Linux 2.6.20.7
[linux/fpc-iii.git] / drivers / net / chelsio / vsc8244.c
blobc493e783d459d560834772adc752a2f11ab80a7d
1 /*
2 * This file is part of the Chelsio T2 Ethernet driver.
4 * Copyright (C) 2005 Chelsio Communications. All rights reserved.
6 * This program is distributed in the hope that it will be useful, but WITHOUT
7 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
8 * FITNESS FOR A PARTICULAR PURPOSE. See the LICENSE file included in this
9 * release for licensing terms and conditions.
12 #include "common.h"
13 #include "cphy.h"
14 #include "elmer0.h"
16 #ifndef ADVERTISE_PAUSE_CAP
17 # define ADVERTISE_PAUSE_CAP 0x400
18 #endif
19 #ifndef ADVERTISE_PAUSE_ASYM
20 # define ADVERTISE_PAUSE_ASYM 0x800
21 #endif
23 /* Gigabit MII registers */
24 #ifndef MII_CTRL1000
25 # define MII_CTRL1000 9
26 #endif
28 #ifndef ADVERTISE_1000FULL
29 # define ADVERTISE_1000FULL 0x200
30 # define ADVERTISE_1000HALF 0x100
31 #endif
33 /* VSC8244 PHY specific registers. */
34 enum {
35 VSC8244_INTR_ENABLE = 25,
36 VSC8244_INTR_STATUS = 26,
37 VSC8244_AUX_CTRL_STAT = 28,
40 enum {
41 VSC_INTR_RX_ERR = 1 << 0,
42 VSC_INTR_MS_ERR = 1 << 1, /* master/slave resolution error */
43 VSC_INTR_CABLE = 1 << 2, /* cable impairment */
44 VSC_INTR_FALSE_CARR = 1 << 3, /* false carrier */
45 VSC_INTR_MEDIA_CHG = 1 << 4, /* AMS media change */
46 VSC_INTR_RX_FIFO = 1 << 5, /* Rx FIFO over/underflow */
47 VSC_INTR_TX_FIFO = 1 << 6, /* Tx FIFO over/underflow */
48 VSC_INTR_DESCRAMBL = 1 << 7, /* descrambler lock-lost */
49 VSC_INTR_SYMBOL_ERR = 1 << 8, /* symbol error */
50 VSC_INTR_NEG_DONE = 1 << 10, /* autoneg done */
51 VSC_INTR_NEG_ERR = 1 << 11, /* autoneg error */
52 VSC_INTR_LINK_CHG = 1 << 13, /* link change */
53 VSC_INTR_ENABLE = 1 << 15, /* interrupt enable */
56 #define CFG_CHG_INTR_MASK (VSC_INTR_LINK_CHG | VSC_INTR_NEG_ERR | \
57 VSC_INTR_NEG_DONE)
58 #define INTR_MASK (CFG_CHG_INTR_MASK | VSC_INTR_TX_FIFO | VSC_INTR_RX_FIFO | \
59 VSC_INTR_ENABLE)
61 /* PHY specific auxiliary control & status register fields */
62 #define S_ACSR_ACTIPHY_TMR 0
63 #define M_ACSR_ACTIPHY_TMR 0x3
64 #define V_ACSR_ACTIPHY_TMR(x) ((x) << S_ACSR_ACTIPHY_TMR)
66 #define S_ACSR_SPEED 3
67 #define M_ACSR_SPEED 0x3
68 #define G_ACSR_SPEED(x) (((x) >> S_ACSR_SPEED) & M_ACSR_SPEED)
70 #define S_ACSR_DUPLEX 5
71 #define F_ACSR_DUPLEX (1 << S_ACSR_DUPLEX)
73 #define S_ACSR_ACTIPHY 6
74 #define F_ACSR_ACTIPHY (1 << S_ACSR_ACTIPHY)
77 * Reset the PHY. This PHY completes reset immediately so we never wait.
79 static int vsc8244_reset(struct cphy *cphy, int wait)
81 int err;
82 unsigned int ctl;
84 err = simple_mdio_read(cphy, MII_BMCR, &ctl);
85 if (err)
86 return err;
88 ctl &= ~BMCR_PDOWN;
89 ctl |= BMCR_RESET;
90 return simple_mdio_write(cphy, MII_BMCR, ctl);
93 static int vsc8244_intr_enable(struct cphy *cphy)
95 simple_mdio_write(cphy, VSC8244_INTR_ENABLE, INTR_MASK);
97 /* Enable interrupts through Elmer */
98 if (t1_is_asic(cphy->adapter)) {
99 u32 elmer;
101 t1_tpi_read(cphy->adapter, A_ELMER0_INT_ENABLE, &elmer);
102 elmer |= ELMER0_GP_BIT1;
103 if (is_T2(cphy->adapter)) {
104 elmer |= ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4;
106 t1_tpi_write(cphy->adapter, A_ELMER0_INT_ENABLE, elmer);
109 return 0;
112 static int vsc8244_intr_disable(struct cphy *cphy)
114 simple_mdio_write(cphy, VSC8244_INTR_ENABLE, 0);
116 if (t1_is_asic(cphy->adapter)) {
117 u32 elmer;
119 t1_tpi_read(cphy->adapter, A_ELMER0_INT_ENABLE, &elmer);
120 elmer &= ~ELMER0_GP_BIT1;
121 if (is_T2(cphy->adapter)) {
122 elmer &= ~(ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4);
124 t1_tpi_write(cphy->adapter, A_ELMER0_INT_ENABLE, elmer);
127 return 0;
130 static int vsc8244_intr_clear(struct cphy *cphy)
132 u32 val;
133 u32 elmer;
135 /* Clear PHY interrupts by reading the register. */
136 simple_mdio_read(cphy, VSC8244_INTR_ENABLE, &val);
138 if (t1_is_asic(cphy->adapter)) {
139 t1_tpi_read(cphy->adapter, A_ELMER0_INT_CAUSE, &elmer);
140 elmer |= ELMER0_GP_BIT1;
141 if (is_T2(cphy->adapter)) {
142 elmer |= ELMER0_GP_BIT2|ELMER0_GP_BIT3|ELMER0_GP_BIT4;
144 t1_tpi_write(cphy->adapter, A_ELMER0_INT_CAUSE, elmer);
147 return 0;
151 * Force the PHY speed and duplex. This also disables auto-negotiation, except
152 * for 1Gb/s, where auto-negotiation is mandatory.
154 static int vsc8244_set_speed_duplex(struct cphy *phy, int speed, int duplex)
156 int err;
157 unsigned int ctl;
159 err = simple_mdio_read(phy, MII_BMCR, &ctl);
160 if (err)
161 return err;
163 if (speed >= 0) {
164 ctl &= ~(BMCR_SPEED100 | BMCR_SPEED1000 | BMCR_ANENABLE);
165 if (speed == SPEED_100)
166 ctl |= BMCR_SPEED100;
167 else if (speed == SPEED_1000)
168 ctl |= BMCR_SPEED1000;
170 if (duplex >= 0) {
171 ctl &= ~(BMCR_FULLDPLX | BMCR_ANENABLE);
172 if (duplex == DUPLEX_FULL)
173 ctl |= BMCR_FULLDPLX;
175 if (ctl & BMCR_SPEED1000) /* auto-negotiation required for 1Gb/s */
176 ctl |= BMCR_ANENABLE;
177 return simple_mdio_write(phy, MII_BMCR, ctl);
180 int t1_mdio_set_bits(struct cphy *phy, int mmd, int reg, unsigned int bits)
182 int ret;
183 unsigned int val;
185 ret = mdio_read(phy, mmd, reg, &val);
186 if (!ret)
187 ret = mdio_write(phy, mmd, reg, val | bits);
188 return ret;
191 static int vsc8244_autoneg_enable(struct cphy *cphy)
193 return t1_mdio_set_bits(cphy, 0, MII_BMCR,
194 BMCR_ANENABLE | BMCR_ANRESTART);
197 static int vsc8244_autoneg_restart(struct cphy *cphy)
199 return t1_mdio_set_bits(cphy, 0, MII_BMCR, BMCR_ANRESTART);
202 static int vsc8244_advertise(struct cphy *phy, unsigned int advertise_map)
204 int err;
205 unsigned int val = 0;
207 err = simple_mdio_read(phy, MII_CTRL1000, &val);
208 if (err)
209 return err;
211 val &= ~(ADVERTISE_1000HALF | ADVERTISE_1000FULL);
212 if (advertise_map & ADVERTISED_1000baseT_Half)
213 val |= ADVERTISE_1000HALF;
214 if (advertise_map & ADVERTISED_1000baseT_Full)
215 val |= ADVERTISE_1000FULL;
217 err = simple_mdio_write(phy, MII_CTRL1000, val);
218 if (err)
219 return err;
221 val = 1;
222 if (advertise_map & ADVERTISED_10baseT_Half)
223 val |= ADVERTISE_10HALF;
224 if (advertise_map & ADVERTISED_10baseT_Full)
225 val |= ADVERTISE_10FULL;
226 if (advertise_map & ADVERTISED_100baseT_Half)
227 val |= ADVERTISE_100HALF;
228 if (advertise_map & ADVERTISED_100baseT_Full)
229 val |= ADVERTISE_100FULL;
230 if (advertise_map & ADVERTISED_PAUSE)
231 val |= ADVERTISE_PAUSE_CAP;
232 if (advertise_map & ADVERTISED_ASYM_PAUSE)
233 val |= ADVERTISE_PAUSE_ASYM;
234 return simple_mdio_write(phy, MII_ADVERTISE, val);
237 static int vsc8244_get_link_status(struct cphy *cphy, int *link_ok,
238 int *speed, int *duplex, int *fc)
240 unsigned int bmcr, status, lpa, adv;
241 int err, sp = -1, dplx = -1, pause = 0;
243 err = simple_mdio_read(cphy, MII_BMCR, &bmcr);
244 if (!err)
245 err = simple_mdio_read(cphy, MII_BMSR, &status);
246 if (err)
247 return err;
249 if (link_ok) {
251 * BMSR_LSTATUS is latch-low, so if it is 0 we need to read it
252 * once more to get the current link state.
254 if (!(status & BMSR_LSTATUS))
255 err = simple_mdio_read(cphy, MII_BMSR, &status);
256 if (err)
257 return err;
258 *link_ok = (status & BMSR_LSTATUS) != 0;
260 if (!(bmcr & BMCR_ANENABLE)) {
261 dplx = (bmcr & BMCR_FULLDPLX) ? DUPLEX_FULL : DUPLEX_HALF;
262 if (bmcr & BMCR_SPEED1000)
263 sp = SPEED_1000;
264 else if (bmcr & BMCR_SPEED100)
265 sp = SPEED_100;
266 else
267 sp = SPEED_10;
268 } else if (status & BMSR_ANEGCOMPLETE) {
269 err = simple_mdio_read(cphy, VSC8244_AUX_CTRL_STAT, &status);
270 if (err)
271 return err;
273 dplx = (status & F_ACSR_DUPLEX) ? DUPLEX_FULL : DUPLEX_HALF;
274 sp = G_ACSR_SPEED(status);
275 if (sp == 0)
276 sp = SPEED_10;
277 else if (sp == 1)
278 sp = SPEED_100;
279 else
280 sp = SPEED_1000;
282 if (fc && dplx == DUPLEX_FULL) {
283 err = simple_mdio_read(cphy, MII_LPA, &lpa);
284 if (!err)
285 err = simple_mdio_read(cphy, MII_ADVERTISE,
286 &adv);
287 if (err)
288 return err;
290 if (lpa & adv & ADVERTISE_PAUSE_CAP)
291 pause = PAUSE_RX | PAUSE_TX;
292 else if ((lpa & ADVERTISE_PAUSE_CAP) &&
293 (lpa & ADVERTISE_PAUSE_ASYM) &&
294 (adv & ADVERTISE_PAUSE_ASYM))
295 pause = PAUSE_TX;
296 else if ((lpa & ADVERTISE_PAUSE_ASYM) &&
297 (adv & ADVERTISE_PAUSE_CAP))
298 pause = PAUSE_RX;
301 if (speed)
302 *speed = sp;
303 if (duplex)
304 *duplex = dplx;
305 if (fc)
306 *fc = pause;
307 return 0;
310 static int vsc8244_intr_handler(struct cphy *cphy)
312 unsigned int cause;
313 int err, cphy_cause = 0;
315 err = simple_mdio_read(cphy, VSC8244_INTR_STATUS, &cause);
316 if (err)
317 return err;
319 cause &= INTR_MASK;
320 if (cause & CFG_CHG_INTR_MASK)
321 cphy_cause |= cphy_cause_link_change;
322 if (cause & (VSC_INTR_RX_FIFO | VSC_INTR_TX_FIFO))
323 cphy_cause |= cphy_cause_fifo_error;
324 return cphy_cause;
327 static void vsc8244_destroy(struct cphy *cphy)
329 kfree(cphy);
332 static struct cphy_ops vsc8244_ops = {
333 .destroy = vsc8244_destroy,
334 .reset = vsc8244_reset,
335 .interrupt_enable = vsc8244_intr_enable,
336 .interrupt_disable = vsc8244_intr_disable,
337 .interrupt_clear = vsc8244_intr_clear,
338 .interrupt_handler = vsc8244_intr_handler,
339 .autoneg_enable = vsc8244_autoneg_enable,
340 .autoneg_restart = vsc8244_autoneg_restart,
341 .advertise = vsc8244_advertise,
342 .set_speed_duplex = vsc8244_set_speed_duplex,
343 .get_link_status = vsc8244_get_link_status
346 static struct cphy* vsc8244_phy_create(adapter_t *adapter, int phy_addr, struct mdio_ops *mdio_ops)
348 struct cphy *cphy = kzalloc(sizeof(*cphy), GFP_KERNEL);
350 if (!cphy) return NULL;
352 cphy_init(cphy, adapter, phy_addr, &vsc8244_ops, mdio_ops);
354 return cphy;
358 static int vsc8244_phy_reset(adapter_t* adapter)
360 return 0;
363 struct gphy t1_vsc8244_ops = {
364 vsc8244_phy_create,
365 vsc8244_phy_reset