Linux 2.6.20.7
[linux/fpc-iii.git] / drivers / edac / edac_mc.c
blob1b4fc922180386cd4107ec42f4328b4f50584be4
1 /*
2 * edac_mc kernel module
3 * (C) 2005, 2006 Linux Networx (http://lnxi.com)
4 * This file may be distributed under the terms of the
5 * GNU General Public License.
7 * Written by Thayne Harbaugh
8 * Based on work by Dan Hollis <goemon at anime dot net> and others.
9 * http://www.anime.net/~goemon/linux-ecc/
11 * Modified by Dave Peterson and Doug Thompson
15 #include <linux/module.h>
16 #include <linux/proc_fs.h>
17 #include <linux/kernel.h>
18 #include <linux/types.h>
19 #include <linux/smp.h>
20 #include <linux/init.h>
21 #include <linux/sysctl.h>
22 #include <linux/highmem.h>
23 #include <linux/timer.h>
24 #include <linux/slab.h>
25 #include <linux/jiffies.h>
26 #include <linux/spinlock.h>
27 #include <linux/list.h>
28 #include <linux/sysdev.h>
29 #include <linux/ctype.h>
30 #include <linux/kthread.h>
31 #include <linux/freezer.h>
32 #include <asm/uaccess.h>
33 #include <asm/page.h>
34 #include <asm/edac.h>
35 #include "edac_mc.h"
37 #define EDAC_MC_VERSION "Ver: 2.0.1 " __DATE__
40 #ifdef CONFIG_EDAC_DEBUG
41 /* Values of 0 to 4 will generate output */
42 int edac_debug_level = 1;
43 EXPORT_SYMBOL_GPL(edac_debug_level);
44 #endif
46 /* EDAC Controls, setable by module parameter, and sysfs */
47 static int log_ue = 1;
48 static int log_ce = 1;
49 static int panic_on_ue;
50 static int poll_msec = 1000;
52 /* lock to memory controller's control array */
53 static DECLARE_MUTEX(mem_ctls_mutex);
54 static struct list_head mc_devices = LIST_HEAD_INIT(mc_devices);
56 static struct task_struct *edac_thread;
58 #ifdef CONFIG_PCI
59 static int check_pci_parity = 0; /* default YES check PCI parity */
60 static int panic_on_pci_parity; /* default no panic on PCI Parity */
61 static atomic_t pci_parity_count = ATOMIC_INIT(0);
63 static struct kobject edac_pci_kobj; /* /sys/devices/system/edac/pci */
64 static struct completion edac_pci_kobj_complete;
65 #endif /* CONFIG_PCI */
67 /* START sysfs data and methods */
70 static const char *mem_types[] = {
71 [MEM_EMPTY] = "Empty",
72 [MEM_RESERVED] = "Reserved",
73 [MEM_UNKNOWN] = "Unknown",
74 [MEM_FPM] = "FPM",
75 [MEM_EDO] = "EDO",
76 [MEM_BEDO] = "BEDO",
77 [MEM_SDR] = "Unbuffered-SDR",
78 [MEM_RDR] = "Registered-SDR",
79 [MEM_DDR] = "Unbuffered-DDR",
80 [MEM_RDDR] = "Registered-DDR",
81 [MEM_RMBS] = "RMBS"
84 static const char *dev_types[] = {
85 [DEV_UNKNOWN] = "Unknown",
86 [DEV_X1] = "x1",
87 [DEV_X2] = "x2",
88 [DEV_X4] = "x4",
89 [DEV_X8] = "x8",
90 [DEV_X16] = "x16",
91 [DEV_X32] = "x32",
92 [DEV_X64] = "x64"
95 static const char *edac_caps[] = {
96 [EDAC_UNKNOWN] = "Unknown",
97 [EDAC_NONE] = "None",
98 [EDAC_RESERVED] = "Reserved",
99 [EDAC_PARITY] = "PARITY",
100 [EDAC_EC] = "EC",
101 [EDAC_SECDED] = "SECDED",
102 [EDAC_S2ECD2ED] = "S2ECD2ED",
103 [EDAC_S4ECD4ED] = "S4ECD4ED",
104 [EDAC_S8ECD8ED] = "S8ECD8ED",
105 [EDAC_S16ECD16ED] = "S16ECD16ED"
108 /* sysfs object: /sys/devices/system/edac */
109 static struct sysdev_class edac_class = {
110 set_kset_name("edac"),
113 /* sysfs object:
114 * /sys/devices/system/edac/mc
116 static struct kobject edac_memctrl_kobj;
118 /* We use these to wait for the reference counts on edac_memctrl_kobj and
119 * edac_pci_kobj to reach 0.
121 static struct completion edac_memctrl_kobj_complete;
124 * /sys/devices/system/edac/mc;
125 * data structures and methods
127 static ssize_t memctrl_int_show(void *ptr, char *buffer)
129 int *value = (int*) ptr;
130 return sprintf(buffer, "%u\n", *value);
133 static ssize_t memctrl_int_store(void *ptr, const char *buffer, size_t count)
135 int *value = (int*) ptr;
137 if (isdigit(*buffer))
138 *value = simple_strtoul(buffer, NULL, 0);
140 return count;
143 struct memctrl_dev_attribute {
144 struct attribute attr;
145 void *value;
146 ssize_t (*show)(void *,char *);
147 ssize_t (*store)(void *, const char *, size_t);
150 /* Set of show/store abstract level functions for memory control object */
151 static ssize_t memctrl_dev_show(struct kobject *kobj,
152 struct attribute *attr, char *buffer)
154 struct memctrl_dev_attribute *memctrl_dev;
155 memctrl_dev = (struct memctrl_dev_attribute*)attr;
157 if (memctrl_dev->show)
158 return memctrl_dev->show(memctrl_dev->value, buffer);
160 return -EIO;
163 static ssize_t memctrl_dev_store(struct kobject *kobj, struct attribute *attr,
164 const char *buffer, size_t count)
166 struct memctrl_dev_attribute *memctrl_dev;
167 memctrl_dev = (struct memctrl_dev_attribute*)attr;
169 if (memctrl_dev->store)
170 return memctrl_dev->store(memctrl_dev->value, buffer, count);
172 return -EIO;
175 static struct sysfs_ops memctrlfs_ops = {
176 .show = memctrl_dev_show,
177 .store = memctrl_dev_store
180 #define MEMCTRL_ATTR(_name,_mode,_show,_store) \
181 struct memctrl_dev_attribute attr_##_name = { \
182 .attr = {.name = __stringify(_name), .mode = _mode }, \
183 .value = &_name, \
184 .show = _show, \
185 .store = _store, \
188 #define MEMCTRL_STRING_ATTR(_name,_data,_mode,_show,_store) \
189 struct memctrl_dev_attribute attr_##_name = { \
190 .attr = {.name = __stringify(_name), .mode = _mode }, \
191 .value = _data, \
192 .show = _show, \
193 .store = _store, \
196 /* csrow<id> control files */
197 MEMCTRL_ATTR(panic_on_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
198 MEMCTRL_ATTR(log_ue,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
199 MEMCTRL_ATTR(log_ce,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
200 MEMCTRL_ATTR(poll_msec,S_IRUGO|S_IWUSR,memctrl_int_show,memctrl_int_store);
202 /* Base Attributes of the memory ECC object */
203 static struct memctrl_dev_attribute *memctrl_attr[] = {
204 &attr_panic_on_ue,
205 &attr_log_ue,
206 &attr_log_ce,
207 &attr_poll_msec,
208 NULL,
211 /* Main MC kobject release() function */
212 static void edac_memctrl_master_release(struct kobject *kobj)
214 debugf1("%s()\n", __func__);
215 complete(&edac_memctrl_kobj_complete);
218 static struct kobj_type ktype_memctrl = {
219 .release = edac_memctrl_master_release,
220 .sysfs_ops = &memctrlfs_ops,
221 .default_attrs = (struct attribute **) memctrl_attr,
224 /* Initialize the main sysfs entries for edac:
225 * /sys/devices/system/edac
227 * and children
229 * Return: 0 SUCCESS
230 * !0 FAILURE
232 static int edac_sysfs_memctrl_setup(void)
234 int err = 0;
236 debugf1("%s()\n", __func__);
238 /* create the /sys/devices/system/edac directory */
239 err = sysdev_class_register(&edac_class);
241 if (err) {
242 debugf1("%s() error=%d\n", __func__, err);
243 return err;
246 /* Init the MC's kobject */
247 memset(&edac_memctrl_kobj, 0, sizeof (edac_memctrl_kobj));
248 edac_memctrl_kobj.parent = &edac_class.kset.kobj;
249 edac_memctrl_kobj.ktype = &ktype_memctrl;
251 /* generate sysfs "..../edac/mc" */
252 err = kobject_set_name(&edac_memctrl_kobj,"mc");
254 if (err)
255 goto fail;
257 /* FIXME: maybe new sysdev_create_subdir() */
258 err = kobject_register(&edac_memctrl_kobj);
260 if (err) {
261 debugf1("Failed to register '.../edac/mc'\n");
262 goto fail;
265 debugf1("Registered '.../edac/mc' kobject\n");
267 return 0;
269 fail:
270 sysdev_class_unregister(&edac_class);
271 return err;
275 * MC teardown:
276 * the '..../edac/mc' kobject followed by '..../edac' itself
278 static void edac_sysfs_memctrl_teardown(void)
280 debugf0("MC: " __FILE__ ": %s()\n", __func__);
282 /* Unregister the MC's kobject and wait for reference count to reach
283 * 0.
285 init_completion(&edac_memctrl_kobj_complete);
286 kobject_unregister(&edac_memctrl_kobj);
287 wait_for_completion(&edac_memctrl_kobj_complete);
289 /* Unregister the 'edac' object */
290 sysdev_class_unregister(&edac_class);
293 #ifdef CONFIG_PCI
294 static ssize_t edac_pci_int_show(void *ptr, char *buffer)
296 int *value = ptr;
297 return sprintf(buffer,"%d\n",*value);
300 static ssize_t edac_pci_int_store(void *ptr, const char *buffer, size_t count)
302 int *value = ptr;
304 if (isdigit(*buffer))
305 *value = simple_strtoul(buffer,NULL,0);
307 return count;
310 struct edac_pci_dev_attribute {
311 struct attribute attr;
312 void *value;
313 ssize_t (*show)(void *,char *);
314 ssize_t (*store)(void *, const char *,size_t);
317 /* Set of show/store abstract level functions for PCI Parity object */
318 static ssize_t edac_pci_dev_show(struct kobject *kobj, struct attribute *attr,
319 char *buffer)
321 struct edac_pci_dev_attribute *edac_pci_dev;
322 edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
324 if (edac_pci_dev->show)
325 return edac_pci_dev->show(edac_pci_dev->value, buffer);
326 return -EIO;
329 static ssize_t edac_pci_dev_store(struct kobject *kobj,
330 struct attribute *attr, const char *buffer, size_t count)
332 struct edac_pci_dev_attribute *edac_pci_dev;
333 edac_pci_dev= (struct edac_pci_dev_attribute*)attr;
335 if (edac_pci_dev->show)
336 return edac_pci_dev->store(edac_pci_dev->value, buffer, count);
337 return -EIO;
340 static struct sysfs_ops edac_pci_sysfs_ops = {
341 .show = edac_pci_dev_show,
342 .store = edac_pci_dev_store
345 #define EDAC_PCI_ATTR(_name,_mode,_show,_store) \
346 struct edac_pci_dev_attribute edac_pci_attr_##_name = { \
347 .attr = {.name = __stringify(_name), .mode = _mode }, \
348 .value = &_name, \
349 .show = _show, \
350 .store = _store, \
353 #define EDAC_PCI_STRING_ATTR(_name,_data,_mode,_show,_store) \
354 struct edac_pci_dev_attribute edac_pci_attr_##_name = { \
355 .attr = {.name = __stringify(_name), .mode = _mode }, \
356 .value = _data, \
357 .show = _show, \
358 .store = _store, \
361 /* PCI Parity control files */
362 EDAC_PCI_ATTR(check_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
363 edac_pci_int_store);
364 EDAC_PCI_ATTR(panic_on_pci_parity, S_IRUGO|S_IWUSR, edac_pci_int_show,
365 edac_pci_int_store);
366 EDAC_PCI_ATTR(pci_parity_count, S_IRUGO, edac_pci_int_show, NULL);
368 /* Base Attributes of the memory ECC object */
369 static struct edac_pci_dev_attribute *edac_pci_attr[] = {
370 &edac_pci_attr_check_pci_parity,
371 &edac_pci_attr_panic_on_pci_parity,
372 &edac_pci_attr_pci_parity_count,
373 NULL,
376 /* No memory to release */
377 static void edac_pci_release(struct kobject *kobj)
379 debugf1("%s()\n", __func__);
380 complete(&edac_pci_kobj_complete);
383 static struct kobj_type ktype_edac_pci = {
384 .release = edac_pci_release,
385 .sysfs_ops = &edac_pci_sysfs_ops,
386 .default_attrs = (struct attribute **) edac_pci_attr,
390 * edac_sysfs_pci_setup()
393 static int edac_sysfs_pci_setup(void)
395 int err;
397 debugf1("%s()\n", __func__);
399 memset(&edac_pci_kobj, 0, sizeof(edac_pci_kobj));
400 edac_pci_kobj.parent = &edac_class.kset.kobj;
401 edac_pci_kobj.ktype = &ktype_edac_pci;
402 err = kobject_set_name(&edac_pci_kobj, "pci");
404 if (!err) {
405 /* Instanstiate the csrow object */
406 /* FIXME: maybe new sysdev_create_subdir() */
407 err = kobject_register(&edac_pci_kobj);
409 if (err)
410 debugf1("Failed to register '.../edac/pci'\n");
411 else
412 debugf1("Registered '.../edac/pci' kobject\n");
415 return err;
418 static void edac_sysfs_pci_teardown(void)
420 debugf0("%s()\n", __func__);
421 init_completion(&edac_pci_kobj_complete);
422 kobject_unregister(&edac_pci_kobj);
423 wait_for_completion(&edac_pci_kobj_complete);
427 static u16 get_pci_parity_status(struct pci_dev *dev, int secondary)
429 int where;
430 u16 status;
432 where = secondary ? PCI_SEC_STATUS : PCI_STATUS;
433 pci_read_config_word(dev, where, &status);
435 /* If we get back 0xFFFF then we must suspect that the card has been
436 * pulled but the Linux PCI layer has not yet finished cleaning up.
437 * We don't want to report on such devices
440 if (status == 0xFFFF) {
441 u32 sanity;
443 pci_read_config_dword(dev, 0, &sanity);
445 if (sanity == 0xFFFFFFFF)
446 return 0;
449 status &= PCI_STATUS_DETECTED_PARITY | PCI_STATUS_SIG_SYSTEM_ERROR |
450 PCI_STATUS_PARITY;
452 if (status)
453 /* reset only the bits we are interested in */
454 pci_write_config_word(dev, where, status);
456 return status;
459 typedef void (*pci_parity_check_fn_t) (struct pci_dev *dev);
461 /* Clear any PCI parity errors logged by this device. */
462 static void edac_pci_dev_parity_clear(struct pci_dev *dev)
464 u8 header_type;
466 get_pci_parity_status(dev, 0);
468 /* read the device TYPE, looking for bridges */
469 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
471 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE)
472 get_pci_parity_status(dev, 1);
476 * PCI Parity polling
479 static void edac_pci_dev_parity_test(struct pci_dev *dev)
481 u16 status;
482 u8 header_type;
484 /* read the STATUS register on this device
486 status = get_pci_parity_status(dev, 0);
488 debugf2("PCI STATUS= 0x%04x %s\n", status, dev->dev.bus_id );
490 /* check the status reg for errors */
491 if (status) {
492 if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
493 edac_printk(KERN_CRIT, EDAC_PCI,
494 "Signaled System Error on %s\n",
495 pci_name(dev));
497 if (status & (PCI_STATUS_PARITY)) {
498 edac_printk(KERN_CRIT, EDAC_PCI,
499 "Master Data Parity Error on %s\n",
500 pci_name(dev));
502 atomic_inc(&pci_parity_count);
505 if (status & (PCI_STATUS_DETECTED_PARITY)) {
506 edac_printk(KERN_CRIT, EDAC_PCI,
507 "Detected Parity Error on %s\n",
508 pci_name(dev));
510 atomic_inc(&pci_parity_count);
514 /* read the device TYPE, looking for bridges */
515 pci_read_config_byte(dev, PCI_HEADER_TYPE, &header_type);
517 debugf2("PCI HEADER TYPE= 0x%02x %s\n", header_type, dev->dev.bus_id );
519 if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
520 /* On bridges, need to examine secondary status register */
521 status = get_pci_parity_status(dev, 1);
523 debugf2("PCI SEC_STATUS= 0x%04x %s\n",
524 status, dev->dev.bus_id );
526 /* check the secondary status reg for errors */
527 if (status) {
528 if (status & (PCI_STATUS_SIG_SYSTEM_ERROR))
529 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
530 "Signaled System Error on %s\n",
531 pci_name(dev));
533 if (status & (PCI_STATUS_PARITY)) {
534 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
535 "Master Data Parity Error on "
536 "%s\n", pci_name(dev));
538 atomic_inc(&pci_parity_count);
541 if (status & (PCI_STATUS_DETECTED_PARITY)) {
542 edac_printk(KERN_CRIT, EDAC_PCI, "Bridge "
543 "Detected Parity Error on %s\n",
544 pci_name(dev));
546 atomic_inc(&pci_parity_count);
553 * pci_dev parity list iterator
554 * Scan the PCI device list for one iteration, looking for SERRORs
555 * Master Parity ERRORS or Parity ERRORs on primary or secondary devices
557 static inline void edac_pci_dev_parity_iterator(pci_parity_check_fn_t fn)
559 struct pci_dev *dev = NULL;
561 /* request for kernel access to the next PCI device, if any,
562 * and while we are looking at it have its reference count
563 * bumped until we are done with it
565 while((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
566 fn(dev);
570 static void do_pci_parity_check(void)
572 unsigned long flags;
573 int before_count;
575 debugf3("%s()\n", __func__);
577 if (!check_pci_parity)
578 return;
580 before_count = atomic_read(&pci_parity_count);
582 /* scan all PCI devices looking for a Parity Error on devices and
583 * bridges
585 local_irq_save(flags);
586 edac_pci_dev_parity_iterator(edac_pci_dev_parity_test);
587 local_irq_restore(flags);
589 /* Only if operator has selected panic on PCI Error */
590 if (panic_on_pci_parity) {
591 /* If the count is different 'after' from 'before' */
592 if (before_count != atomic_read(&pci_parity_count))
593 panic("EDAC: PCI Parity Error");
597 static inline void clear_pci_parity_errors(void)
599 /* Clear any PCI bus parity errors that devices initially have logged
600 * in their registers.
602 edac_pci_dev_parity_iterator(edac_pci_dev_parity_clear);
605 #else /* CONFIG_PCI */
607 /* pre-process these away */
608 #define do_pci_parity_check()
609 #define clear_pci_parity_errors()
610 #define edac_sysfs_pci_teardown()
611 #define edac_sysfs_pci_setup() (0)
613 #endif /* CONFIG_PCI */
615 /* EDAC sysfs CSROW data structures and methods
618 /* Set of more default csrow<id> attribute show/store functions */
619 static ssize_t csrow_ue_count_show(struct csrow_info *csrow, char *data, int private)
621 return sprintf(data,"%u\n", csrow->ue_count);
624 static ssize_t csrow_ce_count_show(struct csrow_info *csrow, char *data, int private)
626 return sprintf(data,"%u\n", csrow->ce_count);
629 static ssize_t csrow_size_show(struct csrow_info *csrow, char *data, int private)
631 return sprintf(data,"%u\n", PAGES_TO_MiB(csrow->nr_pages));
634 static ssize_t csrow_mem_type_show(struct csrow_info *csrow, char *data, int private)
636 return sprintf(data,"%s\n", mem_types[csrow->mtype]);
639 static ssize_t csrow_dev_type_show(struct csrow_info *csrow, char *data, int private)
641 return sprintf(data,"%s\n", dev_types[csrow->dtype]);
644 static ssize_t csrow_edac_mode_show(struct csrow_info *csrow, char *data, int private)
646 return sprintf(data,"%s\n", edac_caps[csrow->edac_mode]);
649 /* show/store functions for DIMM Label attributes */
650 static ssize_t channel_dimm_label_show(struct csrow_info *csrow,
651 char *data, int channel)
653 return snprintf(data, EDAC_MC_LABEL_LEN,"%s",
654 csrow->channels[channel].label);
657 static ssize_t channel_dimm_label_store(struct csrow_info *csrow,
658 const char *data,
659 size_t count,
660 int channel)
662 ssize_t max_size = 0;
664 max_size = min((ssize_t)count,(ssize_t)EDAC_MC_LABEL_LEN-1);
665 strncpy(csrow->channels[channel].label, data, max_size);
666 csrow->channels[channel].label[max_size] = '\0';
668 return max_size;
671 /* show function for dynamic chX_ce_count attribute */
672 static ssize_t channel_ce_count_show(struct csrow_info *csrow,
673 char *data,
674 int channel)
676 return sprintf(data, "%u\n", csrow->channels[channel].ce_count);
679 /* csrow specific attribute structure */
680 struct csrowdev_attribute {
681 struct attribute attr;
682 ssize_t (*show)(struct csrow_info *,char *,int);
683 ssize_t (*store)(struct csrow_info *, const char *,size_t,int);
684 int private;
687 #define to_csrow(k) container_of(k, struct csrow_info, kobj)
688 #define to_csrowdev_attr(a) container_of(a, struct csrowdev_attribute, attr)
690 /* Set of show/store higher level functions for default csrow attributes */
691 static ssize_t csrowdev_show(struct kobject *kobj,
692 struct attribute *attr,
693 char *buffer)
695 struct csrow_info *csrow = to_csrow(kobj);
696 struct csrowdev_attribute *csrowdev_attr = to_csrowdev_attr(attr);
698 if (csrowdev_attr->show)
699 return csrowdev_attr->show(csrow,
700 buffer,
701 csrowdev_attr->private);
702 return -EIO;
705 static ssize_t csrowdev_store(struct kobject *kobj, struct attribute *attr,
706 const char *buffer, size_t count)
708 struct csrow_info *csrow = to_csrow(kobj);
709 struct csrowdev_attribute * csrowdev_attr = to_csrowdev_attr(attr);
711 if (csrowdev_attr->store)
712 return csrowdev_attr->store(csrow,
713 buffer,
714 count,
715 csrowdev_attr->private);
716 return -EIO;
719 static struct sysfs_ops csrowfs_ops = {
720 .show = csrowdev_show,
721 .store = csrowdev_store
724 #define CSROWDEV_ATTR(_name,_mode,_show,_store,_private) \
725 struct csrowdev_attribute attr_##_name = { \
726 .attr = {.name = __stringify(_name), .mode = _mode }, \
727 .show = _show, \
728 .store = _store, \
729 .private = _private, \
732 /* default cwrow<id>/attribute files */
733 CSROWDEV_ATTR(size_mb,S_IRUGO,csrow_size_show,NULL,0);
734 CSROWDEV_ATTR(dev_type,S_IRUGO,csrow_dev_type_show,NULL,0);
735 CSROWDEV_ATTR(mem_type,S_IRUGO,csrow_mem_type_show,NULL,0);
736 CSROWDEV_ATTR(edac_mode,S_IRUGO,csrow_edac_mode_show,NULL,0);
737 CSROWDEV_ATTR(ue_count,S_IRUGO,csrow_ue_count_show,NULL,0);
738 CSROWDEV_ATTR(ce_count,S_IRUGO,csrow_ce_count_show,NULL,0);
740 /* default attributes of the CSROW<id> object */
741 static struct csrowdev_attribute *default_csrow_attr[] = {
742 &attr_dev_type,
743 &attr_mem_type,
744 &attr_edac_mode,
745 &attr_size_mb,
746 &attr_ue_count,
747 &attr_ce_count,
748 NULL,
752 /* possible dynamic channel DIMM Label attribute files */
753 CSROWDEV_ATTR(ch0_dimm_label,S_IRUGO|S_IWUSR,
754 channel_dimm_label_show,
755 channel_dimm_label_store,
756 0 );
757 CSROWDEV_ATTR(ch1_dimm_label,S_IRUGO|S_IWUSR,
758 channel_dimm_label_show,
759 channel_dimm_label_store,
760 1 );
761 CSROWDEV_ATTR(ch2_dimm_label,S_IRUGO|S_IWUSR,
762 channel_dimm_label_show,
763 channel_dimm_label_store,
764 2 );
765 CSROWDEV_ATTR(ch3_dimm_label,S_IRUGO|S_IWUSR,
766 channel_dimm_label_show,
767 channel_dimm_label_store,
768 3 );
769 CSROWDEV_ATTR(ch4_dimm_label,S_IRUGO|S_IWUSR,
770 channel_dimm_label_show,
771 channel_dimm_label_store,
772 4 );
773 CSROWDEV_ATTR(ch5_dimm_label,S_IRUGO|S_IWUSR,
774 channel_dimm_label_show,
775 channel_dimm_label_store,
776 5 );
778 /* Total possible dynamic DIMM Label attribute file table */
779 static struct csrowdev_attribute *dynamic_csrow_dimm_attr[] = {
780 &attr_ch0_dimm_label,
781 &attr_ch1_dimm_label,
782 &attr_ch2_dimm_label,
783 &attr_ch3_dimm_label,
784 &attr_ch4_dimm_label,
785 &attr_ch5_dimm_label
788 /* possible dynamic channel ce_count attribute files */
789 CSROWDEV_ATTR(ch0_ce_count,S_IRUGO|S_IWUSR,
790 channel_ce_count_show,
791 NULL,
792 0 );
793 CSROWDEV_ATTR(ch1_ce_count,S_IRUGO|S_IWUSR,
794 channel_ce_count_show,
795 NULL,
796 1 );
797 CSROWDEV_ATTR(ch2_ce_count,S_IRUGO|S_IWUSR,
798 channel_ce_count_show,
799 NULL,
800 2 );
801 CSROWDEV_ATTR(ch3_ce_count,S_IRUGO|S_IWUSR,
802 channel_ce_count_show,
803 NULL,
804 3 );
805 CSROWDEV_ATTR(ch4_ce_count,S_IRUGO|S_IWUSR,
806 channel_ce_count_show,
807 NULL,
808 4 );
809 CSROWDEV_ATTR(ch5_ce_count,S_IRUGO|S_IWUSR,
810 channel_ce_count_show,
811 NULL,
812 5 );
814 /* Total possible dynamic ce_count attribute file table */
815 static struct csrowdev_attribute *dynamic_csrow_ce_count_attr[] = {
816 &attr_ch0_ce_count,
817 &attr_ch1_ce_count,
818 &attr_ch2_ce_count,
819 &attr_ch3_ce_count,
820 &attr_ch4_ce_count,
821 &attr_ch5_ce_count
825 #define EDAC_NR_CHANNELS 6
827 /* Create dynamic CHANNEL files, indexed by 'chan', under specifed CSROW */
828 static int edac_create_channel_files(struct kobject *kobj, int chan)
830 int err=-ENODEV;
832 if (chan >= EDAC_NR_CHANNELS)
833 return err;
835 /* create the DIMM label attribute file */
836 err = sysfs_create_file(kobj,
837 (struct attribute *) dynamic_csrow_dimm_attr[chan]);
839 if (!err) {
840 /* create the CE Count attribute file */
841 err = sysfs_create_file(kobj,
842 (struct attribute *) dynamic_csrow_ce_count_attr[chan]);
843 } else {
844 debugf1("%s() dimm labels and ce_count files created", __func__);
847 return err;
850 /* No memory to release for this kobj */
851 static void edac_csrow_instance_release(struct kobject *kobj)
853 struct csrow_info *cs;
855 cs = container_of(kobj, struct csrow_info, kobj);
856 complete(&cs->kobj_complete);
859 /* the kobj_type instance for a CSROW */
860 static struct kobj_type ktype_csrow = {
861 .release = edac_csrow_instance_release,
862 .sysfs_ops = &csrowfs_ops,
863 .default_attrs = (struct attribute **) default_csrow_attr,
866 /* Create a CSROW object under specifed edac_mc_device */
867 static int edac_create_csrow_object(
868 struct kobject *edac_mci_kobj,
869 struct csrow_info *csrow,
870 int index)
872 int err = 0;
873 int chan;
875 memset(&csrow->kobj, 0, sizeof(csrow->kobj));
877 /* generate ..../edac/mc/mc<id>/csrow<index> */
879 csrow->kobj.parent = edac_mci_kobj;
880 csrow->kobj.ktype = &ktype_csrow;
882 /* name this instance of csrow<id> */
883 err = kobject_set_name(&csrow->kobj,"csrow%d",index);
884 if (err)
885 goto error_exit;
887 /* Instanstiate the csrow object */
888 err = kobject_register(&csrow->kobj);
889 if (!err) {
890 /* Create the dyanmic attribute files on this csrow,
891 * namely, the DIMM labels and the channel ce_count
893 for (chan = 0; chan < csrow->nr_channels; chan++) {
894 err = edac_create_channel_files(&csrow->kobj,chan);
895 if (err)
896 break;
900 error_exit:
901 return err;
904 /* default sysfs methods and data structures for the main MCI kobject */
906 static ssize_t mci_reset_counters_store(struct mem_ctl_info *mci,
907 const char *data, size_t count)
909 int row, chan;
911 mci->ue_noinfo_count = 0;
912 mci->ce_noinfo_count = 0;
913 mci->ue_count = 0;
914 mci->ce_count = 0;
916 for (row = 0; row < mci->nr_csrows; row++) {
917 struct csrow_info *ri = &mci->csrows[row];
919 ri->ue_count = 0;
920 ri->ce_count = 0;
922 for (chan = 0; chan < ri->nr_channels; chan++)
923 ri->channels[chan].ce_count = 0;
926 mci->start_time = jiffies;
927 return count;
930 /* default attribute files for the MCI object */
931 static ssize_t mci_ue_count_show(struct mem_ctl_info *mci, char *data)
933 return sprintf(data,"%d\n", mci->ue_count);
936 static ssize_t mci_ce_count_show(struct mem_ctl_info *mci, char *data)
938 return sprintf(data,"%d\n", mci->ce_count);
941 static ssize_t mci_ce_noinfo_show(struct mem_ctl_info *mci, char *data)
943 return sprintf(data,"%d\n", mci->ce_noinfo_count);
946 static ssize_t mci_ue_noinfo_show(struct mem_ctl_info *mci, char *data)
948 return sprintf(data,"%d\n", mci->ue_noinfo_count);
951 static ssize_t mci_seconds_show(struct mem_ctl_info *mci, char *data)
953 return sprintf(data,"%ld\n", (jiffies - mci->start_time) / HZ);
956 static ssize_t mci_ctl_name_show(struct mem_ctl_info *mci, char *data)
958 return sprintf(data,"%s\n", mci->ctl_name);
961 static ssize_t mci_size_mb_show(struct mem_ctl_info *mci, char *data)
963 int total_pages, csrow_idx;
965 for (total_pages = csrow_idx = 0; csrow_idx < mci->nr_csrows;
966 csrow_idx++) {
967 struct csrow_info *csrow = &mci->csrows[csrow_idx];
969 if (!csrow->nr_pages)
970 continue;
972 total_pages += csrow->nr_pages;
975 return sprintf(data,"%u\n", PAGES_TO_MiB(total_pages));
978 struct mcidev_attribute {
979 struct attribute attr;
980 ssize_t (*show)(struct mem_ctl_info *,char *);
981 ssize_t (*store)(struct mem_ctl_info *, const char *,size_t);
984 #define to_mci(k) container_of(k, struct mem_ctl_info, edac_mci_kobj)
985 #define to_mcidev_attr(a) container_of(a, struct mcidev_attribute, attr)
987 /* MCI show/store functions for top most object */
988 static ssize_t mcidev_show(struct kobject *kobj, struct attribute *attr,
989 char *buffer)
991 struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
992 struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
994 if (mcidev_attr->show)
995 return mcidev_attr->show(mem_ctl_info, buffer);
997 return -EIO;
1000 static ssize_t mcidev_store(struct kobject *kobj, struct attribute *attr,
1001 const char *buffer, size_t count)
1003 struct mem_ctl_info *mem_ctl_info = to_mci(kobj);
1004 struct mcidev_attribute * mcidev_attr = to_mcidev_attr(attr);
1006 if (mcidev_attr->store)
1007 return mcidev_attr->store(mem_ctl_info, buffer, count);
1009 return -EIO;
1012 static struct sysfs_ops mci_ops = {
1013 .show = mcidev_show,
1014 .store = mcidev_store
1017 #define MCIDEV_ATTR(_name,_mode,_show,_store) \
1018 struct mcidev_attribute mci_attr_##_name = { \
1019 .attr = {.name = __stringify(_name), .mode = _mode }, \
1020 .show = _show, \
1021 .store = _store, \
1024 /* default Control file */
1025 MCIDEV_ATTR(reset_counters,S_IWUSR,NULL,mci_reset_counters_store);
1027 /* default Attribute files */
1028 MCIDEV_ATTR(mc_name,S_IRUGO,mci_ctl_name_show,NULL);
1029 MCIDEV_ATTR(size_mb,S_IRUGO,mci_size_mb_show,NULL);
1030 MCIDEV_ATTR(seconds_since_reset,S_IRUGO,mci_seconds_show,NULL);
1031 MCIDEV_ATTR(ue_noinfo_count,S_IRUGO,mci_ue_noinfo_show,NULL);
1032 MCIDEV_ATTR(ce_noinfo_count,S_IRUGO,mci_ce_noinfo_show,NULL);
1033 MCIDEV_ATTR(ue_count,S_IRUGO,mci_ue_count_show,NULL);
1034 MCIDEV_ATTR(ce_count,S_IRUGO,mci_ce_count_show,NULL);
1036 static struct mcidev_attribute *mci_attr[] = {
1037 &mci_attr_reset_counters,
1038 &mci_attr_mc_name,
1039 &mci_attr_size_mb,
1040 &mci_attr_seconds_since_reset,
1041 &mci_attr_ue_noinfo_count,
1042 &mci_attr_ce_noinfo_count,
1043 &mci_attr_ue_count,
1044 &mci_attr_ce_count,
1045 NULL
1049 * Release of a MC controlling instance
1051 static void edac_mci_instance_release(struct kobject *kobj)
1053 struct mem_ctl_info *mci;
1055 mci = to_mci(kobj);
1056 debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1057 complete(&mci->kobj_complete);
1060 static struct kobj_type ktype_mci = {
1061 .release = edac_mci_instance_release,
1062 .sysfs_ops = &mci_ops,
1063 .default_attrs = (struct attribute **) mci_attr,
1067 #define EDAC_DEVICE_SYMLINK "device"
1070 * Create a new Memory Controller kobject instance,
1071 * mc<id> under the 'mc' directory
1073 * Return:
1074 * 0 Success
1075 * !0 Failure
1077 static int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
1079 int i;
1080 int err;
1081 struct csrow_info *csrow;
1082 struct kobject *edac_mci_kobj=&mci->edac_mci_kobj;
1084 debugf0("%s() idx=%d\n", __func__, mci->mc_idx);
1085 memset(edac_mci_kobj, 0, sizeof(*edac_mci_kobj));
1087 /* set the name of the mc<id> object */
1088 err = kobject_set_name(edac_mci_kobj,"mc%d",mci->mc_idx);
1089 if (err)
1090 return err;
1092 /* link to our parent the '..../edac/mc' object */
1093 edac_mci_kobj->parent = &edac_memctrl_kobj;
1094 edac_mci_kobj->ktype = &ktype_mci;
1096 /* register the mc<id> kobject */
1097 err = kobject_register(edac_mci_kobj);
1098 if (err)
1099 return err;
1101 /* create a symlink for the device */
1102 err = sysfs_create_link(edac_mci_kobj, &mci->dev->kobj,
1103 EDAC_DEVICE_SYMLINK);
1104 if (err)
1105 goto fail0;
1107 /* Make directories for each CSROW object
1108 * under the mc<id> kobject
1110 for (i = 0; i < mci->nr_csrows; i++) {
1111 csrow = &mci->csrows[i];
1113 /* Only expose populated CSROWs */
1114 if (csrow->nr_pages > 0) {
1115 err = edac_create_csrow_object(edac_mci_kobj,csrow,i);
1116 if (err)
1117 goto fail1;
1121 return 0;
1123 /* CSROW error: backout what has already been registered, */
1124 fail1:
1125 for ( i--; i >= 0; i--) {
1126 if (csrow->nr_pages > 0) {
1127 init_completion(&csrow->kobj_complete);
1128 kobject_unregister(&mci->csrows[i].kobj);
1129 wait_for_completion(&csrow->kobj_complete);
1133 fail0:
1134 init_completion(&mci->kobj_complete);
1135 kobject_unregister(edac_mci_kobj);
1136 wait_for_completion(&mci->kobj_complete);
1137 return err;
1141 * remove a Memory Controller instance
1143 static void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1145 int i;
1147 debugf0("%s()\n", __func__);
1149 /* remove all csrow kobjects */
1150 for (i = 0; i < mci->nr_csrows; i++) {
1151 if (mci->csrows[i].nr_pages > 0) {
1152 init_completion(&mci->csrows[i].kobj_complete);
1153 kobject_unregister(&mci->csrows[i].kobj);
1154 wait_for_completion(&mci->csrows[i].kobj_complete);
1158 sysfs_remove_link(&mci->edac_mci_kobj, EDAC_DEVICE_SYMLINK);
1159 init_completion(&mci->kobj_complete);
1160 kobject_unregister(&mci->edac_mci_kobj);
1161 wait_for_completion(&mci->kobj_complete);
1164 /* END OF sysfs data and methods */
1166 #ifdef CONFIG_EDAC_DEBUG
1168 void edac_mc_dump_channel(struct channel_info *chan)
1170 debugf4("\tchannel = %p\n", chan);
1171 debugf4("\tchannel->chan_idx = %d\n", chan->chan_idx);
1172 debugf4("\tchannel->ce_count = %d\n", chan->ce_count);
1173 debugf4("\tchannel->label = '%s'\n", chan->label);
1174 debugf4("\tchannel->csrow = %p\n\n", chan->csrow);
1176 EXPORT_SYMBOL_GPL(edac_mc_dump_channel);
1178 void edac_mc_dump_csrow(struct csrow_info *csrow)
1180 debugf4("\tcsrow = %p\n", csrow);
1181 debugf4("\tcsrow->csrow_idx = %d\n", csrow->csrow_idx);
1182 debugf4("\tcsrow->first_page = 0x%lx\n",
1183 csrow->first_page);
1184 debugf4("\tcsrow->last_page = 0x%lx\n", csrow->last_page);
1185 debugf4("\tcsrow->page_mask = 0x%lx\n", csrow->page_mask);
1186 debugf4("\tcsrow->nr_pages = 0x%x\n", csrow->nr_pages);
1187 debugf4("\tcsrow->nr_channels = %d\n",
1188 csrow->nr_channels);
1189 debugf4("\tcsrow->channels = %p\n", csrow->channels);
1190 debugf4("\tcsrow->mci = %p\n\n", csrow->mci);
1192 EXPORT_SYMBOL_GPL(edac_mc_dump_csrow);
1194 void edac_mc_dump_mci(struct mem_ctl_info *mci)
1196 debugf3("\tmci = %p\n", mci);
1197 debugf3("\tmci->mtype_cap = %lx\n", mci->mtype_cap);
1198 debugf3("\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap);
1199 debugf3("\tmci->edac_cap = %lx\n", mci->edac_cap);
1200 debugf4("\tmci->edac_check = %p\n", mci->edac_check);
1201 debugf3("\tmci->nr_csrows = %d, csrows = %p\n",
1202 mci->nr_csrows, mci->csrows);
1203 debugf3("\tdev = %p\n", mci->dev);
1204 debugf3("\tmod_name:ctl_name = %s:%s\n",
1205 mci->mod_name, mci->ctl_name);
1206 debugf3("\tpvt_info = %p\n\n", mci->pvt_info);
1208 EXPORT_SYMBOL_GPL(edac_mc_dump_mci);
1210 #endif /* CONFIG_EDAC_DEBUG */
1212 /* 'ptr' points to a possibly unaligned item X such that sizeof(X) is 'size'.
1213 * Adjust 'ptr' so that its alignment is at least as stringent as what the
1214 * compiler would provide for X and return the aligned result.
1216 * If 'size' is a constant, the compiler will optimize this whole function
1217 * down to either a no-op or the addition of a constant to the value of 'ptr'.
1219 static inline char * align_ptr(void *ptr, unsigned size)
1221 unsigned align, r;
1223 /* Here we assume that the alignment of a "long long" is the most
1224 * stringent alignment that the compiler will ever provide by default.
1225 * As far as I know, this is a reasonable assumption.
1227 if (size > sizeof(long))
1228 align = sizeof(long long);
1229 else if (size > sizeof(int))
1230 align = sizeof(long);
1231 else if (size > sizeof(short))
1232 align = sizeof(int);
1233 else if (size > sizeof(char))
1234 align = sizeof(short);
1235 else
1236 return (char *) ptr;
1238 r = size % align;
1240 if (r == 0)
1241 return (char *) ptr;
1243 return (char *) (((unsigned long) ptr) + align - r);
1247 * edac_mc_alloc: Allocate a struct mem_ctl_info structure
1248 * @size_pvt: size of private storage needed
1249 * @nr_csrows: Number of CWROWS needed for this MC
1250 * @nr_chans: Number of channels for the MC
1252 * Everything is kmalloc'ed as one big chunk - more efficient.
1253 * Only can be used if all structures have the same lifetime - otherwise
1254 * you have to allocate and initialize your own structures.
1256 * Use edac_mc_free() to free mc structures allocated by this function.
1258 * Returns:
1259 * NULL allocation failed
1260 * struct mem_ctl_info pointer
1262 struct mem_ctl_info *edac_mc_alloc(unsigned sz_pvt, unsigned nr_csrows,
1263 unsigned nr_chans)
1265 struct mem_ctl_info *mci;
1266 struct csrow_info *csi, *csrow;
1267 struct channel_info *chi, *chp, *chan;
1268 void *pvt;
1269 unsigned size;
1270 int row, chn;
1272 /* Figure out the offsets of the various items from the start of an mc
1273 * structure. We want the alignment of each item to be at least as
1274 * stringent as what the compiler would provide if we could simply
1275 * hardcode everything into a single struct.
1277 mci = (struct mem_ctl_info *) 0;
1278 csi = (struct csrow_info *)align_ptr(&mci[1], sizeof(*csi));
1279 chi = (struct channel_info *)
1280 align_ptr(&csi[nr_csrows], sizeof(*chi));
1281 pvt = align_ptr(&chi[nr_chans * nr_csrows], sz_pvt);
1282 size = ((unsigned long) pvt) + sz_pvt;
1284 if ((mci = kmalloc(size, GFP_KERNEL)) == NULL)
1285 return NULL;
1287 /* Adjust pointers so they point within the memory we just allocated
1288 * rather than an imaginary chunk of memory located at address 0.
1290 csi = (struct csrow_info *) (((char *) mci) + ((unsigned long) csi));
1291 chi = (struct channel_info *) (((char *) mci) + ((unsigned long) chi));
1292 pvt = sz_pvt ? (((char *) mci) + ((unsigned long) pvt)) : NULL;
1294 memset(mci, 0, size); /* clear all fields */
1295 mci->csrows = csi;
1296 mci->pvt_info = pvt;
1297 mci->nr_csrows = nr_csrows;
1299 for (row = 0; row < nr_csrows; row++) {
1300 csrow = &csi[row];
1301 csrow->csrow_idx = row;
1302 csrow->mci = mci;
1303 csrow->nr_channels = nr_chans;
1304 chp = &chi[row * nr_chans];
1305 csrow->channels = chp;
1307 for (chn = 0; chn < nr_chans; chn++) {
1308 chan = &chp[chn];
1309 chan->chan_idx = chn;
1310 chan->csrow = csrow;
1314 return mci;
1316 EXPORT_SYMBOL_GPL(edac_mc_alloc);
1319 * edac_mc_free: Free a previously allocated 'mci' structure
1320 * @mci: pointer to a struct mem_ctl_info structure
1322 void edac_mc_free(struct mem_ctl_info *mci)
1324 kfree(mci);
1326 EXPORT_SYMBOL_GPL(edac_mc_free);
1328 static struct mem_ctl_info *find_mci_by_dev(struct device *dev)
1330 struct mem_ctl_info *mci;
1331 struct list_head *item;
1333 debugf3("%s()\n", __func__);
1335 list_for_each(item, &mc_devices) {
1336 mci = list_entry(item, struct mem_ctl_info, link);
1338 if (mci->dev == dev)
1339 return mci;
1342 return NULL;
1345 /* Return 0 on success, 1 on failure.
1346 * Before calling this function, caller must
1347 * assign a unique value to mci->mc_idx.
1349 static int add_mc_to_global_list (struct mem_ctl_info *mci)
1351 struct list_head *item, *insert_before;
1352 struct mem_ctl_info *p;
1354 insert_before = &mc_devices;
1356 if (unlikely((p = find_mci_by_dev(mci->dev)) != NULL))
1357 goto fail0;
1359 list_for_each(item, &mc_devices) {
1360 p = list_entry(item, struct mem_ctl_info, link);
1362 if (p->mc_idx >= mci->mc_idx) {
1363 if (unlikely(p->mc_idx == mci->mc_idx))
1364 goto fail1;
1366 insert_before = item;
1367 break;
1371 list_add_tail_rcu(&mci->link, insert_before);
1372 return 0;
1374 fail0:
1375 edac_printk(KERN_WARNING, EDAC_MC,
1376 "%s (%s) %s %s already assigned %d\n", p->dev->bus_id,
1377 dev_name(p->dev), p->mod_name, p->ctl_name, p->mc_idx);
1378 return 1;
1380 fail1:
1381 edac_printk(KERN_WARNING, EDAC_MC,
1382 "bug in low-level driver: attempt to assign\n"
1383 " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__);
1384 return 1;
1387 static void complete_mc_list_del(struct rcu_head *head)
1389 struct mem_ctl_info *mci;
1391 mci = container_of(head, struct mem_ctl_info, rcu);
1392 INIT_LIST_HEAD(&mci->link);
1393 complete(&mci->complete);
1396 static void del_mc_from_global_list(struct mem_ctl_info *mci)
1398 list_del_rcu(&mci->link);
1399 init_completion(&mci->complete);
1400 call_rcu(&mci->rcu, complete_mc_list_del);
1401 wait_for_completion(&mci->complete);
1405 * edac_mc_add_mc: Insert the 'mci' structure into the mci global list and
1406 * create sysfs entries associated with mci structure
1407 * @mci: pointer to the mci structure to be added to the list
1408 * @mc_idx: A unique numeric identifier to be assigned to the 'mci' structure.
1410 * Return:
1411 * 0 Success
1412 * !0 Failure
1415 /* FIXME - should a warning be printed if no error detection? correction? */
1416 int edac_mc_add_mc(struct mem_ctl_info *mci, int mc_idx)
1418 debugf0("%s()\n", __func__);
1419 mci->mc_idx = mc_idx;
1420 #ifdef CONFIG_EDAC_DEBUG
1421 if (edac_debug_level >= 3)
1422 edac_mc_dump_mci(mci);
1424 if (edac_debug_level >= 4) {
1425 int i;
1427 for (i = 0; i < mci->nr_csrows; i++) {
1428 int j;
1430 edac_mc_dump_csrow(&mci->csrows[i]);
1431 for (j = 0; j < mci->csrows[i].nr_channels; j++)
1432 edac_mc_dump_channel(
1433 &mci->csrows[i].channels[j]);
1436 #endif
1437 down(&mem_ctls_mutex);
1439 if (add_mc_to_global_list(mci))
1440 goto fail0;
1442 /* set load time so that error rate can be tracked */
1443 mci->start_time = jiffies;
1445 if (edac_create_sysfs_mci_device(mci)) {
1446 edac_mc_printk(mci, KERN_WARNING,
1447 "failed to create sysfs device\n");
1448 goto fail1;
1451 /* Report action taken */
1452 edac_mc_printk(mci, KERN_INFO, "Giving out device to %s %s: DEV %s\n",
1453 mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1455 up(&mem_ctls_mutex);
1456 return 0;
1458 fail1:
1459 del_mc_from_global_list(mci);
1461 fail0:
1462 up(&mem_ctls_mutex);
1463 return 1;
1465 EXPORT_SYMBOL_GPL(edac_mc_add_mc);
1468 * edac_mc_del_mc: Remove sysfs entries for specified mci structure and
1469 * remove mci structure from global list
1470 * @pdev: Pointer to 'struct device' representing mci structure to remove.
1472 * Return pointer to removed mci structure, or NULL if device not found.
1474 struct mem_ctl_info * edac_mc_del_mc(struct device *dev)
1476 struct mem_ctl_info *mci;
1478 debugf0("MC: %s()\n", __func__);
1479 down(&mem_ctls_mutex);
1481 if ((mci = find_mci_by_dev(dev)) == NULL) {
1482 up(&mem_ctls_mutex);
1483 return NULL;
1486 edac_remove_sysfs_mci_device(mci);
1487 del_mc_from_global_list(mci);
1488 up(&mem_ctls_mutex);
1489 edac_printk(KERN_INFO, EDAC_MC,
1490 "Removed device %d for %s %s: DEV %s\n", mci->mc_idx,
1491 mci->mod_name, mci->ctl_name, dev_name(mci->dev));
1492 return mci;
1494 EXPORT_SYMBOL_GPL(edac_mc_del_mc);
1496 void edac_mc_scrub_block(unsigned long page, unsigned long offset, u32 size)
1498 struct page *pg;
1499 void *virt_addr;
1500 unsigned long flags = 0;
1502 debugf3("%s()\n", __func__);
1504 /* ECC error page was not in our memory. Ignore it. */
1505 if(!pfn_valid(page))
1506 return;
1508 /* Find the actual page structure then map it and fix */
1509 pg = pfn_to_page(page);
1511 if (PageHighMem(pg))
1512 local_irq_save(flags);
1514 virt_addr = kmap_atomic(pg, KM_BOUNCE_READ);
1516 /* Perform architecture specific atomic scrub operation */
1517 atomic_scrub(virt_addr + offset, size);
1519 /* Unmap and complete */
1520 kunmap_atomic(virt_addr, KM_BOUNCE_READ);
1522 if (PageHighMem(pg))
1523 local_irq_restore(flags);
1525 EXPORT_SYMBOL_GPL(edac_mc_scrub_block);
1527 /* FIXME - should return -1 */
1528 int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page)
1530 struct csrow_info *csrows = mci->csrows;
1531 int row, i;
1533 debugf1("MC%d: %s(): 0x%lx\n", mci->mc_idx, __func__, page);
1534 row = -1;
1536 for (i = 0; i < mci->nr_csrows; i++) {
1537 struct csrow_info *csrow = &csrows[i];
1539 if (csrow->nr_pages == 0)
1540 continue;
1542 debugf3("MC%d: %s(): first(0x%lx) page(0x%lx) last(0x%lx) "
1543 "mask(0x%lx)\n", mci->mc_idx, __func__,
1544 csrow->first_page, page, csrow->last_page,
1545 csrow->page_mask);
1547 if ((page >= csrow->first_page) &&
1548 (page <= csrow->last_page) &&
1549 ((page & csrow->page_mask) ==
1550 (csrow->first_page & csrow->page_mask))) {
1551 row = i;
1552 break;
1556 if (row == -1)
1557 edac_mc_printk(mci, KERN_ERR,
1558 "could not look up page error address %lx\n",
1559 (unsigned long) page);
1561 return row;
1563 EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page);
1565 /* FIXME - setable log (warning/emerg) levels */
1566 /* FIXME - integrate with evlog: http://evlog.sourceforge.net/ */
1567 void edac_mc_handle_ce(struct mem_ctl_info *mci,
1568 unsigned long page_frame_number, unsigned long offset_in_page,
1569 unsigned long syndrome, int row, int channel, const char *msg)
1571 unsigned long remapped_page;
1573 debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1575 /* FIXME - maybe make panic on INTERNAL ERROR an option */
1576 if (row >= mci->nr_csrows || row < 0) {
1577 /* something is wrong */
1578 edac_mc_printk(mci, KERN_ERR,
1579 "INTERNAL ERROR: row out of range "
1580 "(%d >= %d)\n", row, mci->nr_csrows);
1581 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1582 return;
1585 if (channel >= mci->csrows[row].nr_channels || channel < 0) {
1586 /* something is wrong */
1587 edac_mc_printk(mci, KERN_ERR,
1588 "INTERNAL ERROR: channel out of range "
1589 "(%d >= %d)\n", channel,
1590 mci->csrows[row].nr_channels);
1591 edac_mc_handle_ce_no_info(mci, "INTERNAL ERROR");
1592 return;
1595 if (log_ce)
1596 /* FIXME - put in DIMM location */
1597 edac_mc_printk(mci, KERN_WARNING,
1598 "CE page 0x%lx, offset 0x%lx, grain %d, syndrome "
1599 "0x%lx, row %d, channel %d, label \"%s\": %s\n",
1600 page_frame_number, offset_in_page,
1601 mci->csrows[row].grain, syndrome, row, channel,
1602 mci->csrows[row].channels[channel].label, msg);
1604 mci->ce_count++;
1605 mci->csrows[row].ce_count++;
1606 mci->csrows[row].channels[channel].ce_count++;
1608 if (mci->scrub_mode & SCRUB_SW_SRC) {
1610 * Some MC's can remap memory so that it is still available
1611 * at a different address when PCI devices map into memory.
1612 * MC's that can't do this lose the memory where PCI devices
1613 * are mapped. This mapping is MC dependant and so we call
1614 * back into the MC driver for it to map the MC page to
1615 * a physical (CPU) page which can then be mapped to a virtual
1616 * page - which can then be scrubbed.
1618 remapped_page = mci->ctl_page_to_phys ?
1619 mci->ctl_page_to_phys(mci, page_frame_number) :
1620 page_frame_number;
1622 edac_mc_scrub_block(remapped_page, offset_in_page,
1623 mci->csrows[row].grain);
1626 EXPORT_SYMBOL_GPL(edac_mc_handle_ce);
1628 void edac_mc_handle_ce_no_info(struct mem_ctl_info *mci, const char *msg)
1630 if (log_ce)
1631 edac_mc_printk(mci, KERN_WARNING,
1632 "CE - no information available: %s\n", msg);
1634 mci->ce_noinfo_count++;
1635 mci->ce_count++;
1637 EXPORT_SYMBOL_GPL(edac_mc_handle_ce_no_info);
1639 void edac_mc_handle_ue(struct mem_ctl_info *mci,
1640 unsigned long page_frame_number, unsigned long offset_in_page,
1641 int row, const char *msg)
1643 int len = EDAC_MC_LABEL_LEN * 4;
1644 char labels[len + 1];
1645 char *pos = labels;
1646 int chan;
1647 int chars;
1649 debugf3("MC%d: %s()\n", mci->mc_idx, __func__);
1651 /* FIXME - maybe make panic on INTERNAL ERROR an option */
1652 if (row >= mci->nr_csrows || row < 0) {
1653 /* something is wrong */
1654 edac_mc_printk(mci, KERN_ERR,
1655 "INTERNAL ERROR: row out of range "
1656 "(%d >= %d)\n", row, mci->nr_csrows);
1657 edac_mc_handle_ue_no_info(mci, "INTERNAL ERROR");
1658 return;
1661 chars = snprintf(pos, len + 1, "%s",
1662 mci->csrows[row].channels[0].label);
1663 len -= chars;
1664 pos += chars;
1666 for (chan = 1; (chan < mci->csrows[row].nr_channels) && (len > 0);
1667 chan++) {
1668 chars = snprintf(pos, len + 1, ":%s",
1669 mci->csrows[row].channels[chan].label);
1670 len -= chars;
1671 pos += chars;
1674 if (log_ue)
1675 edac_mc_printk(mci, KERN_EMERG,
1676 "UE page 0x%lx, offset 0x%lx, grain %d, row %d, "
1677 "labels \"%s\": %s\n", page_frame_number,
1678 offset_in_page, mci->csrows[row].grain, row, labels,
1679 msg);
1681 if (panic_on_ue)
1682 panic("EDAC MC%d: UE page 0x%lx, offset 0x%lx, grain %d, "
1683 "row %d, labels \"%s\": %s\n", mci->mc_idx,
1684 page_frame_number, offset_in_page,
1685 mci->csrows[row].grain, row, labels, msg);
1687 mci->ue_count++;
1688 mci->csrows[row].ue_count++;
1690 EXPORT_SYMBOL_GPL(edac_mc_handle_ue);
1692 void edac_mc_handle_ue_no_info(struct mem_ctl_info *mci, const char *msg)
1694 if (panic_on_ue)
1695 panic("EDAC MC%d: Uncorrected Error", mci->mc_idx);
1697 if (log_ue)
1698 edac_mc_printk(mci, KERN_WARNING,
1699 "UE - no information available: %s\n", msg);
1700 mci->ue_noinfo_count++;
1701 mci->ue_count++;
1703 EXPORT_SYMBOL_GPL(edac_mc_handle_ue_no_info);
1707 * Iterate over all MC instances and check for ECC, et al, errors
1709 static inline void check_mc_devices(void)
1711 struct list_head *item;
1712 struct mem_ctl_info *mci;
1714 debugf3("%s()\n", __func__);
1715 down(&mem_ctls_mutex);
1717 list_for_each(item, &mc_devices) {
1718 mci = list_entry(item, struct mem_ctl_info, link);
1720 if (mci->edac_check != NULL)
1721 mci->edac_check(mci);
1724 up(&mem_ctls_mutex);
1728 * Check MC status every poll_msec.
1729 * Check PCI status every poll_msec as well.
1731 * This where the work gets done for edac.
1733 * SMP safe, doesn't use NMI, and auto-rate-limits.
1735 static void do_edac_check(void)
1737 debugf3("%s()\n", __func__);
1738 check_mc_devices();
1739 do_pci_parity_check();
1742 static int edac_kernel_thread(void *arg)
1744 while (!kthread_should_stop()) {
1745 do_edac_check();
1747 /* goto sleep for the interval */
1748 schedule_timeout_interruptible((HZ * poll_msec) / 1000);
1749 try_to_freeze();
1752 return 0;
1756 * edac_mc_init
1757 * module initialization entry point
1759 static int __init edac_mc_init(void)
1761 edac_printk(KERN_INFO, EDAC_MC, EDAC_MC_VERSION "\n");
1764 * Harvest and clear any boot/initialization PCI parity errors
1766 * FIXME: This only clears errors logged by devices present at time of
1767 * module initialization. We should also do an initial clear
1768 * of each newly hotplugged device.
1770 clear_pci_parity_errors();
1772 /* Create the MC sysfs entries */
1773 if (edac_sysfs_memctrl_setup()) {
1774 edac_printk(KERN_ERR, EDAC_MC,
1775 "Error initializing sysfs code\n");
1776 return -ENODEV;
1779 /* Create the PCI parity sysfs entries */
1780 if (edac_sysfs_pci_setup()) {
1781 edac_sysfs_memctrl_teardown();
1782 edac_printk(KERN_ERR, EDAC_MC,
1783 "EDAC PCI: Error initializing sysfs code\n");
1784 return -ENODEV;
1787 /* create our kernel thread */
1788 edac_thread = kthread_run(edac_kernel_thread, NULL, "kedac");
1790 if (IS_ERR(edac_thread)) {
1791 /* remove the sysfs entries */
1792 edac_sysfs_memctrl_teardown();
1793 edac_sysfs_pci_teardown();
1794 return PTR_ERR(edac_thread);
1797 return 0;
1801 * edac_mc_exit()
1802 * module exit/termination functioni
1804 static void __exit edac_mc_exit(void)
1806 debugf0("%s()\n", __func__);
1807 kthread_stop(edac_thread);
1809 /* tear down the sysfs device */
1810 edac_sysfs_memctrl_teardown();
1811 edac_sysfs_pci_teardown();
1814 module_init(edac_mc_init);
1815 module_exit(edac_mc_exit);
1817 MODULE_LICENSE("GPL");
1818 MODULE_AUTHOR("Linux Networx (http://lnxi.com) Thayne Harbaugh et al\n"
1819 "Based on work by Dan Hollis et al");
1820 MODULE_DESCRIPTION("Core library routines for MC reporting");
1822 module_param(panic_on_ue, int, 0644);
1823 MODULE_PARM_DESC(panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
1824 #ifdef CONFIG_PCI
1825 module_param(check_pci_parity, int, 0644);
1826 MODULE_PARM_DESC(check_pci_parity, "Check for PCI bus parity errors: 0=off 1=on");
1827 module_param(panic_on_pci_parity, int, 0644);
1828 MODULE_PARM_DESC(panic_on_pci_parity, "Panic on PCI Bus Parity error: 0=off 1=on");
1829 #endif
1830 module_param(log_ue, int, 0644);
1831 MODULE_PARM_DESC(log_ue, "Log uncorrectable error to console: 0=off 1=on");
1832 module_param(log_ce, int, 0644);
1833 MODULE_PARM_DESC(log_ce, "Log correctable error to console: 0=off 1=on");
1834 module_param(poll_msec, int, 0644);
1835 MODULE_PARM_DESC(poll_msec, "Polling period in milliseconds");
1836 #ifdef CONFIG_EDAC_DEBUG
1837 module_param(edac_debug_level, int, 0644);
1838 MODULE_PARM_DESC(edac_debug_level, "Debug level");
1839 #endif