Linux 2.6.20.7
[linux/fpc-iii.git] / drivers / net / fs_enet / fs_enet-main.c
blob889d3a13e95e4ef36ca3efedb35cc7fb3afdac37
1 /*
2 * Combined Ethernet driver for Motorola MPC8xx and MPC82xx.
4 * Copyright (c) 2003 Intracom S.A.
5 * by Pantelis Antoniou <panto@intracom.gr>
6 *
7 * 2005 (c) MontaVista Software, Inc.
8 * Vitaly Bordug <vbordug@ru.mvista.com>
10 * Heavily based on original FEC driver by Dan Malek <dan@embeddededge.com>
11 * and modifications by Joakim Tjernlund <joakim.tjernlund@lumentis.se>
13 * This file is licensed under the terms of the GNU General Public License
14 * version 2. This program is licensed "as is" without any warranty of any
15 * kind, whether express or implied.
18 #include <linux/module.h>
19 #include <linux/kernel.h>
20 #include <linux/types.h>
21 #include <linux/sched.h>
22 #include <linux/string.h>
23 #include <linux/ptrace.h>
24 #include <linux/errno.h>
25 #include <linux/ioport.h>
26 #include <linux/slab.h>
27 #include <linux/interrupt.h>
28 #include <linux/pci.h>
29 #include <linux/init.h>
30 #include <linux/delay.h>
31 #include <linux/netdevice.h>
32 #include <linux/etherdevice.h>
33 #include <linux/skbuff.h>
34 #include <linux/spinlock.h>
35 #include <linux/mii.h>
36 #include <linux/ethtool.h>
37 #include <linux/bitops.h>
38 #include <linux/fs.h>
39 #include <linux/platform_device.h>
40 #include <linux/phy.h>
42 #include <linux/vmalloc.h>
43 #include <asm/pgtable.h>
45 #include <asm/pgtable.h>
46 #include <asm/irq.h>
47 #include <asm/uaccess.h>
49 #include "fs_enet.h"
51 /*************************************************/
53 static char version[] __devinitdata =
54 DRV_MODULE_NAME ".c:v" DRV_MODULE_VERSION " (" DRV_MODULE_RELDATE ")" "\n";
56 MODULE_AUTHOR("Pantelis Antoniou <panto@intracom.gr>");
57 MODULE_DESCRIPTION("Freescale Ethernet Driver");
58 MODULE_LICENSE("GPL");
59 MODULE_VERSION(DRV_MODULE_VERSION);
61 int fs_enet_debug = -1; /* -1 == use FS_ENET_DEF_MSG_ENABLE as value */
62 module_param(fs_enet_debug, int, 0);
63 MODULE_PARM_DESC(fs_enet_debug,
64 "Freescale bitmapped debugging message enable value");
67 static void fs_set_multicast_list(struct net_device *dev)
69 struct fs_enet_private *fep = netdev_priv(dev);
71 (*fep->ops->set_multicast_list)(dev);
74 /* NAPI receive function */
75 static int fs_enet_rx_napi(struct net_device *dev, int *budget)
77 struct fs_enet_private *fep = netdev_priv(dev);
78 const struct fs_platform_info *fpi = fep->fpi;
79 cbd_t *bdp;
80 struct sk_buff *skb, *skbn, *skbt;
81 int received = 0;
82 u16 pkt_len, sc;
83 int curidx;
84 int rx_work_limit = 0; /* pacify gcc */
86 rx_work_limit = min(dev->quota, *budget);
88 if (!netif_running(dev))
89 return 0;
92 * First, grab all of the stats for the incoming packet.
93 * These get messed up if we get called due to a busy condition.
95 bdp = fep->cur_rx;
97 /* clear RX status bits for napi*/
98 (*fep->ops->napi_clear_rx_event)(dev);
100 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
102 curidx = bdp - fep->rx_bd_base;
105 * Since we have allocated space to hold a complete frame,
106 * the last indicator should be set.
108 if ((sc & BD_ENET_RX_LAST) == 0)
109 printk(KERN_WARNING DRV_MODULE_NAME
110 ": %s rcv is not +last\n",
111 dev->name);
114 * Check for errors.
116 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
117 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
118 fep->stats.rx_errors++;
119 /* Frame too long or too short. */
120 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
121 fep->stats.rx_length_errors++;
122 /* Frame alignment */
123 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
124 fep->stats.rx_frame_errors++;
125 /* CRC Error */
126 if (sc & BD_ENET_RX_CR)
127 fep->stats.rx_crc_errors++;
128 /* FIFO overrun */
129 if (sc & BD_ENET_RX_OV)
130 fep->stats.rx_crc_errors++;
132 skb = fep->rx_skbuff[curidx];
134 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
135 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
136 DMA_FROM_DEVICE);
138 skbn = skb;
140 } else {
142 /* napi, got packet but no quota */
143 if (--rx_work_limit < 0)
144 break;
146 skb = fep->rx_skbuff[curidx];
148 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
149 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
150 DMA_FROM_DEVICE);
153 * Process the incoming frame.
155 fep->stats.rx_packets++;
156 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
157 fep->stats.rx_bytes += pkt_len + 4;
159 if (pkt_len <= fpi->rx_copybreak) {
160 /* +2 to make IP header L1 cache aligned */
161 skbn = dev_alloc_skb(pkt_len + 2);
162 if (skbn != NULL) {
163 skb_reserve(skbn, 2); /* align IP header */
164 memcpy(skbn->data, skb->data, pkt_len);
165 /* swap */
166 skbt = skb;
167 skb = skbn;
168 skbn = skbt;
170 } else
171 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
173 if (skbn != NULL) {
174 skb->dev = dev;
175 skb_put(skb, pkt_len); /* Make room */
176 skb->protocol = eth_type_trans(skb, dev);
177 received++;
178 netif_receive_skb(skb);
179 } else {
180 printk(KERN_WARNING DRV_MODULE_NAME
181 ": %s Memory squeeze, dropping packet.\n",
182 dev->name);
183 fep->stats.rx_dropped++;
184 skbn = skb;
188 fep->rx_skbuff[curidx] = skbn;
189 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
190 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
191 DMA_FROM_DEVICE));
192 CBDW_DATLEN(bdp, 0);
193 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
196 * Update BD pointer to next entry.
198 if ((sc & BD_ENET_RX_WRAP) == 0)
199 bdp++;
200 else
201 bdp = fep->rx_bd_base;
203 (*fep->ops->rx_bd_done)(dev);
206 fep->cur_rx = bdp;
208 dev->quota -= received;
209 *budget -= received;
211 if (rx_work_limit < 0)
212 return 1; /* not done */
214 /* done */
215 netif_rx_complete(dev);
217 (*fep->ops->napi_enable_rx)(dev);
219 return 0;
222 /* non NAPI receive function */
223 static int fs_enet_rx_non_napi(struct net_device *dev)
225 struct fs_enet_private *fep = netdev_priv(dev);
226 const struct fs_platform_info *fpi = fep->fpi;
227 cbd_t *bdp;
228 struct sk_buff *skb, *skbn, *skbt;
229 int received = 0;
230 u16 pkt_len, sc;
231 int curidx;
233 * First, grab all of the stats for the incoming packet.
234 * These get messed up if we get called due to a busy condition.
236 bdp = fep->cur_rx;
238 while (((sc = CBDR_SC(bdp)) & BD_ENET_RX_EMPTY) == 0) {
240 curidx = bdp - fep->rx_bd_base;
243 * Since we have allocated space to hold a complete frame,
244 * the last indicator should be set.
246 if ((sc & BD_ENET_RX_LAST) == 0)
247 printk(KERN_WARNING DRV_MODULE_NAME
248 ": %s rcv is not +last\n",
249 dev->name);
252 * Check for errors.
254 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_CL |
255 BD_ENET_RX_NO | BD_ENET_RX_CR | BD_ENET_RX_OV)) {
256 fep->stats.rx_errors++;
257 /* Frame too long or too short. */
258 if (sc & (BD_ENET_RX_LG | BD_ENET_RX_SH))
259 fep->stats.rx_length_errors++;
260 /* Frame alignment */
261 if (sc & (BD_ENET_RX_NO | BD_ENET_RX_CL))
262 fep->stats.rx_frame_errors++;
263 /* CRC Error */
264 if (sc & BD_ENET_RX_CR)
265 fep->stats.rx_crc_errors++;
266 /* FIFO overrun */
267 if (sc & BD_ENET_RX_OV)
268 fep->stats.rx_crc_errors++;
270 skb = fep->rx_skbuff[curidx];
272 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
273 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
274 DMA_FROM_DEVICE);
276 skbn = skb;
278 } else {
280 skb = fep->rx_skbuff[curidx];
282 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
283 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
284 DMA_FROM_DEVICE);
287 * Process the incoming frame.
289 fep->stats.rx_packets++;
290 pkt_len = CBDR_DATLEN(bdp) - 4; /* remove CRC */
291 fep->stats.rx_bytes += pkt_len + 4;
293 if (pkt_len <= fpi->rx_copybreak) {
294 /* +2 to make IP header L1 cache aligned */
295 skbn = dev_alloc_skb(pkt_len + 2);
296 if (skbn != NULL) {
297 skb_reserve(skbn, 2); /* align IP header */
298 memcpy(skbn->data, skb->data, pkt_len);
299 /* swap */
300 skbt = skb;
301 skb = skbn;
302 skbn = skbt;
304 } else
305 skbn = dev_alloc_skb(ENET_RX_FRSIZE);
307 if (skbn != NULL) {
308 skb->dev = dev;
309 skb_put(skb, pkt_len); /* Make room */
310 skb->protocol = eth_type_trans(skb, dev);
311 received++;
312 netif_rx(skb);
313 } else {
314 printk(KERN_WARNING DRV_MODULE_NAME
315 ": %s Memory squeeze, dropping packet.\n",
316 dev->name);
317 fep->stats.rx_dropped++;
318 skbn = skb;
322 fep->rx_skbuff[curidx] = skbn;
323 CBDW_BUFADDR(bdp, dma_map_single(fep->dev, skbn->data,
324 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
325 DMA_FROM_DEVICE));
326 CBDW_DATLEN(bdp, 0);
327 CBDW_SC(bdp, (sc & ~BD_ENET_RX_STATS) | BD_ENET_RX_EMPTY);
330 * Update BD pointer to next entry.
332 if ((sc & BD_ENET_RX_WRAP) == 0)
333 bdp++;
334 else
335 bdp = fep->rx_bd_base;
337 (*fep->ops->rx_bd_done)(dev);
340 fep->cur_rx = bdp;
342 return 0;
345 static void fs_enet_tx(struct net_device *dev)
347 struct fs_enet_private *fep = netdev_priv(dev);
348 cbd_t *bdp;
349 struct sk_buff *skb;
350 int dirtyidx, do_wake, do_restart;
351 u16 sc;
353 spin_lock(&fep->lock);
354 bdp = fep->dirty_tx;
356 do_wake = do_restart = 0;
357 while (((sc = CBDR_SC(bdp)) & BD_ENET_TX_READY) == 0) {
359 dirtyidx = bdp - fep->tx_bd_base;
361 if (fep->tx_free == fep->tx_ring)
362 break;
364 skb = fep->tx_skbuff[dirtyidx];
367 * Check for errors.
369 if (sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
370 BD_ENET_TX_RL | BD_ENET_TX_UN | BD_ENET_TX_CSL)) {
372 if (sc & BD_ENET_TX_HB) /* No heartbeat */
373 fep->stats.tx_heartbeat_errors++;
374 if (sc & BD_ENET_TX_LC) /* Late collision */
375 fep->stats.tx_window_errors++;
376 if (sc & BD_ENET_TX_RL) /* Retrans limit */
377 fep->stats.tx_aborted_errors++;
378 if (sc & BD_ENET_TX_UN) /* Underrun */
379 fep->stats.tx_fifo_errors++;
380 if (sc & BD_ENET_TX_CSL) /* Carrier lost */
381 fep->stats.tx_carrier_errors++;
383 if (sc & (BD_ENET_TX_LC | BD_ENET_TX_RL | BD_ENET_TX_UN)) {
384 fep->stats.tx_errors++;
385 do_restart = 1;
387 } else
388 fep->stats.tx_packets++;
390 if (sc & BD_ENET_TX_READY)
391 printk(KERN_WARNING DRV_MODULE_NAME
392 ": %s HEY! Enet xmit interrupt and TX_READY.\n",
393 dev->name);
396 * Deferred means some collisions occurred during transmit,
397 * but we eventually sent the packet OK.
399 if (sc & BD_ENET_TX_DEF)
400 fep->stats.collisions++;
402 /* unmap */
403 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
404 skb->len, DMA_TO_DEVICE);
407 * Free the sk buffer associated with this last transmit.
409 dev_kfree_skb_irq(skb);
410 fep->tx_skbuff[dirtyidx] = NULL;
413 * Update pointer to next buffer descriptor to be transmitted.
415 if ((sc & BD_ENET_TX_WRAP) == 0)
416 bdp++;
417 else
418 bdp = fep->tx_bd_base;
421 * Since we have freed up a buffer, the ring is no longer
422 * full.
424 if (!fep->tx_free++)
425 do_wake = 1;
428 fep->dirty_tx = bdp;
430 if (do_restart)
431 (*fep->ops->tx_restart)(dev);
433 spin_unlock(&fep->lock);
435 if (do_wake)
436 netif_wake_queue(dev);
440 * The interrupt handler.
441 * This is called from the MPC core interrupt.
443 static irqreturn_t
444 fs_enet_interrupt(int irq, void *dev_id)
446 struct net_device *dev = dev_id;
447 struct fs_enet_private *fep;
448 const struct fs_platform_info *fpi;
449 u32 int_events;
450 u32 int_clr_events;
451 int nr, napi_ok;
452 int handled;
454 fep = netdev_priv(dev);
455 fpi = fep->fpi;
457 nr = 0;
458 while ((int_events = (*fep->ops->get_int_events)(dev)) != 0) {
460 nr++;
462 int_clr_events = int_events;
463 if (fpi->use_napi)
464 int_clr_events &= ~fep->ev_napi_rx;
466 (*fep->ops->clear_int_events)(dev, int_clr_events);
468 if (int_events & fep->ev_err)
469 (*fep->ops->ev_error)(dev, int_events);
471 if (int_events & fep->ev_rx) {
472 if (!fpi->use_napi)
473 fs_enet_rx_non_napi(dev);
474 else {
475 napi_ok = netif_rx_schedule_prep(dev);
477 (*fep->ops->napi_disable_rx)(dev);
478 (*fep->ops->clear_int_events)(dev, fep->ev_napi_rx);
480 /* NOTE: it is possible for FCCs in NAPI mode */
481 /* to submit a spurious interrupt while in poll */
482 if (napi_ok)
483 __netif_rx_schedule(dev);
487 if (int_events & fep->ev_tx)
488 fs_enet_tx(dev);
491 handled = nr > 0;
492 return IRQ_RETVAL(handled);
495 void fs_init_bds(struct net_device *dev)
497 struct fs_enet_private *fep = netdev_priv(dev);
498 cbd_t *bdp;
499 struct sk_buff *skb;
500 int i;
502 fs_cleanup_bds(dev);
504 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
505 fep->tx_free = fep->tx_ring;
506 fep->cur_rx = fep->rx_bd_base;
509 * Initialize the receive buffer descriptors.
511 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
512 skb = dev_alloc_skb(ENET_RX_FRSIZE);
513 if (skb == NULL) {
514 printk(KERN_WARNING DRV_MODULE_NAME
515 ": %s Memory squeeze, unable to allocate skb\n",
516 dev->name);
517 break;
519 fep->rx_skbuff[i] = skb;
520 skb->dev = dev;
521 CBDW_BUFADDR(bdp,
522 dma_map_single(fep->dev, skb->data,
523 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
524 DMA_FROM_DEVICE));
525 CBDW_DATLEN(bdp, 0); /* zero */
526 CBDW_SC(bdp, BD_ENET_RX_EMPTY |
527 ((i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP));
530 * if we failed, fillup remainder
532 for (; i < fep->rx_ring; i++, bdp++) {
533 fep->rx_skbuff[i] = NULL;
534 CBDW_SC(bdp, (i < fep->rx_ring - 1) ? 0 : BD_SC_WRAP);
538 * ...and the same for transmit.
540 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
541 fep->tx_skbuff[i] = NULL;
542 CBDW_BUFADDR(bdp, 0);
543 CBDW_DATLEN(bdp, 0);
544 CBDW_SC(bdp, (i < fep->tx_ring - 1) ? 0 : BD_SC_WRAP);
548 void fs_cleanup_bds(struct net_device *dev)
550 struct fs_enet_private *fep = netdev_priv(dev);
551 struct sk_buff *skb;
552 cbd_t *bdp;
553 int i;
556 * Reset SKB transmit buffers.
558 for (i = 0, bdp = fep->tx_bd_base; i < fep->tx_ring; i++, bdp++) {
559 if ((skb = fep->tx_skbuff[i]) == NULL)
560 continue;
562 /* unmap */
563 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
564 skb->len, DMA_TO_DEVICE);
566 fep->tx_skbuff[i] = NULL;
567 dev_kfree_skb(skb);
571 * Reset SKB receive buffers
573 for (i = 0, bdp = fep->rx_bd_base; i < fep->rx_ring; i++, bdp++) {
574 if ((skb = fep->rx_skbuff[i]) == NULL)
575 continue;
577 /* unmap */
578 dma_unmap_single(fep->dev, CBDR_BUFADDR(bdp),
579 L1_CACHE_ALIGN(PKT_MAXBUF_SIZE),
580 DMA_FROM_DEVICE);
582 fep->rx_skbuff[i] = NULL;
584 dev_kfree_skb(skb);
588 /**********************************************************************************/
590 static int fs_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
592 struct fs_enet_private *fep = netdev_priv(dev);
593 cbd_t *bdp;
594 int curidx;
595 u16 sc;
596 unsigned long flags;
598 spin_lock_irqsave(&fep->tx_lock, flags);
601 * Fill in a Tx ring entry
603 bdp = fep->cur_tx;
605 if (!fep->tx_free || (CBDR_SC(bdp) & BD_ENET_TX_READY)) {
606 netif_stop_queue(dev);
607 spin_unlock_irqrestore(&fep->tx_lock, flags);
610 * Ooops. All transmit buffers are full. Bail out.
611 * This should not happen, since the tx queue should be stopped.
613 printk(KERN_WARNING DRV_MODULE_NAME
614 ": %s tx queue full!.\n", dev->name);
615 return NETDEV_TX_BUSY;
618 curidx = bdp - fep->tx_bd_base;
620 * Clear all of the status flags.
622 CBDC_SC(bdp, BD_ENET_TX_STATS);
625 * Save skb pointer.
627 fep->tx_skbuff[curidx] = skb;
629 fep->stats.tx_bytes += skb->len;
632 * Push the data cache so the CPM does not get stale memory data.
634 CBDW_BUFADDR(bdp, dma_map_single(fep->dev,
635 skb->data, skb->len, DMA_TO_DEVICE));
636 CBDW_DATLEN(bdp, skb->len);
638 dev->trans_start = jiffies;
641 * If this was the last BD in the ring, start at the beginning again.
643 if ((CBDR_SC(bdp) & BD_ENET_TX_WRAP) == 0)
644 fep->cur_tx++;
645 else
646 fep->cur_tx = fep->tx_bd_base;
648 if (!--fep->tx_free)
649 netif_stop_queue(dev);
651 /* Trigger transmission start */
652 sc = BD_ENET_TX_READY | BD_ENET_TX_INTR |
653 BD_ENET_TX_LAST | BD_ENET_TX_TC;
655 /* note that while FEC does not have this bit
656 * it marks it as available for software use
657 * yay for hw reuse :) */
658 if (skb->len <= 60)
659 sc |= BD_ENET_TX_PAD;
660 CBDS_SC(bdp, sc);
662 (*fep->ops->tx_kickstart)(dev);
664 spin_unlock_irqrestore(&fep->tx_lock, flags);
666 return NETDEV_TX_OK;
669 static int fs_request_irq(struct net_device *dev, int irq, const char *name,
670 irq_handler_t irqf)
672 struct fs_enet_private *fep = netdev_priv(dev);
674 (*fep->ops->pre_request_irq)(dev, irq);
675 return request_irq(irq, irqf, IRQF_SHARED, name, dev);
678 static void fs_free_irq(struct net_device *dev, int irq)
680 struct fs_enet_private *fep = netdev_priv(dev);
682 free_irq(irq, dev);
683 (*fep->ops->post_free_irq)(dev, irq);
686 static void fs_timeout(struct net_device *dev)
688 struct fs_enet_private *fep = netdev_priv(dev);
689 unsigned long flags;
690 int wake = 0;
692 fep->stats.tx_errors++;
694 spin_lock_irqsave(&fep->lock, flags);
696 if (dev->flags & IFF_UP) {
697 phy_stop(fep->phydev);
698 (*fep->ops->stop)(dev);
699 (*fep->ops->restart)(dev);
700 phy_start(fep->phydev);
703 phy_start(fep->phydev);
704 wake = fep->tx_free && !(CBDR_SC(fep->cur_tx) & BD_ENET_TX_READY);
705 spin_unlock_irqrestore(&fep->lock, flags);
707 if (wake)
708 netif_wake_queue(dev);
711 /*-----------------------------------------------------------------------------
712 * generic link-change handler - should be sufficient for most cases
713 *-----------------------------------------------------------------------------*/
714 static void generic_adjust_link(struct net_device *dev)
716 struct fs_enet_private *fep = netdev_priv(dev);
717 struct phy_device *phydev = fep->phydev;
718 int new_state = 0;
720 if (phydev->link) {
722 /* adjust to duplex mode */
723 if (phydev->duplex != fep->oldduplex){
724 new_state = 1;
725 fep->oldduplex = phydev->duplex;
728 if (phydev->speed != fep->oldspeed) {
729 new_state = 1;
730 fep->oldspeed = phydev->speed;
733 if (!fep->oldlink) {
734 new_state = 1;
735 fep->oldlink = 1;
736 netif_schedule(dev);
737 netif_carrier_on(dev);
738 netif_start_queue(dev);
741 if (new_state)
742 fep->ops->restart(dev);
744 } else if (fep->oldlink) {
745 new_state = 1;
746 fep->oldlink = 0;
747 fep->oldspeed = 0;
748 fep->oldduplex = -1;
749 netif_carrier_off(dev);
750 netif_stop_queue(dev);
753 if (new_state && netif_msg_link(fep))
754 phy_print_status(phydev);
758 static void fs_adjust_link(struct net_device *dev)
760 struct fs_enet_private *fep = netdev_priv(dev);
761 unsigned long flags;
763 spin_lock_irqsave(&fep->lock, flags);
765 if(fep->ops->adjust_link)
766 fep->ops->adjust_link(dev);
767 else
768 generic_adjust_link(dev);
770 spin_unlock_irqrestore(&fep->lock, flags);
773 static int fs_init_phy(struct net_device *dev)
775 struct fs_enet_private *fep = netdev_priv(dev);
776 struct phy_device *phydev;
778 fep->oldlink = 0;
779 fep->oldspeed = 0;
780 fep->oldduplex = -1;
781 if(fep->fpi->bus_id)
782 phydev = phy_connect(dev, fep->fpi->bus_id, &fs_adjust_link, 0,
783 PHY_INTERFACE_MODE_MII);
784 else {
785 printk("No phy bus ID specified in BSP code\n");
786 return -EINVAL;
788 if (IS_ERR(phydev)) {
789 printk(KERN_ERR "%s: Could not attach to PHY\n", dev->name);
790 return PTR_ERR(phydev);
793 fep->phydev = phydev;
795 return 0;
799 static int fs_enet_open(struct net_device *dev)
801 struct fs_enet_private *fep = netdev_priv(dev);
802 int r;
803 int err;
805 /* Install our interrupt handler. */
806 r = fs_request_irq(dev, fep->interrupt, "fs_enet-mac", fs_enet_interrupt);
807 if (r != 0) {
808 printk(KERN_ERR DRV_MODULE_NAME
809 ": %s Could not allocate FS_ENET IRQ!", dev->name);
810 return -EINVAL;
813 err = fs_init_phy(dev);
814 if(err)
815 return err;
817 phy_start(fep->phydev);
819 return 0;
822 static int fs_enet_close(struct net_device *dev)
824 struct fs_enet_private *fep = netdev_priv(dev);
825 unsigned long flags;
827 netif_stop_queue(dev);
828 netif_carrier_off(dev);
829 phy_stop(fep->phydev);
831 spin_lock_irqsave(&fep->lock, flags);
832 (*fep->ops->stop)(dev);
833 spin_unlock_irqrestore(&fep->lock, flags);
835 /* release any irqs */
836 phy_disconnect(fep->phydev);
837 fep->phydev = NULL;
838 fs_free_irq(dev, fep->interrupt);
840 return 0;
843 static struct net_device_stats *fs_enet_get_stats(struct net_device *dev)
845 struct fs_enet_private *fep = netdev_priv(dev);
846 return &fep->stats;
849 /*************************************************************************/
851 static void fs_get_drvinfo(struct net_device *dev,
852 struct ethtool_drvinfo *info)
854 strcpy(info->driver, DRV_MODULE_NAME);
855 strcpy(info->version, DRV_MODULE_VERSION);
858 static int fs_get_regs_len(struct net_device *dev)
860 struct fs_enet_private *fep = netdev_priv(dev);
862 return (*fep->ops->get_regs_len)(dev);
865 static void fs_get_regs(struct net_device *dev, struct ethtool_regs *regs,
866 void *p)
868 struct fs_enet_private *fep = netdev_priv(dev);
869 unsigned long flags;
870 int r, len;
872 len = regs->len;
874 spin_lock_irqsave(&fep->lock, flags);
875 r = (*fep->ops->get_regs)(dev, p, &len);
876 spin_unlock_irqrestore(&fep->lock, flags);
878 if (r == 0)
879 regs->version = 0;
882 static int fs_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
884 struct fs_enet_private *fep = netdev_priv(dev);
885 return phy_ethtool_gset(fep->phydev, cmd);
888 static int fs_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
890 struct fs_enet_private *fep = netdev_priv(dev);
891 phy_ethtool_sset(fep->phydev, cmd);
892 return 0;
895 static int fs_nway_reset(struct net_device *dev)
897 return 0;
900 static u32 fs_get_msglevel(struct net_device *dev)
902 struct fs_enet_private *fep = netdev_priv(dev);
903 return fep->msg_enable;
906 static void fs_set_msglevel(struct net_device *dev, u32 value)
908 struct fs_enet_private *fep = netdev_priv(dev);
909 fep->msg_enable = value;
912 static const struct ethtool_ops fs_ethtool_ops = {
913 .get_drvinfo = fs_get_drvinfo,
914 .get_regs_len = fs_get_regs_len,
915 .get_settings = fs_get_settings,
916 .set_settings = fs_set_settings,
917 .nway_reset = fs_nway_reset,
918 .get_link = ethtool_op_get_link,
919 .get_msglevel = fs_get_msglevel,
920 .set_msglevel = fs_set_msglevel,
921 .get_tx_csum = ethtool_op_get_tx_csum,
922 .set_tx_csum = ethtool_op_set_tx_csum, /* local! */
923 .get_sg = ethtool_op_get_sg,
924 .set_sg = ethtool_op_set_sg,
925 .get_regs = fs_get_regs,
928 static int fs_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
930 struct fs_enet_private *fep = netdev_priv(dev);
931 struct mii_ioctl_data *mii = (struct mii_ioctl_data *)&rq->ifr_data;
932 unsigned long flags;
933 int rc;
935 if (!netif_running(dev))
936 return -EINVAL;
938 spin_lock_irqsave(&fep->lock, flags);
939 rc = phy_mii_ioctl(fep->phydev, mii, cmd);
940 spin_unlock_irqrestore(&fep->lock, flags);
941 return rc;
944 extern int fs_mii_connect(struct net_device *dev);
945 extern void fs_mii_disconnect(struct net_device *dev);
947 static struct net_device *fs_init_instance(struct device *dev,
948 struct fs_platform_info *fpi)
950 struct net_device *ndev = NULL;
951 struct fs_enet_private *fep = NULL;
952 int privsize, i, r, err = 0, registered = 0;
954 fpi->fs_no = fs_get_id(fpi);
955 /* guard */
956 if ((unsigned int)fpi->fs_no >= FS_MAX_INDEX)
957 return ERR_PTR(-EINVAL);
959 privsize = sizeof(*fep) + (sizeof(struct sk_buff **) *
960 (fpi->rx_ring + fpi->tx_ring));
962 ndev = alloc_etherdev(privsize);
963 if (!ndev) {
964 err = -ENOMEM;
965 goto err;
967 SET_MODULE_OWNER(ndev);
969 fep = netdev_priv(ndev);
970 memset(fep, 0, privsize); /* clear everything */
972 fep->dev = dev;
973 dev_set_drvdata(dev, ndev);
974 fep->fpi = fpi;
975 if (fpi->init_ioports)
976 fpi->init_ioports((struct fs_platform_info *)fpi);
978 #ifdef CONFIG_FS_ENET_HAS_FEC
979 if (fs_get_fec_index(fpi->fs_no) >= 0)
980 fep->ops = &fs_fec_ops;
981 #endif
983 #ifdef CONFIG_FS_ENET_HAS_SCC
984 if (fs_get_scc_index(fpi->fs_no) >=0 )
985 fep->ops = &fs_scc_ops;
986 #endif
988 #ifdef CONFIG_FS_ENET_HAS_FCC
989 if (fs_get_fcc_index(fpi->fs_no) >= 0)
990 fep->ops = &fs_fcc_ops;
991 #endif
993 if (fep->ops == NULL) {
994 printk(KERN_ERR DRV_MODULE_NAME
995 ": %s No matching ops found (%d).\n",
996 ndev->name, fpi->fs_no);
997 err = -EINVAL;
998 goto err;
1001 r = (*fep->ops->setup_data)(ndev);
1002 if (r != 0) {
1003 printk(KERN_ERR DRV_MODULE_NAME
1004 ": %s setup_data failed\n",
1005 ndev->name);
1006 err = r;
1007 goto err;
1010 /* point rx_skbuff, tx_skbuff */
1011 fep->rx_skbuff = (struct sk_buff **)&fep[1];
1012 fep->tx_skbuff = fep->rx_skbuff + fpi->rx_ring;
1014 /* init locks */
1015 spin_lock_init(&fep->lock);
1016 spin_lock_init(&fep->tx_lock);
1019 * Set the Ethernet address.
1021 for (i = 0; i < 6; i++)
1022 ndev->dev_addr[i] = fpi->macaddr[i];
1024 r = (*fep->ops->allocate_bd)(ndev);
1026 if (fep->ring_base == NULL) {
1027 printk(KERN_ERR DRV_MODULE_NAME
1028 ": %s buffer descriptor alloc failed (%d).\n", ndev->name, r);
1029 err = r;
1030 goto err;
1034 * Set receive and transmit descriptor base.
1036 fep->rx_bd_base = fep->ring_base;
1037 fep->tx_bd_base = fep->rx_bd_base + fpi->rx_ring;
1039 /* initialize ring size variables */
1040 fep->tx_ring = fpi->tx_ring;
1041 fep->rx_ring = fpi->rx_ring;
1044 * The FEC Ethernet specific entries in the device structure.
1046 ndev->open = fs_enet_open;
1047 ndev->hard_start_xmit = fs_enet_start_xmit;
1048 ndev->tx_timeout = fs_timeout;
1049 ndev->watchdog_timeo = 2 * HZ;
1050 ndev->stop = fs_enet_close;
1051 ndev->get_stats = fs_enet_get_stats;
1052 ndev->set_multicast_list = fs_set_multicast_list;
1053 if (fpi->use_napi) {
1054 ndev->poll = fs_enet_rx_napi;
1055 ndev->weight = fpi->napi_weight;
1057 ndev->ethtool_ops = &fs_ethtool_ops;
1058 ndev->do_ioctl = fs_ioctl;
1060 init_timer(&fep->phy_timer_list);
1062 netif_carrier_off(ndev);
1064 err = register_netdev(ndev);
1065 if (err != 0) {
1066 printk(KERN_ERR DRV_MODULE_NAME
1067 ": %s register_netdev failed.\n", ndev->name);
1068 goto err;
1070 registered = 1;
1073 return ndev;
1075 err:
1076 if (ndev != NULL) {
1078 if (registered)
1079 unregister_netdev(ndev);
1081 if (fep != NULL) {
1082 (*fep->ops->free_bd)(ndev);
1083 (*fep->ops->cleanup_data)(ndev);
1086 free_netdev(ndev);
1089 dev_set_drvdata(dev, NULL);
1091 return ERR_PTR(err);
1094 static int fs_cleanup_instance(struct net_device *ndev)
1096 struct fs_enet_private *fep;
1097 const struct fs_platform_info *fpi;
1098 struct device *dev;
1100 if (ndev == NULL)
1101 return -EINVAL;
1103 fep = netdev_priv(ndev);
1104 if (fep == NULL)
1105 return -EINVAL;
1107 fpi = fep->fpi;
1109 unregister_netdev(ndev);
1111 dma_free_coherent(fep->dev, (fpi->tx_ring + fpi->rx_ring) * sizeof(cbd_t),
1112 fep->ring_base, fep->ring_mem_addr);
1114 /* reset it */
1115 (*fep->ops->cleanup_data)(ndev);
1117 dev = fep->dev;
1118 if (dev != NULL) {
1119 dev_set_drvdata(dev, NULL);
1120 fep->dev = NULL;
1123 free_netdev(ndev);
1125 return 0;
1128 /**************************************************************************************/
1130 /* handy pointer to the immap */
1131 void *fs_enet_immap = NULL;
1133 static int setup_immap(void)
1135 phys_addr_t paddr = 0;
1136 unsigned long size = 0;
1138 #ifdef CONFIG_CPM1
1139 paddr = IMAP_ADDR;
1140 size = 0x10000; /* map 64K */
1141 #endif
1143 #ifdef CONFIG_CPM2
1144 paddr = CPM_MAP_ADDR;
1145 size = 0x40000; /* map 256 K */
1146 #endif
1147 fs_enet_immap = ioremap(paddr, size);
1148 if (fs_enet_immap == NULL)
1149 return -EBADF; /* XXX ahem; maybe just BUG_ON? */
1151 return 0;
1154 static void cleanup_immap(void)
1156 if (fs_enet_immap != NULL) {
1157 iounmap(fs_enet_immap);
1158 fs_enet_immap = NULL;
1162 /**************************************************************************************/
1164 static int __devinit fs_enet_probe(struct device *dev)
1166 struct net_device *ndev;
1168 /* no fixup - no device */
1169 if (dev->platform_data == NULL) {
1170 printk(KERN_INFO "fs_enet: "
1171 "probe called with no platform data; "
1172 "remove unused devices\n");
1173 return -ENODEV;
1176 ndev = fs_init_instance(dev, dev->platform_data);
1177 if (IS_ERR(ndev))
1178 return PTR_ERR(ndev);
1179 return 0;
1182 static int fs_enet_remove(struct device *dev)
1184 return fs_cleanup_instance(dev_get_drvdata(dev));
1187 static struct device_driver fs_enet_fec_driver = {
1188 .name = "fsl-cpm-fec",
1189 .bus = &platform_bus_type,
1190 .probe = fs_enet_probe,
1191 .remove = fs_enet_remove,
1192 #ifdef CONFIG_PM
1193 /* .suspend = fs_enet_suspend, TODO */
1194 /* .resume = fs_enet_resume, TODO */
1195 #endif
1198 static struct device_driver fs_enet_scc_driver = {
1199 .name = "fsl-cpm-scc",
1200 .bus = &platform_bus_type,
1201 .probe = fs_enet_probe,
1202 .remove = fs_enet_remove,
1203 #ifdef CONFIG_PM
1204 /* .suspend = fs_enet_suspend, TODO */
1205 /* .resume = fs_enet_resume, TODO */
1206 #endif
1209 static struct device_driver fs_enet_fcc_driver = {
1210 .name = "fsl-cpm-fcc",
1211 .bus = &platform_bus_type,
1212 .probe = fs_enet_probe,
1213 .remove = fs_enet_remove,
1214 #ifdef CONFIG_PM
1215 /* .suspend = fs_enet_suspend, TODO */
1216 /* .resume = fs_enet_resume, TODO */
1217 #endif
1220 static int __init fs_init(void)
1222 int r;
1224 printk(KERN_INFO
1225 "%s", version);
1227 r = setup_immap();
1228 if (r != 0)
1229 return r;
1231 #ifdef CONFIG_FS_ENET_HAS_FCC
1232 /* let's insert mii stuff */
1233 r = fs_enet_mdio_bb_init();
1235 if (r != 0) {
1236 printk(KERN_ERR DRV_MODULE_NAME
1237 "BB PHY init failed.\n");
1238 return r;
1240 r = driver_register(&fs_enet_fcc_driver);
1241 if (r != 0)
1242 goto err;
1243 #endif
1245 #ifdef CONFIG_FS_ENET_HAS_FEC
1246 r = fs_enet_mdio_fec_init();
1247 if (r != 0) {
1248 printk(KERN_ERR DRV_MODULE_NAME
1249 "FEC PHY init failed.\n");
1250 return r;
1253 r = driver_register(&fs_enet_fec_driver);
1254 if (r != 0)
1255 goto err;
1256 #endif
1258 #ifdef CONFIG_FS_ENET_HAS_SCC
1259 r = driver_register(&fs_enet_scc_driver);
1260 if (r != 0)
1261 goto err;
1262 #endif
1264 return 0;
1265 err:
1266 cleanup_immap();
1267 return r;
1271 static void __exit fs_cleanup(void)
1273 driver_unregister(&fs_enet_fec_driver);
1274 driver_unregister(&fs_enet_fcc_driver);
1275 driver_unregister(&fs_enet_scc_driver);
1276 cleanup_immap();
1279 /**************************************************************************************/
1281 module_init(fs_init);
1282 module_exit(fs_cleanup);