return ret;
657 EXPORT_SYMBOL(tty_register_ldisc);
660 * tty_unregister_ldisc - unload a line discipline
661 * @disc: ldisc number
662 * @new_ldisc: pointer to the ldisc object
664 * Remove a line discipline from the kernel providing it is not
665 * currently in use.
667 * Locking:
668 * takes tty_ldisc_lock to guard against ldisc races
671 int tty_unregister_ldisc(int disc)
673 unsigned long flags;
674 int ret = 0;
676 if (disc < N_TTY || disc >= NR_LDISCS)
677 return -EINVAL;
679 spin_lock_irqsave(&tty_ldisc_lock, flags);
680 if (tty_ldiscs[disc].refcount)
681 ret = -EBUSY;
682 else
683 tty_ldiscs[disc].flags &= ~LDISC_FLAG_DEFINED;
684 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
686 return ret;
688 EXPORT_SYMBOL(tty_unregister_ldisc);
691 * tty_ldisc_get - take a reference to an ldisc
692 * @disc: ldisc number
694 * Takes a reference to a line discipline. Deals with refcounts and
695 * module locking counts. Returns NULL if the discipline is not available.
696 * Returns a pointer to the discipline and bumps the ref count if it is
697 * available
699 * Locking:
700 * takes tty_ldisc_lock to guard against ldisc races
703 struct tty_ldisc *tty_ldisc_get(int disc)
705 unsigned long flags;
706 struct tty_ldisc *ld;
708 if (disc < N_TTY || disc >= NR_LDISCS)
709 return NULL;
711 spin_lock_irqsave(&tty_ldisc_lock, flags);
713 ld = &tty_ldiscs[disc];
714 /* Check the entry is defined */
715 if(ld->flags & LDISC_FLAG_DEFINED)
717 /* If the module is being unloaded we can't use it */
718 if (!try_module_get(ld->owner))
719 ld = NULL;
720 else /* lock it */
721 ld->refcount++;
723 else
724 ld = NULL;
725 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
726 return ld;
729 EXPORT_SYMBOL_GPL(tty_ldisc_get);
732 * tty_ldisc_put - drop ldisc reference
733 * @disc: ldisc number
735 * Drop a reference to a line discipline. Manage refcounts and
736 * module usage counts
738 * Locking:
739 * takes tty_ldisc_lock to guard against ldisc races
742 void tty_ldisc_put(int disc)
744 struct tty_ldisc *ld;
745 unsigned long flags;
747 BUG_ON(disc < N_TTY || disc >= NR_LDISCS);
749 spin_lock_irqsave(&tty_ldisc_lock, flags);
750 ld = &tty_ldiscs[disc];
751 BUG_ON(ld->refcount == 0);
752 ld->refcount--;
753 module_put(ld->owner);
754 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
757 EXPORT_SYMBOL_GPL(tty_ldisc_put);
760 * tty_ldisc_assign - set ldisc on a tty
761 * @tty: tty to assign
762 * @ld: line discipline
764 * Install an instance of a line discipline into a tty structure. The
765 * ldisc must have a reference count above zero to ensure it remains/
766 * The tty instance refcount starts at zero.
768 * Locking:
769 * Caller must hold references
772 static void tty_ldisc_assign(struct tty_struct *tty, struct tty_ldisc *ld)
774 tty->ldisc = *ld;
775 tty->ldisc.refcount = 0;
779 * tty_ldisc_try - internal helper
780 * @tty: the tty
782 * Make a single attempt to grab and bump the refcount on
783 * the tty ldisc. Return 0 on failure or 1 on success. This is
784 * used to implement both the waiting and non waiting versions
785 * of tty_ldisc_ref
787 * Locking: takes tty_ldisc_lock
790 static int tty_ldisc_try(struct tty_struct *tty)
792 unsigned long flags;
793 struct tty_ldisc *ld;
794 int ret = 0;
796 spin_lock_irqsave(&tty_ldisc_lock, flags);
797 ld = &tty->ldisc;
798 if(test_bit(TTY_LDISC, &tty->flags))
800 ld->refcount++;
801 ret = 1;
803 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
804 return ret;
808 * tty_ldisc_ref_wait - wait for the tty ldisc
809 * @tty: tty device
811 * Dereference the line discipline for the terminal and take a
812 * reference to it. If the line discipline is in flux then
813 * wait patiently until it changes.
815 * Note: Must not be called from an IRQ/timer context. The caller
816 * must also be careful not to hold other locks that will deadlock
817 * against a discipline change, such as an existing ldisc reference
818 * (which we check for)
820 * Locking: call functions take tty_ldisc_lock
823 struct tty_ldisc *tty_ldisc_ref_wait(struct tty_struct *tty)
825 /* wait_event is a macro */
826 wait_event(tty_ldisc_wait, tty_ldisc_try(tty));
827 if(tty->ldisc.refcount == 0)
828 printk(KERN_ERR "tty_ldisc_ref_wait\n");
829 return &tty->ldisc;
832 EXPORT_SYMBOL_GPL(tty_ldisc_ref_wait);
835 * tty_ldisc_ref - get the tty ldisc
836 * @tty: tty device
838 * Dereference the line discipline for the terminal and take a
839 * reference to it. If the line discipline is in flux then
840 * return NULL. Can be called from IRQ and timer functions.
842 * Locking: called functions take tty_ldisc_lock
845 struct tty_ldisc *tty_ldisc_ref(struct tty_struct *tty)
847 if(tty_ldisc_try(tty))
848 return &tty->ldisc;
849 return NULL;
852 EXPORT_SYMBOL_GPL(tty_ldisc_ref);
855 * tty_ldisc_deref - free a tty ldisc reference
856 * @ld: reference to free up
858 * Undoes the effect of tty_ldisc_ref or tty_ldisc_ref_wait. May
859 * be called in IRQ context.
861 * Locking: takes tty_ldisc_lock
864 void tty_ldisc_deref(struct tty_ldisc *ld)
866 unsigned long flags;
868 BUG_ON(ld == NULL);
870 spin_lock_irqsave(&tty_ldisc_lock, flags);
871 if(ld->refcount == 0)
872 printk(KERN_ERR "tty_ldisc_deref: no references.\n");
873 else
874 ld->refcount--;
875 if(ld->refcount == 0)
876 wake_up(&tty_ldisc_wait);
877 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
880 EXPORT_SYMBOL_GPL(tty_ldisc_deref);
883 * tty_ldisc_enable - allow ldisc use
884 * @tty: terminal to activate ldisc on
886 * Set the TTY_LDISC flag when the line discipline can be called
887 * again. Do neccessary wakeups for existing sleepers.
889 * Note: nobody should set this bit except via this function. Clearing
890 * directly is allowed.
893 static void tty_ldisc_enable(struct tty_struct *tty)
895 set_bit(TTY_LDISC, &tty->flags);
896 wake_up(&tty_ldisc_wait);
900 * tty_set_ldisc - set line discipline
901 * @tty: the terminal to set
902 * @ldisc: the line discipline
904 * Set the discipline of a tty line. Must be called from a process
905 * context.
907 * Locking: takes tty_ldisc_lock.
908 * called functions take termios_mutex
911 static int tty_set_ldisc(struct tty_struct *tty, int ldisc)
913 int retval = 0;
914 struct tty_ldisc o_ldisc;
915 char buf[64];
916 int work;
917 unsigned long flags;
918 struct tty_ldisc *ld;
919 struct tty_struct *o_tty;
921 if ((ldisc < N_TTY) || (ldisc >= NR_LDISCS))
922 return -EINVAL;
924 restart:
926 ld = tty_ldisc_get(ldisc);
927 /* Eduardo Blanco <ejbs@cs.cs.com.uy> */
928 /* Cyrus Durgin <cider@speakeasy.org> */
929 if (ld == NULL) {
930 request_module("tty-ldisc-%d", ldisc);
931 ld = tty_ldisc_get(ldisc);
933 if (ld == NULL)
934 return -EINVAL;
937 * No more input please, we are switching. The new ldisc
938 * will update this value in the ldisc open function
941 tty->receive_room = 0;
944 * Problem: What do we do if this blocks ?
947 tty_wait_until_sent(tty, 0);
949 if (tty->ldisc.num == ldisc) {
950 tty_ldisc_put(ldisc);
951 return 0;
954 o_ldisc = tty->ldisc;
955 o_tty = tty->link;
958 * Make sure we don't change while someone holds a
959 * reference to the line discipline. The TTY_LDISC bit
960 * prevents anyone taking a reference once it is clear.
961 * We need the lock to avoid racing reference takers.
964 spin_lock_irqsave(&tty_ldisc_lock, flags);
965 if (tty->ldisc.refcount || (o_tty && o_tty->ldisc.refcount)) {
966 if(tty->ldisc.refcount) {
967 /* Free the new ldisc we grabbed. Must drop the lock
968 first. */
969 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
970 tty_ldisc_put(ldisc);
972 * There are several reasons we may be busy, including
973 * random momentary I/O traffic. We must therefore
974 * retry. We could distinguish between blocking ops
975 * and retries if we made tty_ldisc_wait() smarter. That
976 * is up for discussion.
978 if (wait_event_interruptible(tty_ldisc_wait, tty->ldisc.refcount == 0) < 0)
979 return -ERESTARTSYS;
980 goto restart;
982 if(o_tty && o_tty->ldisc.refcount) {
983 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
984 tty_ldisc_put(ldisc);
985 if (wait_event_interruptible(tty_ldisc_wait, o_tty->ldisc.refcount == 0) < 0)
986 return -ERESTARTSYS;
987 goto restart;
991 /* if the TTY_LDISC bit is set, then we are racing against another ldisc change */
993 if (!test_bit(TTY_LDISC, &tty->flags)) {
994 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
995 tty_ldisc_put(ldisc);
996 ld = tty_ldisc_ref_wait(tty);
997 tty_ldisc_deref(ld);
998 goto restart;
1001 clear_bit(TTY_LDISC, &tty->flags);
1002 if (o_tty)
1003 clear_bit(TTY_LDISC, &o_tty->flags);
1004 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
1007 * From this point on we know nobody has an ldisc
1008 * usage reference, nor can they obtain one until
1009 * we say so later on.
1012 work = cancel_delayed_work(&tty->buf.work);
1014 * Wait for ->hangup_work and ->buf.work handlers to terminate
1017 flush_scheduled_work();
1018 /* Shutdown the current discipline. */
1019 if (tty->ldisc.close)
1020 (tty->ldisc.close)(tty);
1022 /* Now set up the new line discipline. */
1023 tty_ldisc_assign(tty, ld);
1024 tty_set_termios_ldisc(tty, ldisc);
1025 if (tty->ldisc.open)
1026 retval = (tty->ldisc.open)(tty);
1027 if (retval < 0) {
1028 tty_ldisc_put(ldisc);
1029 /* There is an outstanding reference here so this is safe */
1030 tty_ldisc_assign(tty, tty_ldisc_get(o_ldisc.num));
1031 tty_set_termios_ldisc(tty, tty->ldisc.num);
1032 if (tty->ldisc.open && (tty->ldisc.open(tty) < 0)) {
1033 tty_ldisc_put(o_ldisc.num);
1034 /* This driver is always present */
1035 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
1036 tty_set_termios_ldisc(tty, N_TTY);
1037 if (tty->ldisc.open) {
1038 int r = tty->ldisc.open(tty);
1040 if (r < 0)
1041 panic("Couldn't open N_TTY ldisc for "
1042 "%s --- error %d.",
1043 tty_name(tty, buf), r);
1047 /* At this point we hold a reference to the new ldisc and a
1048 a reference to the old ldisc. If we ended up flipping back
1049 to the existing ldisc we have two references to it */
1051 if (tty->ldisc.num != o_ldisc.num && tty->driver->set_ldisc)
1052 tty->driver->set_ldisc(tty);
1054 tty_ldisc_put(o_ldisc.num);
1057 * Allow ldisc referencing to occur as soon as the driver
1058 * ldisc callback completes.
1061 tty_ldisc_enable(tty);
1062 if (o_tty)
1063 tty_ldisc_enable(o_tty);
1065 /* Restart it in case no characters kick it off. Safe if
1066 already running */
1067 if (work)
1068 schedule_delayed_work(&tty->buf.work, 1);
1069 return retval;
1073 * get_tty_driver - find device of a tty
1074 * @dev_t: device identifier
1075 * @index: returns the index of the tty
1077 * This routine returns a tty driver structure, given a device number
1078 * and also passes back the index number.
1080 * Locking: caller must hold tty_mutex
1083 static struct tty_driver *get_tty_driver(dev_t device, int *index)
1085 struct tty_driver *p;
1087 list_for_each_entry(p, &tty_drivers, tty_drivers) {
1088 dev_t base = MKDEV(p->major, p->minor_start);
1089 if (device < base || device >= base + p->num)
1090 continue;
1091 *index = device - base;
1092 return p;
1094 return NULL;
1098 * tty_check_change - check for POSIX terminal changes
1099 * @tty: tty to check
1101 * If we try to write to, or set the state of, a terminal and we're
1102 * not in the foreground, send a SIGTTOU. If the signal is blocked or
1103 * ignored, go ahead and perform the operation. (POSIX 7.2)
1105 * Locking: none
1108 int tty_check_change(struct tty_struct * tty)
1110 if (current->signal->tty != tty)
1111 return 0;
1112 if (tty->pgrp <= 0) {
1113 printk(KERN_WARNING "tty_check_change: tty->pgrp <= 0!\n");
1114 return 0;
1116 if (process_group(current) == tty->pgrp)
1117 return 0;
1118 if (is_ignored(SIGTTOU))
1119 return 0;
1120 if (is_orphaned_pgrp(process_group(current)))
1121 return -EIO;
1122 (void) kill_pg(process_group(current), SIGTTOU, 1);
1123 return -ERESTARTSYS;
1126 EXPORT_SYMBOL(tty_check_change);
1128 static ssize_t hung_up_tty_read(struct file * file, char __user * buf,
1129 size_t count, loff_t *ppos)
1131 return 0;
1134 static ssize_t hung_up_tty_write(struct file * file, const char __user * buf,
1135 size_t count, loff_t *ppos)
1137 return -EIO;
1140 /* No kernel lock held - none needed ;) */
1141 static unsigned int hung_up_tty_poll(struct file * filp, poll_table * wait)
1143 return POLLIN | POLLOUT | POLLERR | POLLHUP | POLLRDNORM | POLLWRNORM;
1146 static int hung_up_tty_ioctl(struct inode * inode, struct file * file,
1147 unsigned int cmd, unsigned long arg)
1149 return cmd == TIOCSPGRP ? -ENOTTY : -EIO;
1152 static const struct file_operations tty_fops = {
1153 .llseek = no_llseek,
1154 .read = tty_read,
1155 .write = tty_write,
1156 .poll = tty_poll,
1157 .ioctl = tty_ioctl,
1158 .open = tty_open,
1159 .release = tty_release,
1160 .fasync = tty_fasync,
1163 #ifdef CONFIG_UNIX98_PTYS
1164 static const struct file_operations ptmx_fops = {
1165 .llseek = no_llseek,
1166 .read = tty_read,
1167 .write = tty_write,
1168 .poll = tty_poll,
1169 .ioctl = tty_ioctl,
1170 .open = ptmx_open,
1171 .release = tty_release,
1172 .fasync = tty_fasync,
1174 #endif
1176 static const struct file_operations console_fops = {
1177 .llseek = no_llseek,
1178 .read = tty_read,
1179 .write = redirected_tty_write,
1180 .poll = tty_poll,
1181 .ioctl = tty_ioctl,
1182 .open = tty_open,
1183 .release = tty_release,
1184 .fasync = tty_fasync,
1187 static const struct file_operations hung_up_tty_fops = {
1188 .llseek = no_llseek,
1189 .read = hung_up_tty_read,
1190 .write = hung_up_tty_write,
1191 .poll = hung_up_tty_poll,
1192 .ioctl = hung_up_tty_ioctl,
1193 .release = tty_release,
1196 static DEFINE_SPINLOCK(redirect_lock);
1197 static struct file *redirect;
1200 * tty_wakeup - request more data
1201 * @tty: terminal
1203 * Internal and external helper for wakeups of tty. This function
1204 * informs the line discipline if present that the driver is ready
1205 * to receive more output data.
1208 void tty_wakeup(struct tty_struct *tty)
1210 struct tty_ldisc *ld;
1212 if (test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) {
1213 ld = tty_ldisc_ref(tty);
1214 if(ld) {
1215 if(ld->write_wakeup)
1216 ld->write_wakeup(tty);
1217 tty_ldisc_deref(ld);
1220 wake_up_interruptible(&tty->write_wait);
1223 EXPORT_SYMBOL_GPL(tty_wakeup);
1226 * tty_ldisc_flush - flush line discipline queue
1227 * @tty: tty
1229 * Flush the line discipline queue (if any) for this tty. If there
1230 * is no line discipline active this is a no-op.
1233 void tty_ldisc_flush(struct tty_struct *tty)
1235 struct tty_ldisc *ld = tty_ldisc_ref(tty);
1236 if(ld) {
1237 if(ld->flush_buffer)
1238 ld->flush_buffer(tty);
1239 tty_ldisc_deref(ld);
1243 EXPORT_SYMBOL_GPL(tty_ldisc_flush);
1246 * tty_reset_termios - reset terminal state
1247 * @tty: tty to reset
1249 * Restore a terminal to the driver default state
1252 static void tty_reset_termios(struct tty_struct *tty)
1254 mutex_lock(&tty->termios_mutex);
1255 *tty->termios = tty->driver->init_termios;
1256 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
1257 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
1258 mutex_unlock(&tty->termios_mutex);
1262 * do_tty_hangup - actual handler for hangup events
1263 * @work: tty device
1265 * This can be called by the "eventd" kernel thread. That is process
1266 * synchronous but doesn't hold any locks, so we need to make sure we
1267 * have the appropriate locks for what we're doing.
1269 * The hangup event clears any pending redirections onto the hung up
1270 * device. It ensures future writes will error and it does the needed
1271 * line discipline hangup and signal delivery. The tty object itself
1272 * remains intact.
1274 * Locking:
1275 * BKL
1276 * redirect lock for undoing redirection
1277 * file list lock for manipulating list of ttys
1278 * tty_ldisc_lock from called functions
1279 * termios_mutex resetting termios data
1280 * tasklist_lock to walk task list for hangup event
1281 * ->siglock to protect ->signal/->sighand
1283 static void do_tty_hangup(struct work_struct *work)
1285 struct tty_struct *tty =
1286 container_of(work, struct tty_struct, hangup_work);
1287 struct file * cons_filp = NULL;
1288 struct file *filp, *f = NULL;
1289 struct task_struct *p;
1290 struct tty_ldisc *ld;
1291 int closecount = 0, n;
1293 if (!tty)
1294 return;
1296 /* inuse_filps is protected by the single kernel lock */
1297 lock_kernel();
1299 spin_lock(&redirect_lock);
1300 if (redirect && redirect->private_data == tty) {
1301 f = redirect;
1302 redirect = NULL;
1304 spin_unlock(&redirect_lock);
1306 check_tty_count(tty, "do_tty_hangup");
1307 file_list_lock();
1308 /* This breaks for file handles being sent over AF_UNIX sockets ? */
1309 list_for_each_entry(filp, &tty->tty_files, f_u.fu_list) {
1310 if (filp->f_op->write == redirected_tty_write)
1311 cons_filp = filp;
1312 if (filp->f_op->write != tty_write)
1313 continue;
1314 closecount++;
1315 tty_fasync(-1, filp, 0); /* can't block */
1316 filp->f_op = &hung_up_tty_fops;
1318 file_list_unlock();
1320 /* FIXME! What are the locking issues here? This may me overdoing things..
1321 * this question is especially important now that we've removed the irqlock. */
1323 ld = tty_ldisc_ref(tty);
1324 if(ld != NULL) /* We may have no line discipline at this point */
1326 if (ld->flush_buffer)
1327 ld->flush_buffer(tty);
1328 if (tty->driver->flush_buffer)
1329 tty->driver->flush_buffer(tty);
1330 if ((test_bit(TTY_DO_WRITE_WAKEUP, &tty->flags)) &&
1331 ld->write_wakeup)
1332 ld->write_wakeup(tty);
1333 if (ld->hangup)
1334 ld->hangup(tty);
1337 /* FIXME: Once we trust the LDISC code better we can wait here for
1338 ldisc completion and fix the driver call race */
1340 wake_up_interruptible(&tty->write_wait);
1341 wake_up_interruptible(&tty->read_wait);
1344 * Shutdown the current line discipline, and reset it to
1345 * N_TTY.
1347 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS)
1348 tty_reset_termios(tty);
1350 /* Defer ldisc switch */
1351 /* tty_deferred_ldisc_switch(N_TTY);
1353 This should get done automatically when the port closes and
1354 tty_release is called */
1356 read_lock(&tasklist_lock);
1357 if (tty->session > 0) {
1358 do_each_task_pid(tty->session, PIDTYPE_SID, p) {
1359 spin_lock_irq(&p->sighand->siglock);
1360 if (p->signal->tty == tty)
1361 p->signal->tty = NULL;
1362 if (!p->signal->leader) {
1363 spin_unlock_irq(&p->sighand->siglock);
1364 continue;
1366 __group_send_sig_info(SIGHUP, SEND_SIG_PRIV, p);
1367 __group_send_sig_info(SIGCONT, SEND_SIG_PRIV, p);
1368 if (tty->pgrp > 0)
1369 p->signal->tty_old_pgrp = tty->pgrp;
1370 spin_unlock_irq(&p->sighand->siglock);
1371 } while_each_task_pid(tty->session, PIDTYPE_SID, p);
1373 read_unlock(&tasklist_lock);
1375 tty->flags = 0;
1376 tty->session = 0;
1377 tty->pgrp = -1;
1378 tty->ctrl_status = 0;
1380 * If one of the devices matches a console pointer, we
1381 * cannot just call hangup() because that will cause
1382 * tty->count and state->count to go out of sync.
1383 * So we just call close() the right number of times.
1385 if (cons_filp) {
1386 if (tty->driver->close)
1387 for (n = 0; n < closecount; n++)
1388 tty->driver->close(tty, cons_filp);
1389 } else if (tty->driver->hangup)
1390 (tty->driver->hangup)(tty);
1392 /* We don't want to have driver/ldisc interactions beyond
1393 the ones we did here. The driver layer expects no
1394 calls after ->hangup() from the ldisc side. However we
1395 can't yet guarantee all that */
1397 set_bit(TTY_HUPPED, &tty->flags);
1398 if (ld) {
1399 tty_ldisc_enable(tty);
1400 tty_ldisc_deref(ld);
1402 unlock_kernel();
1403 if (f)
1404 fput(f);
1408 * tty_hangup - trigger a hangup event
1409 * @tty: tty to hangup
1411 * A carrier loss (virtual or otherwise) has occurred on this like
1412 * schedule a hangup sequence to run after this event.
1415 void tty_hangup(struct tty_struct * tty)
1417 #ifdef TTY_DEBUG_HANGUP
1418 char buf[64];
1420 printk(KERN_DEBUG "%s hangup...\n", tty_name(tty, buf));
1421 #endif
1422 schedule_work(&tty->hangup_work);
1425 EXPORT_SYMBOL(tty_hangup);
1428 * tty_vhangup - process vhangup
1429 * @tty: tty to hangup
1431 * The user has asked via system call for the terminal to be hung up.
1432 * We do this synchronously so that when the syscall returns the process
1433 * is complete. That guarantee is neccessary for security reasons.
1436 void tty_vhangup(struct tty_struct * tty)
1438 #ifdef TTY_DEBUG_HANGUP
1439 char buf[64];
1441 printk(KERN_DEBUG "%s vhangup...\n", tty_name(tty, buf));
1442 #endif
1443 do_tty_hangup(&tty->hangup_work);
1445 EXPORT_SYMBOL(tty_vhangup);
1448 * tty_hung_up_p - was tty hung up
1449 * @filp: file pointer of tty
1451 * Return true if the tty has been subject to a vhangup or a carrier
1452 * loss
1455 int tty_hung_up_p(struct file * filp)
1457 return (filp->f_op == &hung_up_tty_fops);
1460 EXPORT_SYMBOL(tty_hung_up_p);
1462 static void session_clear_tty(pid_t session)
1464 struct task_struct *p;
1465 do_each_task_pid(session, PIDTYPE_SID, p) {
1466 proc_clear_tty(p);
1467 } while_each_task_pid(session, PIDTYPE_SID, p);
1471 * disassociate_ctty - disconnect controlling tty
1472 * @on_exit: true if exiting so need to "hang up" the session
1474 * This function is typically called only by the session leader, when
1475 * it wants to disassociate itself from its controlling tty.
1477 * It performs the following functions:
1478 * (1) Sends a SIGHUP and SIGCONT to the foreground process group
1479 * (2) Clears the tty from being controlling the session
1480 * (3) Clears the controlling tty for all processes in the
1481 * session group.
1483 * The argument on_exit is set to 1 if called when a process is
1484 * exiting; it is 0 if called by the ioctl TIOCNOTTY.
1486 * Locking:
1487 * BKL is taken for hysterical raisins
1488 * tty_mutex is taken to protect tty
1489 * ->siglock is taken to protect ->signal/->sighand
1490 * tasklist_lock is taken to walk process list for sessions
1491 * ->siglock is taken to protect ->signal/->sighand
1494 void disassociate_ctty(int on_exit)
1496 struct tty_struct *tty;
1497 int tty_pgrp = -1;
1498 int session;
1500 lock_kernel();
1502 mutex_lock(&tty_mutex);
1503 tty = get_current_tty();
1504 if (tty) {
1505 tty_pgrp = tty->pgrp;
1506 mutex_unlock(&tty_mutex);
1507 /* XXX: here we race, there is nothing protecting tty */
1508 if (on_exit && tty->driver->type != TTY_DRIVER_TYPE_PTY)
1509 tty_vhangup(tty);
1510 } else {
1511 pid_t old_pgrp = current->signal->tty_old_pgrp;
1512 if (old_pgrp) {
1513 kill_pg(old_pgrp, SIGHUP, on_exit);
1514 kill_pg(old_pgrp, SIGCONT, on_exit);
1516 mutex_unlock(&tty_mutex);
1517 unlock_kernel();
1518 return;
1520 if (tty_pgrp > 0) {
1521 kill_pg(tty_pgrp, SIGHUP, on_exit);
1522 if (!on_exit)
1523 kill_pg(tty_pgrp, SIGCONT, on_exit);
1526 spin_lock_irq(&current->sighand->siglock);
1527 current->signal->tty_old_pgrp = 0;
1528 session = process_session(current);
1529 spin_unlock_irq(&current->sighand->siglock);
1531 mutex_lock(&tty_mutex);
1532 /* It is possible that do_tty_hangup has free'd this tty */
1533 tty = get_current_tty();
1534 if (tty) {
1535 tty->session = 0;
1536 tty->pgrp = 0;
1537 } else {
1538 #ifdef TTY_DEBUG_HANGUP
1539 printk(KERN_DEBUG "error attempted to write to tty [0x%p]"
1540 " = NULL", tty);
1541 #endif
1543 mutex_unlock(&tty_mutex);
1545 /* Now clear signal->tty under the lock */
1546 read_lock(&tasklist_lock);
1547 session_clear_tty(session);
1548 read_unlock(&tasklist_lock);
1549 unlock_kernel();
1554 * stop_tty - propogate flow control
1555 * @tty: tty to stop
1557 * Perform flow control to the driver. For PTY/TTY pairs we
1558 * must also propogate the TIOCKPKT status. May be called
1559 * on an already stopped device and will not re-call the driver
1560 * method.
1562 * This functionality is used by both the line disciplines for
1563 * halting incoming flow and by the driver. It may therefore be
1564 * called from any context, may be under the tty atomic_write_lock
1565 * but not always.
1567 * Locking:
1568 * Broken. Relies on BKL which is unsafe here.
1571 void stop_tty(struct tty_struct *tty)
1573 if (tty->stopped)
1574 return;
1575 tty->stopped = 1;
1576 if (tty->link && tty->link->packet) {
1577 tty->ctrl_status &= ~TIOCPKT_START;
1578 tty->ctrl_status |= TIOCPKT_STOP;
1579 wake_up_interruptible(&tty->link->read_wait);
1581 if (tty->driver->stop)
1582 (tty->driver->stop)(tty);
1585 EXPORT_SYMBOL(stop_tty);
1588 * start_tty - propogate flow control
1589 * @tty: tty to start
1591 * Start a tty that has been stopped if at all possible. Perform
1592 * any neccessary wakeups and propogate the TIOCPKT status. If this
1593 * is the tty was previous stopped and is being started then the
1594 * driver start method is invoked and the line discipline woken.
1596 * Locking:
1597 * Broken. Relies on BKL which is unsafe here.
1600 void start_tty(struct tty_struct *tty)
1602 if (!tty->stopped || tty->flow_stopped)
1603 return;
1604 tty->stopped = 0;
1605 if (tty->link && tty->link->packet) {
1606 tty->ctrl_status &= ~TIOCPKT_STOP;
1607 tty->ctrl_status |= TIOCPKT_START;
1608 wake_up_interruptible(&tty->link->read_wait);
1610 if (tty->driver->start)
1611 (tty->driver->start)(tty);
1613 /* If we have a running line discipline it may need kicking */
1614 tty_wakeup(tty);
1615 wake_up_interruptible(&tty->write_wait);
1618 EXPORT_SYMBOL(start_tty);
1621 * tty_read - read method for tty device files
1622 * @file: pointer to tty file
1623 * @buf: user buffer
1624 * @count: size of user buffer
1625 * @ppos: unused
1627 * Perform the read system call function on this terminal device. Checks
1628 * for hung up devices before calling the line discipline method.
1630 * Locking:
1631 * Locks the line discipline internally while needed
1632 * For historical reasons the line discipline read method is
1633 * invoked under the BKL. This will go away in time so do not rely on it
1634 * in new code. Multiple read calls may be outstanding in parallel.
1637 static ssize_t tty_read(struct file * file, char __user * buf, size_t count,
1638 loff_t *ppos)
1640 int i;
1641 struct tty_struct * tty;
1642 struct inode *inode;
1643 struct tty_ldisc *ld;
1645 tty = (struct tty_struct *)file->private_data;
1646 inode = file->f_path.dentry->d_inode;
1647 if (tty_paranoia_check(tty, inode, "tty_read"))
1648 return -EIO;
1649 if (!tty || (test_bit(TTY_IO_ERROR, &tty->flags)))
1650 return -EIO;
1652 /* We want to wait for the line discipline to sort out in this
1653 situation */
1654 ld = tty_ldisc_ref_wait(tty);
1655 lock_kernel();
1656 if (ld->read)
1657 i = (ld->read)(tty,file,buf,count);
1658 else
1659 i = -EIO;
1660 tty_ldisc_deref(ld);
1661 unlock_kernel();
1662 if (i > 0)
1663 inode->i_atime = current_fs_time(inode->i_sb);
1664 return i;
1668 * Split writes up in sane blocksizes to avoid
1669 * denial-of-service type attacks
1671 static inline ssize_t do_tty_write(
1672 ssize_t (*write)(struct tty_struct *, struct file *, const unsigned char *, size_t),
1673 struct tty_struct *tty,
1674 struct file *file,
1675 const char __user *buf,
1676 size_t count)
1678 ssize_t ret = 0, written = 0;
1679 unsigned int chunk;
1681 /* FIXME: O_NDELAY ... */
1682 if (mutex_lock_interruptible(&tty->atomic_write_lock)) {
1683 return -ERESTARTSYS;
1687 * We chunk up writes into a temporary buffer. This
1688 * simplifies low-level drivers immensely, since they
1689 * don't have locking issues and user mode accesses.
1691 * But if TTY_NO_WRITE_SPLIT is set, we should use a
1692 * big chunk-size..
1694 * The default chunk-size is 2kB, because the NTTY
1695 * layer has problems with bigger chunks. It will
1696 * claim to be able to handle more characters than
1697 * it actually does.
1699 * FIXME: This can probably go away now except that 64K chunks
1700 * are too likely to fail unless switched to vmalloc...
1702 chunk = 2048;
1703 if (test_bit(TTY_NO_WRITE_SPLIT, &tty->flags))
1704 chunk = 65536;
1705 if (count < chunk)
1706 chunk = count;
1708 /* write_buf/write_cnt is protected by the atomic_write_lock mutex */
1709 if (tty->write_cnt < chunk) {
1710 unsigned char *buf;
1712 if (chunk < 1024)
1713 chunk = 1024;
1715 buf = kmalloc(chunk, GFP_KERNEL);
1716 if (!buf) {
1717 mutex_unlock(&tty->atomic_write_lock);
1718 return -ENOMEM;
1720 kfree(tty->write_buf);
1721 tty->write_cnt = chunk;
1722 tty->write_buf = buf;
1725 /* Do the write .. */
1726 for (;;) {
1727 size_t size = count;
1728 if (size > chunk)
1729 size = chunk;
1730 ret = -EFAULT;
1731 if (copy_from_user(tty->write_buf, buf, size))
1732 break;
1733 lock_kernel();
1734 ret = write(tty, file, tty->write_buf, size);
1735 unlock_kernel();
1736 if (ret <= 0)
1737 break;
1738 written += ret;
1739 buf += ret;
1740 count -= ret;
1741 if (!count)
1742 break;
1743 ret = -ERESTARTSYS;
1744 if (signal_pending(current))
1745 break;
1746 cond_resched();
1748 if (written) {
1749 struct inode *inode = file->f_path.dentry->d_inode;
1750 inode->i_mtime = current_fs_time(inode->i_sb);
1751 ret = written;
1753 mutex_unlock(&tty->atomic_write_lock);
1754 return ret;
1759 * tty_write - write method for tty device file
1760 * @file: tty file pointer
1761 * @buf: user data to write
1762 * @count: bytes to write
1763 * @ppos: unused
1765 * Write data to a tty device via the line discipline.
1767 * Locking:
1768 * Locks the line discipline as required
1769 * Writes to the tty driver are serialized by the atomic_write_lock
1770 * and are then processed in chunks to the device. The line discipline
1771 * write method will not be involked in parallel for each device
1772 * The line discipline write method is called under the big
1773 * kernel lock for historical reasons. New code should not rely on this.
1776 static ssize_t tty_write(struct file * file, const char __user * buf, size_t count,
1777 loff_t *ppos)
1779 struct tty_struct * tty;
1780 struct inode *inode = file->f_path.dentry->d_inode;
1781 ssize_t ret;
1782 struct tty_ldisc *ld;
1784 tty = (struct tty_struct *)file->private_data;
1785 if (tty_paranoia_check(tty, inode, "tty_write"))
1786 return -EIO;
1787 if (!tty || !tty->driver->write || (test_bit(TTY_IO_ERROR, &tty->flags)))
1788 return -EIO;
1790 ld = tty_ldisc_ref_wait(tty);
1791 if (!ld->write)
1792 ret = -EIO;
1793 else
1794 ret = do_tty_write(ld->write, tty, file, buf, count);
1795 tty_ldisc_deref(ld);
1796 return ret;
1799 ssize_t redirected_tty_write(struct file * file, const char __user * buf, size_t count,
1800 loff_t *ppos)
1802 struct file *p = NULL;
1804 spin_lock(&redirect_lock);
1805 if (redirect) {
1806 get_file(redirect);
1807 p = redirect;
1809 spin_unlock(&redirect_lock);
1811 if (p) {
1812 ssize_t res;
1813 res = vfs_write(p, buf, count, &p->f_pos);
1814 fput(p);
1815 return res;
1818 return tty_write(file, buf, count, ppos);
1821 static char ptychar[] = "pqrstuvwxyzabcde";
1824 * pty_line_name - generate name for a pty
1825 * @driver: the tty driver in use
1826 * @index: the minor number
1827 * @p: output buffer of at least 6 bytes
1829 * Generate a name from a driver reference and write it to the output
1830 * buffer.
1832 * Locking: None
1834 static void pty_line_name(struct tty_driver *driver, int index, char *p)
1836 int i = index + driver->name_base;
1837 /* ->name is initialized to "ttyp", but "tty" is expected */
1838 sprintf(p, "%s%c%x",
1839 driver->subtype == PTY_TYPE_SLAVE ? "tty" : driver->name,
1840 ptychar[i >> 4 & 0xf], i & 0xf);
1844 * pty_line_name - generate name for a tty
1845 * @driver: the tty driver in use
1846 * @index: the minor number
1847 * @p: output buffer of at least 7 bytes
1849 * Generate a name from a driver reference and write it to the output
1850 * buffer.
1852 * Locking: None
1854 static void tty_line_name(struct tty_driver *driver, int index, char *p)
1856 sprintf(p, "%s%d", driver->name, index + driver->name_base);
1860 * init_dev - initialise a tty device
1861 * @driver: tty driver we are opening a device on
1862 * @idx: device index
1863 * @tty: returned tty structure
1865 * Prepare a tty device. This may not be a "new" clean device but
1866 * could also be an active device. The pty drivers require special
1867 * handling because of this.
1869 * Locking:
1870 * The function is called under the tty_mutex, which
1871 * protects us from the tty struct or driver itself going away.
1873 * On exit the tty device has the line discipline attached and
1874 * a reference count of 1. If a pair was created for pty/tty use
1875 * and the other was a pty master then it too has a reference count of 1.
1877 * WSH 06/09/97: Rewritten to remove races and properly clean up after a
1878 * failed open. The new code protects the open with a mutex, so it's
1879 * really quite straightforward. The mutex locking can probably be
1880 * relaxed for the (most common) case of reopening a tty.
1883 static int init_dev(struct tty_driver *driver, int idx,
1884 struct tty_struct **ret_tty)
1886 struct tty_struct *tty, *o_tty;
1887 struct ktermios *tp, **tp_loc, *o_tp, **o_tp_loc;
1888 struct ktermios *ltp, **ltp_loc, *o_ltp, **o_ltp_loc;
1889 int retval = 0;
1891 /* check whether we're reopening an existing tty */
1892 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1893 tty = devpts_get_tty(idx);
1895 * If we don't have a tty here on a slave open, it's because
1896 * the master already started the close process and there's
1897 * no relation between devpts file and tty anymore.
1899 if (!tty && driver->subtype == PTY_TYPE_SLAVE) {
1900 retval = -EIO;
1901 goto end_init;
1904 * It's safe from now on because init_dev() is called with
1905 * tty_mutex held and release_dev() won't change tty->count
1906 * or tty->flags without having to grab tty_mutex
1908 if (tty && driver->subtype == PTY_TYPE_MASTER)
1909 tty = tty->link;
1910 } else {
1911 tty = driver->ttys[idx];
1913 if (tty) goto fast_track;
1916 * First time open is complex, especially for PTY devices.
1917 * This code guarantees that either everything succeeds and the
1918 * TTY is ready for operation, or else the table slots are vacated
1919 * and the allocated memory released. (Except that the termios
1920 * and locked termios may be retained.)
1923 if (!try_module_get(driver->owner)) {
1924 retval = -ENODEV;
1925 goto end_init;
1928 o_tty = NULL;
1929 tp = o_tp = NULL;
1930 ltp = o_ltp = NULL;
1932 tty = alloc_tty_struct();
1933 if(!tty)
1934 goto fail_no_mem;
1935 initialize_tty_struct(tty);
1936 tty->driver = driver;
1937 tty->index = idx;
1938 tty_line_name(driver, idx, tty->name);
1940 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1941 tp_loc = &tty->termios;
1942 ltp_loc = &tty->termios_locked;
1943 } else {
1944 tp_loc = &driver->termios[idx];
1945 ltp_loc = &driver->termios_locked[idx];
1948 if (!*tp_loc) {
1949 tp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
1950 GFP_KERNEL);
1951 if (!tp)
1952 goto free_mem_out;
1953 *tp = driver->init_termios;
1956 if (!*ltp_loc) {
1957 ltp = (struct ktermios *) kmalloc(sizeof(struct ktermios),
1958 GFP_KERNEL);
1959 if (!ltp)
1960 goto free_mem_out;
1961 memset(ltp, 0, sizeof(struct ktermios));
1964 if (driver->type == TTY_DRIVER_TYPE_PTY) {
1965 o_tty = alloc_tty_struct();
1966 if (!o_tty)
1967 goto free_mem_out;
1968 initialize_tty_struct(o_tty);
1969 o_tty->driver = driver->other;
1970 o_tty->index = idx;
1971 tty_line_name(driver->other, idx, o_tty->name);
1973 if (driver->flags & TTY_DRIVER_DEVPTS_MEM) {
1974 o_tp_loc = &o_tty->termios;
1975 o_ltp_loc = &o_tty->termios_locked;
1976 } else {
1977 o_tp_loc = &driver->other->termios[idx];
1978 o_ltp_loc = &driver->other->termios_locked[idx];
1981 if (!*o_tp_loc) {
1982 o_tp = (struct ktermios *)
1983 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1984 if (!o_tp)
1985 goto free_mem_out;
1986 *o_tp = driver->other->init_termios;
1989 if (!*o_ltp_loc) {
1990 o_ltp = (struct ktermios *)
1991 kmalloc(sizeof(struct ktermios), GFP_KERNEL);
1992 if (!o_ltp)
1993 goto free_mem_out;
1994 memset(o_ltp, 0, sizeof(struct ktermios));
1998 * Everything allocated ... set up the o_tty structure.
2000 if (!(driver->other->flags & TTY_DRIVER_DEVPTS_MEM)) {
2001 driver->other->ttys[idx] = o_tty;
2003 if (!*o_tp_loc)
2004 *o_tp_loc = o_tp;
2005 if (!*o_ltp_loc)
2006 *o_ltp_loc = o_ltp;
2007 o_tty->termios = *o_tp_loc;
2008 o_tty->termios_locked = *o_ltp_loc;
2009 driver->other->refcount++;
2010 if (driver->subtype == PTY_TYPE_MASTER)
2011 o_tty->count++;
2013 /* Establish the links in both directions */
2014 tty->link = o_tty;
2015 o_tty->link = tty;
2019 * All structures have been allocated, so now we install them.
2020 * Failures after this point use release_mem to clean up, so
2021 * there's no need to null out the local pointers.
2023 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2024 driver->ttys[idx] = tty;
2027 if (!*tp_loc)
2028 *tp_loc = tp;
2029 if (!*ltp_loc)
2030 *ltp_loc = ltp;
2031 tty->termios = *tp_loc;
2032 tty->termios_locked = *ltp_loc;
2033 /* Compatibility until drivers always set this */
2034 tty->termios->c_ispeed = tty_termios_input_baud_rate(tty->termios);
2035 tty->termios->c_ospeed = tty_termios_baud_rate(tty->termios);
2036 driver->refcount++;
2037 tty->count++;
2040 * Structures all installed ... call the ldisc open routines.
2041 * If we fail here just call release_mem to clean up. No need
2042 * to decrement the use counts, as release_mem doesn't care.
2045 if (tty->ldisc.open) {
2046 retval = (tty->ldisc.open)(tty);
2047 if (retval)
2048 goto release_mem_out;
2050 if (o_tty && o_tty->ldisc.open) {
2051 retval = (o_tty->ldisc.open)(o_tty);
2052 if (retval) {
2053 if (tty->ldisc.close)
2054 (tty->ldisc.close)(tty);
2055 goto release_mem_out;
2057 tty_ldisc_enable(o_tty);
2059 tty_ldisc_enable(tty);
2060 goto success;
2063 * This fast open can be used if the tty is already open.
2064 * No memory is allocated, and the only failures are from
2065 * attempting to open a closing tty or attempting multiple
2066 * opens on a pty master.
2068 fast_track:
2069 if (test_bit(TTY_CLOSING, &tty->flags)) {
2070 retval = -EIO;
2071 goto end_init;
2073 if (driver->type == TTY_DRIVER_TYPE_PTY &&
2074 driver->subtype == PTY_TYPE_MASTER) {
2076 * special case for PTY masters: only one open permitted,
2077 * and the slave side open count is incremented as well.
2079 if (tty->count) {
2080 retval = -EIO;
2081 goto end_init;
2083 tty->link->count++;
2085 tty->count++;
2086 tty->driver = driver; /* N.B. why do this every time?? */
2088 /* FIXME */
2089 if(!test_bit(TTY_LDISC, &tty->flags))
2090 printk(KERN_ERR "init_dev but no ldisc\n");
2091 success:
2092 *ret_tty = tty;
2094 /* All paths come through here to release the mutex */
2095 end_init:
2096 return retval;
2098 /* Release locally allocated memory ... nothing placed in slots */
2099 free_mem_out:
2100 kfree(o_tp);
2101 if (o_tty)
2102 free_tty_struct(o_tty);
2103 kfree(ltp);
2104 kfree(tp);
2105 free_tty_struct(tty);
2107 fail_no_mem:
2108 module_put(driver->owner);
2109 retval = -ENOMEM;
2110 goto end_init;
2112 /* call the tty release_mem routine to clean out this slot */
2113 release_mem_out:
2114 if (printk_ratelimit())
2115 printk(KERN_INFO "init_dev: ldisc open failed, "
2116 "clearing slot %d\n", idx);
2117 release_mem(tty, idx);
2118 goto end_init;
2122 * release_mem - release tty structure memory
2124 * Releases memory associated with a tty structure, and clears out the
2125 * driver table slots. This function is called when a device is no longer
2126 * in use. It also gets called when setup of a device fails.
2128 * Locking:
2129 * tty_mutex - sometimes only
2130 * takes the file list lock internally when working on the list
2131 * of ttys that the driver keeps.
2132 * FIXME: should we require tty_mutex is held here ??
2135 static void release_mem(struct tty_struct *tty, int idx)
2137 struct tty_struct *o_tty;
2138 struct ktermios *tp;
2139 int devpts = tty->driver->flags & TTY_DRIVER_DEVPTS_MEM;
2141 if ((o_tty = tty->link) != NULL) {
2142 if (!devpts)
2143 o_tty->driver->ttys[idx] = NULL;
2144 if (o_tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2145 tp = o_tty->termios;
2146 if (!devpts)
2147 o_tty->driver->termios[idx] = NULL;
2148 kfree(tp);
2150 tp = o_tty->termios_locked;
2151 if (!devpts)
2152 o_tty->driver->termios_locked[idx] = NULL;
2153 kfree(tp);
2155 o_tty->magic = 0;
2156 o_tty->driver->refcount--;
2157 file_list_lock();
2158 list_del_init(&o_tty->tty_files);
2159 file_list_unlock();
2160 free_tty_struct(o_tty);
2163 if (!devpts)
2164 tty->driver->ttys[idx] = NULL;
2165 if (tty->driver->flags & TTY_DRIVER_RESET_TERMIOS) {
2166 tp = tty->termios;
2167 if (!devpts)
2168 tty->driver->termios[idx] = NULL;
2169 kfree(tp);
2171 tp = tty->termios_locked;
2172 if (!devpts)
2173 tty->driver->termios_locked[idx] = NULL;
2174 kfree(tp);
2177 tty->magic = 0;
2178 tty->driver->refcount--;
2179 file_list_lock();
2180 list_del_init(&tty->tty_files);
2181 file_list_unlock();
2182 module_put(tty->driver->owner);
2183 free_tty_struct(tty);
2187 * Even releasing the tty structures is a tricky business.. We have
2188 * to be very careful that the structures are all released at the
2189 * same time, as interrupts might otherwise get the wrong pointers.
2191 * WSH 09/09/97: rewritten to avoid some nasty race conditions that could
2192 * lead to double frees or releasing memory still in use.
2194 static void release_dev(struct file * filp)
2196 struct tty_struct *tty, *o_tty;
2197 int pty_master, tty_closing, o_tty_closing, do_sleep;
2198 int devpts;
2199 int idx;
2200 char buf[64];
2201 unsigned long flags;
2203 tty = (struct tty_struct *)filp->private_data;
2204 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "release_dev"))
2205 return;
2207 check_tty_count(tty, "release_dev");
2209 tty_fasync(-1, filp, 0);
2211 idx = tty->index;
2212 pty_master = (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2213 tty->driver->subtype == PTY_TYPE_MASTER);
2214 devpts = (tty->driver->flags & TTY_DRIVER_DEVPTS_MEM) != 0;
2215 o_tty = tty->link;
2217 #ifdef TTY_PARANOIA_CHECK
2218 if (idx < 0 || idx >= tty->driver->num) {
2219 printk(KERN_DEBUG "release_dev: bad idx when trying to "
2220 "free (%s)\n", tty->name);
2221 return;
2223 if (!(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2224 if (tty != tty->driver->ttys[idx]) {
2225 printk(KERN_DEBUG "release_dev: driver.table[%d] not tty "
2226 "for (%s)\n", idx, tty->name);
2227 return;
2229 if (tty->termios != tty->driver->termios[idx]) {
2230 printk(KERN_DEBUG "release_dev: driver.termios[%d] not termios "
2231 "for (%s)\n",
2232 idx, tty->name);
2233 return;
2235 if (tty->termios_locked != tty->driver->termios_locked[idx]) {
2236 printk(KERN_DEBUG "release_dev: driver.termios_locked[%d] not "
2237 "termios_locked for (%s)\n",
2238 idx, tty->name);
2239 return;
2242 #endif
2244 #ifdef TTY_DEBUG_HANGUP
2245 printk(KERN_DEBUG "release_dev of %s (tty count=%d)...",
2246 tty_name(tty, buf), tty->count);
2247 #endif
2249 #ifdef TTY_PARANOIA_CHECK
2250 if (tty->driver->other &&
2251 !(tty->driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
2252 if (o_tty != tty->driver->other->ttys[idx]) {
2253 printk(KERN_DEBUG "release_dev: other->table[%d] "
2254 "not o_tty for (%s)\n",
2255 idx, tty->name);
2256 return;
2258 if (o_tty->termios != tty->driver->other->termios[idx]) {
2259 printk(KERN_DEBUG "release_dev: other->termios[%d] "
2260 "not o_termios for (%s)\n",
2261 idx, tty->name);
2262 return;
2264 if (o_tty->termios_locked !=
2265 tty->driver->other->termios_locked[idx]) {
2266 printk(KERN_DEBUG "release_dev: other->termios_locked["
2267 "%d] not o_termios_locked for (%s)\n",
2268 idx, tty->name);
2269 return;
2271 if (o_tty->link != tty) {
2272 printk(KERN_DEBUG "release_dev: bad pty pointers\n");
2273 return;
2276 #endif
2277 if (tty->driver->close)
2278 tty->driver->close(tty, filp);
2281 * Sanity check: if tty->count is going to zero, there shouldn't be
2282 * any waiters on tty->read_wait or tty->write_wait. We test the
2283 * wait queues and kick everyone out _before_ actually starting to
2284 * close. This ensures that we won't block while releasing the tty
2285 * structure.
2287 * The test for the o_tty closing is necessary, since the master and
2288 * slave sides may close in any order. If the slave side closes out
2289 * first, its count will be one, since the master side holds an open.
2290 * Thus this test wouldn't be triggered at the time the slave closes,
2291 * so we do it now.
2293 * Note that it's possible for the tty to be opened again while we're
2294 * flushing out waiters. By recalculating the closing flags before
2295 * each iteration we avoid any problems.
2297 while (1) {
2298 /* Guard against races with tty->count changes elsewhere and
2299 opens on /dev/tty */
2301 mutex_lock(&tty_mutex);
2302 tty_closing = tty->count <= 1;
2303 o_tty_closing = o_tty &&
2304 (o_tty->count <= (pty_master ? 1 : 0));
2305 do_sleep = 0;
2307 if (tty_closing) {
2308 if (waitqueue_active(&tty->read_wait)) {
2309 wake_up(&tty->read_wait);
2310 do_sleep++;
2312 if (waitqueue_active(&tty->write_wait)) {
2313 wake_up(&tty->write_wait);
2314 do_sleep++;
2317 if (o_tty_closing) {
2318 if (waitqueue_active(&o_tty->read_wait)) {
2319 wake_up(&o_tty->read_wait);
2320 do_sleep++;
2322 if (waitqueue_active(&o_tty->write_wait)) {
2323 wake_up(&o_tty->write_wait);
2324 do_sleep++;
2327 if (!do_sleep)
2328 break;
2330 printk(KERN_WARNING "release_dev: %s: read/write wait queue "
2331 "active!\n", tty_name(tty, buf));
2332 mutex_unlock(&tty_mutex);
2333 schedule();
2337 * The closing flags are now consistent with the open counts on
2338 * both sides, and we've completed the last operation that could
2339 * block, so it's safe to proceed with closing.
2341 if (pty_master) {
2342 if (--o_tty->count < 0) {
2343 printk(KERN_WARNING "release_dev: bad pty slave count "
2344 "(%d) for %s\n",
2345 o_tty->count, tty_name(o_tty, buf));
2346 o_tty->count = 0;
2349 if (--tty->count < 0) {
2350 printk(KERN_WARNING "release_dev: bad tty->count (%d) for %s\n",
2351 tty->count, tty_name(tty, buf));
2352 tty->count = 0;
2356 * We've decremented tty->count, so we need to remove this file
2357 * descriptor off the tty->tty_files list; this serves two
2358 * purposes:
2359 * - check_tty_count sees the correct number of file descriptors
2360 * associated with this tty.
2361 * - do_tty_hangup no longer sees this file descriptor as
2362 * something that needs to be handled for hangups.
2364 file_kill(filp);
2365 filp->private_data = NULL;
2368 * Perform some housekeeping before deciding whether to return.
2370 * Set the TTY_CLOSING flag if this was the last open. In the
2371 * case of a pty we may have to wait around for the other side
2372 * to close, and TTY_CLOSING makes sure we can't be reopened.
2374 if(tty_closing)
2375 set_bit(TTY_CLOSING, &tty->flags);
2376 if(o_tty_closing)
2377 set_bit(TTY_CLOSING, &o_tty->flags);
2380 * If _either_ side is closing, make sure there aren't any
2381 * processes that still think tty or o_tty is their controlling
2382 * tty.
2384 if (tty_closing || o_tty_closing) {
2385 read_lock(&tasklist_lock);
2386 session_clear_tty(tty->session);
2387 if (o_tty)
2388 session_clear_tty(o_tty->session);
2389 read_unlock(&tasklist_lock);
2392 mutex_unlock(&tty_mutex);
2394 /* check whether both sides are closing ... */
2395 if (!tty_closing || (o_tty && !o_tty_closing))
2396 return;
2398 #ifdef TTY_DEBUG_HANGUP
2399 printk(KERN_DEBUG "freeing tty structure...");
2400 #endif
2402 * Prevent flush_to_ldisc() from rescheduling the work for later. Then
2403 * kill any delayed work. As this is the final close it does not
2404 * race with the set_ldisc code path.
2406 clear_bit(TTY_LDISC, &tty->flags);
2407 cancel_delayed_work(&tty->buf.work);
2410 * Wait for ->hangup_work and ->buf.work handlers to terminate
2413 flush_scheduled_work();
2416 * Wait for any short term users (we know they are just driver
2417 * side waiters as the file is closing so user count on the file
2418 * side is zero.
2420 spin_lock_irqsave(&tty_ldisc_lock, flags);
2421 while(tty->ldisc.refcount)
2423 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2424 wait_event(tty_ldisc_wait, tty->ldisc.refcount == 0);
2425 spin_lock_irqsave(&tty_ldisc_lock, flags);
2427 spin_unlock_irqrestore(&tty_ldisc_lock, flags);
2429 * Shutdown the current line discipline, and reset it to N_TTY.
2430 * N.B. why reset ldisc when we're releasing the memory??
2432 * FIXME: this MUST get fixed for the new reflocking
2434 if (tty->ldisc.close)
2435 (tty->ldisc.close)(tty);
2436 tty_ldisc_put(tty->ldisc.num);
2439 * Switch the line discipline back
2441 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
2442 tty_set_termios_ldisc(tty,N_TTY);
2443 if (o_tty) {
2444 /* FIXME: could o_tty be in setldisc here ? */
2445 clear_bit(TTY_LDISC, &o_tty->flags);
2446 if (o_tty->ldisc.close)
2447 (o_tty->ldisc.close)(o_tty);
2448 tty_ldisc_put(o_tty->ldisc.num);
2449 tty_ldisc_assign(o_tty, tty_ldisc_get(N_TTY));
2450 tty_set_termios_ldisc(o_tty,N_TTY);
2453 * The release_mem function takes care of the details of clearing
2454 * the slots and preserving the termios structure.
2456 release_mem(tty, idx);
2458 #ifdef CONFIG_UNIX98_PTYS
2459 /* Make this pty number available for reallocation */
2460 if (devpts) {
2461 down(&allocated_ptys_lock);
2462 idr_remove(&allocated_ptys, idx);
2463 up(&allocated_ptys_lock);
2465 #endif
2470 * tty_open - open a tty device
2471 * @inode: inode of device file
2472 * @filp: file pointer to tty
2474 * tty_open and tty_release keep up the tty count that contains the
2475 * number of opens done on a tty. We cannot use the inode-count, as
2476 * different inodes might point to the same tty.
2478 * Open-counting is needed for pty masters, as well as for keeping
2479 * track of serial lines: DTR is dropped when the last close happens.
2480 * (This is not done solely through tty->count, now. - Ted 1/27/92)
2482 * The termios state of a pty is reset on first open so that
2483 * settings don't persist across reuse.
2485 * Locking: tty_mutex protects tty, get_tty_driver and init_dev work.
2486 * tty->count should protect the rest.
2487 * ->siglock protects ->signal/->sighand
2490 static int tty_open(struct inode * inode, struct file * filp)
2492 struct tty_struct *tty;
2493 int noctty, retval;
2494 struct tty_driver *driver;
2495 int index;
2496 dev_t device = inode->i_rdev;
2497 unsigned short saved_flags = filp->f_flags;
2499 nonseekable_open(inode, filp);
2501 retry_open:
2502 noctty = filp->f_flags & O_NOCTTY;
2503 index = -1;
2504 retval = 0;
2506 mutex_lock(&tty_mutex);
2508 if (device == MKDEV(TTYAUX_MAJOR,0)) {
2509 tty = get_current_tty();
2510 if (!tty) {
2511 mutex_unlock(&tty_mutex);
2512 return -ENXIO;
2514 driver = tty->driver;
2515 index = tty->index;
2516 filp->f_flags |= O_NONBLOCK; /* Don't let /dev/tty block */
2517 /* noctty = 1; */
2518 goto got_driver;
2520 #ifdef CONFIG_VT
2521 if (device == MKDEV(TTY_MAJOR,0)) {
2522 extern struct tty_driver *console_driver;
2523 driver = console_driver;
2524 index = fg_console;
2525 noctty = 1;
2526 goto got_driver;
2528 #endif
2529 if (device == MKDEV(TTYAUX_MAJOR,1)) {
2530 driver = console_device(&index);
2531 if (driver) {
2532 /* Don't let /dev/console block */
2533 filp->f_flags |= O_NONBLOCK;
2534 noctty = 1;
2535 goto got_driver;
2537 mutex_unlock(&tty_mutex);
2538 return -ENODEV;
2541 driver = get_tty_driver(device, &index);
2542 if (!driver) {
2543 mutex_unlock(&tty_mutex);
2544 return -ENODEV;
2546 got_driver:
2547 retval = init_dev(driver, index, &tty);
2548 mutex_unlock(&tty_mutex);
2549 if (retval)
2550 return retval;
2552 filp->private_data = tty;
2553 file_move(filp, &tty->tty_files);
2554 check_tty_count(tty, "tty_open");
2555 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
2556 tty->driver->subtype == PTY_TYPE_MASTER)
2557 noctty = 1;
2558 #ifdef TTY_DEBUG_HANGUP
2559 printk(KERN_DEBUG "opening %s...", tty->name);
2560 #endif
2561 if (!retval) {
2562 if (tty->driver->open)
2563 retval = tty->driver->open(tty, filp);
2564 else
2565 retval = -ENODEV;
2567 filp->f_flags = saved_flags;
2569 if (!retval && test_bit(TTY_EXCLUSIVE, &tty->flags) && !capable(CAP_SYS_ADMIN))
2570 retval = -EBUSY;
2572 if (retval) {
2573 #ifdef TTY_DEBUG_HANGUP
2574 printk(KERN_DEBUG "error %d in opening %s...", retval,
2575 tty->name);
2576 #endif
2577 release_dev(filp);
2578 if (retval != -ERESTARTSYS)
2579 return retval;
2580 if (signal_pending(current))
2581 return retval;
2582 schedule();
2584 * Need to reset f_op in case a hangup happened.
2586 if (filp->f_op == &hung_up_tty_fops)
2587 filp->f_op = &tty_fops;
2588 goto retry_open;
2591 mutex_lock(&tty_mutex);
2592 spin_lock_irq(&current->sighand->siglock);
2593 if (!noctty &&
2594 current->signal->leader &&
2595 !current->signal->tty &&
2596 tty->session == 0)
2597 __proc_set_tty(current, tty);
2598 spin_unlock_irq(&current->sighand->siglock);
2599 mutex_unlock(&tty_mutex);
2600 return 0;
2603 #ifdef CONFIG_UNIX98_PTYS
2605 * ptmx_open - open a unix 98 pty master
2606 * @inode: inode of device file
2607 * @filp: file pointer to tty
2609 * Allocate a unix98 pty master device from the ptmx driver.
2611 * Locking: tty_mutex protects theinit_dev work. tty->count should
2612 protect the rest.
2613 * allocated_ptys_lock handles the list of free pty numbers
2616 static int ptmx_open(struct inode * inode, struct file * filp)
2618 struct tty_struct *tty;
2619 int retval;
2620 int index;
2621 int idr_ret;
2623 nonseekable_open(inode, filp);
2625 /* find a device that is not in use. */
2626 down(&allocated_ptys_lock);
2627 if (!idr_pre_get(&allocated_ptys, GFP_KERNEL)) {
2628 up(&allocated_ptys_lock);
2629 return -ENOMEM;
2631 idr_ret = idr_get_new(&allocated_ptys, NULL, &index);
2632 if (idr_ret < 0) {
2633 up(&allocated_ptys_lock);
2634 if (idr_ret == -EAGAIN)
2635 return -ENOMEM;
2636 return -EIO;
2638 if (index >= pty_limit) {
2639 idr_remove(&allocated_ptys, index);
2640 up(&allocated_ptys_lock);
2641 return -EIO;
2643 up(&allocated_ptys_lock);
2645 mutex_lock(&tty_mutex);
2646 retval = init_dev(ptm_driver, index, &tty);
2647 mutex_unlock(&tty_mutex);
2649 if (retval)
2650 goto out;
2652 set_bit(TTY_PTY_LOCK, &tty->flags); /* LOCK THE SLAVE */
2653 filp->private_data = tty;
2654 file_move(filp, &tty->tty_files);
2656 retval = -ENOMEM;
2657 if (devpts_pty_new(tty->link))
2658 goto out1;
2660 check_tty_count(tty, "tty_open");
2661 retval = ptm_driver->open(tty, filp);
2662 if (!retval)
2663 return 0;
2664 out1:
2665 release_dev(filp);
2666 return retval;
2667 out:
2668 down(&allocated_ptys_lock);
2669 idr_remove(&allocated_ptys, index);
2670 up(&allocated_ptys_lock);
2671 return retval;
2673 #endif
2676 * tty_release - vfs callback for close
2677 * @inode: inode of tty
2678 * @filp: file pointer for handle to tty
2680 * Called the last time each file handle is closed that references
2681 * this tty. There may however be several such references.
2683 * Locking:
2684 * Takes bkl. See release_dev
2687 static int tty_release(struct inode * inode, struct file * filp)
2689 lock_kernel();
2690 release_dev(filp);
2691 unlock_kernel();
2692 return 0;
2696 * tty_poll - check tty status
2697 * @filp: file being polled
2698 * @wait: poll wait structures to update
2700 * Call the line discipline polling method to obtain the poll
2701 * status of the device.
2703 * Locking: locks called line discipline but ldisc poll method
2704 * may be re-entered freely by other callers.
2707 static unsigned int tty_poll(struct file * filp, poll_table * wait)
2709 struct tty_struct * tty;
2710 struct tty_ldisc *ld;
2711 int ret = 0;
2713 tty = (struct tty_struct *)filp->private_data;
2714 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_poll"))
2715 return 0;
2717 ld = tty_ldisc_ref_wait(tty);
2718 if (ld->poll)
2719 ret = (ld->poll)(tty, filp, wait);
2720 tty_ldisc_deref(ld);
2721 return ret;
2724 static int tty_fasync(int fd, struct file * filp, int on)
2726 struct tty_struct * tty;
2727 int retval;
2729 tty = (struct tty_struct *)filp->private_data;
2730 if (tty_paranoia_check(tty, filp->f_path.dentry->d_inode, "tty_fasync"))
2731 return 0;
2733 retval = fasync_helper(fd, filp, on, &tty->fasync);
2734 if (retval <= 0)
2735 return retval;
2737 if (on) {
2738 if (!waitqueue_active(&tty->read_wait))
2739 tty->minimum_to_wake = 1;
2740 retval = f_setown(filp, (-tty->pgrp) ? : current->pid, 0);
2741 if (retval)
2742 return retval;
2743 } else {
2744 if (!tty->fasync && !waitqueue_active(&tty->read_wait))
2745 tty->minimum_to_wake = N_TTY_BUF_SIZE;
2747 return 0;
2751 * tiocsti - fake input character
2752 * @tty: tty to fake input into
2753 * @p: pointer to character
2755 * Fake input to a tty device. Does the neccessary locking and
2756 * input management.
2758 * FIXME: does not honour flow control ??
2760 * Locking:
2761 * Called functions take tty_ldisc_lock
2762 * current->signal->tty check is safe without locks
2764 * FIXME: may race normal receive processing
2767 static int tiocsti(struct tty_struct *tty, char __user *p)
2769 char ch, mbz = 0;
2770 struct tty_ldisc *ld;
2772 if ((current->signal->tty != tty) && !capable(CAP_SYS_ADMIN))
2773 return -EPERM;
2774 if (get_user(ch, p))
2775 return -EFAULT;
2776 ld = tty_ldisc_ref_wait(tty);
2777 ld->receive_buf(tty, &ch, &mbz, 1);
2778 tty_ldisc_deref(ld);
2779 return 0;
2783 * tiocgwinsz - implement window query ioctl
2784 * @tty; tty
2785 * @arg: user buffer for result
2787 * Copies the kernel idea of the window size into the user buffer.
2789 * Locking: tty->termios_mutex is taken to ensure the winsize data
2790 * is consistent.
2793 static int tiocgwinsz(struct tty_struct *tty, struct winsize __user * arg)
2795 int err;
2797 mutex_lock(&tty->termios_mutex);
2798 err = copy_to_user(arg, &tty->winsize, sizeof(*arg));
2799 mutex_unlock(&tty->termios_mutex);
2801 return err ? -EFAULT: 0;
2805 * tiocswinsz - implement window size set ioctl
2806 * @tty; tty
2807 * @arg: user buffer for result
2809 * Copies the user idea of the window size to the kernel. Traditionally
2810 * this is just advisory information but for the Linux console it
2811 * actually has driver level meaning and triggers a VC resize.
2813 * Locking:
2814 * Called function use the console_sem is used to ensure we do
2815 * not try and resize the console twice at once.
2816 * The tty->termios_mutex is used to ensure we don't double
2817 * resize and get confused. Lock order - tty->termios_mutex before
2818 * console sem
2821 static int tiocswinsz(struct tty_struct *tty, struct tty_struct *real_tty,
2822 struct winsize __user * arg)
2824 struct winsize tmp_ws;
2826 if (copy_from_user(&tmp_ws, arg, sizeof(*arg)))
2827 return -EFAULT;
2829 mutex_lock(&tty->termios_mutex);
2830 if (!memcmp(&tmp_ws, &tty->winsize, sizeof(*arg)))
2831 goto done;
2833 #ifdef CONFIG_VT
2834 if (tty->driver->type == TTY_DRIVER_TYPE_CONSOLE) {
2835 if (vc_lock_resize(tty->driver_data, tmp_ws.ws_col,
2836 tmp_ws.ws_row)) {
2837 mutex_unlock(&tty->termios_mutex);
2838 return -ENXIO;
2841 #endif
2842 if (tty->pgrp > 0)
2843 kill_pg(tty->pgrp, SIGWINCH, 1);
2844 if ((real_tty->pgrp != tty->pgrp) && (real_tty->pgrp > 0))
2845 kill_pg(real_tty->pgrp, SIGWINCH, 1);
2846 tty->winsize = tmp_ws;
2847 real_tty->winsize = tmp_ws;
2848 done:
2849 mutex_unlock(&tty->termios_mutex);
2850 return 0;
2854 * tioccons - allow admin to move logical console
2855 * @file: the file to become console
2857 * Allow the adminstrator to move the redirected console device
2859 * Locking: uses redirect_lock to guard the redirect information
2862 static int tioccons(struct file *file)
2864 if (!capable(CAP_SYS_ADMIN))
2865 return -EPERM;
2866 if (file->f_op->write == redirected_tty_write) {
2867 struct file *f;
2868 spin_lock(&redirect_lock);
2869 f = redirect;
2870 redirect = NULL;
2871 spin_unlock(&redirect_lock);
2872 if (f)
2873 fput(f);
2874 return 0;
2876 spin_lock(&redirect_lock);
2877 if (redirect) {
2878 spin_unlock(&redirect_lock);
2879 return -EBUSY;
2881 get_file(file);
2882 redirect = file;
2883 spin_unlock(&redirect_lock);
2884 return 0;
2888 * fionbio - non blocking ioctl
2889 * @file: file to set blocking value
2890 * @p: user parameter
2892 * Historical tty interfaces had a blocking control ioctl before
2893 * the generic functionality existed. This piece of history is preserved
2894 * in the expected tty API of posix OS's.
2896 * Locking: none, the open fle handle ensures it won't go away.
2899 static int fionbio(struct file *file, int __user *p)
2901 int nonblock;
2903 if (get_user(nonblock, p))
2904 return -EFAULT;
2906 if (nonblock)
2907 file->f_flags |= O_NONBLOCK;
2908 else
2909 file->f_flags &= ~O_NONBLOCK;
2910 return 0;
2914 * tiocsctty - set controlling tty
2915 * @tty: tty structure
2916 * @arg: user argument
2918 * This ioctl is used to manage job control. It permits a session
2919 * leader to set this tty as the controlling tty for the session.
2921 * Locking:
2922 * Takes tty_mutex() to protect tty instance
2923 * Takes tasklist_lock internally to walk sessions
2924 * Takes ->siglock() when updating signal->tty
2927 static int tiocsctty(struct tty_struct *tty, int arg)
2929 int ret = 0;
2930 if (current->signal->leader &&
2931 (process_session(current) == tty->session))
2932 return ret;
2934 mutex_lock(&tty_mutex);
2936 * The process must be a session leader and
2937 * not have a controlling tty already.
2939 if (!current->signal->leader || current->signal->tty) {
2940 ret = -EPERM;
2941 goto unlock;
2944 if (tty->session > 0) {
2946 * This tty is already the controlling
2947 * tty for another session group!
2949 if ((arg == 1) && capable(CAP_SYS_ADMIN)) {
2951 * Steal it away
2953 read_lock(&tasklist_lock);
2954 session_clear_tty(tty->session);
2955 read_unlock(&tasklist_lock);
2956 } else {
2957 ret = -EPERM;
2958 goto unlock;
2961 proc_set_tty(current, tty);
2962 unlock:
2963 mutex_unlock(&tty_mutex);
2964 return ret;
2968 * tiocgpgrp - get process group
2969 * @tty: tty passed by user
2970 * @real_tty: tty side of the tty pased by the user if a pty else the tty
2971 * @p: returned pid
2973 * Obtain the process group of the tty. If there is no process group
2974 * return an error.
2976 * Locking: none. Reference to current->signal->tty is safe.
2979 static int tiocgpgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
2982 * (tty == real_tty) is a cheap way of
2983 * testing if the tty is NOT a master pty.
2985 if (tty == real_tty && current->signal->tty != real_tty)
2986 return -ENOTTY;
2987 return put_user(real_tty->pgrp, p);
2991 * tiocspgrp - attempt to set process group
2992 * @tty: tty passed by user
2993 * @real_tty: tty side device matching tty passed by user
2994 * @p: pid pointer
2996 * Set the process group of the tty to the session passed. Only
2997 * permitted where the tty session is our session.
2999 * Locking: None
3002 static int tiocspgrp(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3004 pid_t pgrp;
3005 int retval = tty_check_change(real_tty);
3007 if (retval == -EIO)
3008 return -ENOTTY;
3009 if (retval)
3010 return retval;
3011 if (!current->signal->tty ||
3012 (current->signal->tty != real_tty) ||
3013 (real_tty->session != process_session(current)))
3014 return -ENOTTY;
3015 if (get_user(pgrp, p))
3016 return -EFAULT;
3017 if (pgrp < 0)
3018 return -EINVAL;
3019 if (session_of_pgrp(pgrp) != process_session(current))
3020 return -EPERM;
3021 real_tty->pgrp = pgrp;
3022 return 0;
3026 * tiocgsid - get session id
3027 * @tty: tty passed by user
3028 * @real_tty: tty side of the tty pased by the user if a pty else the tty
3029 * @p: pointer to returned session id
3031 * Obtain the session id of the tty. If there is no session
3032 * return an error.
3034 * Locking: none. Reference to current->signal->tty is safe.
3037 static int tiocgsid(struct tty_struct *tty, struct tty_struct *real_tty, pid_t __user *p)
3040 * (tty == real_tty) is a cheap way of
3041 * testing if the tty is NOT a master pty.
3043 if (tty == real_tty && current->signal->tty != real_tty)
3044 return -ENOTTY;
3045 if (real_tty->session <= 0)
3046 return -ENOTTY;
3047 return put_user(real_tty->session, p);
3051 * tiocsetd - set line discipline
3052 * @tty: tty device
3053 * @p: pointer to user data
3055 * Set the line discipline according to user request.
3057 * Locking: see tty_set_ldisc, this function is just a helper
3060 static int tiocsetd(struct tty_struct *tty, int __user *p)
3062 int ldisc;
3064 if (get_user(ldisc, p))
3065 return -EFAULT;
3066 return tty_set_ldisc(tty, ldisc);
3070 * send_break - performed time break
3071 * @tty: device to break on
3072 * @duration: timeout in mS
3074 * Perform a timed break on hardware that lacks its own driver level
3075 * timed break functionality.
3077 * Locking:
3078 * atomic_write_lock serializes
3082 static int send_break(struct tty_struct *tty, unsigned int duration)
3084 if (mutex_lock_interruptible(&tty->atomic_write_lock))
3085 return -EINTR;
3086 tty->driver->break_ctl(tty, -1);
3087 if (!signal_pending(current)) {
3088 msleep_interruptible(duration);
3090 tty->driver->break_ctl(tty, 0);
3091 mutex_unlock(&tty->atomic_write_lock);
3092 if (signal_pending(current))
3093 return -EINTR;
3094 return 0;
3098 * tiocmget - get modem status
3099 * @tty: tty device
3100 * @file: user file pointer
3101 * @p: pointer to result
3103 * Obtain the modem status bits from the tty driver if the feature
3104 * is supported. Return -EINVAL if it is not available.
3106 * Locking: none (up to the driver)
3109 static int tty_tiocmget(struct tty_struct *tty, struct file *file, int __user *p)
3111 int retval = -EINVAL;
3113 if (tty->driver->tiocmget) {
3114 retval = tty->driver->tiocmget(tty, file);
3116 if (retval >= 0)
3117 retval = put_user(retval, p);
3119 return retval;
3123 * tiocmset - set modem status
3124 * @tty: tty device
3125 * @file: user file pointer
3126 * @cmd: command - clear bits, set bits or set all
3127 * @p: pointer to desired bits
3129 * Set the modem status bits from the tty driver if the feature
3130 * is supported. Return -EINVAL if it is not available.
3132 * Locking: none (up to the driver)
3135 static int tty_tiocmset(struct tty_struct *tty, struct file *file, unsigned int cmd,
3136 unsigned __user *p)
3138 int retval = -EINVAL;
3140 if (tty->driver->tiocmset) {
3141 unsigned int set, clear, val;
3143 retval = get_user(val, p);
3144 if (retval)
3145 return retval;
3147 set = clear = 0;
3148 switch (cmd) {
3149 case TIOCMBIS:
3150 set = val;
3151 break;
3152 case TIOCMBIC:
3153 clear = val;
3154 break;
3155 case TIOCMSET:
3156 set = val;
3157 clear = ~val;
3158 break;
3161 set &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3162 clear &= TIOCM_DTR|TIOCM_RTS|TIOCM_OUT1|TIOCM_OUT2|TIOCM_LOOP;
3164 retval = tty->driver->tiocmset(tty, file, set, clear);
3166 return retval;
3170 * Split this up, as gcc can choke on it otherwise..
3172 int tty_ioctl(struct inode * inode, struct file * file,
3173 unsigned int cmd, unsigned long arg)
3175 struct tty_struct *tty, *real_tty;
3176 void __user *p = (void __user *)arg;
3177 int retval;
3178 struct tty_ldisc *ld;
3180 tty = (struct tty_struct *)file->private_data;
3181 if (tty_paranoia_check(tty, inode, "tty_ioctl"))
3182 return -EINVAL;
3184 /* CHECKME: is this safe as one end closes ? */
3186 real_tty = tty;
3187 if (tty->driver->type == TTY_DRIVER_TYPE_PTY &&
3188 tty->driver->subtype == PTY_TYPE_MASTER)
3189 real_tty = tty->link;
3192 * Break handling by driver
3194 if (!tty->driver->break_ctl) {
3195 switch(cmd) {
3196 case TIOCSBRK:
3197 case TIOCCBRK:
3198 if (tty->driver->ioctl)
3199 return tty->driver->ioctl(tty, file, cmd, arg);
3200 return -EINVAL;
3202 /* These two ioctl's always return success; even if */
3203 /* the driver doesn't support them. */
3204 case TCSBRK:
3205 case TCSBRKP:
3206 if (!tty->driver->ioctl)
3207 return 0;
3208 retval = tty->driver->ioctl(tty, file, cmd, arg);
3209 if (retval == -ENOIOCTLCMD)
3210 retval = 0;
3211 return retval;
3216 * Factor out some common prep work
3218 switch (cmd) {
3219 case TIOCSETD:
3220 case TIOCSBRK:
3221 case TIOCCBRK:
3222 case TCSBRK:
3223 case TCSBRKP:
3224 retval = tty_check_change(tty);
3225 if (retval)
3226 return retval;
3227 if (cmd != TIOCCBRK) {
3228 tty_wait_until_sent(tty, 0);
3229 if (signal_pending(current))
3230 return -EINTR;
3232 break;
3235 switch (cmd) {
3236 case TIOCSTI:
3237 return tiocsti(tty, p);
3238 case TIOCGWINSZ:
3239 return tiocgwinsz(tty, p);
3240 case TIOCSWINSZ:
3241 return tiocswinsz(tty, real_tty, p);
3242 case TIOCCONS:
3243 return real_tty!=tty ? -EINVAL : tioccons(file);
3244 case FIONBIO:
3245 return fionbio(file, p);
3246 case TIOCEXCL:
3247 set_bit(TTY_EXCLUSIVE, &tty->flags);
3248 return 0;
3249 case TIOCNXCL:
3250 clear_bit(TTY_EXCLUSIVE, &tty->flags);
3251 return 0;
3252 case TIOCNOTTY:
3253 if (current->signal->tty != tty)
3254 return -ENOTTY;
3255 if (current->signal->leader)
3256 disassociate_ctty(0);
3257 proc_clear_tty(current);
3258 return 0;
3259 case TIOCSCTTY:
3260 return tiocsctty(tty, arg);
3261 case TIOCGPGRP:
3262 return tiocgpgrp(tty, real_tty, p);
3263 case TIOCSPGRP:
3264 return tiocspgrp(tty, real_tty, p);
3265 case TIOCGSID:
3266 return tiocgsid(tty, real_tty, p);
3267 case TIOCGETD:
3268 /* FIXME: check this is ok */
3269 return put_user(tty->ldisc.num, (int __user *)p);
3270 case TIOCSETD:
3271 return tiocsetd(tty, p);
3272 #ifdef CONFIG_VT
3273 case TIOCLINUX:
3274 return tioclinux(tty, arg);
3275 #endif
3277 * Break handling
3279 case TIOCSBRK: /* Turn break on, unconditionally */
3280 tty->driver->break_ctl(tty, -1);
3281 return 0;
3283 case TIOCCBRK: /* Turn break off, unconditionally */
3284 tty->driver->break_ctl(tty, 0);
3285 return 0;
3286 case TCSBRK: /* SVID version: non-zero arg --> no break */
3287 /* non-zero arg means wait for all output data
3288 * to be sent (performed above) but don't send break.
3289 * This is used by the tcdrain() termios function.
3291 if (!arg)
3292 return send_break(tty, 250);
3293 return 0;
3294 case TCSBRKP: /* support for POSIX tcsendbreak() */
3295 return send_break(tty, arg ? arg*100 : 250);
3297 case TIOCMGET:
3298 return tty_tiocmget(tty, file, p);
3300 case TIOCMSET:
3301 case TIOCMBIC:
3302 case TIOCMBIS:
3303 return tty_tiocmset(tty, file, cmd, p);
3305 if (tty->driver->ioctl) {
3306 retval = (tty->driver->ioctl)(tty, file, cmd, arg);
3307 if (retval != -ENOIOCTLCMD)
3308 return retval;
3310 ld = tty_ldisc_ref_wait(tty);
3311 retval = -EINVAL;
3312 if (ld->ioctl) {
3313 retval = ld->ioctl(tty, file, cmd, arg);
3314 if (retval == -ENOIOCTLCMD)
3315 retval = -EINVAL;
3317 tty_ldisc_deref(ld);
3318 return retval;
3323 * This implements the "Secure Attention Key" --- the idea is to
3324 * prevent trojan horses by killing all processes associated with this
3325 * tty when the user hits the "Secure Attention Key". Required for
3326 * super-paranoid applications --- see the Orange Book for more details.
3328 * This code could be nicer; ideally it should send a HUP, wait a few
3329 * seconds, then send a INT, and then a KILL signal. But you then
3330 * have to coordinate with the init process, since all processes associated
3331 * with the current tty must be dead before the new getty is allowed
3332 * to spawn.
3334 * Now, if it would be correct ;-/ The current code has a nasty hole -
3335 * it doesn't catch files in flight. We may send the descriptor to ourselves
3336 * via AF_UNIX socket, close it and later fetch from socket. FIXME.
3338 * Nasty bug: do_SAK is being called in interrupt context. This can
3339 * deadlock. We punt it up to process context. AKPM - 16Mar2001
3341 static void __do_SAK(struct work_struct *work)
3343 struct tty_struct *tty =
3344 container_of(work, struct tty_struct, SAK_work);
3345 #ifdef TTY_SOFT_SAK
3346 tty_hangup(tty);
3347 #else
3348 struct task_struct *g, *p;
3349 int session;
3350 int i;
3351 struct file *filp;
3352 struct fdtable *fdt;
3354 if (!tty)
3355 return;
3356 session = tty->session;
3358 tty_ldisc_flush(tty);
3360 if (tty->driver->flush_buffer)
3361 tty->driver->flush_buffer(tty);
3363 read_lock(&tasklist_lock);
3364 /* Kill the entire session */
3365 do_each_task_pid(session, PIDTYPE_SID, p) {
3366 printk(KERN_NOTICE "SAK: killed process %d"
3367 " (%s): process_session(p)==tty->session\n",
3368 p->pid, p->comm);
3369 send_sig(SIGKILL, p, 1);
3370 } while_each_task_pid(session, PIDTYPE_SID, p);
3371 /* Now kill any processes that happen to have the
3372 * tty open.
3374 do_each_thread(g, p) {
3375 if (p->signal->tty == tty) {
3376 printk(KERN_NOTICE "SAK: killed process %d"
3377 " (%s): process_session(p)==tty->session\n",
3378 p->pid, p->comm);
3379 send_sig(SIGKILL, p, 1);
3380 continue;
3382 task_lock(p);
3383 if (p->files) {
3385 * We don't take a ref to the file, so we must
3386 * hold ->file_lock instead.
3388 spin_lock(&p->files->file_lock);
3389 fdt = files_fdtable(p->files);
3390 for (i=0; i < fdt->max_fds; i++) {
3391 filp = fcheck_files(p->files, i);
3392 if (!filp)
3393 continue;
3394 if (filp->f_op->read == tty_read &&
3395 filp->private_data == tty) {
3396 printk(KERN_NOTICE "SAK: killed process %d"
3397 " (%s): fd#%d opened to the tty\n",
3398 p->pid, p->comm, i);
3399 force_sig(SIGKILL, p);
3400 break;
3403 spin_unlock(&p->files->file_lock);
3405 task_unlock(p);
3406 } while_each_thread(g, p);
3407 read_unlock(&tasklist_lock);
3408 #endif
3412 * The tq handling here is a little racy - tty->SAK_work may already be queued.
3413 * Fortunately we don't need to worry, because if ->SAK_work is already queued,
3414 * the values which we write to it will be identical to the values which it
3415 * already has. --akpm
3417 void do_SAK(struct tty_struct *tty)
3419 if (!tty)
3420 return;
3421 PREPARE_WORK(&tty->SAK_work, __do_SAK);
3422 schedule_work(&tty->SAK_work);
3425 EXPORT_SYMBOL(do_SAK);
3428 * flush_to_ldisc
3429 * @work: tty structure passed from work queue.
3431 * This routine is called out of the software interrupt to flush data
3432 * from the buffer chain to the line discipline.
3434 * Locking: holds tty->buf.lock to guard buffer list. Drops the lock
3435 * while invoking the line discipline receive_buf method. The
3436 * receive_buf method is single threaded for each tty instance.
3439 static void flush_to_ldisc(struct work_struct *work)
3441 struct tty_struct *tty =
3442 container_of(work, struct tty_struct, buf.work.work);
3443 unsigned long flags;
3444 struct tty_ldisc *disc;
3445 struct tty_buffer *tbuf, *head;
3446 char *char_buf;
3447 unsigned char *flag_buf;
3449 disc = tty_ldisc_ref(tty);
3450 if (disc == NULL) /* !TTY_LDISC */
3451 return;
3453 spin_lock_irqsave(&tty->buf.lock, flags);
3454 head = tty->buf.head;
3455 if (head != NULL) {
3456 tty->buf.head = NULL;
3457 for (;;) {
3458 int count = head->commit - head->read;
3459 if (!count) {
3460 if (head->next == NULL)
3461 break;
3462 tbuf = head;
3463 head = head->next;
3464 tty_buffer_free(tty, tbuf);
3465 continue;
3467 if (!tty->receive_room) {
3468 schedule_delayed_work(&tty->buf.work, 1);
3469 break;
3471 if (count > tty->receive_room)
3472 count = tty->receive_room;
3473 char_buf = head->char_buf_ptr + head->read;
3474 flag_buf = head->flag_buf_ptr + head->read;
3475 head->read += count;
3476 spin_unlock_irqrestore(&tty->buf.lock, flags);
3477 disc->receive_buf(tty, char_buf, flag_buf, count);
3478 spin_lock_irqsave(&tty->buf.lock, flags);
3480 tty->buf.head = head;
3482 spin_unlock_irqrestore(&tty->buf.lock, flags);
3484 tty_ldisc_deref(disc);
3488 * tty_flip_buffer_push - terminal
3489 * @tty: tty to push
3491 * Queue a push of the terminal flip buffers to the line discipline. This
3492 * function must not be called from IRQ context if tty->low_latency is set.
3494 * In the event of the queue being busy for flipping the work will be
3495 * held off and retried later.
3497 * Locking: tty buffer lock. Driver locks in low latency mode.
3500 void tty_flip_buffer_push(struct tty_struct *tty)
3502 unsigned long flags;
3503 spin_lock_irqsave(&tty->buf.lock, flags);
3504 if (tty->buf.tail != NULL)
3505 tty->buf.tail->commit = tty->buf.tail->used;
3506 spin_unlock_irqrestore(&tty->buf.lock, flags);
3508 if (tty->low_latency)
3509 flush_to_ldisc(&tty->buf.work.work);
3510 else
3511 schedule_delayed_work(&tty->buf.work, 1);
3514 EXPORT_SYMBOL(tty_flip_buffer_push);
3518 * initialize_tty_struct
3519 * @tty: tty to initialize
3521 * This subroutine initializes a tty structure that has been newly
3522 * allocated.
3524 * Locking: none - tty in question must not be exposed at this point
3527 static void initialize_tty_struct(struct tty_struct *tty)
3529 memset(tty, 0, sizeof(struct tty_struct));
3530 tty->magic = TTY_MAGIC;
3531 tty_ldisc_assign(tty, tty_ldisc_get(N_TTY));
3532 tty->pgrp = -1;
3533 tty->overrun_time = jiffies;
3534 tty->buf.head = tty->buf.tail = NULL;
3535 tty_buffer_init(tty);
3536 INIT_DELAYED_WORK(&tty->buf.work, flush_to_ldisc);
3537 init_MUTEX(&tty->buf.pty_sem);
3538 mutex_init(&tty->termios_mutex);
3539 init_waitqueue_head(&tty->write_wait);
3540 init_waitqueue_head(&tty->read_wait);
3541 INIT_WORK(&tty->hangup_work, do_tty_hangup);
3542 mutex_init(&tty->atomic_read_lock);
3543 mutex_init(&tty->atomic_write_lock);
3544 spin_lock_init(&tty->read_lock);
3545 INIT_LIST_HEAD(&tty->tty_files);
3546 INIT_WORK(&tty->SAK_work, NULL);
3550 * The default put_char routine if the driver did not define one.
3553 static void tty_default_put_char(struct tty_struct *tty, unsigned char ch)
3555 tty->driver->write(tty, &ch, 1);
3558 static struct class *tty_class;
3561 * tty_register_device - register a tty device
3562 * @driver: the tty driver that describes the tty device
3563 * @index: the index in the tty driver for this tty device
3564 * @device: a struct device that is associated with this tty device.
3565 * This field is optional, if there is no known struct device
3566 * for this tty device it can be set to NULL safely.
3568 * Returns a pointer to the struct device for this tty device
3569 * (or ERR_PTR(-EFOO) on error).
3571 * This call is required to be made to register an individual tty device
3572 * if the tty driver's flags have the TTY_DRIVER_DYNAMIC_DEV bit set. If
3573 * that bit is not set, this function should not be called by a tty
3574 * driver.
3576 * Locking: ??
3579 struct device *tty_register_device(struct tty_driver *driver, unsigned index,
3580 struct device *device)
3582 char name[64];
3583 dev_t dev = MKDEV(driver->major, driver->minor_start) + index;
3585 if (index >= driver->num) {
3586 printk(KERN_ERR "Attempt to register invalid tty line number "
3587 " (%d).\n", index);
3588 return ERR_PTR(-EINVAL);
3591 if (driver->type == TTY_DRIVER_TYPE_PTY)
3592 pty_line_name(driver, index, name);
3593 else
3594 tty_line_name(driver, index, name);
3596 return device_create(tty_class, device, dev, name);
3600 * tty_unregister_device - unregister a tty device
3601 * @driver: the tty driver that describes the tty device
3602 * @index: the index in the tty driver for this tty device
3604 * If a tty device is registered with a call to tty_register_device() then
3605 * this function must be called when the tty device is gone.
3607 * Locking: ??
3610 void tty_unregister_device(struct tty_driver *driver, unsigned index)
3612 device_destroy(tty_class, MKDEV(driver->major, driver->minor_start) + index);
3615 EXPORT_SYMBOL(tty_register_device);
3616 EXPORT_SYMBOL(tty_unregister_device);
3618 struct tty_driver *alloc_tty_driver(int lines)
3620 struct tty_driver *driver;
3622 driver = kmalloc(sizeof(struct tty_driver), GFP_KERNEL);
3623 if (driver) {
3624 memset(driver, 0, sizeof(struct tty_driver));
3625 driver->magic = TTY_DRIVER_MAGIC;
3626 driver->num = lines;
3627 /* later we'll move allocation of tables here */
3629 return driver;
3632 void put_tty_driver(struct tty_driver *driver)
3634 kfree(driver);
3637 void tty_set_operations(struct tty_driver *driver,
3638 const struct tty_operations *op)
3640 driver->open = op->open;
3641 driver->close = op->close;
3642 driver->write = op->write;
3643 driver->put_char = op->put_char;
3644 driver->flush_chars = op->flush_chars;
3645 driver->write_room = op->write_room;
3646 driver->chars_in_buffer = op->chars_in_buffer;
3647 driver->ioctl = op->ioctl;
3648 driver->set_termios = op->set_termios;
3649 driver->throttle = op->throttle;
3650 driver->unthrottle = op->unthrottle;
3651 driver->stop = op->stop;
3652 driver->start = op->start;
3653 driver->hangup = op->hangup;
3654 driver->break_ctl = op->break_ctl;
3655 driver->flush_buffer = op->flush_buffer;
3656 driver->set_ldisc = op->set_ldisc;
3657 driver->wait_until_sent = op->wait_until_sent;
3658 driver->send_xchar = op->send_xchar;
3659 driver->read_proc = op->read_proc;
3660 driver->write_proc = op->write_proc;
3661 driver->tiocmget = op->tiocmget;
3662 driver->tiocmset = op->tiocmset;
3666 EXPORT_SYMBOL(alloc_tty_driver);
3667 EXPORT_SYMBOL(put_tty_driver);
3668 EXPORT_SYMBOL(tty_set_operations);
3671 * Called by a tty driver to register itself.
3673 int tty_register_driver(struct tty_driver *driver)
3675 int error;
3676 int i;
3677 dev_t dev;
3678 void **p = NULL;
3680 if (driver->flags & TTY_DRIVER_INSTALLED)
3681 return 0;
3683 if (!(driver->flags & TTY_DRIVER_DEVPTS_MEM)) {
3684 p = kmalloc(driver->num * 3 * sizeof(void *), GFP_KERNEL);
3685 if (!p)
3686 return -ENOMEM;
3687 memset(p, 0, driver->num * 3 * sizeof(void *));
3690 if (!driver->major) {
3691 error = alloc_chrdev_region(&dev, driver->minor_start, driver->num,
3692 (char*)driver->name);
3693 if (!error) {
3694 driver->major = MAJOR(dev);
3695 driver->minor_start = MINOR(dev);
3697 } else {
3698 dev = MKDEV(driver->major, driver->minor_start);
3699 error = register_chrdev_region(dev, driver->num,
3700 (char*)driver->name);
3702 if (error < 0) {
3703 kfree(p);
3704 return error;
3707 if (p) {
3708 driver->ttys = (struct tty_struct **)p;
3709 driver->termios = (struct ktermios **)(p + driver->num);
3710 driver->termios_locked = (struct ktermios **)(p + driver->num * 2);
3711 } else {
3712 driver->ttys = NULL;
3713 driver->termios = NULL;
3714 driver->termios_locked = NULL;
3717 cdev_init(&driver->cdev, &tty_fops);
3718 driver->cdev.owner = driver->owner;
3719 error = cdev_add(&driver->cdev, dev, driver->num);
3720 if (error) {
3721 unregister_chrdev_region(dev, driver->num);
3722 driver->ttys = NULL;
3723 driver->termios = driver->termios_locked = NULL;
3724 kfree(p);
3725 return error;
3728 if (!driver->put_char)
3729 driver->put_char = tty_default_put_char;
3731 list_add(&driver->tty_drivers, &tty_drivers);
3733 if ( !(driver->flags & TTY_DRIVER_DYNAMIC_DEV) ) {
3734 for(i = 0; i < driver->num; i++)
3735 tty_register_device(driver, i, NULL);
3737 proc_tty_register_driver(driver);
3738 return 0;
3741 EXPORT_SYMBOL(tty_register_driver);
3744 * Called by a tty driver to unregister itself.
3746 int tty_unregister_driver(struct tty_driver *driver)
3748 int i;
3749 struct ktermios *tp;
3750 void *p;
3752 if (driver->refcount)
3753 return -EBUSY;
3755 unregister_chrdev_region(MKDEV(driver->major, driver->minor_start),
3756 driver->num);
3758 list_del(&driver->tty_drivers);
3761 * Free the termios and termios_locked structures because
3762 * we don't want to get memory leaks when modular tty
3763 * drivers are removed from the kernel.
3765 for (i = 0; i < driver->num; i++) {
3766 tp = driver->termios[i];
3767 if (tp) {
3768 driver->termios[i] = NULL;
3769 kfree(tp);
3771 tp = driver->termios_locked[i];
3772 if (tp) {
3773 driver->termios_locked[i] = NULL;
3774 kfree(tp);
3776 if (!(driver->flags & TTY_DRIVER_DYNAMIC_DEV))
3777 tty_unregister_device(driver, i);
3779 p = driver->ttys;
3780 proc_tty_unregister_driver(driver);
3781 driver->ttys = NULL;
3782 driver->termios = driver->termios_locked = NULL;
3783 kfree(p);
3784 cdev_del(&driver->cdev);
3785 return 0;
3787 EXPORT_SYMBOL(tty_unregister_driver);
3789 dev_t tty_devnum(struct tty_struct *tty)
3791 return MKDEV(tty->driver->major, tty->driver->minor_start) + tty->index;
3793 EXPORT_SYMBOL(tty_devnum);
3795 void proc_clear_tty(struct task_struct *p)
3797 spin_lock_irq(&p->sighand->siglock);
3798 p->signal->tty = NULL;
3799 spin_unlock_irq(&p->sighand->siglock);
3801 EXPORT_SYMBOL(proc_clear_tty);
3803 void __proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3805 if (tty) {
3806 tty->session = process_session(tsk);
3807 tty->pgrp = process_group(tsk);
3809 tsk->signal->tty = tty;
3810 tsk->signal->tty_old_pgrp = 0;
3813 void proc_set_tty(struct task_struct *tsk, struct tty_struct *tty)
3815 spin_lock_irq(&tsk->sighand->siglock);
3816 __proc_set_tty(tsk, tty);
3817 spin_unlock_irq(&tsk->sighand->siglock);
3820 struct tty_struct *get_current_tty(void)
3822 struct tty_struct *tty;
3823 WARN_ON_ONCE(!mutex_is_locked(&tty_mutex));
3824 tty = current->signal->tty;
3826 * session->tty can be changed/cleared from under us, make sure we
3827 * issue the load. The obtained pointer, when not NULL, is valid as
3828 * long as we hold tty_mutex.
3830 barrier();
3831 return tty;
3833 EXPORT_SYMBOL_GPL(get_current_tty);
3836 * Initialize the console device. This is called *early*, so
3837 * we can't necessarily depend on lots of kernel help here.
3838 * Just do some early initializations, and do the complex setup
3839 * later.
3841 void __init console_init(void)
3843 initcall_t *call;
3845 /* Setup the default TTY line discipline. */
3846 (void) tty_register_ldisc(N_TTY, &tty_ldisc_N_TTY);
3849 * set up the console device so that later boot sequences can
3850 * inform about problems etc..
3852 #ifdef CONFIG_EARLY_PRINTK
3853 disable_early_printk();
3854 #endif
3855 call = __con_initcall_start;
3856 while (call < __con_initcall_end) {
3857 (*call)();
3858 call++;
3862 #ifdef CONFIG_VT
3863 extern int vty_init(void);
3864 #endif
3866 static int __init tty_class_init(void)
3868 tty_class = class_create(THIS_MODULE, "tty");
3869 if (IS_ERR(tty_class))
3870 return PTR_ERR(tty_class);
3871 return 0;
3874 postcore_initcall(tty_class_init);
3876 /* 3/2004 jmc: why do these devices exist? */
3878 static struct cdev tty_cdev, console_cdev;
3879 #ifdef CONFIG_UNIX98_PTYS
3880 static struct cdev ptmx_cdev;
3881 #endif
3882 #ifdef CONFIG_VT
3883 static struct cdev vc0_cdev;
3884 #endif
3887 * Ok, now we can initialize the rest of the tty devices and can count
3888 * on memory allocations, interrupts etc..
3890 static int __init tty_init(void)
3892 cdev_init(&tty_cdev, &tty_fops);
3893 if (cdev_add(&tty_cdev, MKDEV(TTYAUX_MAJOR, 0), 1) ||
3894 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 0), 1, "/dev/tty") < 0)
3895 panic("Couldn't register /dev/tty driver\n");
3896 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 0), "tty");
3898 cdev_init(&console_cdev, &console_fops);
3899 if (cdev_add(&console_cdev, MKDEV(TTYAUX_MAJOR, 1), 1) ||
3900 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 1), 1, "/dev/console") < 0)
3901 panic("Couldn't register /dev/console driver\n");
3902 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 1), "console");
3904 #ifdef CONFIG_UNIX98_PTYS
3905 cdev_init(&ptmx_cdev, &ptmx_fops);
3906 if (cdev_add(&ptmx_cdev, MKDEV(TTYAUX_MAJOR, 2), 1) ||
3907 register_chrdev_region(MKDEV(TTYAUX_MAJOR, 2), 1, "/dev/ptmx") < 0)
3908 panic("Couldn't register /dev/ptmx driver\n");
3909 device_create(tty_class, NULL, MKDEV(TTYAUX_MAJOR, 2), "ptmx");
3910 #endif
3912 #ifdef CONFIG_VT
3913 cdev_init(&vc0_cdev, &console_fops);
3914 if (cdev_add(&vc0_cdev, MKDEV(TTY_MAJOR, 0), 1) ||
3915 register_chrdev_region(MKDEV(TTY_MAJOR, 0), 1, "/dev/vc/0") < 0)
3916 panic("Couldn't register /dev/tty0 driver\n");
3917 device_create(tty_class, NULL, MKDEV(TTY_MAJOR, 0), "tty0");
3919 vty_init();
3920 #endif
3921 return 0;
3923 module_init(tty_init);