2 * linux/drivers/ide/ppc/pmac.c
4 * Support for IDE interfaces on PowerMacs.
5 * These IDE interfaces are memory-mapped and have a DBDMA channel
8 * Copyright (C) 1998-2003 Paul Mackerras & Ben. Herrenschmidt
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 * Some code taken from drivers/ide/ide-dma.c:
17 * Copyright (c) 1995-1998 Mark Lord
19 * TODO: - Use pre-calculated (kauai) timing tables all the time and
20 * get rid of the "rounded" tables used previously, so we have the
21 * same table format for all controllers and can then just have one
25 #include <linux/types.h>
26 #include <linux/kernel.h>
27 #include <linux/sched.h>
28 #include <linux/init.h>
29 #include <linux/delay.h>
30 #include <linux/ide.h>
31 #include <linux/notifier.h>
32 #include <linux/reboot.h>
33 #include <linux/pci.h>
34 #include <linux/adb.h>
35 #include <linux/pmu.h>
36 #include <linux/scatterlist.h>
40 #include <asm/dbdma.h>
42 #include <asm/pci-bridge.h>
43 #include <asm/machdep.h>
44 #include <asm/pmac_feature.h>
45 #include <asm/sections.h>
49 #include <asm/mediabay.h>
52 #include "ide-timing.h"
56 #define DMA_WAIT_TIMEOUT 50
58 typedef struct pmac_ide_hwif
{
59 unsigned long regbase
;
63 unsigned cable_80
: 1;
64 unsigned mediabay
: 1;
65 unsigned broken_dma
: 1;
66 unsigned broken_dma_warn
: 1;
67 struct device_node
* node
;
68 struct macio_dev
*mdev
;
70 volatile u32 __iomem
* *kauai_fcr
;
71 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
72 /* Those fields are duplicating what is in hwif. We currently
73 * can't use the hwif ones because of some assumptions that are
74 * beeing done by the generic code about the kind of dma controller
75 * and format of the dma table. This will have to be fixed though.
77 volatile struct dbdma_regs __iomem
* dma_regs
;
78 struct dbdma_cmd
* dma_table_cpu
;
83 static pmac_ide_hwif_t pmac_ide
[MAX_HWIFS
];
84 static int pmac_ide_count
;
87 controller_ohare
, /* OHare based */
88 controller_heathrow
, /* Heathrow/Paddington */
89 controller_kl_ata3
, /* KeyLargo ATA-3 */
90 controller_kl_ata4
, /* KeyLargo ATA-4 */
91 controller_un_ata6
, /* UniNorth2 ATA-6 */
92 controller_k2_ata6
, /* K2 ATA-6 */
93 controller_sh_ata6
, /* Shasta ATA-6 */
96 static const char* model_name
[] = {
97 "OHare ATA", /* OHare based */
98 "Heathrow ATA", /* Heathrow/Paddington */
99 "KeyLargo ATA-3", /* KeyLargo ATA-3 (MDMA only) */
100 "KeyLargo ATA-4", /* KeyLargo ATA-4 (UDMA/66) */
101 "UniNorth ATA-6", /* UniNorth2 ATA-6 (UDMA/100) */
102 "K2 ATA-6", /* K2 ATA-6 (UDMA/100) */
103 "Shasta ATA-6", /* Shasta ATA-6 (UDMA/133) */
107 * Extra registers, both 32-bit little-endian
109 #define IDE_TIMING_CONFIG 0x200
110 #define IDE_INTERRUPT 0x300
112 /* Kauai (U2) ATA has different register setup */
113 #define IDE_KAUAI_PIO_CONFIG 0x200
114 #define IDE_KAUAI_ULTRA_CONFIG 0x210
115 #define IDE_KAUAI_POLL_CONFIG 0x220
118 * Timing configuration register definitions
121 /* Number of IDE_SYSCLK_NS ticks, argument is in nanoseconds */
122 #define SYSCLK_TICKS(t) (((t) + IDE_SYSCLK_NS - 1) / IDE_SYSCLK_NS)
123 #define SYSCLK_TICKS_66(t) (((t) + IDE_SYSCLK_66_NS - 1) / IDE_SYSCLK_66_NS)
124 #define IDE_SYSCLK_NS 30 /* 33Mhz cell */
125 #define IDE_SYSCLK_66_NS 15 /* 66Mhz cell */
127 /* 133Mhz cell, found in shasta.
128 * See comments about 100 Mhz Uninorth 2...
129 * Note that PIO_MASK and MDMA_MASK seem to overlap
131 #define TR_133_PIOREG_PIO_MASK 0xff000fff
132 #define TR_133_PIOREG_MDMA_MASK 0x00fff800
133 #define TR_133_UDMAREG_UDMA_MASK 0x0003ffff
134 #define TR_133_UDMAREG_UDMA_EN 0x00000001
136 /* 100Mhz cell, found in Uninorth 2. I don't have much infos about
137 * this one yet, it appears as a pci device (106b/0033) on uninorth
138 * internal PCI bus and it's clock is controlled like gem or fw. It
139 * appears to be an evolution of keylargo ATA4 with a timing register
140 * extended to 2 32bits registers and a similar DBDMA channel. Other
141 * registers seem to exist but I can't tell much about them.
143 * So far, I'm using pre-calculated tables for this extracted from
144 * the values used by the MacOS X driver.
146 * The "PIO" register controls PIO and MDMA timings, the "ULTRA"
147 * register controls the UDMA timings. At least, it seems bit 0
148 * of this one enables UDMA vs. MDMA, and bits 4..7 are the
149 * cycle time in units of 10ns. Bits 8..15 are used by I don't
150 * know their meaning yet
152 #define TR_100_PIOREG_PIO_MASK 0xff000fff
153 #define TR_100_PIOREG_MDMA_MASK 0x00fff000
154 #define TR_100_UDMAREG_UDMA_MASK 0x0000ffff
155 #define TR_100_UDMAREG_UDMA_EN 0x00000001
158 /* 66Mhz cell, found in KeyLargo. Can do ultra mode 0 to 2 on
159 * 40 connector cable and to 4 on 80 connector one.
160 * Clock unit is 15ns (66Mhz)
162 * 3 Values can be programmed:
163 * - Write data setup, which appears to match the cycle time. They
164 * also call it DIOW setup.
165 * - Ready to pause time (from spec)
166 * - Address setup. That one is weird. I don't see where exactly
167 * it fits in UDMA cycles, I got it's name from an obscure piece
168 * of commented out code in Darwin. They leave it to 0, we do as
169 * well, despite a comment that would lead to think it has a
171 * Apple also add 60ns to the write data setup (or cycle time ?) on
174 #define TR_66_UDMA_MASK 0xfff00000
175 #define TR_66_UDMA_EN 0x00100000 /* Enable Ultra mode for DMA */
176 #define TR_66_UDMA_ADDRSETUP_MASK 0xe0000000 /* Address setup */
177 #define TR_66_UDMA_ADDRSETUP_SHIFT 29
178 #define TR_66_UDMA_RDY2PAUS_MASK 0x1e000000 /* Ready 2 pause time */
179 #define TR_66_UDMA_RDY2PAUS_SHIFT 25
180 #define TR_66_UDMA_WRDATASETUP_MASK 0x01e00000 /* Write data setup time */
181 #define TR_66_UDMA_WRDATASETUP_SHIFT 21
182 #define TR_66_MDMA_MASK 0x000ffc00
183 #define TR_66_MDMA_RECOVERY_MASK 0x000f8000
184 #define TR_66_MDMA_RECOVERY_SHIFT 15
185 #define TR_66_MDMA_ACCESS_MASK 0x00007c00
186 #define TR_66_MDMA_ACCESS_SHIFT 10
187 #define TR_66_PIO_MASK 0x000003ff
188 #define TR_66_PIO_RECOVERY_MASK 0x000003e0
189 #define TR_66_PIO_RECOVERY_SHIFT 5
190 #define TR_66_PIO_ACCESS_MASK 0x0000001f
191 #define TR_66_PIO_ACCESS_SHIFT 0
193 /* 33Mhz cell, found in OHare, Heathrow (& Paddington) and KeyLargo
194 * Can do pio & mdma modes, clock unit is 30ns (33Mhz)
196 * The access time and recovery time can be programmed. Some older
197 * Darwin code base limit OHare to 150ns cycle time. I decided to do
198 * the same here fore safety against broken old hardware ;)
199 * The HalfTick bit, when set, adds half a clock (15ns) to the access
200 * time and removes one from recovery. It's not supported on KeyLargo
201 * implementation afaik. The E bit appears to be set for PIO mode 0 and
202 * is used to reach long timings used in this mode.
204 #define TR_33_MDMA_MASK 0x003ff800
205 #define TR_33_MDMA_RECOVERY_MASK 0x001f0000
206 #define TR_33_MDMA_RECOVERY_SHIFT 16
207 #define TR_33_MDMA_ACCESS_MASK 0x0000f800
208 #define TR_33_MDMA_ACCESS_SHIFT 11
209 #define TR_33_MDMA_HALFTICK 0x00200000
210 #define TR_33_PIO_MASK 0x000007ff
211 #define TR_33_PIO_E 0x00000400
212 #define TR_33_PIO_RECOVERY_MASK 0x000003e0
213 #define TR_33_PIO_RECOVERY_SHIFT 5
214 #define TR_33_PIO_ACCESS_MASK 0x0000001f
215 #define TR_33_PIO_ACCESS_SHIFT 0
218 * Interrupt register definitions
220 #define IDE_INTR_DMA 0x80000000
221 #define IDE_INTR_DEVICE 0x40000000
224 * FCR Register on Kauai. Not sure what bit 0x4 is ...
226 #define KAUAI_FCR_UATA_MAGIC 0x00000004
227 #define KAUAI_FCR_UATA_RESET_N 0x00000002
228 #define KAUAI_FCR_UATA_ENABLE 0x00000001
230 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
232 /* Rounded Multiword DMA timings
234 * I gave up finding a generic formula for all controller
235 * types and instead, built tables based on timing values
236 * used by Apple in Darwin's implementation.
238 struct mdma_timings_t
{
244 struct mdma_timings_t mdma_timings_33
[] =
257 struct mdma_timings_t mdma_timings_33k
[] =
270 struct mdma_timings_t mdma_timings_66
[] =
283 /* KeyLargo ATA-4 Ultra DMA timings (rounded) */
285 int addrSetup
; /* ??? */
288 } kl66_udma_timings
[] =
290 { 0, 180, 120 }, /* Mode 0 */
291 { 0, 150, 90 }, /* 1 */
292 { 0, 120, 60 }, /* 2 */
293 { 0, 90, 45 }, /* 3 */
294 { 0, 90, 30 } /* 4 */
297 /* UniNorth 2 ATA/100 timings */
298 struct kauai_timing
{
303 static struct kauai_timing kauai_pio_timings
[] =
305 { 930 , 0x08000fff },
306 { 600 , 0x08000a92 },
307 { 383 , 0x0800060f },
308 { 360 , 0x08000492 },
309 { 330 , 0x0800048f },
310 { 300 , 0x080003cf },
311 { 270 , 0x080003cc },
312 { 240 , 0x0800038b },
313 { 239 , 0x0800030c },
314 { 180 , 0x05000249 },
318 static struct kauai_timing kauai_mdma_timings
[] =
320 { 1260 , 0x00fff000 },
321 { 480 , 0x00618000 },
322 { 360 , 0x00492000 },
323 { 270 , 0x0038e000 },
324 { 240 , 0x0030c000 },
325 { 210 , 0x002cb000 },
326 { 180 , 0x00249000 },
327 { 150 , 0x00209000 },
328 { 120 , 0x00148000 },
332 static struct kauai_timing kauai_udma_timings
[] =
334 { 120 , 0x000070c0 },
343 static struct kauai_timing shasta_pio_timings
[] =
345 { 930 , 0x08000fff },
346 { 600 , 0x0A000c97 },
347 { 383 , 0x07000712 },
348 { 360 , 0x040003cd },
349 { 330 , 0x040003cd },
350 { 300 , 0x040003cd },
351 { 270 , 0x040003cd },
352 { 240 , 0x040003cd },
353 { 239 , 0x040003cd },
354 { 180 , 0x0400028b },
358 static struct kauai_timing shasta_mdma_timings
[] =
360 { 1260 , 0x00fff000 },
361 { 480 , 0x00820800 },
362 { 360 , 0x00820800 },
363 { 270 , 0x00820800 },
364 { 240 , 0x00820800 },
365 { 210 , 0x00820800 },
366 { 180 , 0x00820800 },
367 { 150 , 0x0028b000 },
368 { 120 , 0x001ca000 },
372 static struct kauai_timing shasta_udma133_timings
[] =
374 { 120 , 0x00035901, },
375 { 90 , 0x000348b1, },
376 { 60 , 0x00033881, },
377 { 45 , 0x00033861, },
378 { 30 , 0x00033841, },
379 { 20 , 0x00033031, },
380 { 15 , 0x00033021, },
386 kauai_lookup_timing(struct kauai_timing
* table
, int cycle_time
)
390 for (i
=0; table
[i
].cycle_time
; i
++)
391 if (cycle_time
> table
[i
+1].cycle_time
)
392 return table
[i
].timing_reg
;
396 /* allow up to 256 DBDMA commands per xfer */
397 #define MAX_DCMDS 256
400 * Wait 1s for disk to answer on IDE bus after a hard reset
401 * of the device (via GPIO/FCR).
403 * Some devices seem to "pollute" the bus even after dropping
404 * the BSY bit (typically some combo drives slave on the UDMA
405 * bus) after a hard reset. Since we hard reset all drives on
406 * KeyLargo ATA66, we have to keep that delay around. I may end
407 * up not hard resetting anymore on these and keep the delay only
408 * for older interfaces instead (we have to reset when coming
409 * from MacOS...) --BenH.
411 #define IDE_WAKEUP_DELAY (1*HZ)
413 static void pmac_ide_setup_dma(pmac_ide_hwif_t
*pmif
, ide_hwif_t
*hwif
);
414 static int pmac_ide_build_dmatable(ide_drive_t
*drive
, struct request
*rq
);
415 static int pmac_ide_tune_chipset(ide_drive_t
*drive
, u8 speed
);
416 static void pmac_ide_tuneproc(ide_drive_t
*drive
, u8 pio
);
417 static void pmac_ide_selectproc(ide_drive_t
*drive
);
418 static void pmac_ide_kauai_selectproc(ide_drive_t
*drive
);
420 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
423 * N.B. this can't be an initfunc, because the media-bay task can
424 * call ide_[un]register at any time.
427 pmac_ide_init_hwif_ports(hw_regs_t
*hw
,
428 unsigned long data_port
, unsigned long ctrl_port
,
436 for (ix
= 0; ix
< MAX_HWIFS
; ++ix
)
437 if (data_port
== pmac_ide
[ix
].regbase
)
440 if (ix
>= MAX_HWIFS
) {
441 /* Probably a PCI interface... */
442 for (i
= IDE_DATA_OFFSET
; i
<= IDE_STATUS_OFFSET
; ++i
)
443 hw
->io_ports
[i
] = data_port
+ i
- IDE_DATA_OFFSET
;
444 hw
->io_ports
[IDE_CONTROL_OFFSET
] = ctrl_port
;
448 for (i
= 0; i
< 8; ++i
)
449 hw
->io_ports
[i
] = data_port
+ i
* 0x10;
450 hw
->io_ports
[8] = data_port
+ 0x160;
453 *irq
= pmac_ide
[ix
].irq
;
455 hw
->dev
= &pmac_ide
[ix
].mdev
->ofdev
.dev
;
458 #define PMAC_IDE_REG(x) ((void __iomem *)(IDE_DATA_REG+(x)))
461 * Apply the timings of the proper unit (master/slave) to the shared
462 * timing register when selecting that unit. This version is for
463 * ASICs with a single timing register
466 pmac_ide_selectproc(ide_drive_t
*drive
)
468 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
473 if (drive
->select
.b
.unit
& 0x01)
474 writel(pmif
->timings
[1], PMAC_IDE_REG(IDE_TIMING_CONFIG
));
476 writel(pmif
->timings
[0], PMAC_IDE_REG(IDE_TIMING_CONFIG
));
477 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG
));
481 * Apply the timings of the proper unit (master/slave) to the shared
482 * timing register when selecting that unit. This version is for
483 * ASICs with a dual timing register (Kauai)
486 pmac_ide_kauai_selectproc(ide_drive_t
*drive
)
488 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
493 if (drive
->select
.b
.unit
& 0x01) {
494 writel(pmif
->timings
[1], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG
));
495 writel(pmif
->timings
[3], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG
));
497 writel(pmif
->timings
[0], PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG
));
498 writel(pmif
->timings
[2], PMAC_IDE_REG(IDE_KAUAI_ULTRA_CONFIG
));
500 (void)readl(PMAC_IDE_REG(IDE_KAUAI_PIO_CONFIG
));
504 * Force an update of controller timing values for a given drive
507 pmac_ide_do_update_timings(ide_drive_t
*drive
)
509 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
514 if (pmif
->kind
== controller_sh_ata6
||
515 pmif
->kind
== controller_un_ata6
||
516 pmif
->kind
== controller_k2_ata6
)
517 pmac_ide_kauai_selectproc(drive
);
519 pmac_ide_selectproc(drive
);
523 pmac_outbsync(ide_drive_t
*drive
, u8 value
, unsigned long port
)
527 writeb(value
, (void __iomem
*) port
);
528 tmp
= readl(PMAC_IDE_REG(IDE_TIMING_CONFIG
));
532 * Send the SET_FEATURE IDE command to the drive and update drive->id with
533 * the new state. We currently don't use the generic routine as it used to
534 * cause various trouble, especially with older mediabays.
535 * This code is sometimes triggering a spurrious interrupt though, I need
536 * to sort that out sooner or later and see if I can finally get the
537 * common version to work properly in all cases
540 pmac_ide_do_setfeature(ide_drive_t
*drive
, u8 command
)
542 ide_hwif_t
*hwif
= HWIF(drive
);
545 disable_irq_nosync(hwif
->irq
);
548 SELECT_MASK(drive
, 0);
550 /* Get rid of pending error state */
551 (void) hwif
->INB(IDE_STATUS_REG
);
552 /* Timeout bumped for some powerbooks */
553 if (wait_for_ready(drive
, 2000)) {
554 /* Timeout bumped for some powerbooks */
555 printk(KERN_ERR
"%s: pmac_ide_do_setfeature disk not ready "
556 "before SET_FEATURE!\n", drive
->name
);
560 hwif
->OUTB(drive
->ctl
| 2, IDE_CONTROL_REG
);
561 hwif
->OUTB(command
, IDE_NSECTOR_REG
);
562 hwif
->OUTB(SETFEATURES_XFER
, IDE_FEATURE_REG
);
563 hwif
->OUTBSYNC(drive
, WIN_SETFEATURES
, IDE_COMMAND_REG
);
565 /* Timeout bumped for some powerbooks */
566 result
= wait_for_ready(drive
, 2000);
567 hwif
->OUTB(drive
->ctl
, IDE_CONTROL_REG
);
569 printk(KERN_ERR
"%s: pmac_ide_do_setfeature disk not ready "
570 "after SET_FEATURE !\n", drive
->name
);
572 SELECT_MASK(drive
, 0);
574 drive
->id
->dma_ultra
&= ~0xFF00;
575 drive
->id
->dma_mword
&= ~0x0F00;
576 drive
->id
->dma_1word
&= ~0x0F00;
579 drive
->id
->dma_ultra
|= 0x8080; break;
581 drive
->id
->dma_ultra
|= 0x4040; break;
583 drive
->id
->dma_ultra
|= 0x2020; break;
585 drive
->id
->dma_ultra
|= 0x1010; break;
587 drive
->id
->dma_ultra
|= 0x0808; break;
589 drive
->id
->dma_ultra
|= 0x0404; break;
591 drive
->id
->dma_ultra
|= 0x0202; break;
593 drive
->id
->dma_ultra
|= 0x0101; break;
595 drive
->id
->dma_mword
|= 0x0404; break;
597 drive
->id
->dma_mword
|= 0x0202; break;
599 drive
->id
->dma_mword
|= 0x0101; break;
601 drive
->id
->dma_1word
|= 0x0404; break;
603 drive
->id
->dma_1word
|= 0x0202; break;
605 drive
->id
->dma_1word
|= 0x0101; break;
609 enable_irq(hwif
->irq
);
614 * Old tuning functions (called on hdparm -p), sets up drive PIO timings
617 pmac_ide_tuneproc(ide_drive_t
*drive
, u8 pio
)
621 unsigned accessTicks
, recTicks
;
622 unsigned accessTime
, recTime
;
623 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
628 /* which drive is it ? */
629 timings
= &pmif
->timings
[drive
->select
.b
.unit
& 0x01];
631 pio
= ide_get_best_pio_mode(drive
, pio
, 4, &d
);
633 switch (pmif
->kind
) {
634 case controller_sh_ata6
: {
636 u32 tr
= kauai_lookup_timing(shasta_pio_timings
, d
.cycle_time
);
639 *timings
= ((*timings
) & ~TR_133_PIOREG_PIO_MASK
) | tr
;
642 case controller_un_ata6
:
643 case controller_k2_ata6
: {
645 u32 tr
= kauai_lookup_timing(kauai_pio_timings
, d
.cycle_time
);
648 *timings
= ((*timings
) & ~TR_100_PIOREG_PIO_MASK
) | tr
;
651 case controller_kl_ata4
:
653 recTime
= d
.cycle_time
- ide_pio_timings
[pio
].active_time
654 - ide_pio_timings
[pio
].setup_time
;
655 recTime
= max(recTime
, 150U);
656 accessTime
= ide_pio_timings
[pio
].active_time
;
657 accessTime
= max(accessTime
, 150U);
658 accessTicks
= SYSCLK_TICKS_66(accessTime
);
659 accessTicks
= min(accessTicks
, 0x1fU
);
660 recTicks
= SYSCLK_TICKS_66(recTime
);
661 recTicks
= min(recTicks
, 0x1fU
);
662 *timings
= ((*timings
) & ~TR_66_PIO_MASK
) |
663 (accessTicks
<< TR_66_PIO_ACCESS_SHIFT
) |
664 (recTicks
<< TR_66_PIO_RECOVERY_SHIFT
);
669 recTime
= d
.cycle_time
- ide_pio_timings
[pio
].active_time
670 - ide_pio_timings
[pio
].setup_time
;
671 recTime
= max(recTime
, 150U);
672 accessTime
= ide_pio_timings
[pio
].active_time
;
673 accessTime
= max(accessTime
, 150U);
674 accessTicks
= SYSCLK_TICKS(accessTime
);
675 accessTicks
= min(accessTicks
, 0x1fU
);
676 accessTicks
= max(accessTicks
, 4U);
677 recTicks
= SYSCLK_TICKS(recTime
);
678 recTicks
= min(recTicks
, 0x1fU
);
679 recTicks
= max(recTicks
, 5U) - 4;
681 recTicks
--; /* guess, but it's only for PIO0, so... */
684 *timings
= ((*timings
) & ~TR_33_PIO_MASK
) |
685 (accessTicks
<< TR_33_PIO_ACCESS_SHIFT
) |
686 (recTicks
<< TR_33_PIO_RECOVERY_SHIFT
);
688 *timings
|= TR_33_PIO_E
;
693 #ifdef IDE_PMAC_DEBUG
694 printk(KERN_ERR
"%s: Set PIO timing for mode %d, reg: 0x%08x\n",
695 drive
->name
, pio
, *timings
);
698 if (drive
->select
.all
== HWIF(drive
)->INB(IDE_SELECT_REG
))
699 pmac_ide_do_update_timings(drive
);
702 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
705 * Calculate KeyLargo ATA/66 UDMA timings
708 set_timings_udma_ata4(u32
*timings
, u8 speed
)
710 unsigned rdyToPauseTicks
, wrDataSetupTicks
, addrTicks
;
712 if (speed
> XFER_UDMA_4
)
715 rdyToPauseTicks
= SYSCLK_TICKS_66(kl66_udma_timings
[speed
& 0xf].rdy2pause
);
716 wrDataSetupTicks
= SYSCLK_TICKS_66(kl66_udma_timings
[speed
& 0xf].wrDataSetup
);
717 addrTicks
= SYSCLK_TICKS_66(kl66_udma_timings
[speed
& 0xf].addrSetup
);
719 *timings
= ((*timings
) & ~(TR_66_UDMA_MASK
| TR_66_MDMA_MASK
)) |
720 (wrDataSetupTicks
<< TR_66_UDMA_WRDATASETUP_SHIFT
) |
721 (rdyToPauseTicks
<< TR_66_UDMA_RDY2PAUS_SHIFT
) |
722 (addrTicks
<<TR_66_UDMA_ADDRSETUP_SHIFT
) |
724 #ifdef IDE_PMAC_DEBUG
725 printk(KERN_ERR
"ide_pmac: Set UDMA timing for mode %d, reg: 0x%08x\n",
726 speed
& 0xf, *timings
);
733 * Calculate Kauai ATA/100 UDMA timings
736 set_timings_udma_ata6(u32
*pio_timings
, u32
*ultra_timings
, u8 speed
)
738 struct ide_timing
*t
= ide_timing_find_mode(speed
);
741 if (speed
> XFER_UDMA_5
|| t
== NULL
)
743 tr
= kauai_lookup_timing(kauai_udma_timings
, (int)t
->udma
);
746 *ultra_timings
= ((*ultra_timings
) & ~TR_100_UDMAREG_UDMA_MASK
) | tr
;
747 *ultra_timings
= (*ultra_timings
) | TR_100_UDMAREG_UDMA_EN
;
753 * Calculate Shasta ATA/133 UDMA timings
756 set_timings_udma_shasta(u32
*pio_timings
, u32
*ultra_timings
, u8 speed
)
758 struct ide_timing
*t
= ide_timing_find_mode(speed
);
761 if (speed
> XFER_UDMA_6
|| t
== NULL
)
763 tr
= kauai_lookup_timing(shasta_udma133_timings
, (int)t
->udma
);
766 *ultra_timings
= ((*ultra_timings
) & ~TR_133_UDMAREG_UDMA_MASK
) | tr
;
767 *ultra_timings
= (*ultra_timings
) | TR_133_UDMAREG_UDMA_EN
;
773 * Calculate MDMA timings for all cells
776 set_timings_mdma(ide_drive_t
*drive
, int intf_type
, u32
*timings
, u32
*timings2
,
777 u8 speed
, int drive_cycle_time
)
779 int cycleTime
, accessTime
= 0, recTime
= 0;
780 unsigned accessTicks
, recTicks
;
781 struct mdma_timings_t
* tm
= NULL
;
784 /* Get default cycle time for mode */
785 switch(speed
& 0xf) {
786 case 0: cycleTime
= 480; break;
787 case 1: cycleTime
= 150; break;
788 case 2: cycleTime
= 120; break;
792 /* Adjust for drive */
793 if (drive_cycle_time
&& drive_cycle_time
> cycleTime
)
794 cycleTime
= drive_cycle_time
;
795 /* OHare limits according to some old Apple sources */
796 if ((intf_type
== controller_ohare
) && (cycleTime
< 150))
798 /* Get the proper timing array for this controller */
800 case controller_sh_ata6
:
801 case controller_un_ata6
:
802 case controller_k2_ata6
:
804 case controller_kl_ata4
:
805 tm
= mdma_timings_66
;
807 case controller_kl_ata3
:
808 tm
= mdma_timings_33k
;
811 tm
= mdma_timings_33
;
815 /* Lookup matching access & recovery times */
818 if (tm
[i
+1].cycleTime
< cycleTime
)
824 cycleTime
= tm
[i
].cycleTime
;
825 accessTime
= tm
[i
].accessTime
;
826 recTime
= tm
[i
].recoveryTime
;
828 #ifdef IDE_PMAC_DEBUG
829 printk(KERN_ERR
"%s: MDMA, cycleTime: %d, accessTime: %d, recTime: %d\n",
830 drive
->name
, cycleTime
, accessTime
, recTime
);
834 case controller_sh_ata6
: {
836 u32 tr
= kauai_lookup_timing(shasta_mdma_timings
, cycleTime
);
839 *timings
= ((*timings
) & ~TR_133_PIOREG_MDMA_MASK
) | tr
;
840 *timings2
= (*timings2
) & ~TR_133_UDMAREG_UDMA_EN
;
842 case controller_un_ata6
:
843 case controller_k2_ata6
: {
845 u32 tr
= kauai_lookup_timing(kauai_mdma_timings
, cycleTime
);
848 *timings
= ((*timings
) & ~TR_100_PIOREG_MDMA_MASK
) | tr
;
849 *timings2
= (*timings2
) & ~TR_100_UDMAREG_UDMA_EN
;
852 case controller_kl_ata4
:
854 accessTicks
= SYSCLK_TICKS_66(accessTime
);
855 accessTicks
= min(accessTicks
, 0x1fU
);
856 accessTicks
= max(accessTicks
, 0x1U
);
857 recTicks
= SYSCLK_TICKS_66(recTime
);
858 recTicks
= min(recTicks
, 0x1fU
);
859 recTicks
= max(recTicks
, 0x3U
);
860 /* Clear out mdma bits and disable udma */
861 *timings
= ((*timings
) & ~(TR_66_MDMA_MASK
| TR_66_UDMA_MASK
)) |
862 (accessTicks
<< TR_66_MDMA_ACCESS_SHIFT
) |
863 (recTicks
<< TR_66_MDMA_RECOVERY_SHIFT
);
865 case controller_kl_ata3
:
866 /* 33Mhz cell on KeyLargo */
867 accessTicks
= SYSCLK_TICKS(accessTime
);
868 accessTicks
= max(accessTicks
, 1U);
869 accessTicks
= min(accessTicks
, 0x1fU
);
870 accessTime
= accessTicks
* IDE_SYSCLK_NS
;
871 recTicks
= SYSCLK_TICKS(recTime
);
872 recTicks
= max(recTicks
, 1U);
873 recTicks
= min(recTicks
, 0x1fU
);
874 *timings
= ((*timings
) & ~TR_33_MDMA_MASK
) |
875 (accessTicks
<< TR_33_MDMA_ACCESS_SHIFT
) |
876 (recTicks
<< TR_33_MDMA_RECOVERY_SHIFT
);
879 /* 33Mhz cell on others */
881 int origAccessTime
= accessTime
;
882 int origRecTime
= recTime
;
884 accessTicks
= SYSCLK_TICKS(accessTime
);
885 accessTicks
= max(accessTicks
, 1U);
886 accessTicks
= min(accessTicks
, 0x1fU
);
887 accessTime
= accessTicks
* IDE_SYSCLK_NS
;
888 recTicks
= SYSCLK_TICKS(recTime
);
889 recTicks
= max(recTicks
, 2U) - 1;
890 recTicks
= min(recTicks
, 0x1fU
);
891 recTime
= (recTicks
+ 1) * IDE_SYSCLK_NS
;
892 if ((accessTicks
> 1) &&
893 ((accessTime
- IDE_SYSCLK_NS
/2) >= origAccessTime
) &&
894 ((recTime
- IDE_SYSCLK_NS
/2) >= origRecTime
)) {
898 *timings
= ((*timings
) & ~TR_33_MDMA_MASK
) |
899 (accessTicks
<< TR_33_MDMA_ACCESS_SHIFT
) |
900 (recTicks
<< TR_33_MDMA_RECOVERY_SHIFT
);
902 *timings
|= TR_33_MDMA_HALFTICK
;
905 #ifdef IDE_PMAC_DEBUG
906 printk(KERN_ERR
"%s: Set MDMA timing for mode %d, reg: 0x%08x\n",
907 drive
->name
, speed
& 0xf, *timings
);
911 #endif /* #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC */
914 * Speedproc. This function is called by the core to set any of the standard
915 * timing (PIO, MDMA or UDMA) to both the drive and the controller.
916 * You may notice we don't use this function on normal "dma check" operation,
917 * our dedicated function is more precise as it uses the drive provided
918 * cycle time value. We should probably fix this one to deal with that too...
921 pmac_ide_tune_chipset (ide_drive_t
*drive
, byte speed
)
923 int unit
= (drive
->select
.b
.unit
& 0x01);
925 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
926 u32
*timings
, *timings2
;
931 timings
= &pmif
->timings
[unit
];
932 timings2
= &pmif
->timings
[unit
+2];
935 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
937 if (pmif
->kind
!= controller_sh_ata6
)
940 if (pmif
->kind
!= controller_un_ata6
&&
941 pmif
->kind
!= controller_k2_ata6
&&
942 pmif
->kind
!= controller_sh_ata6
)
946 if (HWIF(drive
)->udma_four
== 0)
951 if (pmif
->kind
== controller_kl_ata4
)
952 ret
= set_timings_udma_ata4(timings
, speed
);
953 else if (pmif
->kind
== controller_un_ata6
954 || pmif
->kind
== controller_k2_ata6
)
955 ret
= set_timings_udma_ata6(timings
, timings2
, speed
);
956 else if (pmif
->kind
== controller_sh_ata6
)
957 ret
= set_timings_udma_shasta(timings
, timings2
, speed
);
964 ret
= set_timings_mdma(drive
, pmif
->kind
, timings
, timings2
, speed
, 0);
970 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
976 pmac_ide_tuneproc(drive
, speed
& 0x07);
984 ret
= pmac_ide_do_setfeature(drive
, speed
);
988 pmac_ide_do_update_timings(drive
);
989 drive
->current_speed
= speed
;
995 * Blast some well known "safe" values to the timing registers at init or
996 * wakeup from sleep time, before we do real calculation
999 sanitize_timings(pmac_ide_hwif_t
*pmif
)
1001 unsigned int value
, value2
= 0;
1003 switch(pmif
->kind
) {
1004 case controller_sh_ata6
:
1006 value2
= 0x00033031;
1008 case controller_un_ata6
:
1009 case controller_k2_ata6
:
1011 value2
= 0x00002921;
1013 case controller_kl_ata4
:
1016 case controller_kl_ata3
:
1019 case controller_heathrow
:
1020 case controller_ohare
:
1025 pmif
->timings
[0] = pmif
->timings
[1] = value
;
1026 pmif
->timings
[2] = pmif
->timings
[3] = value2
;
1030 pmac_ide_get_base(int index
)
1032 return pmac_ide
[index
].regbase
;
1036 pmac_ide_check_base(unsigned long base
)
1040 for (ix
= 0; ix
< MAX_HWIFS
; ++ix
)
1041 if (base
== pmac_ide
[ix
].regbase
)
1047 pmac_ide_get_irq(unsigned long base
)
1051 for (ix
= 0; ix
< MAX_HWIFS
; ++ix
)
1052 if (base
== pmac_ide
[ix
].regbase
)
1053 return pmac_ide
[ix
].irq
;
1057 static int ide_majors
[] = { 3, 22, 33, 34, 56, 57 };
1060 pmac_find_ide_boot(char *bootdevice
, int n
)
1065 * Look through the list of IDE interfaces for this one.
1067 for (i
= 0; i
< pmac_ide_count
; ++i
) {
1069 if (!pmac_ide
[i
].node
|| !pmac_ide
[i
].node
->full_name
)
1071 name
= pmac_ide
[i
].node
->full_name
;
1072 if (memcmp(name
, bootdevice
, n
) == 0 && name
[n
] == 0) {
1073 /* XXX should cope with the 2nd drive as well... */
1074 return MKDEV(ide_majors
[i
], 0);
1081 /* Suspend call back, should be called after the child devices
1082 * have actually been suspended
1085 pmac_ide_do_suspend(ide_hwif_t
*hwif
)
1087 pmac_ide_hwif_t
*pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1089 /* We clear the timings */
1090 pmif
->timings
[0] = 0;
1091 pmif
->timings
[1] = 0;
1093 disable_irq(pmif
->irq
);
1095 /* The media bay will handle itself just fine */
1099 /* Kauai has bus control FCRs directly here */
1100 if (pmif
->kauai_fcr
) {
1101 u32 fcr
= readl(pmif
->kauai_fcr
);
1102 fcr
&= ~(KAUAI_FCR_UATA_RESET_N
| KAUAI_FCR_UATA_ENABLE
);
1103 writel(fcr
, pmif
->kauai_fcr
);
1106 /* Disable the bus on older machines and the cell on kauai */
1107 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, pmif
->node
, pmif
->aapl_bus_id
,
1113 /* Resume call back, should be called before the child devices
1117 pmac_ide_do_resume(ide_hwif_t
*hwif
)
1119 pmac_ide_hwif_t
*pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1121 /* Hard reset & re-enable controller (do we really need to reset ? -BenH) */
1122 if (!pmif
->mediabay
) {
1123 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, pmif
->node
, pmif
->aapl_bus_id
, 1);
1124 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, pmif
->node
, pmif
->aapl_bus_id
, 1);
1126 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, pmif
->node
, pmif
->aapl_bus_id
, 0);
1128 /* Kauai has it different */
1129 if (pmif
->kauai_fcr
) {
1130 u32 fcr
= readl(pmif
->kauai_fcr
);
1131 fcr
|= KAUAI_FCR_UATA_RESET_N
| KAUAI_FCR_UATA_ENABLE
;
1132 writel(fcr
, pmif
->kauai_fcr
);
1135 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY
));
1138 /* Sanitize drive timings */
1139 sanitize_timings(pmif
);
1141 enable_irq(pmif
->irq
);
1147 * Setup, register & probe an IDE channel driven by this driver, this is
1148 * called by one of the 2 probe functions (macio or PCI). Note that a channel
1149 * that ends up beeing free of any device is not kept around by this driver
1150 * (it is kept in 2.4). This introduce an interface numbering change on some
1151 * rare machines unfortunately, but it's better this way.
1154 pmac_ide_setup_device(pmac_ide_hwif_t
*pmif
, ide_hwif_t
*hwif
)
1156 struct device_node
*np
= pmif
->node
;
1160 pmif
->broken_dma
= pmif
->broken_dma_warn
= 0;
1161 if (device_is_compatible(np
, "shasta-ata"))
1162 pmif
->kind
= controller_sh_ata6
;
1163 else if (device_is_compatible(np
, "kauai-ata"))
1164 pmif
->kind
= controller_un_ata6
;
1165 else if (device_is_compatible(np
, "K2-UATA"))
1166 pmif
->kind
= controller_k2_ata6
;
1167 else if (device_is_compatible(np
, "keylargo-ata")) {
1168 if (strcmp(np
->name
, "ata-4") == 0)
1169 pmif
->kind
= controller_kl_ata4
;
1171 pmif
->kind
= controller_kl_ata3
;
1172 } else if (device_is_compatible(np
, "heathrow-ata"))
1173 pmif
->kind
= controller_heathrow
;
1175 pmif
->kind
= controller_ohare
;
1176 pmif
->broken_dma
= 1;
1179 bidp
= get_property(np
, "AAPL,bus-id", NULL
);
1180 pmif
->aapl_bus_id
= bidp
? *bidp
: 0;
1182 /* Get cable type from device-tree */
1183 if (pmif
->kind
== controller_kl_ata4
|| pmif
->kind
== controller_un_ata6
1184 || pmif
->kind
== controller_k2_ata6
1185 || pmif
->kind
== controller_sh_ata6
) {
1186 const char* cable
= get_property(np
, "cable-type", NULL
);
1187 if (cable
&& !strncmp(cable
, "80-", 3))
1190 /* G5's seem to have incorrect cable type in device-tree. Let's assume
1191 * they have a 80 conductor cable, this seem to be always the case unless
1192 * the user mucked around
1194 if (device_is_compatible(np
, "K2-UATA") ||
1195 device_is_compatible(np
, "shasta-ata"))
1198 /* On Kauai-type controllers, we make sure the FCR is correct */
1199 if (pmif
->kauai_fcr
)
1200 writel(KAUAI_FCR_UATA_MAGIC
|
1201 KAUAI_FCR_UATA_RESET_N
|
1202 KAUAI_FCR_UATA_ENABLE
, pmif
->kauai_fcr
);
1206 /* Make sure we have sane timings */
1207 sanitize_timings(pmif
);
1209 #ifndef CONFIG_PPC64
1210 /* XXX FIXME: Media bay stuff need re-organizing */
1211 if (np
->parent
&& np
->parent
->name
1212 && strcasecmp(np
->parent
->name
, "media-bay") == 0) {
1213 #ifdef CONFIG_PMAC_MEDIABAY
1214 media_bay_set_ide_infos(np
->parent
, pmif
->regbase
, pmif
->irq
, hwif
->index
);
1215 #endif /* CONFIG_PMAC_MEDIABAY */
1218 pmif
->aapl_bus_id
= 1;
1219 } else if (pmif
->kind
== controller_ohare
) {
1220 /* The code below is having trouble on some ohare machines
1221 * (timing related ?). Until I can put my hand on one of these
1222 * units, I keep the old way
1224 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, np
, 0, 1);
1228 /* This is necessary to enable IDE when net-booting */
1229 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, np
, pmif
->aapl_bus_id
, 1);
1230 ppc_md
.feature_call(PMAC_FTR_IDE_ENABLE
, np
, pmif
->aapl_bus_id
, 1);
1232 ppc_md
.feature_call(PMAC_FTR_IDE_RESET
, np
, pmif
->aapl_bus_id
, 0);
1233 msleep(jiffies_to_msecs(IDE_WAKEUP_DELAY
));
1236 /* Setup MMIO ops */
1237 default_hwif_mmiops(hwif
);
1238 hwif
->OUTBSYNC
= pmac_outbsync
;
1240 /* Tell common code _not_ to mess with resources */
1242 hwif
->hwif_data
= pmif
;
1243 pmac_ide_init_hwif_ports(&hwif
->hw
, pmif
->regbase
, 0, &hwif
->irq
);
1244 memcpy(hwif
->io_ports
, hwif
->hw
.io_ports
, sizeof(hwif
->io_ports
));
1245 hwif
->chipset
= ide_pmac
;
1246 hwif
->noprobe
= !hwif
->io_ports
[IDE_DATA_OFFSET
] || pmif
->mediabay
;
1247 hwif
->hold
= pmif
->mediabay
;
1248 hwif
->udma_four
= pmif
->cable_80
;
1249 hwif
->drives
[0].unmask
= 1;
1250 hwif
->drives
[1].unmask
= 1;
1251 hwif
->tuneproc
= pmac_ide_tuneproc
;
1252 if (pmif
->kind
== controller_un_ata6
1253 || pmif
->kind
== controller_k2_ata6
1254 || pmif
->kind
== controller_sh_ata6
)
1255 hwif
->selectproc
= pmac_ide_kauai_selectproc
;
1257 hwif
->selectproc
= pmac_ide_selectproc
;
1258 hwif
->speedproc
= pmac_ide_tune_chipset
;
1260 printk(KERN_INFO
"ide%d: Found Apple %s controller, bus ID %d%s, irq %d\n",
1261 hwif
->index
, model_name
[pmif
->kind
], pmif
->aapl_bus_id
,
1262 pmif
->mediabay
? " (mediabay)" : "", hwif
->irq
);
1264 #ifdef CONFIG_PMAC_MEDIABAY
1265 if (pmif
->mediabay
&& check_media_bay_by_base(pmif
->regbase
, MB_CD
) == 0)
1267 #endif /* CONFIG_PMAC_MEDIABAY */
1269 hwif
->sg_max_nents
= MAX_DCMDS
;
1271 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1272 /* has a DBDMA controller channel */
1274 pmac_ide_setup_dma(pmif
, hwif
);
1275 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1277 /* We probe the hwif now */
1278 probe_hwif_init(hwif
);
1284 * Attach to a macio probed interface
1286 static int __devinit
1287 pmac_ide_macio_attach(struct macio_dev
*mdev
, const struct of_device_id
*match
)
1290 unsigned long regbase
;
1293 pmac_ide_hwif_t
*pmif
;
1297 while (i
< MAX_HWIFS
&& (ide_hwifs
[i
].io_ports
[IDE_DATA_OFFSET
] != 0
1298 || pmac_ide
[i
].node
!= NULL
))
1300 if (i
>= MAX_HWIFS
) {
1301 printk(KERN_ERR
"ide-pmac: MacIO interface attach with no slot\n");
1302 printk(KERN_ERR
" %s\n", mdev
->ofdev
.node
->full_name
);
1306 pmif
= &pmac_ide
[i
];
1307 hwif
= &ide_hwifs
[i
];
1309 if (macio_resource_count(mdev
) == 0) {
1310 printk(KERN_WARNING
"ide%d: no address for %s\n",
1311 i
, mdev
->ofdev
.node
->full_name
);
1315 /* Request memory resource for IO ports */
1316 if (macio_request_resource(mdev
, 0, "ide-pmac (ports)")) {
1317 printk(KERN_ERR
"ide%d: can't request mmio resource !\n", i
);
1321 /* XXX This is bogus. Should be fixed in the registry by checking
1322 * the kind of host interrupt controller, a bit like gatwick
1323 * fixes in irq.c. That works well enough for the single case
1324 * where that happens though...
1326 if (macio_irq_count(mdev
) == 0) {
1327 printk(KERN_WARNING
"ide%d: no intrs for device %s, using 13\n",
1328 i
, mdev
->ofdev
.node
->full_name
);
1329 irq
= irq_create_mapping(NULL
, 13);
1331 irq
= macio_irq(mdev
, 0);
1333 base
= ioremap(macio_resource_start(mdev
, 0), 0x400);
1334 regbase
= (unsigned long) base
;
1336 hwif
->pci_dev
= mdev
->bus
->pdev
;
1337 hwif
->gendev
.parent
= &mdev
->ofdev
.dev
;
1340 pmif
->node
= mdev
->ofdev
.node
;
1341 pmif
->regbase
= regbase
;
1343 pmif
->kauai_fcr
= NULL
;
1344 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1345 if (macio_resource_count(mdev
) >= 2) {
1346 if (macio_request_resource(mdev
, 1, "ide-pmac (dma)"))
1347 printk(KERN_WARNING
"ide%d: can't request DMA resource !\n", i
);
1349 pmif
->dma_regs
= ioremap(macio_resource_start(mdev
, 1), 0x1000);
1351 pmif
->dma_regs
= NULL
;
1352 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1353 dev_set_drvdata(&mdev
->ofdev
.dev
, hwif
);
1355 rc
= pmac_ide_setup_device(pmif
, hwif
);
1357 /* The inteface is released to the common IDE layer */
1358 dev_set_drvdata(&mdev
->ofdev
.dev
, NULL
);
1361 iounmap(pmif
->dma_regs
);
1362 memset(pmif
, 0, sizeof(*pmif
));
1363 macio_release_resource(mdev
, 0);
1365 macio_release_resource(mdev
, 1);
1372 pmac_ide_macio_suspend(struct macio_dev
*mdev
, pm_message_t mesg
)
1374 ide_hwif_t
*hwif
= (ide_hwif_t
*)dev_get_drvdata(&mdev
->ofdev
.dev
);
1377 if (mesg
.event
!= mdev
->ofdev
.dev
.power
.power_state
.event
1378 && mesg
.event
== PM_EVENT_SUSPEND
) {
1379 rc
= pmac_ide_do_suspend(hwif
);
1381 mdev
->ofdev
.dev
.power
.power_state
= mesg
;
1388 pmac_ide_macio_resume(struct macio_dev
*mdev
)
1390 ide_hwif_t
*hwif
= (ide_hwif_t
*)dev_get_drvdata(&mdev
->ofdev
.dev
);
1393 if (mdev
->ofdev
.dev
.power
.power_state
.event
!= PM_EVENT_ON
) {
1394 rc
= pmac_ide_do_resume(hwif
);
1396 mdev
->ofdev
.dev
.power
.power_state
= PMSG_ON
;
1403 * Attach to a PCI probed interface
1405 static int __devinit
1406 pmac_ide_pci_attach(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
1409 struct device_node
*np
;
1410 pmac_ide_hwif_t
*pmif
;
1412 unsigned long rbase
, rlen
;
1415 np
= pci_device_to_OF_node(pdev
);
1417 printk(KERN_ERR
"ide-pmac: cannot find MacIO node for Kauai ATA interface\n");
1421 while (i
< MAX_HWIFS
&& (ide_hwifs
[i
].io_ports
[IDE_DATA_OFFSET
] != 0
1422 || pmac_ide
[i
].node
!= NULL
))
1424 if (i
>= MAX_HWIFS
) {
1425 printk(KERN_ERR
"ide-pmac: PCI interface attach with no slot\n");
1426 printk(KERN_ERR
" %s\n", np
->full_name
);
1430 pmif
= &pmac_ide
[i
];
1431 hwif
= &ide_hwifs
[i
];
1433 if (pci_enable_device(pdev
)) {
1434 printk(KERN_WARNING
"ide%i: Can't enable PCI device for %s\n",
1438 pci_set_master(pdev
);
1440 if (pci_request_regions(pdev
, "Kauai ATA")) {
1441 printk(KERN_ERR
"ide%d: Cannot obtain PCI resources for %s\n",
1446 hwif
->pci_dev
= pdev
;
1447 hwif
->gendev
.parent
= &pdev
->dev
;
1451 rbase
= pci_resource_start(pdev
, 0);
1452 rlen
= pci_resource_len(pdev
, 0);
1454 base
= ioremap(rbase
, rlen
);
1455 pmif
->regbase
= (unsigned long) base
+ 0x2000;
1456 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1457 pmif
->dma_regs
= base
+ 0x1000;
1458 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */
1459 pmif
->kauai_fcr
= base
;
1460 pmif
->irq
= pdev
->irq
;
1462 pci_set_drvdata(pdev
, hwif
);
1464 rc
= pmac_ide_setup_device(pmif
, hwif
);
1466 /* The inteface is released to the common IDE layer */
1467 pci_set_drvdata(pdev
, NULL
);
1469 memset(pmif
, 0, sizeof(*pmif
));
1470 pci_release_regions(pdev
);
1477 pmac_ide_pci_suspend(struct pci_dev
*pdev
, pm_message_t mesg
)
1479 ide_hwif_t
*hwif
= (ide_hwif_t
*)pci_get_drvdata(pdev
);
1482 if (mesg
.event
!= pdev
->dev
.power
.power_state
.event
1483 && mesg
.event
== PM_EVENT_SUSPEND
) {
1484 rc
= pmac_ide_do_suspend(hwif
);
1486 pdev
->dev
.power
.power_state
= mesg
;
1493 pmac_ide_pci_resume(struct pci_dev
*pdev
)
1495 ide_hwif_t
*hwif
= (ide_hwif_t
*)pci_get_drvdata(pdev
);
1498 if (pdev
->dev
.power
.power_state
.event
!= PM_EVENT_ON
) {
1499 rc
= pmac_ide_do_resume(hwif
);
1501 pdev
->dev
.power
.power_state
= PMSG_ON
;
1507 static struct of_device_id pmac_ide_macio_match
[] =
1524 static struct macio_driver pmac_ide_macio_driver
=
1527 .match_table
= pmac_ide_macio_match
,
1528 .probe
= pmac_ide_macio_attach
,
1529 .suspend
= pmac_ide_macio_suspend
,
1530 .resume
= pmac_ide_macio_resume
,
1533 static struct pci_device_id pmac_ide_pci_match
[] = {
1534 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_UNI_N_ATA
,
1535 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
1536 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_IPID_ATA100
,
1537 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
1538 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_K2_ATA100
,
1539 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
1540 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_SH_ATA
,
1541 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
1542 { PCI_VENDOR_ID_APPLE
, PCI_DEVICE_ID_APPLE_IPID2_ATA
,
1543 PCI_ANY_ID
, PCI_ANY_ID
, 0, 0, 0},
1546 static struct pci_driver pmac_ide_pci_driver
= {
1548 .id_table
= pmac_ide_pci_match
,
1549 .probe
= pmac_ide_pci_attach
,
1550 .suspend
= pmac_ide_pci_suspend
,
1551 .resume
= pmac_ide_pci_resume
,
1553 MODULE_DEVICE_TABLE(pci
, pmac_ide_pci_match
);
1556 pmac_ide_probe(void)
1558 if (!machine_is(powermac
))
1561 #ifdef CONFIG_BLK_DEV_IDE_PMAC_ATA100FIRST
1562 pci_register_driver(&pmac_ide_pci_driver
);
1563 macio_register_driver(&pmac_ide_macio_driver
);
1565 macio_register_driver(&pmac_ide_macio_driver
);
1566 pci_register_driver(&pmac_ide_pci_driver
);
1570 #ifdef CONFIG_BLK_DEV_IDEDMA_PMAC
1573 * pmac_ide_build_dmatable builds the DBDMA command list
1574 * for a transfer and sets the DBDMA channel to point to it.
1577 pmac_ide_build_dmatable(ide_drive_t
*drive
, struct request
*rq
)
1579 struct dbdma_cmd
*table
;
1581 ide_hwif_t
*hwif
= HWIF(drive
);
1582 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1583 volatile struct dbdma_regs __iomem
*dma
= pmif
->dma_regs
;
1584 struct scatterlist
*sg
;
1585 int wr
= (rq_data_dir(rq
) == WRITE
);
1587 /* DMA table is already aligned */
1588 table
= (struct dbdma_cmd
*) pmif
->dma_table_cpu
;
1590 /* Make sure DMA controller is stopped (necessary ?) */
1591 writel((RUN
|PAUSE
|FLUSH
|WAKE
|DEAD
) << 16, &dma
->control
);
1592 while (readl(&dma
->status
) & RUN
)
1595 hwif
->sg_nents
= i
= ide_build_sglist(drive
, rq
);
1600 /* Build DBDMA commands list */
1601 sg
= hwif
->sg_table
;
1602 while (i
&& sg_dma_len(sg
)) {
1606 cur_addr
= sg_dma_address(sg
);
1607 cur_len
= sg_dma_len(sg
);
1609 if (pmif
->broken_dma
&& cur_addr
& (L1_CACHE_BYTES
- 1)) {
1610 if (pmif
->broken_dma_warn
== 0) {
1611 printk(KERN_WARNING
"%s: DMA on non aligned address,"
1612 "switching to PIO on Ohare chipset\n", drive
->name
);
1613 pmif
->broken_dma_warn
= 1;
1615 goto use_pio_instead
;
1618 unsigned int tc
= (cur_len
< 0xfe00)? cur_len
: 0xfe00;
1620 if (count
++ >= MAX_DCMDS
) {
1621 printk(KERN_WARNING
"%s: DMA table too small\n",
1623 goto use_pio_instead
;
1625 st_le16(&table
->command
, wr
? OUTPUT_MORE
: INPUT_MORE
);
1626 st_le16(&table
->req_count
, tc
);
1627 st_le32(&table
->phy_addr
, cur_addr
);
1629 table
->xfer_status
= 0;
1630 table
->res_count
= 0;
1639 /* convert the last command to an input/output last command */
1641 st_le16(&table
[-1].command
, wr
? OUTPUT_LAST
: INPUT_LAST
);
1642 /* add the stop command to the end of the list */
1643 memset(table
, 0, sizeof(struct dbdma_cmd
));
1644 st_le16(&table
->command
, DBDMA_STOP
);
1646 writel(hwif
->dmatable_dma
, &dma
->cmdptr
);
1650 printk(KERN_DEBUG
"%s: empty DMA table?\n", drive
->name
);
1652 pci_unmap_sg(hwif
->pci_dev
,
1655 hwif
->sg_dma_direction
);
1656 return 0; /* revert to PIO for this request */
1659 /* Teardown mappings after DMA has completed. */
1661 pmac_ide_destroy_dmatable (ide_drive_t
*drive
)
1663 ide_hwif_t
*hwif
= drive
->hwif
;
1664 struct pci_dev
*dev
= HWIF(drive
)->pci_dev
;
1665 struct scatterlist
*sg
= hwif
->sg_table
;
1666 int nents
= hwif
->sg_nents
;
1669 pci_unmap_sg(dev
, sg
, nents
, hwif
->sg_dma_direction
);
1675 * Pick up best MDMA timing for the drive and apply it
1678 pmac_ide_mdma_enable(ide_drive_t
*drive
, u16 mode
)
1680 ide_hwif_t
*hwif
= HWIF(drive
);
1681 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1682 int drive_cycle_time
;
1683 struct hd_driveid
*id
= drive
->id
;
1684 u32
*timings
, *timings2
;
1685 u32 timing_local
[2];
1688 /* which drive is it ? */
1689 timings
= &pmif
->timings
[drive
->select
.b
.unit
& 0x01];
1690 timings2
= &pmif
->timings
[(drive
->select
.b
.unit
& 0x01) + 2];
1692 /* Check if drive provide explicit cycle time */
1693 if ((id
->field_valid
& 2) && (id
->eide_dma_time
))
1694 drive_cycle_time
= id
->eide_dma_time
;
1696 drive_cycle_time
= 0;
1698 /* Copy timings to local image */
1699 timing_local
[0] = *timings
;
1700 timing_local
[1] = *timings2
;
1702 /* Calculate controller timings */
1703 ret
= set_timings_mdma( drive
, pmif
->kind
,
1711 /* Set feature on drive */
1712 printk(KERN_INFO
"%s: Enabling MultiWord DMA %d\n", drive
->name
, mode
& 0xf);
1713 ret
= pmac_ide_do_setfeature(drive
, mode
);
1715 printk(KERN_WARNING
"%s: Failed !\n", drive
->name
);
1719 /* Apply timings to controller */
1720 *timings
= timing_local
[0];
1721 *timings2
= timing_local
[1];
1723 /* Set speed info in drive */
1724 drive
->current_speed
= mode
;
1725 if (!drive
->init_speed
)
1726 drive
->init_speed
= mode
;
1732 * Pick up best UDMA timing for the drive and apply it
1735 pmac_ide_udma_enable(ide_drive_t
*drive
, u16 mode
)
1737 ide_hwif_t
*hwif
= HWIF(drive
);
1738 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1739 u32
*timings
, *timings2
;
1740 u32 timing_local
[2];
1743 /* which drive is it ? */
1744 timings
= &pmif
->timings
[drive
->select
.b
.unit
& 0x01];
1745 timings2
= &pmif
->timings
[(drive
->select
.b
.unit
& 0x01) + 2];
1747 /* Copy timings to local image */
1748 timing_local
[0] = *timings
;
1749 timing_local
[1] = *timings2
;
1751 /* Calculate timings for interface */
1752 if (pmif
->kind
== controller_un_ata6
1753 || pmif
->kind
== controller_k2_ata6
)
1754 ret
= set_timings_udma_ata6( &timing_local
[0],
1757 else if (pmif
->kind
== controller_sh_ata6
)
1758 ret
= set_timings_udma_shasta( &timing_local
[0],
1762 ret
= set_timings_udma_ata4(&timing_local
[0], mode
);
1766 /* Set feature on drive */
1767 printk(KERN_INFO
"%s: Enabling Ultra DMA %d\n", drive
->name
, mode
& 0x0f);
1768 ret
= pmac_ide_do_setfeature(drive
, mode
);
1770 printk(KERN_WARNING
"%s: Failed !\n", drive
->name
);
1774 /* Apply timings to controller */
1775 *timings
= timing_local
[0];
1776 *timings2
= timing_local
[1];
1778 /* Set speed info in drive */
1779 drive
->current_speed
= mode
;
1780 if (!drive
->init_speed
)
1781 drive
->init_speed
= mode
;
1787 * Check what is the best DMA timing setting for the drive and
1788 * call appropriate functions to apply it.
1791 pmac_ide_dma_check(ide_drive_t
*drive
)
1793 struct hd_driveid
*id
= drive
->id
;
1794 ide_hwif_t
*hwif
= HWIF(drive
);
1795 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1798 drive
->using_dma
= 0;
1800 if (drive
->media
== ide_floppy
)
1802 if (((id
->capability
& 1) == 0) && !__ide_dma_good_drive(drive
))
1804 if (__ide_dma_bad_drive(drive
))
1811 if (pmif
->kind
== controller_kl_ata4
1812 || pmif
->kind
== controller_un_ata6
1813 || pmif
->kind
== controller_k2_ata6
1814 || pmif
->kind
== controller_sh_ata6
) {
1816 if (pmif
->cable_80
) {
1817 map
|= XFER_UDMA_66
;
1818 if (pmif
->kind
== controller_un_ata6
||
1819 pmif
->kind
== controller_k2_ata6
||
1820 pmif
->kind
== controller_sh_ata6
)
1821 map
|= XFER_UDMA_100
;
1822 if (pmif
->kind
== controller_sh_ata6
)
1823 map
|= XFER_UDMA_133
;
1826 mode
= ide_find_best_mode(drive
, map
);
1827 if (mode
& XFER_UDMA
)
1828 drive
->using_dma
= pmac_ide_udma_enable(drive
, mode
);
1829 else if (mode
& XFER_MWDMA
)
1830 drive
->using_dma
= pmac_ide_mdma_enable(drive
, mode
);
1831 hwif
->OUTB(0, IDE_CONTROL_REG
);
1832 /* Apply settings to controller */
1833 pmac_ide_do_update_timings(drive
);
1839 * Prepare a DMA transfer. We build the DMA table, adjust the timings for
1840 * a read on KeyLargo ATA/66 and mark us as waiting for DMA completion
1843 pmac_ide_dma_setup(ide_drive_t
*drive
)
1845 ide_hwif_t
*hwif
= HWIF(drive
);
1846 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)hwif
->hwif_data
;
1847 struct request
*rq
= HWGROUP(drive
)->rq
;
1848 u8 unit
= (drive
->select
.b
.unit
& 0x01);
1853 ata4
= (pmif
->kind
== controller_kl_ata4
);
1855 if (!pmac_ide_build_dmatable(drive
, rq
)) {
1856 ide_map_sg(drive
, rq
);
1860 /* Apple adds 60ns to wrDataSetup on reads */
1861 if (ata4
&& (pmif
->timings
[unit
] & TR_66_UDMA_EN
)) {
1862 writel(pmif
->timings
[unit
] + (!rq_data_dir(rq
) ? 0x00800000UL
: 0),
1863 PMAC_IDE_REG(IDE_TIMING_CONFIG
));
1864 (void)readl(PMAC_IDE_REG(IDE_TIMING_CONFIG
));
1867 drive
->waiting_for_dma
= 1;
1873 pmac_ide_dma_exec_cmd(ide_drive_t
*drive
, u8 command
)
1875 /* issue cmd to drive */
1876 ide_execute_command(drive
, command
, &ide_dma_intr
, 2*WAIT_CMD
, NULL
);
1880 * Kick the DMA controller into life after the DMA command has been issued
1884 pmac_ide_dma_start(ide_drive_t
*drive
)
1886 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
1887 volatile struct dbdma_regs __iomem
*dma
;
1889 dma
= pmif
->dma_regs
;
1891 writel((RUN
<< 16) | RUN
, &dma
->control
);
1892 /* Make sure it gets to the controller right now */
1893 (void)readl(&dma
->control
);
1897 * After a DMA transfer, make sure the controller is stopped
1900 pmac_ide_dma_end (ide_drive_t
*drive
)
1902 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
1903 volatile struct dbdma_regs __iomem
*dma
;
1908 dma
= pmif
->dma_regs
;
1910 drive
->waiting_for_dma
= 0;
1911 dstat
= readl(&dma
->status
);
1912 writel(((RUN
|WAKE
|DEAD
) << 16), &dma
->control
);
1913 pmac_ide_destroy_dmatable(drive
);
1914 /* verify good dma status. we don't check for ACTIVE beeing 0. We should...
1915 * in theory, but with ATAPI decices doing buffer underruns, that would
1916 * cause us to disable DMA, which isn't what we want
1918 return (dstat
& (RUN
|DEAD
)) != RUN
;
1922 * Check out that the interrupt we got was for us. We can't always know this
1923 * for sure with those Apple interfaces (well, we could on the recent ones but
1924 * that's not implemented yet), on the other hand, we don't have shared interrupts
1925 * so it's not really a problem
1928 pmac_ide_dma_test_irq (ide_drive_t
*drive
)
1930 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
1931 volatile struct dbdma_regs __iomem
*dma
;
1932 unsigned long status
, timeout
;
1936 dma
= pmif
->dma_regs
;
1938 /* We have to things to deal with here:
1940 * - The dbdma won't stop if the command was started
1941 * but completed with an error without transferring all
1942 * datas. This happens when bad blocks are met during
1943 * a multi-block transfer.
1945 * - The dbdma fifo hasn't yet finished flushing to
1946 * to system memory when the disk interrupt occurs.
1950 /* If ACTIVE is cleared, the STOP command have passed and
1951 * transfer is complete.
1953 status
= readl(&dma
->status
);
1954 if (!(status
& ACTIVE
))
1956 if (!drive
->waiting_for_dma
)
1957 printk(KERN_WARNING
"ide%d, ide_dma_test_irq \
1958 called while not waiting\n", HWIF(drive
)->index
);
1960 /* If dbdma didn't execute the STOP command yet, the
1961 * active bit is still set. We consider that we aren't
1962 * sharing interrupts (which is hopefully the case with
1963 * those controllers) and so we just try to flush the
1964 * channel for pending data in the fifo
1967 writel((FLUSH
<< 16) | FLUSH
, &dma
->control
);
1971 status
= readl(&dma
->status
);
1972 if ((status
& FLUSH
) == 0)
1974 if (++timeout
> 100) {
1975 printk(KERN_WARNING
"ide%d, ide_dma_test_irq \
1976 timeout flushing channel\n", HWIF(drive
)->index
);
1984 pmac_ide_dma_host_off (ide_drive_t
*drive
)
1990 pmac_ide_dma_host_on (ide_drive_t
*drive
)
1996 pmac_ide_dma_lostirq (ide_drive_t
*drive
)
1998 pmac_ide_hwif_t
* pmif
= (pmac_ide_hwif_t
*)HWIF(drive
)->hwif_data
;
1999 volatile struct dbdma_regs __iomem
*dma
;
2000 unsigned long status
;
2004 dma
= pmif
->dma_regs
;
2006 status
= readl(&dma
->status
);
2007 printk(KERN_ERR
"ide-pmac lost interrupt, dma status: %lx\n", status
);
2012 * Allocate the data structures needed for using DMA with an interface
2013 * and fill the proper list of functions pointers
2016 pmac_ide_setup_dma(pmac_ide_hwif_t
*pmif
, ide_hwif_t
*hwif
)
2018 /* We won't need pci_dev if we switch to generic consistent
2021 if (hwif
->pci_dev
== NULL
)
2024 * Allocate space for the DBDMA commands.
2025 * The +2 is +1 for the stop command and +1 to allow for
2026 * aligning the start address to a multiple of 16 bytes.
2028 pmif
->dma_table_cpu
= (struct dbdma_cmd
*)pci_alloc_consistent(
2030 (MAX_DCMDS
+ 2) * sizeof(struct dbdma_cmd
),
2031 &hwif
->dmatable_dma
);
2032 if (pmif
->dma_table_cpu
== NULL
) {
2033 printk(KERN_ERR
"%s: unable to allocate DMA command list\n",
2038 hwif
->ide_dma_off_quietly
= &__ide_dma_off_quietly
;
2039 hwif
->ide_dma_on
= &__ide_dma_on
;
2040 hwif
->ide_dma_check
= &pmac_ide_dma_check
;
2041 hwif
->dma_setup
= &pmac_ide_dma_setup
;
2042 hwif
->dma_exec_cmd
= &pmac_ide_dma_exec_cmd
;
2043 hwif
->dma_start
= &pmac_ide_dma_start
;
2044 hwif
->ide_dma_end
= &pmac_ide_dma_end
;
2045 hwif
->ide_dma_test_irq
= &pmac_ide_dma_test_irq
;
2046 hwif
->ide_dma_host_off
= &pmac_ide_dma_host_off
;
2047 hwif
->ide_dma_host_on
= &pmac_ide_dma_host_on
;
2048 hwif
->ide_dma_timeout
= &__ide_dma_timeout
;
2049 hwif
->ide_dma_lostirq
= &pmac_ide_dma_lostirq
;
2051 hwif
->atapi_dma
= 1;
2052 switch(pmif
->kind
) {
2053 case controller_sh_ata6
:
2054 hwif
->ultra_mask
= pmif
->cable_80
? 0x7f : 0x07;
2055 hwif
->mwdma_mask
= 0x07;
2056 hwif
->swdma_mask
= 0x00;
2058 case controller_un_ata6
:
2059 case controller_k2_ata6
:
2060 hwif
->ultra_mask
= pmif
->cable_80
? 0x3f : 0x07;
2061 hwif
->mwdma_mask
= 0x07;
2062 hwif
->swdma_mask
= 0x00;
2064 case controller_kl_ata4
:
2065 hwif
->ultra_mask
= pmif
->cable_80
? 0x1f : 0x07;
2066 hwif
->mwdma_mask
= 0x07;
2067 hwif
->swdma_mask
= 0x00;
2070 hwif
->ultra_mask
= 0x00;
2071 hwif
->mwdma_mask
= 0x07;
2072 hwif
->swdma_mask
= 0x00;
2077 #endif /* CONFIG_BLK_DEV_IDEDMA_PMAC */