2 * linux/drivers/ide/ide-iops.c Version 0.37 Mar 05, 2003
4 * Copyright (C) 2000-2002 Andre Hedrick <andre@linux-ide.org>
5 * Copyright (C) 2003 Red Hat <alan@redhat.com>
9 #include <linux/module.h>
10 #include <linux/types.h>
11 #include <linux/string.h>
12 #include <linux/kernel.h>
13 #include <linux/timer.h>
15 #include <linux/interrupt.h>
16 #include <linux/major.h>
17 #include <linux/errno.h>
18 #include <linux/genhd.h>
19 #include <linux/blkpg.h>
20 #include <linux/slab.h>
21 #include <linux/pci.h>
22 #include <linux/delay.h>
23 #include <linux/hdreg.h>
24 #include <linux/ide.h>
25 #include <linux/bitops.h>
26 #include <linux/nmi.h>
28 #include <asm/byteorder.h>
30 #include <asm/uaccess.h>
34 * Conventional PIO operations for ATA devices
37 static u8
ide_inb (unsigned long port
)
39 return (u8
) inb(port
);
42 static u16
ide_inw (unsigned long port
)
44 return (u16
) inw(port
);
47 static void ide_insw (unsigned long port
, void *addr
, u32 count
)
49 insw(port
, addr
, count
);
52 static u32
ide_inl (unsigned long port
)
54 return (u32
) inl(port
);
57 static void ide_insl (unsigned long port
, void *addr
, u32 count
)
59 insl(port
, addr
, count
);
62 static void ide_outb (u8 val
, unsigned long port
)
67 static void ide_outbsync (ide_drive_t
*drive
, u8 addr
, unsigned long port
)
72 static void ide_outw (u16 val
, unsigned long port
)
77 static void ide_outsw (unsigned long port
, void *addr
, u32 count
)
79 outsw(port
, addr
, count
);
82 static void ide_outl (u32 val
, unsigned long port
)
87 static void ide_outsl (unsigned long port
, void *addr
, u32 count
)
89 outsl(port
, addr
, count
);
92 void default_hwif_iops (ide_hwif_t
*hwif
)
94 hwif
->OUTB
= ide_outb
;
95 hwif
->OUTBSYNC
= ide_outbsync
;
96 hwif
->OUTW
= ide_outw
;
97 hwif
->OUTL
= ide_outl
;
98 hwif
->OUTSW
= ide_outsw
;
99 hwif
->OUTSL
= ide_outsl
;
103 hwif
->INSW
= ide_insw
;
104 hwif
->INSL
= ide_insl
;
108 * MMIO operations, typically used for SATA controllers
111 static u8
ide_mm_inb (unsigned long port
)
113 return (u8
) readb((void __iomem
*) port
);
116 static u16
ide_mm_inw (unsigned long port
)
118 return (u16
) readw((void __iomem
*) port
);
121 static void ide_mm_insw (unsigned long port
, void *addr
, u32 count
)
123 __ide_mm_insw((void __iomem
*) port
, addr
, count
);
126 static u32
ide_mm_inl (unsigned long port
)
128 return (u32
) readl((void __iomem
*) port
);
131 static void ide_mm_insl (unsigned long port
, void *addr
, u32 count
)
133 __ide_mm_insl((void __iomem
*) port
, addr
, count
);
136 static void ide_mm_outb (u8 value
, unsigned long port
)
138 writeb(value
, (void __iomem
*) port
);
141 static void ide_mm_outbsync (ide_drive_t
*drive
, u8 value
, unsigned long port
)
143 writeb(value
, (void __iomem
*) port
);
146 static void ide_mm_outw (u16 value
, unsigned long port
)
148 writew(value
, (void __iomem
*) port
);
151 static void ide_mm_outsw (unsigned long port
, void *addr
, u32 count
)
153 __ide_mm_outsw((void __iomem
*) port
, addr
, count
);
156 static void ide_mm_outl (u32 value
, unsigned long port
)
158 writel(value
, (void __iomem
*) port
);
161 static void ide_mm_outsl (unsigned long port
, void *addr
, u32 count
)
163 __ide_mm_outsl((void __iomem
*) port
, addr
, count
);
166 void default_hwif_mmiops (ide_hwif_t
*hwif
)
168 hwif
->OUTB
= ide_mm_outb
;
169 /* Most systems will need to override OUTBSYNC, alas however
170 this one is controller specific! */
171 hwif
->OUTBSYNC
= ide_mm_outbsync
;
172 hwif
->OUTW
= ide_mm_outw
;
173 hwif
->OUTL
= ide_mm_outl
;
174 hwif
->OUTSW
= ide_mm_outsw
;
175 hwif
->OUTSL
= ide_mm_outsl
;
176 hwif
->INB
= ide_mm_inb
;
177 hwif
->INW
= ide_mm_inw
;
178 hwif
->INL
= ide_mm_inl
;
179 hwif
->INSW
= ide_mm_insw
;
180 hwif
->INSL
= ide_mm_insl
;
183 EXPORT_SYMBOL(default_hwif_mmiops
);
185 u32
ide_read_24 (ide_drive_t
*drive
)
187 u8 hcyl
= HWIF(drive
)->INB(IDE_HCYL_REG
);
188 u8 lcyl
= HWIF(drive
)->INB(IDE_LCYL_REG
);
189 u8 sect
= HWIF(drive
)->INB(IDE_SECTOR_REG
);
190 return (hcyl
<<16)|(lcyl
<<8)|sect
;
193 void SELECT_DRIVE (ide_drive_t
*drive
)
195 if (HWIF(drive
)->selectproc
)
196 HWIF(drive
)->selectproc(drive
);
197 HWIF(drive
)->OUTB(drive
->select
.all
, IDE_SELECT_REG
);
200 EXPORT_SYMBOL(SELECT_DRIVE
);
202 void SELECT_INTERRUPT (ide_drive_t
*drive
)
204 if (HWIF(drive
)->intrproc
)
205 HWIF(drive
)->intrproc(drive
);
207 HWIF(drive
)->OUTB(drive
->ctl
|2, IDE_CONTROL_REG
);
210 void SELECT_MASK (ide_drive_t
*drive
, int mask
)
212 if (HWIF(drive
)->maskproc
)
213 HWIF(drive
)->maskproc(drive
, mask
);
216 void QUIRK_LIST (ide_drive_t
*drive
)
218 if (HWIF(drive
)->quirkproc
)
219 drive
->quirk_list
= HWIF(drive
)->quirkproc(drive
);
223 * Some localbus EIDE interfaces require a special access sequence
224 * when using 32-bit I/O instructions to transfer data. We call this
225 * the "vlb_sync" sequence, which consists of three successive reads
226 * of the sector count register location, with interrupts disabled
227 * to ensure that the reads all happen together.
229 static void ata_vlb_sync(ide_drive_t
*drive
, unsigned long port
)
231 (void) HWIF(drive
)->INB(port
);
232 (void) HWIF(drive
)->INB(port
);
233 (void) HWIF(drive
)->INB(port
);
237 * This is used for most PIO data transfers *from* the IDE interface
239 static void ata_input_data(ide_drive_t
*drive
, void *buffer
, u32 wcount
)
241 ide_hwif_t
*hwif
= HWIF(drive
);
242 u8 io_32bit
= drive
->io_32bit
;
247 local_irq_save(flags
);
248 ata_vlb_sync(drive
, IDE_NSECTOR_REG
);
249 hwif
->INSL(IDE_DATA_REG
, buffer
, wcount
);
250 local_irq_restore(flags
);
252 hwif
->INSL(IDE_DATA_REG
, buffer
, wcount
);
254 hwif
->INSW(IDE_DATA_REG
, buffer
, wcount
<<1);
259 * This is used for most PIO data transfers *to* the IDE interface
261 static void ata_output_data(ide_drive_t
*drive
, void *buffer
, u32 wcount
)
263 ide_hwif_t
*hwif
= HWIF(drive
);
264 u8 io_32bit
= drive
->io_32bit
;
269 local_irq_save(flags
);
270 ata_vlb_sync(drive
, IDE_NSECTOR_REG
);
271 hwif
->OUTSL(IDE_DATA_REG
, buffer
, wcount
);
272 local_irq_restore(flags
);
274 hwif
->OUTSL(IDE_DATA_REG
, buffer
, wcount
);
276 hwif
->OUTSW(IDE_DATA_REG
, buffer
, wcount
<<1);
281 * The following routines are mainly used by the ATAPI drivers.
283 * These routines will round up any request for an odd number of bytes,
284 * so if an odd bytecount is specified, be sure that there's at least one
285 * extra byte allocated for the buffer.
288 static void atapi_input_bytes(ide_drive_t
*drive
, void *buffer
, u32 bytecount
)
290 ide_hwif_t
*hwif
= HWIF(drive
);
293 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
294 if (MACH_IS_ATARI
|| MACH_IS_Q40
) {
295 /* Atari has a byte-swapped IDE interface */
296 insw_swapw(IDE_DATA_REG
, buffer
, bytecount
/ 2);
299 #endif /* CONFIG_ATARI || CONFIG_Q40 */
300 hwif
->ata_input_data(drive
, buffer
, bytecount
/ 4);
301 if ((bytecount
& 0x03) >= 2)
302 hwif
->INSW(IDE_DATA_REG
, ((u8
*)buffer
)+(bytecount
& ~0x03), 1);
305 static void atapi_output_bytes(ide_drive_t
*drive
, void *buffer
, u32 bytecount
)
307 ide_hwif_t
*hwif
= HWIF(drive
);
310 #if defined(CONFIG_ATARI) || defined(CONFIG_Q40)
311 if (MACH_IS_ATARI
|| MACH_IS_Q40
) {
312 /* Atari has a byte-swapped IDE interface */
313 outsw_swapw(IDE_DATA_REG
, buffer
, bytecount
/ 2);
316 #endif /* CONFIG_ATARI || CONFIG_Q40 */
317 hwif
->ata_output_data(drive
, buffer
, bytecount
/ 4);
318 if ((bytecount
& 0x03) >= 2)
319 hwif
->OUTSW(IDE_DATA_REG
, ((u8
*)buffer
)+(bytecount
& ~0x03), 1);
322 void default_hwif_transport(ide_hwif_t
*hwif
)
324 hwif
->ata_input_data
= ata_input_data
;
325 hwif
->ata_output_data
= ata_output_data
;
326 hwif
->atapi_input_bytes
= atapi_input_bytes
;
327 hwif
->atapi_output_bytes
= atapi_output_bytes
;
331 * Beginning of Taskfile OPCODE Library and feature sets.
333 void ide_fix_driveid (struct hd_driveid
*id
)
335 #ifndef __LITTLE_ENDIAN
340 id
->config
= __le16_to_cpu(id
->config
);
341 id
->cyls
= __le16_to_cpu(id
->cyls
);
342 id
->reserved2
= __le16_to_cpu(id
->reserved2
);
343 id
->heads
= __le16_to_cpu(id
->heads
);
344 id
->track_bytes
= __le16_to_cpu(id
->track_bytes
);
345 id
->sector_bytes
= __le16_to_cpu(id
->sector_bytes
);
346 id
->sectors
= __le16_to_cpu(id
->sectors
);
347 id
->vendor0
= __le16_to_cpu(id
->vendor0
);
348 id
->vendor1
= __le16_to_cpu(id
->vendor1
);
349 id
->vendor2
= __le16_to_cpu(id
->vendor2
);
350 stringcast
= (u16
*)&id
->serial_no
[0];
351 for (i
= 0; i
< (20/2); i
++)
352 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
353 id
->buf_type
= __le16_to_cpu(id
->buf_type
);
354 id
->buf_size
= __le16_to_cpu(id
->buf_size
);
355 id
->ecc_bytes
= __le16_to_cpu(id
->ecc_bytes
);
356 stringcast
= (u16
*)&id
->fw_rev
[0];
357 for (i
= 0; i
< (8/2); i
++)
358 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
359 stringcast
= (u16
*)&id
->model
[0];
360 for (i
= 0; i
< (40/2); i
++)
361 stringcast
[i
] = __le16_to_cpu(stringcast
[i
]);
362 id
->dword_io
= __le16_to_cpu(id
->dword_io
);
363 id
->reserved50
= __le16_to_cpu(id
->reserved50
);
364 id
->field_valid
= __le16_to_cpu(id
->field_valid
);
365 id
->cur_cyls
= __le16_to_cpu(id
->cur_cyls
);
366 id
->cur_heads
= __le16_to_cpu(id
->cur_heads
);
367 id
->cur_sectors
= __le16_to_cpu(id
->cur_sectors
);
368 id
->cur_capacity0
= __le16_to_cpu(id
->cur_capacity0
);
369 id
->cur_capacity1
= __le16_to_cpu(id
->cur_capacity1
);
370 id
->lba_capacity
= __le32_to_cpu(id
->lba_capacity
);
371 id
->dma_1word
= __le16_to_cpu(id
->dma_1word
);
372 id
->dma_mword
= __le16_to_cpu(id
->dma_mword
);
373 id
->eide_pio_modes
= __le16_to_cpu(id
->eide_pio_modes
);
374 id
->eide_dma_min
= __le16_to_cpu(id
->eide_dma_min
);
375 id
->eide_dma_time
= __le16_to_cpu(id
->eide_dma_time
);
376 id
->eide_pio
= __le16_to_cpu(id
->eide_pio
);
377 id
->eide_pio_iordy
= __le16_to_cpu(id
->eide_pio_iordy
);
378 for (i
= 0; i
< 2; ++i
)
379 id
->words69_70
[i
] = __le16_to_cpu(id
->words69_70
[i
]);
380 for (i
= 0; i
< 4; ++i
)
381 id
->words71_74
[i
] = __le16_to_cpu(id
->words71_74
[i
]);
382 id
->queue_depth
= __le16_to_cpu(id
->queue_depth
);
383 for (i
= 0; i
< 4; ++i
)
384 id
->words76_79
[i
] = __le16_to_cpu(id
->words76_79
[i
]);
385 id
->major_rev_num
= __le16_to_cpu(id
->major_rev_num
);
386 id
->minor_rev_num
= __le16_to_cpu(id
->minor_rev_num
);
387 id
->command_set_1
= __le16_to_cpu(id
->command_set_1
);
388 id
->command_set_2
= __le16_to_cpu(id
->command_set_2
);
389 id
->cfsse
= __le16_to_cpu(id
->cfsse
);
390 id
->cfs_enable_1
= __le16_to_cpu(id
->cfs_enable_1
);
391 id
->cfs_enable_2
= __le16_to_cpu(id
->cfs_enable_2
);
392 id
->csf_default
= __le16_to_cpu(id
->csf_default
);
393 id
->dma_ultra
= __le16_to_cpu(id
->dma_ultra
);
394 id
->trseuc
= __le16_to_cpu(id
->trseuc
);
395 id
->trsEuc
= __le16_to_cpu(id
->trsEuc
);
396 id
->CurAPMvalues
= __le16_to_cpu(id
->CurAPMvalues
);
397 id
->mprc
= __le16_to_cpu(id
->mprc
);
398 id
->hw_config
= __le16_to_cpu(id
->hw_config
);
399 id
->acoustic
= __le16_to_cpu(id
->acoustic
);
400 id
->msrqs
= __le16_to_cpu(id
->msrqs
);
401 id
->sxfert
= __le16_to_cpu(id
->sxfert
);
402 id
->sal
= __le16_to_cpu(id
->sal
);
403 id
->spg
= __le32_to_cpu(id
->spg
);
404 id
->lba_capacity_2
= __le64_to_cpu(id
->lba_capacity_2
);
405 for (i
= 0; i
< 22; i
++)
406 id
->words104_125
[i
] = __le16_to_cpu(id
->words104_125
[i
]);
407 id
->last_lun
= __le16_to_cpu(id
->last_lun
);
408 id
->word127
= __le16_to_cpu(id
->word127
);
409 id
->dlf
= __le16_to_cpu(id
->dlf
);
410 id
->csfo
= __le16_to_cpu(id
->csfo
);
411 for (i
= 0; i
< 26; i
++)
412 id
->words130_155
[i
] = __le16_to_cpu(id
->words130_155
[i
]);
413 id
->word156
= __le16_to_cpu(id
->word156
);
414 for (i
= 0; i
< 3; i
++)
415 id
->words157_159
[i
] = __le16_to_cpu(id
->words157_159
[i
]);
416 id
->cfa_power
= __le16_to_cpu(id
->cfa_power
);
417 for (i
= 0; i
< 14; i
++)
418 id
->words161_175
[i
] = __le16_to_cpu(id
->words161_175
[i
]);
419 for (i
= 0; i
< 31; i
++)
420 id
->words176_205
[i
] = __le16_to_cpu(id
->words176_205
[i
]);
421 for (i
= 0; i
< 48; i
++)
422 id
->words206_254
[i
] = __le16_to_cpu(id
->words206_254
[i
]);
423 id
->integrity_word
= __le16_to_cpu(id
->integrity_word
);
425 # error "Please fix <asm/byteorder.h>"
430 /* FIXME: exported for use by the USB storage (isd200.c) code only */
431 EXPORT_SYMBOL(ide_fix_driveid
);
433 void ide_fixstring (u8
*s
, const int bytecount
, const int byteswap
)
435 u8
*p
= s
, *end
= &s
[bytecount
& ~1]; /* bytecount must be even */
438 /* convert from big-endian to host byte order */
439 for (p
= end
; p
!= s
;) {
440 unsigned short *pp
= (unsigned short *) (p
-= 2);
444 /* strip leading blanks */
445 while (s
!= end
&& *s
== ' ')
447 /* compress internal blanks and strip trailing blanks */
448 while (s
!= end
&& *s
) {
449 if (*s
++ != ' ' || (s
!= end
&& *s
&& *s
!= ' '))
452 /* wipe out trailing garbage */
457 EXPORT_SYMBOL(ide_fixstring
);
460 * Needed for PCI irq sharing
462 int drive_is_ready (ide_drive_t
*drive
)
464 ide_hwif_t
*hwif
= HWIF(drive
);
467 if (drive
->waiting_for_dma
)
468 return hwif
->ide_dma_test_irq(drive
);
471 /* need to guarantee 400ns since last command was issued */
475 #ifdef CONFIG_IDEPCI_SHARE_IRQ
477 * We do a passive status test under shared PCI interrupts on
478 * cards that truly share the ATA side interrupt, but may also share
479 * an interrupt with another pci card/device. We make no assumptions
480 * about possible isa-pnp and pci-pnp issues yet.
483 stat
= hwif
->INB(IDE_ALTSTATUS_REG
);
485 #endif /* CONFIG_IDEPCI_SHARE_IRQ */
486 /* Note: this may clear a pending IRQ!! */
487 stat
= hwif
->INB(IDE_STATUS_REG
);
489 if (stat
& BUSY_STAT
)
490 /* drive busy: definitely not interrupting */
493 /* drive ready: *might* be interrupting */
497 EXPORT_SYMBOL(drive_is_ready
);
500 * Global for All, and taken from ide-pmac.c. Can be called
501 * with spinlock held & IRQs disabled, so don't schedule !
503 int wait_for_ready (ide_drive_t
*drive
, int timeout
)
505 ide_hwif_t
*hwif
= HWIF(drive
);
509 stat
= hwif
->INB(IDE_STATUS_REG
);
510 if (!(stat
& BUSY_STAT
)) {
511 if (drive
->ready_stat
== 0)
513 else if ((stat
& drive
->ready_stat
)||(stat
& ERR_STAT
))
518 if ((stat
& ERR_STAT
) || timeout
<= 0) {
519 if (stat
& ERR_STAT
) {
520 printk(KERN_ERR
"%s: wait_for_ready, "
521 "error status: %x\n", drive
->name
, stat
);
529 * This routine busy-waits for the drive status to be not "busy".
530 * It then checks the status for all of the "good" bits and none
531 * of the "bad" bits, and if all is okay it returns 0. All other
532 * cases return 1 after invoking ide_error() -- caller should just return.
534 * This routine should get fixed to not hog the cpu during extra long waits..
535 * That could be done by busy-waiting for the first jiffy or two, and then
536 * setting a timer to wake up at half second intervals thereafter,
537 * until timeout is achieved, before timing out.
539 int ide_wait_stat (ide_startstop_t
*startstop
, ide_drive_t
*drive
, u8 good
, u8 bad
, unsigned long timeout
)
541 ide_hwif_t
*hwif
= HWIF(drive
);
546 /* bail early if we've exceeded max_failures */
547 if (drive
->max_failures
&& (drive
->failures
> drive
->max_failures
)) {
548 *startstop
= ide_stopped
;
552 udelay(1); /* spec allows drive 400ns to assert "BUSY" */
553 if ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
554 local_irq_set(flags
);
556 while ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
557 if (time_after(jiffies
, timeout
)) {
559 * One last read after the timeout in case
560 * heavy interrupt load made us not make any
561 * progress during the timeout..
563 stat
= hwif
->INB(IDE_STATUS_REG
);
564 if (!(stat
& BUSY_STAT
))
567 local_irq_restore(flags
);
568 *startstop
= ide_error(drive
, "status timeout", stat
);
572 local_irq_restore(flags
);
575 * Allow status to settle, then read it again.
576 * A few rare drives vastly violate the 400ns spec here,
577 * so we'll wait up to 10usec for a "good" status
578 * rather than expensively fail things immediately.
579 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
581 for (i
= 0; i
< 10; i
++) {
583 if (OK_STAT((stat
= hwif
->INB(IDE_STATUS_REG
)), good
, bad
))
586 *startstop
= ide_error(drive
, "status error", stat
);
590 EXPORT_SYMBOL(ide_wait_stat
);
593 * All hosts that use the 80c ribbon must use!
594 * The name is derived from upper byte of word 93 and the 80c ribbon.
596 u8
eighty_ninty_three (ide_drive_t
*drive
)
598 if(HWIF(drive
)->udma_four
== 0)
601 printk(KERN_INFO
"%s: hw_config=%04x\n",
602 drive
->name
, drive
->id
->hw_config
);
604 /* Check for SATA but only if we are ATA5 or higher */
605 if (drive
->id
->hw_config
== 0 && (drive
->id
->major_rev_num
& 0x7FE0))
607 if (!(drive
->id
->hw_config
& 0x6000))
609 #ifndef CONFIG_IDEDMA_IVB
610 if(!(drive
->id
->hw_config
& 0x4000))
612 #endif /* CONFIG_IDEDMA_IVB */
614 * FIXME: enable this after fixing master/slave IDENTIFY order,
615 * also ignore the result if the slave device is pre-ATA3 one
618 if (!(drive
->id
->hw_config
& 0x2000))
624 EXPORT_SYMBOL(eighty_ninty_three
);
626 int ide_ata66_check (ide_drive_t
*drive
, ide_task_t
*args
)
628 if ((args
->tfRegister
[IDE_COMMAND_OFFSET
] == WIN_SETFEATURES
) &&
629 (args
->tfRegister
[IDE_SECTOR_OFFSET
] > XFER_UDMA_2
) &&
630 (args
->tfRegister
[IDE_FEATURE_OFFSET
] == SETFEATURES_XFER
)) {
631 #ifndef CONFIG_IDEDMA_IVB
632 if ((drive
->id
->hw_config
& 0x6000) == 0) {
633 #else /* !CONFIG_IDEDMA_IVB */
634 if (((drive
->id
->hw_config
& 0x2000) == 0) ||
635 ((drive
->id
->hw_config
& 0x4000) == 0)) {
636 #endif /* CONFIG_IDEDMA_IVB */
637 printk("%s: Speed warnings UDMA 3/4/5 is not "
638 "functional.\n", drive
->name
);
641 if (!HWIF(drive
)->udma_four
) {
642 printk("%s: Speed warnings UDMA 3/4/5 is not "
652 * Backside of HDIO_DRIVE_CMD call of SETFEATURES_XFER.
653 * 1 : Safe to update drive->id DMA registers.
654 * 0 : OOPs not allowed.
656 int set_transfer (ide_drive_t
*drive
, ide_task_t
*args
)
658 if ((args
->tfRegister
[IDE_COMMAND_OFFSET
] == WIN_SETFEATURES
) &&
659 (args
->tfRegister
[IDE_SECTOR_OFFSET
] >= XFER_SW_DMA_0
) &&
660 (args
->tfRegister
[IDE_FEATURE_OFFSET
] == SETFEATURES_XFER
) &&
661 (drive
->id
->dma_ultra
||
662 drive
->id
->dma_mword
||
663 drive
->id
->dma_1word
))
669 #ifdef CONFIG_BLK_DEV_IDEDMA
670 static u8
ide_auto_reduce_xfer (ide_drive_t
*drive
)
672 if (!drive
->crc_count
)
673 return drive
->current_speed
;
674 drive
->crc_count
= 0;
676 switch(drive
->current_speed
) {
677 case XFER_UDMA_7
: return XFER_UDMA_6
;
678 case XFER_UDMA_6
: return XFER_UDMA_5
;
679 case XFER_UDMA_5
: return XFER_UDMA_4
;
680 case XFER_UDMA_4
: return XFER_UDMA_3
;
681 case XFER_UDMA_3
: return XFER_UDMA_2
;
682 case XFER_UDMA_2
: return XFER_UDMA_1
;
683 case XFER_UDMA_1
: return XFER_UDMA_0
;
685 * OOPS we do not goto non Ultra DMA modes
686 * without iCRC's available we force
687 * the system to PIO and make the user
688 * invoke the ATA-1 ATA-2 DMA modes.
691 default: return XFER_PIO_4
;
694 #endif /* CONFIG_BLK_DEV_IDEDMA */
699 int ide_driveid_update (ide_drive_t
*drive
)
701 ide_hwif_t
*hwif
= HWIF(drive
);
702 struct hd_driveid
*id
;
704 id
= kmalloc(SECTOR_WORDS
*4, GFP_ATOMIC
);
708 taskfile_lib_get_identify(drive
, (char *)&id
);
712 drive
->id
->dma_ultra
= id
->dma_ultra
;
713 drive
->id
->dma_mword
= id
->dma_mword
;
714 drive
->id
->dma_1word
= id
->dma_1word
;
715 /* anything more ? */
721 * Re-read drive->id for possible DMA mode
722 * change (copied from ide-probe.c)
724 unsigned long timeout
, flags
;
726 SELECT_MASK(drive
, 1);
728 hwif
->OUTB(drive
->ctl
,IDE_CONTROL_REG
);
730 hwif
->OUTB(WIN_IDENTIFY
, IDE_COMMAND_REG
);
731 timeout
= jiffies
+ WAIT_WORSTCASE
;
733 if (time_after(jiffies
, timeout
)) {
734 SELECT_MASK(drive
, 0);
735 return 0; /* drive timed-out */
737 msleep(50); /* give drive a breather */
738 } while (hwif
->INB(IDE_ALTSTATUS_REG
) & BUSY_STAT
);
739 msleep(50); /* wait for IRQ and DRQ_STAT */
740 if (!OK_STAT(hwif
->INB(IDE_STATUS_REG
),DRQ_STAT
,BAD_R_STAT
)) {
741 SELECT_MASK(drive
, 0);
742 printk("%s: CHECK for good STATUS\n", drive
->name
);
745 local_irq_save(flags
);
746 SELECT_MASK(drive
, 0);
747 id
= kmalloc(SECTOR_WORDS
*4, GFP_ATOMIC
);
749 local_irq_restore(flags
);
752 ata_input_data(drive
, id
, SECTOR_WORDS
);
753 (void) hwif
->INB(IDE_STATUS_REG
); /* clear drive IRQ */
755 local_irq_restore(flags
);
758 drive
->id
->dma_ultra
= id
->dma_ultra
;
759 drive
->id
->dma_mword
= id
->dma_mword
;
760 drive
->id
->dma_1word
= id
->dma_1word
;
761 /* anything more ? */
770 * Similar to ide_wait_stat(), except it never calls ide_error internally.
771 * This is a kludge to handle the new ide_config_drive_speed() function,
772 * and should not otherwise be used anywhere. Eventually, the tuneproc's
773 * should be updated to return ide_startstop_t, in which case we can get
774 * rid of this abomination again. :) -ml
776 * It is gone..........
778 * const char *msg == consider adding for verbose errors.
780 int ide_config_drive_speed (ide_drive_t
*drive
, u8 speed
)
782 ide_hwif_t
*hwif
= HWIF(drive
);
786 // while (HWGROUP(drive)->busy)
789 #ifdef CONFIG_BLK_DEV_IDEDMA
790 if (hwif
->ide_dma_check
) /* check if host supports DMA */
791 hwif
->ide_dma_host_off(drive
);
795 * Don't use ide_wait_cmd here - it will
796 * attempt to set_geometry and recalibrate,
797 * but for some reason these don't work at
798 * this point (lost interrupt).
801 * Select the drive, and issue the SETFEATURES command
803 disable_irq_nosync(hwif
->irq
);
806 * FIXME: we race against the running IRQ here if
807 * this is called from non IRQ context. If we use
808 * disable_irq() we hang on the error path. Work
814 SELECT_MASK(drive
, 0);
817 hwif
->OUTB(drive
->ctl
| 2, IDE_CONTROL_REG
);
818 hwif
->OUTB(speed
, IDE_NSECTOR_REG
);
819 hwif
->OUTB(SETFEATURES_XFER
, IDE_FEATURE_REG
);
820 hwif
->OUTB(WIN_SETFEATURES
, IDE_COMMAND_REG
);
821 if ((IDE_CONTROL_REG
) && (drive
->quirk_list
== 2))
822 hwif
->OUTB(drive
->ctl
, IDE_CONTROL_REG
);
825 * Wait for drive to become non-BUSY
827 if ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
828 unsigned long flags
, timeout
;
829 local_irq_set(flags
);
830 timeout
= jiffies
+ WAIT_CMD
;
831 while ((stat
= hwif
->INB(IDE_STATUS_REG
)) & BUSY_STAT
) {
832 if (time_after(jiffies
, timeout
))
835 local_irq_restore(flags
);
839 * Allow status to settle, then read it again.
840 * A few rare drives vastly violate the 400ns spec here,
841 * so we'll wait up to 10usec for a "good" status
842 * rather than expensively fail things immediately.
843 * This fix courtesy of Matthew Faupel & Niccolo Rigacci.
845 for (i
= 0; i
< 10; i
++) {
847 if (OK_STAT((stat
= hwif
->INB(IDE_STATUS_REG
)), DRIVE_READY
, BUSY_STAT
|DRQ_STAT
|ERR_STAT
)) {
853 SELECT_MASK(drive
, 0);
855 enable_irq(hwif
->irq
);
858 (void) ide_dump_status(drive
, "set_drive_speed_status", stat
);
862 drive
->id
->dma_ultra
&= ~0xFF00;
863 drive
->id
->dma_mword
&= ~0x0F00;
864 drive
->id
->dma_1word
&= ~0x0F00;
866 #ifdef CONFIG_BLK_DEV_IDEDMA
867 if (speed
>= XFER_SW_DMA_0
)
868 hwif
->ide_dma_host_on(drive
);
869 else if (hwif
->ide_dma_check
) /* check if host supports DMA */
870 hwif
->ide_dma_off_quietly(drive
);
874 case XFER_UDMA_7
: drive
->id
->dma_ultra
|= 0x8080; break;
875 case XFER_UDMA_6
: drive
->id
->dma_ultra
|= 0x4040; break;
876 case XFER_UDMA_5
: drive
->id
->dma_ultra
|= 0x2020; break;
877 case XFER_UDMA_4
: drive
->id
->dma_ultra
|= 0x1010; break;
878 case XFER_UDMA_3
: drive
->id
->dma_ultra
|= 0x0808; break;
879 case XFER_UDMA_2
: drive
->id
->dma_ultra
|= 0x0404; break;
880 case XFER_UDMA_1
: drive
->id
->dma_ultra
|= 0x0202; break;
881 case XFER_UDMA_0
: drive
->id
->dma_ultra
|= 0x0101; break;
882 case XFER_MW_DMA_2
: drive
->id
->dma_mword
|= 0x0404; break;
883 case XFER_MW_DMA_1
: drive
->id
->dma_mword
|= 0x0202; break;
884 case XFER_MW_DMA_0
: drive
->id
->dma_mword
|= 0x0101; break;
885 case XFER_SW_DMA_2
: drive
->id
->dma_1word
|= 0x0404; break;
886 case XFER_SW_DMA_1
: drive
->id
->dma_1word
|= 0x0202; break;
887 case XFER_SW_DMA_0
: drive
->id
->dma_1word
|= 0x0101; break;
890 if (!drive
->init_speed
)
891 drive
->init_speed
= speed
;
892 drive
->current_speed
= speed
;
896 EXPORT_SYMBOL(ide_config_drive_speed
);
900 * This should get invoked any time we exit the driver to
901 * wait for an interrupt response from a drive. handler() points
902 * at the appropriate code to handle the next interrupt, and a
903 * timer is started to prevent us from waiting forever in case
904 * something goes wrong (see the ide_timer_expiry() handler later on).
906 * See also ide_execute_command
908 static void __ide_set_handler (ide_drive_t
*drive
, ide_handler_t
*handler
,
909 unsigned int timeout
, ide_expiry_t
*expiry
)
911 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
913 if (hwgroup
->handler
!= NULL
) {
914 printk(KERN_CRIT
"%s: ide_set_handler: handler not null; "
916 drive
->name
, hwgroup
->handler
, handler
);
918 hwgroup
->handler
= handler
;
919 hwgroup
->expiry
= expiry
;
920 hwgroup
->timer
.expires
= jiffies
+ timeout
;
921 add_timer(&hwgroup
->timer
);
924 void ide_set_handler (ide_drive_t
*drive
, ide_handler_t
*handler
,
925 unsigned int timeout
, ide_expiry_t
*expiry
)
928 spin_lock_irqsave(&ide_lock
, flags
);
929 __ide_set_handler(drive
, handler
, timeout
, expiry
);
930 spin_unlock_irqrestore(&ide_lock
, flags
);
933 EXPORT_SYMBOL(ide_set_handler
);
936 * ide_execute_command - execute an IDE command
937 * @drive: IDE drive to issue the command against
938 * @command: command byte to write
939 * @handler: handler for next phase
940 * @timeout: timeout for command
941 * @expiry: handler to run on timeout
943 * Helper function to issue an IDE command. This handles the
944 * atomicity requirements, command timing and ensures that the
945 * handler and IRQ setup do not race. All IDE command kick off
946 * should go via this function or do equivalent locking.
949 void ide_execute_command(ide_drive_t
*drive
, task_ioreg_t cmd
, ide_handler_t
*handler
, unsigned timeout
, ide_expiry_t
*expiry
)
952 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
953 ide_hwif_t
*hwif
= HWIF(drive
);
955 spin_lock_irqsave(&ide_lock
, flags
);
957 BUG_ON(hwgroup
->handler
);
958 hwgroup
->handler
= handler
;
959 hwgroup
->expiry
= expiry
;
960 hwgroup
->timer
.expires
= jiffies
+ timeout
;
961 add_timer(&hwgroup
->timer
);
962 hwif
->OUTBSYNC(drive
, cmd
, IDE_COMMAND_REG
);
963 /* Drive takes 400nS to respond, we must avoid the IRQ being
964 serviced before that.
966 FIXME: we could skip this delay with care on non shared
970 spin_unlock_irqrestore(&ide_lock
, flags
);
973 EXPORT_SYMBOL(ide_execute_command
);
977 static ide_startstop_t
do_reset1 (ide_drive_t
*, int);
980 * atapi_reset_pollfunc() gets invoked to poll the interface for completion every 50ms
981 * during an atapi drive reset operation. If the drive has not yet responded,
982 * and we have not yet hit our maximum waiting time, then the timer is restarted
985 static ide_startstop_t
atapi_reset_pollfunc (ide_drive_t
*drive
)
987 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
988 ide_hwif_t
*hwif
= HWIF(drive
);
994 if (OK_STAT(stat
= hwif
->INB(IDE_STATUS_REG
), 0, BUSY_STAT
)) {
995 printk("%s: ATAPI reset complete\n", drive
->name
);
997 if (time_before(jiffies
, hwgroup
->poll_timeout
)) {
998 BUG_ON(HWGROUP(drive
)->handler
!= NULL
);
999 ide_set_handler(drive
, &atapi_reset_pollfunc
, HZ
/20, NULL
);
1000 /* continue polling */
1003 /* end of polling */
1004 hwgroup
->polling
= 0;
1005 printk("%s: ATAPI reset timed-out, status=0x%02x\n",
1007 /* do it the old fashioned way */
1008 return do_reset1(drive
, 1);
1011 hwgroup
->polling
= 0;
1012 hwgroup
->resetting
= 0;
1017 * reset_pollfunc() gets invoked to poll the interface for completion every 50ms
1018 * during an ide reset operation. If the drives have not yet responded,
1019 * and we have not yet hit our maximum waiting time, then the timer is restarted
1022 static ide_startstop_t
reset_pollfunc (ide_drive_t
*drive
)
1024 ide_hwgroup_t
*hwgroup
= HWGROUP(drive
);
1025 ide_hwif_t
*hwif
= HWIF(drive
);
1028 if (hwif
->reset_poll
!= NULL
) {
1029 if (hwif
->reset_poll(drive
)) {
1030 printk(KERN_ERR
"%s: host reset_poll failure for %s.\n",
1031 hwif
->name
, drive
->name
);
1036 if (!OK_STAT(tmp
= hwif
->INB(IDE_STATUS_REG
), 0, BUSY_STAT
)) {
1037 if (time_before(jiffies
, hwgroup
->poll_timeout
)) {
1038 BUG_ON(HWGROUP(drive
)->handler
!= NULL
);
1039 ide_set_handler(drive
, &reset_pollfunc
, HZ
/20, NULL
);
1040 /* continue polling */
1043 printk("%s: reset timed-out, status=0x%02x\n", hwif
->name
, tmp
);
1046 printk("%s: reset: ", hwif
->name
);
1047 if ((tmp
= hwif
->INB(IDE_ERROR_REG
)) == 1) {
1048 printk("success\n");
1049 drive
->failures
= 0;
1053 switch (tmp
& 0x7f) {
1054 case 1: printk("passed");
1056 case 2: printk("formatter device error");
1058 case 3: printk("sector buffer error");
1060 case 4: printk("ECC circuitry error");
1062 case 5: printk("controlling MPU error");
1064 default:printk("error (0x%02x?)", tmp
);
1067 printk("; slave: failed");
1071 hwgroup
->polling
= 0; /* done polling */
1072 hwgroup
->resetting
= 0; /* done reset attempt */
1076 static void check_dma_crc(ide_drive_t
*drive
)
1078 #ifdef CONFIG_BLK_DEV_IDEDMA
1079 if (drive
->crc_count
) {
1080 (void) HWIF(drive
)->ide_dma_off_quietly(drive
);
1081 ide_set_xfer_rate(drive
, ide_auto_reduce_xfer(drive
));
1082 if (drive
->current_speed
>= XFER_SW_DMA_0
)
1083 (void) HWIF(drive
)->ide_dma_on(drive
);
1085 (void)__ide_dma_off(drive
);
1089 static void ide_disk_pre_reset(ide_drive_t
*drive
)
1091 int legacy
= (drive
->id
->cfs_enable_2
& 0x0400) ? 0 : 1;
1093 drive
->special
.all
= 0;
1094 drive
->special
.b
.set_geometry
= legacy
;
1095 drive
->special
.b
.recalibrate
= legacy
;
1096 if (OK_TO_RESET_CONTROLLER
)
1097 drive
->mult_count
= 0;
1098 if (!drive
->keep_settings
&& !drive
->using_dma
)
1099 drive
->mult_req
= 0;
1100 if (drive
->mult_req
!= drive
->mult_count
)
1101 drive
->special
.b
.set_multmode
= 1;
1104 static void pre_reset(ide_drive_t
*drive
)
1106 if (drive
->media
== ide_disk
)
1107 ide_disk_pre_reset(drive
);
1109 drive
->post_reset
= 1;
1111 if (!drive
->keep_settings
) {
1112 if (drive
->using_dma
) {
1113 check_dma_crc(drive
);
1116 drive
->io_32bit
= 0;
1120 if (drive
->using_dma
)
1121 check_dma_crc(drive
);
1123 if (HWIF(drive
)->pre_reset
!= NULL
)
1124 HWIF(drive
)->pre_reset(drive
);
1126 if (drive
->current_speed
!= 0xff)
1127 drive
->desired_speed
= drive
->current_speed
;
1128 drive
->current_speed
= 0xff;
1132 * do_reset1() attempts to recover a confused drive by resetting it.
1133 * Unfortunately, resetting a disk drive actually resets all devices on
1134 * the same interface, so it can really be thought of as resetting the
1135 * interface rather than resetting the drive.
1137 * ATAPI devices have their own reset mechanism which allows them to be
1138 * individually reset without clobbering other devices on the same interface.
1140 * Unfortunately, the IDE interface does not generate an interrupt to let
1141 * us know when the reset operation has finished, so we must poll for this.
1142 * Equally poor, though, is the fact that this may a very long time to complete,
1143 * (up to 30 seconds worstcase). So, instead of busy-waiting here for it,
1144 * we set a timer to poll at 50ms intervals.
1146 static ide_startstop_t
do_reset1 (ide_drive_t
*drive
, int do_not_try_atapi
)
1149 unsigned long flags
;
1151 ide_hwgroup_t
*hwgroup
;
1153 spin_lock_irqsave(&ide_lock
, flags
);
1155 hwgroup
= HWGROUP(drive
);
1157 /* We must not reset with running handlers */
1158 BUG_ON(hwgroup
->handler
!= NULL
);
1160 /* For an ATAPI device, first try an ATAPI SRST. */
1161 if (drive
->media
!= ide_disk
&& !do_not_try_atapi
) {
1162 hwgroup
->resetting
= 1;
1164 SELECT_DRIVE(drive
);
1166 hwif
->OUTBSYNC(drive
, WIN_SRST
, IDE_COMMAND_REG
);
1168 hwgroup
->poll_timeout
= jiffies
+ WAIT_WORSTCASE
;
1169 hwgroup
->polling
= 1;
1170 __ide_set_handler(drive
, &atapi_reset_pollfunc
, HZ
/20, NULL
);
1171 spin_unlock_irqrestore(&ide_lock
, flags
);
1176 * First, reset any device state data we were maintaining
1177 * for any of the drives on this interface.
1179 for (unit
= 0; unit
< MAX_DRIVES
; ++unit
)
1180 pre_reset(&hwif
->drives
[unit
]);
1182 #if OK_TO_RESET_CONTROLLER
1183 if (!IDE_CONTROL_REG
) {
1184 spin_unlock_irqrestore(&ide_lock
, flags
);
1188 hwgroup
->resetting
= 1;
1190 * Note that we also set nIEN while resetting the device,
1191 * to mask unwanted interrupts from the interface during the reset.
1192 * However, due to the design of PC hardware, this will cause an
1193 * immediate interrupt due to the edge transition it produces.
1194 * This single interrupt gives us a "fast poll" for drives that
1195 * recover from reset very quickly, saving us the first 50ms wait time.
1197 /* set SRST and nIEN */
1198 hwif
->OUTBSYNC(drive
, drive
->ctl
|6,IDE_CONTROL_REG
);
1199 /* more than enough time */
1201 if (drive
->quirk_list
== 2) {
1202 /* clear SRST and nIEN */
1203 hwif
->OUTBSYNC(drive
, drive
->ctl
, IDE_CONTROL_REG
);
1205 /* clear SRST, leave nIEN */
1206 hwif
->OUTBSYNC(drive
, drive
->ctl
|2, IDE_CONTROL_REG
);
1208 /* more than enough time */
1210 hwgroup
->poll_timeout
= jiffies
+ WAIT_WORSTCASE
;
1211 hwgroup
->polling
= 1;
1212 __ide_set_handler(drive
, &reset_pollfunc
, HZ
/20, NULL
);
1215 * Some weird controller like resetting themselves to a strange
1216 * state when the disks are reset this way. At least, the Winbond
1217 * 553 documentation says that
1219 if (hwif
->resetproc
!= NULL
) {
1220 hwif
->resetproc(drive
);
1223 #endif /* OK_TO_RESET_CONTROLLER */
1225 spin_unlock_irqrestore(&ide_lock
, flags
);
1230 * ide_do_reset() is the entry point to the drive/interface reset code.
1233 ide_startstop_t
ide_do_reset (ide_drive_t
*drive
)
1235 return do_reset1(drive
, 0);
1238 EXPORT_SYMBOL(ide_do_reset
);
1241 * ide_wait_not_busy() waits for the currently selected device on the hwif
1242 * to report a non-busy status, see comments in probe_hwif().
1244 int ide_wait_not_busy(ide_hwif_t
*hwif
, unsigned long timeout
)
1250 * Turn this into a schedule() sleep once I'm sure
1251 * about locking issues (2.5 work ?).
1254 stat
= hwif
->INB(hwif
->io_ports
[IDE_STATUS_OFFSET
]);
1255 if ((stat
& BUSY_STAT
) == 0)
1258 * Assume a value of 0xff means nothing is connected to
1259 * the interface and it doesn't implement the pull-down
1264 touch_softlockup_watchdog();
1265 touch_nmi_watchdog();
1270 EXPORT_SYMBOL_GPL(ide_wait_not_busy
);