2 * This program is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU General Public License
4 * as published by the Free Software Foundation; either version
5 * 2 of the License, or (at your option) any later version.
7 * (c) Copyright 1998 Alan Cox <alan@lxorguk.ukuu.org.uk>
8 * (c) Copyright 2000, 2001 Red Hat Inc
10 * Development of this driver was funded by Equiinet Ltd
11 * http://www.equiinet.com
15 * Asynchronous mode dropped for 2.2. For 2.5 we will attempt the
16 * unification of all the Z85x30 asynchronous drivers for real.
18 * DMA now uses get_free_page as kmalloc buffers may span a 64K
21 * Modified for SMP safety and SMP locking by Alan Cox <alan@redhat.com>
26 * Non DMA you want a 486DX50 or better to do 64Kbits. 9600 baud
27 * X.25 is not unrealistic on all machines. DMA mode can in theory
28 * handle T1/E1 quite nicely. In practice the limit seems to be about
29 * 512Kbit->1Mbit depending on motherboard.
32 * 64K will take DMA, 9600 baud X.25 should be ok.
35 * Synchronous mode without DMA is unlikely to pass about 2400 baud.
38 #include <linux/module.h>
39 #include <linux/kernel.h>
41 #include <linux/net.h>
42 #include <linux/skbuff.h>
43 #include <linux/netdevice.h>
44 #include <linux/if_arp.h>
45 #include <linux/delay.h>
46 #include <linux/ioport.h>
47 #include <linux/init.h>
52 #include <linux/spinlock.h>
54 #include <net/syncppp.h>
59 * z8530_read_port - Architecture specific interface function
62 * Provided port access methods. The Comtrol SV11 requires no delays
63 * between accesses and uses PC I/O. Some drivers may need a 5uS delay
65 * In the longer term this should become an architecture specific
66 * section so that this can become a generic driver interface for all
67 * platforms. For now we only handle PC I/O ports with or without the
68 * dread 5uS sanity delay.
70 * The caller must hold sufficient locks to avoid violating the horrible
74 static inline int z8530_read_port(unsigned long p
)
76 u8 r
=inb(Z8530_PORT_OF(p
));
77 if(p
&Z8530_PORT_SLEEP
) /* gcc should figure this out efficiently ! */
83 * z8530_write_port - Architecture specific interface function
87 * Write a value to a port with delays if need be. Note that the
88 * caller must hold locks to avoid read/writes from other contexts
89 * violating the 5uS rule
91 * In the longer term this should become an architecture specific
92 * section so that this can become a generic driver interface for all
93 * platforms. For now we only handle PC I/O ports with or without the
94 * dread 5uS sanity delay.
98 static inline void z8530_write_port(unsigned long p
, u8 d
)
100 outb(d
,Z8530_PORT_OF(p
));
101 if(p
&Z8530_PORT_SLEEP
)
107 static void z8530_rx_done(struct z8530_channel
*c
);
108 static void z8530_tx_done(struct z8530_channel
*c
);
112 * read_zsreg - Read a register from a Z85230
113 * @c: Z8530 channel to read from (2 per chip)
114 * @reg: Register to read
115 * FIXME: Use a spinlock.
117 * Most of the Z8530 registers are indexed off the control registers.
118 * A read is done by writing to the control register and reading the
119 * register back. The caller must hold the lock
122 static inline u8
read_zsreg(struct z8530_channel
*c
, u8 reg
)
125 z8530_write_port(c
->ctrlio
, reg
);
126 return z8530_read_port(c
->ctrlio
);
130 * read_zsdata - Read the data port of a Z8530 channel
131 * @c: The Z8530 channel to read the data port from
133 * The data port provides fast access to some things. We still
134 * have all the 5uS delays to worry about.
137 static inline u8
read_zsdata(struct z8530_channel
*c
)
140 r
=z8530_read_port(c
->dataio
);
145 * write_zsreg - Write to a Z8530 channel register
146 * @c: The Z8530 channel
147 * @reg: Register number
148 * @val: Value to write
150 * Write a value to an indexed register. The caller must hold the lock
151 * to honour the irritating delay rules. We know about register 0
152 * being fast to access.
154 * Assumes c->lock is held.
156 static inline void write_zsreg(struct z8530_channel
*c
, u8 reg
, u8 val
)
159 z8530_write_port(c
->ctrlio
, reg
);
160 z8530_write_port(c
->ctrlio
, val
);
165 * write_zsctrl - Write to a Z8530 control register
166 * @c: The Z8530 channel
167 * @val: Value to write
169 * Write directly to the control register on the Z8530
172 static inline void write_zsctrl(struct z8530_channel
*c
, u8 val
)
174 z8530_write_port(c
->ctrlio
, val
);
178 * write_zsdata - Write to a Z8530 control register
179 * @c: The Z8530 channel
180 * @val: Value to write
182 * Write directly to the data register on the Z8530
186 static inline void write_zsdata(struct z8530_channel
*c
, u8 val
)
188 z8530_write_port(c
->dataio
, val
);
192 * Register loading parameters for a dead port
195 u8 z8530_dead_port
[]=
200 EXPORT_SYMBOL(z8530_dead_port
);
203 * Register loading parameters for currently supported circuit types
208 * Data clocked by telco end. This is the correct data for the UK
209 * "kilostream" service, and most other similar services.
212 u8 z8530_hdlc_kilostream
[]=
214 4, SYNC_ENAB
|SDLC
|X1CLK
,
215 2, 0, /* No vector */
217 3, ENT_HM
|RxCRC_ENAB
|Rx8
,
218 5, TxCRC_ENAB
|RTS
|TxENAB
|Tx8
|DTR
,
219 9, 0, /* Disable interrupts */
222 10, ABUNDER
|NRZ
|CRCPS
,/*MARKIDLE ??*/
225 15, DCDIE
|SYNCIE
|CTSIE
|TxUIE
|BRKIE
,
226 1, EXT_INT_ENAB
|TxINT_ENAB
|INT_ALL_Rx
,
231 EXPORT_SYMBOL(z8530_hdlc_kilostream
);
234 * As above but for enhanced chips.
237 u8 z8530_hdlc_kilostream_85230
[]=
239 4, SYNC_ENAB
|SDLC
|X1CLK
,
240 2, 0, /* No vector */
242 3, ENT_HM
|RxCRC_ENAB
|Rx8
,
243 5, TxCRC_ENAB
|RTS
|TxENAB
|Tx8
|DTR
,
244 9, 0, /* Disable interrupts */
247 10, ABUNDER
|NRZ
|CRCPS
, /* MARKIDLE?? */
250 15, DCDIE
|SYNCIE
|CTSIE
|TxUIE
|BRKIE
,
251 1, EXT_INT_ENAB
|TxINT_ENAB
|INT_ALL_Rx
,
253 23, 3, /* Extended mode AUTO TX and EOM*/
258 EXPORT_SYMBOL(z8530_hdlc_kilostream_85230
);
261 * z8530_flush_fifo - Flush on chip RX FIFO
262 * @c: Channel to flush
264 * Flush the receive FIFO. There is no specific option for this, we
265 * blindly read bytes and discard them. Reading when there is no data
266 * is harmless. The 8530 has a 4 byte FIFO, the 85230 has 8 bytes.
268 * All locking is handled for the caller. On return data may still be
269 * present if it arrived during the flush.
272 static void z8530_flush_fifo(struct z8530_channel
*c
)
278 if(c
->dev
->type
==Z85230
)
288 * z8530_rtsdtr - Control the outgoing DTS/RTS line
289 * @c: The Z8530 channel to control;
290 * @set: 1 to set, 0 to clear
292 * Sets or clears DTR/RTS on the requested line. All locking is handled
293 * by the caller. For now we assume all boards use the actual RTS/DTR
294 * on the chip. Apparently one or two don't. We'll scream about them
298 static void z8530_rtsdtr(struct z8530_channel
*c
, int set
)
301 c
->regs
[5] |= (RTS
| DTR
);
303 c
->regs
[5] &= ~(RTS
| DTR
);
304 write_zsreg(c
, R5
, c
->regs
[5]);
308 * z8530_rx - Handle a PIO receive event
309 * @c: Z8530 channel to process
311 * Receive handler for receiving in PIO mode. This is much like the
312 * async one but not quite the same or as complex
314 * Note: Its intended that this handler can easily be separated from
315 * the main code to run realtime. That'll be needed for some machines
316 * (eg to ever clock 64kbits on a sparc ;)).
318 * The RT_LOCK macros don't do anything now. Keep the code covered
319 * by them as short as possible in all circumstances - clocks cost
320 * baud. The interrupt handler is assumed to be atomic w.r.t. to
321 * other code - this is true in the RT case too.
323 * We only cover the sync cases for this. If you want 2Mbit async
324 * do it yourself but consider medical assistance first. This non DMA
325 * synchronous mode is portable code. The DMA mode assumes PCI like
328 * Called with the device lock held
331 static void z8530_rx(struct z8530_channel
*c
)
339 if(!(read_zsreg(c
, R0
)&1))
342 stat
=read_zsreg(c
, R1
);
347 if(c
->count
< c
->max
)
359 if(stat
&(Rx_OVR
|CRC_ERR
))
361 /* Rewind the buffer and return */
363 c
->dptr
=c
->skb
->data
;
367 printk(KERN_WARNING
"%s: overrun\n", c
->dev
->name
);
373 /* printk("crc error\n"); */
375 /* Shove the frame upstream */
380 * Drop the lock for RX processing, or
381 * there are deadlocks
384 write_zsctrl(c
, RES_Rx_CRC
);
391 write_zsctrl(c
, ERR_RES
);
392 write_zsctrl(c
, RES_H_IUS
);
393 spin_unlock(c
->lock
);
398 * z8530_tx - Handle a PIO transmit event
399 * @c: Z8530 channel to process
401 * Z8530 transmit interrupt handler for the PIO mode. The basic
402 * idea is to attempt to keep the FIFO fed. We fill as many bytes
403 * in as possible, its quite possible that we won't keep up with the
404 * data rate otherwise.
407 static void z8530_tx(struct z8530_channel
*c
)
412 if(!(read_zsreg(c
, R0
)&4))
416 * Shovel out the byte
418 write_zsreg(c
, R8
, *c
->tx_ptr
++);
419 write_zsctrl(c
, RES_H_IUS
);
420 /* We are about to underflow */
423 write_zsctrl(c
, RES_EOM_L
);
424 write_zsreg(c
, R10
, c
->regs
[10]&~ABUNDER
);
430 * End of frame TX - fire another one
433 write_zsctrl(c
, RES_Tx_P
);
436 write_zsctrl(c
, RES_H_IUS
);
437 spin_unlock(c
->lock
);
441 * z8530_status - Handle a PIO status exception
442 * @chan: Z8530 channel to process
444 * A status event occurred in PIO synchronous mode. There are several
445 * reasons the chip will bother us here. A transmit underrun means we
446 * failed to feed the chip fast enough and just broke a packet. A DCD
447 * change is a line up or down. We communicate that back to the protocol
448 * layer for synchronous PPP to renegotiate.
451 static void z8530_status(struct z8530_channel
*chan
)
455 spin_lock(chan
->lock
);
456 status
=read_zsreg(chan
, R0
);
457 altered
=chan
->status
^status
;
463 /* printk("%s: Tx underrun.\n", chan->dev->name); */
464 chan
->stats
.tx_fifo_errors
++;
465 write_zsctrl(chan
, ERR_RES
);
469 if(altered
&chan
->dcdcheck
)
471 if(status
&chan
->dcdcheck
)
473 printk(KERN_INFO
"%s: DCD raised\n", chan
->dev
->name
);
474 write_zsreg(chan
, R3
, chan
->regs
[3]|RxENABLE
);
475 if(chan
->netdevice
&&
476 ((chan
->netdevice
->type
== ARPHRD_HDLC
) ||
477 (chan
->netdevice
->type
== ARPHRD_PPP
)))
478 sppp_reopen(chan
->netdevice
);
482 printk(KERN_INFO
"%s: DCD lost\n", chan
->dev
->name
);
483 write_zsreg(chan
, R3
, chan
->regs
[3]&~RxENABLE
);
484 z8530_flush_fifo(chan
);
488 write_zsctrl(chan
, RES_EXT_INT
);
489 write_zsctrl(chan
, RES_H_IUS
);
490 spin_unlock(chan
->lock
);
493 struct z8530_irqhandler z8530_sync
=
500 EXPORT_SYMBOL(z8530_sync
);
503 * z8530_dma_rx - Handle a DMA RX event
504 * @chan: Channel to handle
506 * Non bus mastering DMA interfaces for the Z8x30 devices. This
507 * is really pretty PC specific. The DMA mode means that most receive
508 * events are handled by the DMA hardware. We get a kick here only if
512 static void z8530_dma_rx(struct z8530_channel
*chan
)
514 spin_lock(chan
->lock
);
517 /* Special condition check only */
520 read_zsreg(chan
, R7
);
521 read_zsreg(chan
, R6
);
523 status
=read_zsreg(chan
, R1
);
527 z8530_rx_done(chan
); /* Fire up the next one */
529 write_zsctrl(chan
, ERR_RES
);
530 write_zsctrl(chan
, RES_H_IUS
);
534 /* DMA is off right now, drain the slow way */
537 spin_unlock(chan
->lock
);
541 * z8530_dma_tx - Handle a DMA TX event
542 * @chan: The Z8530 channel to handle
544 * We have received an interrupt while doing DMA transmissions. It
545 * shouldn't happen. Scream loudly if it does.
548 static void z8530_dma_tx(struct z8530_channel
*chan
)
550 spin_lock(chan
->lock
);
553 printk(KERN_WARNING
"Hey who turned the DMA off?\n");
557 /* This shouldnt occur in DMA mode */
558 printk(KERN_ERR
"DMA tx - bogus event!\n");
560 spin_unlock(chan
->lock
);
564 * z8530_dma_status - Handle a DMA status exception
565 * @chan: Z8530 channel to process
567 * A status event occurred on the Z8530. We receive these for two reasons
568 * when in DMA mode. Firstly if we finished a packet transfer we get one
569 * and kick the next packet out. Secondly we may see a DCD change and
570 * have to poke the protocol layer.
574 static void z8530_dma_status(struct z8530_channel
*chan
)
578 status
=read_zsreg(chan
, R0
);
579 altered
=chan
->status
^status
;
590 flags
=claim_dma_lock();
591 disable_dma(chan
->txdma
);
592 clear_dma_ff(chan
->txdma
);
594 release_dma_lock(flags
);
599 spin_lock(chan
->lock
);
600 if(altered
&chan
->dcdcheck
)
602 if(status
&chan
->dcdcheck
)
604 printk(KERN_INFO
"%s: DCD raised\n", chan
->dev
->name
);
605 write_zsreg(chan
, R3
, chan
->regs
[3]|RxENABLE
);
606 if(chan
->netdevice
&&
607 ((chan
->netdevice
->type
== ARPHRD_HDLC
) ||
608 (chan
->netdevice
->type
== ARPHRD_PPP
)))
609 sppp_reopen(chan
->netdevice
);
613 printk(KERN_INFO
"%s:DCD lost\n", chan
->dev
->name
);
614 write_zsreg(chan
, R3
, chan
->regs
[3]&~RxENABLE
);
615 z8530_flush_fifo(chan
);
619 write_zsctrl(chan
, RES_EXT_INT
);
620 write_zsctrl(chan
, RES_H_IUS
);
621 spin_unlock(chan
->lock
);
624 struct z8530_irqhandler z8530_dma_sync
=
631 EXPORT_SYMBOL(z8530_dma_sync
);
633 struct z8530_irqhandler z8530_txdma_sync
=
640 EXPORT_SYMBOL(z8530_txdma_sync
);
643 * z8530_rx_clear - Handle RX events from a stopped chip
644 * @c: Z8530 channel to shut up
646 * Receive interrupt vectors for a Z8530 that is in 'parked' mode.
647 * For machines with PCI Z85x30 cards, or level triggered interrupts
648 * (eg the MacII) we must clear the interrupt cause or die.
652 static void z8530_rx_clear(struct z8530_channel
*c
)
655 * Data and status bytes
660 stat
=read_zsreg(c
, R1
);
663 write_zsctrl(c
, RES_Rx_CRC
);
667 write_zsctrl(c
, ERR_RES
);
668 write_zsctrl(c
, RES_H_IUS
);
672 * z8530_tx_clear - Handle TX events from a stopped chip
673 * @c: Z8530 channel to shut up
675 * Transmit interrupt vectors for a Z8530 that is in 'parked' mode.
676 * For machines with PCI Z85x30 cards, or level triggered interrupts
677 * (eg the MacII) we must clear the interrupt cause or die.
680 static void z8530_tx_clear(struct z8530_channel
*c
)
682 write_zsctrl(c
, RES_Tx_P
);
683 write_zsctrl(c
, RES_H_IUS
);
687 * z8530_status_clear - Handle status events from a stopped chip
688 * @chan: Z8530 channel to shut up
690 * Status interrupt vectors for a Z8530 that is in 'parked' mode.
691 * For machines with PCI Z85x30 cards, or level triggered interrupts
692 * (eg the MacII) we must clear the interrupt cause or die.
695 static void z8530_status_clear(struct z8530_channel
*chan
)
697 u8 status
=read_zsreg(chan
, R0
);
699 write_zsctrl(chan
, ERR_RES
);
700 write_zsctrl(chan
, RES_EXT_INT
);
701 write_zsctrl(chan
, RES_H_IUS
);
704 struct z8530_irqhandler z8530_nop
=
712 EXPORT_SYMBOL(z8530_nop
);
715 * z8530_interrupt - Handle an interrupt from a Z8530
716 * @irq: Interrupt number
717 * @dev_id: The Z8530 device that is interrupting.
720 * A Z85[2]30 device has stuck its hand in the air for attention.
721 * We scan both the channels on the chip for events and then call
722 * the channel specific call backs for each channel that has events.
723 * We have to use callback functions because the two channels can be
724 * in different modes.
726 * Locking is done for the handlers. Note that locking is done
727 * at the chip level (the 5uS delay issue is per chip not per
728 * channel). c->lock for both channels points to dev->lock
731 irqreturn_t
z8530_interrupt(int irq
, void *dev_id
)
733 struct z8530_dev
*dev
=dev_id
;
735 static volatile int locker
=0;
737 struct z8530_irqhandler
*irqs
;
741 printk(KERN_ERR
"IRQ re-enter\n");
746 spin_lock(&dev
->lock
);
751 intr
= read_zsreg(&dev
->chanA
, R3
);
752 if(!(intr
& (CHARxIP
|CHATxIP
|CHAEXT
|CHBRxIP
|CHBTxIP
|CHBEXT
)))
755 /* This holds the IRQ status. On the 8530 you must read it from chan
756 A even though it applies to the whole chip */
758 /* Now walk the chip and see what it is wanting - it may be
759 an IRQ for someone else remember */
761 irqs
=dev
->chanA
.irqs
;
763 if(intr
& (CHARxIP
|CHATxIP
|CHAEXT
))
766 irqs
->rx(&dev
->chanA
);
768 irqs
->tx(&dev
->chanA
);
770 irqs
->status(&dev
->chanA
);
773 irqs
=dev
->chanB
.irqs
;
775 if(intr
& (CHBRxIP
|CHBTxIP
|CHBEXT
))
778 irqs
->rx(&dev
->chanB
);
780 irqs
->tx(&dev
->chanB
);
782 irqs
->status(&dev
->chanB
);
785 spin_unlock(&dev
->lock
);
787 printk(KERN_ERR
"%s: interrupt jammed - abort(0x%X)!\n", dev
->name
, intr
);
793 EXPORT_SYMBOL(z8530_interrupt
);
795 static char reg_init
[16]=
805 * z8530_sync_open - Open a Z8530 channel for PIO
806 * @dev: The network interface we are using
807 * @c: The Z8530 channel to open in synchronous PIO mode
809 * Switch a Z8530 into synchronous mode without DMA assist. We
810 * raise the RTS/DTR and commence network operation.
813 int z8530_sync_open(struct net_device
*dev
, struct z8530_channel
*c
)
817 spin_lock_irqsave(c
->lock
, flags
);
820 c
->mtu
= dev
->mtu
+64;
824 c
->irqs
= &z8530_sync
;
826 /* This loads the double buffer up */
827 z8530_rx_done(c
); /* Load the frame ring */
828 z8530_rx_done(c
); /* Load the backup frame */
831 c
->regs
[R1
]|=TxINT_ENAB
;
832 write_zsreg(c
, R1
, c
->regs
[R1
]);
833 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
835 spin_unlock_irqrestore(c
->lock
, flags
);
840 EXPORT_SYMBOL(z8530_sync_open
);
843 * z8530_sync_close - Close a PIO Z8530 channel
844 * @dev: Network device to close
845 * @c: Z8530 channel to disassociate and move to idle
847 * Close down a Z8530 interface and switch its interrupt handlers
848 * to discard future events.
851 int z8530_sync_close(struct net_device
*dev
, struct z8530_channel
*c
)
856 spin_lock_irqsave(c
->lock
, flags
);
857 c
->irqs
= &z8530_nop
;
861 chk
=read_zsreg(c
,R0
);
862 write_zsreg(c
, R3
, c
->regs
[R3
]);
865 spin_unlock_irqrestore(c
->lock
, flags
);
869 EXPORT_SYMBOL(z8530_sync_close
);
872 * z8530_sync_dma_open - Open a Z8530 for DMA I/O
873 * @dev: The network device to attach
874 * @c: The Z8530 channel to configure in sync DMA mode.
876 * Set up a Z85x30 device for synchronous DMA in both directions. Two
877 * ISA DMA channels must be available for this to work. We assume ISA
878 * DMA driven I/O and PC limits on access.
881 int z8530_sync_dma_open(struct net_device
*dev
, struct z8530_channel
*c
)
883 unsigned long cflags
, dflags
;
886 c
->mtu
= dev
->mtu
+64;
891 * Load the DMA interfaces up
897 * Allocate the DMA flip buffers. Limit by page size.
898 * Everyone runs 1500 mtu or less on wan links so this
902 if(c
->mtu
> PAGE_SIZE
/2)
905 c
->rx_buf
[0]=(void *)get_zeroed_page(GFP_KERNEL
|GFP_DMA
);
906 if(c
->rx_buf
[0]==NULL
)
908 c
->rx_buf
[1]=c
->rx_buf
[0]+PAGE_SIZE
/2;
910 c
->tx_dma_buf
[0]=(void *)get_zeroed_page(GFP_KERNEL
|GFP_DMA
);
911 if(c
->tx_dma_buf
[0]==NULL
)
913 free_page((unsigned long)c
->rx_buf
[0]);
917 c
->tx_dma_buf
[1]=c
->tx_dma_buf
[0]+PAGE_SIZE
/2;
925 * Enable DMA control mode
928 spin_lock_irqsave(c
->lock
, cflags
);
934 c
->regs
[R14
]|= DTRREQ
;
935 write_zsreg(c
, R14
, c
->regs
[R14
]);
937 c
->regs
[R1
]&= ~TxINT_ENAB
;
938 write_zsreg(c
, R1
, c
->regs
[R1
]);
944 c
->regs
[R1
]|= WT_FN_RDYFN
;
945 c
->regs
[R1
]|= WT_RDY_RT
;
946 c
->regs
[R1
]|= INT_ERR_Rx
;
947 c
->regs
[R1
]&= ~TxINT_ENAB
;
948 write_zsreg(c
, R1
, c
->regs
[R1
]);
949 c
->regs
[R1
]|= WT_RDY_ENAB
;
950 write_zsreg(c
, R1
, c
->regs
[R1
]);
957 * Set up the DMA configuration
960 dflags
=claim_dma_lock();
962 disable_dma(c
->rxdma
);
963 clear_dma_ff(c
->rxdma
);
964 set_dma_mode(c
->rxdma
, DMA_MODE_READ
|0x10);
965 set_dma_addr(c
->rxdma
, virt_to_bus(c
->rx_buf
[0]));
966 set_dma_count(c
->rxdma
, c
->mtu
);
967 enable_dma(c
->rxdma
);
969 disable_dma(c
->txdma
);
970 clear_dma_ff(c
->txdma
);
971 set_dma_mode(c
->txdma
, DMA_MODE_WRITE
);
972 disable_dma(c
->txdma
);
974 release_dma_lock(dflags
);
977 * Select the DMA interrupt handlers
984 c
->irqs
= &z8530_dma_sync
;
986 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
988 spin_unlock_irqrestore(c
->lock
, cflags
);
993 EXPORT_SYMBOL(z8530_sync_dma_open
);
996 * z8530_sync_dma_close - Close down DMA I/O
997 * @dev: Network device to detach
998 * @c: Z8530 channel to move into discard mode
1000 * Shut down a DMA mode synchronous interface. Halt the DMA, and
1004 int z8530_sync_dma_close(struct net_device
*dev
, struct z8530_channel
*c
)
1007 unsigned long flags
;
1009 c
->irqs
= &z8530_nop
;
1014 * Disable the PC DMA channels
1017 flags
=claim_dma_lock();
1018 disable_dma(c
->rxdma
);
1019 clear_dma_ff(c
->rxdma
);
1023 disable_dma(c
->txdma
);
1024 clear_dma_ff(c
->txdma
);
1025 release_dma_lock(flags
);
1030 spin_lock_irqsave(c
->lock
, flags
);
1033 * Disable DMA control mode
1036 c
->regs
[R1
]&= ~WT_RDY_ENAB
;
1037 write_zsreg(c
, R1
, c
->regs
[R1
]);
1038 c
->regs
[R1
]&= ~(WT_RDY_RT
|WT_FN_RDYFN
|INT_ERR_Rx
);
1039 c
->regs
[R1
]|= INT_ALL_Rx
;
1040 write_zsreg(c
, R1
, c
->regs
[R1
]);
1041 c
->regs
[R14
]&= ~DTRREQ
;
1042 write_zsreg(c
, R14
, c
->regs
[R14
]);
1046 free_page((unsigned long)c
->rx_buf
[0]);
1049 if(c
->tx_dma_buf
[0])
1051 free_page((unsigned long)c
->tx_dma_buf
[0]);
1052 c
->tx_dma_buf
[0]=NULL
;
1054 chk
=read_zsreg(c
,R0
);
1055 write_zsreg(c
, R3
, c
->regs
[R3
]);
1058 spin_unlock_irqrestore(c
->lock
, flags
);
1063 EXPORT_SYMBOL(z8530_sync_dma_close
);
1066 * z8530_sync_txdma_open - Open a Z8530 for TX driven DMA
1067 * @dev: The network device to attach
1068 * @c: The Z8530 channel to configure in sync DMA mode.
1070 * Set up a Z85x30 device for synchronous DMA tranmission. One
1071 * ISA DMA channel must be available for this to work. The receive
1072 * side is run in PIO mode, but then it has the bigger FIFO.
1075 int z8530_sync_txdma_open(struct net_device
*dev
, struct z8530_channel
*c
)
1077 unsigned long cflags
, dflags
;
1079 printk("Opening sync interface for TX-DMA\n");
1081 c
->mtu
= dev
->mtu
+64;
1087 * Allocate the DMA flip buffers. Limit by page size.
1088 * Everyone runs 1500 mtu or less on wan links so this
1092 if(c
->mtu
> PAGE_SIZE
/2)
1095 c
->tx_dma_buf
[0]=(void *)get_zeroed_page(GFP_KERNEL
|GFP_DMA
);
1096 if(c
->tx_dma_buf
[0]==NULL
)
1099 c
->tx_dma_buf
[1] = c
->tx_dma_buf
[0] + PAGE_SIZE
/2;
1102 spin_lock_irqsave(c
->lock
, cflags
);
1105 * Load the PIO receive ring
1112 * Load the DMA interfaces up
1124 * Enable DMA control mode
1128 * TX DMA via DIR/REQ
1130 c
->regs
[R14
]|= DTRREQ
;
1131 write_zsreg(c
, R14
, c
->regs
[R14
]);
1133 c
->regs
[R1
]&= ~TxINT_ENAB
;
1134 write_zsreg(c
, R1
, c
->regs
[R1
]);
1137 * Set up the DMA configuration
1140 dflags
= claim_dma_lock();
1142 disable_dma(c
->txdma
);
1143 clear_dma_ff(c
->txdma
);
1144 set_dma_mode(c
->txdma
, DMA_MODE_WRITE
);
1145 disable_dma(c
->txdma
);
1147 release_dma_lock(dflags
);
1150 * Select the DMA interrupt handlers
1157 c
->irqs
= &z8530_txdma_sync
;
1159 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
1160 spin_unlock_irqrestore(c
->lock
, cflags
);
1165 EXPORT_SYMBOL(z8530_sync_txdma_open
);
1168 * z8530_sync_txdma_close - Close down a TX driven DMA channel
1169 * @dev: Network device to detach
1170 * @c: Z8530 channel to move into discard mode
1172 * Shut down a DMA/PIO split mode synchronous interface. Halt the DMA,
1173 * and free the buffers.
1176 int z8530_sync_txdma_close(struct net_device
*dev
, struct z8530_channel
*c
)
1178 unsigned long dflags
, cflags
;
1182 spin_lock_irqsave(c
->lock
, cflags
);
1184 c
->irqs
= &z8530_nop
;
1189 * Disable the PC DMA channels
1192 dflags
= claim_dma_lock();
1194 disable_dma(c
->txdma
);
1195 clear_dma_ff(c
->txdma
);
1199 release_dma_lock(dflags
);
1202 * Disable DMA control mode
1205 c
->regs
[R1
]&= ~WT_RDY_ENAB
;
1206 write_zsreg(c
, R1
, c
->regs
[R1
]);
1207 c
->regs
[R1
]&= ~(WT_RDY_RT
|WT_FN_RDYFN
|INT_ERR_Rx
);
1208 c
->regs
[R1
]|= INT_ALL_Rx
;
1209 write_zsreg(c
, R1
, c
->regs
[R1
]);
1210 c
->regs
[R14
]&= ~DTRREQ
;
1211 write_zsreg(c
, R14
, c
->regs
[R14
]);
1213 if(c
->tx_dma_buf
[0])
1215 free_page((unsigned long)c
->tx_dma_buf
[0]);
1216 c
->tx_dma_buf
[0]=NULL
;
1218 chk
=read_zsreg(c
,R0
);
1219 write_zsreg(c
, R3
, c
->regs
[R3
]);
1222 spin_unlock_irqrestore(c
->lock
, cflags
);
1227 EXPORT_SYMBOL(z8530_sync_txdma_close
);
1231 * Name strings for Z8530 chips. SGI claim to have a 130, Zilog deny
1235 static char *z8530_type_name
[]={
1242 * z8530_describe - Uniformly describe a Z8530 port
1243 * @dev: Z8530 device to describe
1244 * @mapping: string holding mapping type (eg "I/O" or "Mem")
1245 * @io: the port value in question
1247 * Describe a Z8530 in a standard format. We must pass the I/O as
1248 * the port offset isnt predictable. The main reason for this function
1249 * is to try and get a common format of report.
1252 void z8530_describe(struct z8530_dev
*dev
, char *mapping
, unsigned long io
)
1254 printk(KERN_INFO
"%s: %s found at %s 0x%lX, IRQ %d.\n",
1256 z8530_type_name
[dev
->type
],
1262 EXPORT_SYMBOL(z8530_describe
);
1265 * Locked operation part of the z8530 init code
1268 static inline int do_z8530_init(struct z8530_dev
*dev
)
1270 /* NOP the interrupt handlers first - we might get a
1271 floating IRQ transition when we reset the chip */
1272 dev
->chanA
.irqs
=&z8530_nop
;
1273 dev
->chanB
.irqs
=&z8530_nop
;
1274 dev
->chanA
.dcdcheck
=DCD
;
1275 dev
->chanB
.dcdcheck
=DCD
;
1277 /* Reset the chip */
1278 write_zsreg(&dev
->chanA
, R9
, 0xC0);
1280 /* Now check its valid */
1281 write_zsreg(&dev
->chanA
, R12
, 0xAA);
1282 if(read_zsreg(&dev
->chanA
, R12
)!=0xAA)
1284 write_zsreg(&dev
->chanA
, R12
, 0x55);
1285 if(read_zsreg(&dev
->chanA
, R12
)!=0x55)
1291 * See the application note.
1294 write_zsreg(&dev
->chanA
, R15
, 0x01);
1297 * If we can set the low bit of R15 then
1298 * the chip is enhanced.
1301 if(read_zsreg(&dev
->chanA
, R15
)==0x01)
1303 /* This C30 versus 230 detect is from Klaus Kudielka's dmascc */
1304 /* Put a char in the fifo */
1305 write_zsreg(&dev
->chanA
, R8
, 0);
1306 if(read_zsreg(&dev
->chanA
, R0
)&Tx_BUF_EMP
)
1307 dev
->type
= Z85230
; /* Has a FIFO */
1309 dev
->type
= Z85C30
; /* Z85C30, 1 byte FIFO */
1313 * The code assumes R7' and friends are
1314 * off. Use write_zsext() for these and keep
1318 write_zsreg(&dev
->chanA
, R15
, 0);
1321 * At this point it looks like the chip is behaving
1324 memcpy(dev
->chanA
.regs
, reg_init
, 16);
1325 memcpy(dev
->chanB
.regs
, reg_init
,16);
1331 * z8530_init - Initialise a Z8530 device
1332 * @dev: Z8530 device to initialise.
1334 * Configure up a Z8530/Z85C30 or Z85230 chip. We check the device
1335 * is present, identify the type and then program it to hopefully
1336 * keep quite and behave. This matters a lot, a Z8530 in the wrong
1337 * state will sometimes get into stupid modes generating 10Khz
1338 * interrupt streams and the like.
1340 * We set the interrupt handler up to discard any events, in case
1341 * we get them during reset or setp.
1343 * Return 0 for success, or a negative value indicating the problem
1347 int z8530_init(struct z8530_dev
*dev
)
1349 unsigned long flags
;
1352 /* Set up the chip level lock */
1353 spin_lock_init(&dev
->lock
);
1354 dev
->chanA
.lock
= &dev
->lock
;
1355 dev
->chanB
.lock
= &dev
->lock
;
1357 spin_lock_irqsave(&dev
->lock
, flags
);
1358 ret
= do_z8530_init(dev
);
1359 spin_unlock_irqrestore(&dev
->lock
, flags
);
1365 EXPORT_SYMBOL(z8530_init
);
1368 * z8530_shutdown - Shutdown a Z8530 device
1369 * @dev: The Z8530 chip to shutdown
1371 * We set the interrupt handlers to silence any interrupts. We then
1372 * reset the chip and wait 100uS to be sure the reset completed. Just
1373 * in case the caller then tries to do stuff.
1375 * This is called without the lock held
1378 int z8530_shutdown(struct z8530_dev
*dev
)
1380 unsigned long flags
;
1381 /* Reset the chip */
1383 spin_lock_irqsave(&dev
->lock
, flags
);
1384 dev
->chanA
.irqs
=&z8530_nop
;
1385 dev
->chanB
.irqs
=&z8530_nop
;
1386 write_zsreg(&dev
->chanA
, R9
, 0xC0);
1387 /* We must lock the udelay, the chip is offlimits here */
1389 spin_unlock_irqrestore(&dev
->lock
, flags
);
1393 EXPORT_SYMBOL(z8530_shutdown
);
1396 * z8530_channel_load - Load channel data
1397 * @c: Z8530 channel to configure
1398 * @rtable: table of register, value pairs
1399 * FIXME: ioctl to allow user uploaded tables
1401 * Load a Z8530 channel up from the system data. We use +16 to
1402 * indicate the "prime" registers. The value 255 terminates the
1406 int z8530_channel_load(struct z8530_channel
*c
, u8
*rtable
)
1408 unsigned long flags
;
1410 spin_lock_irqsave(c
->lock
, flags
);
1416 write_zsreg(c
, R15
, c
->regs
[15]|1);
1417 write_zsreg(c
, reg
&0x0F, *rtable
);
1419 write_zsreg(c
, R15
, c
->regs
[15]&~1);
1420 c
->regs
[reg
]=*rtable
++;
1422 c
->rx_function
=z8530_null_rx
;
1425 c
->tx_next_skb
=NULL
;
1429 c
->status
=read_zsreg(c
, R0
);
1431 write_zsreg(c
, R3
, c
->regs
[R3
]|RxENABLE
);
1433 spin_unlock_irqrestore(c
->lock
, flags
);
1437 EXPORT_SYMBOL(z8530_channel_load
);
1441 * z8530_tx_begin - Begin packet transmission
1442 * @c: The Z8530 channel to kick
1444 * This is the speed sensitive side of transmission. If we are called
1445 * and no buffer is being transmitted we commence the next buffer. If
1446 * nothing is queued we idle the sync.
1448 * Note: We are handling this code path in the interrupt path, keep it
1449 * fast or bad things will happen.
1451 * Called with the lock held.
1454 static void z8530_tx_begin(struct z8530_channel
*c
)
1456 unsigned long flags
;
1460 c
->tx_skb
=c
->tx_next_skb
;
1461 c
->tx_next_skb
=NULL
;
1462 c
->tx_ptr
=c
->tx_next_ptr
;
1469 flags
=claim_dma_lock();
1470 disable_dma(c
->txdma
);
1472 * Check if we crapped out.
1474 if(get_dma_residue(c
->txdma
))
1476 c
->stats
.tx_dropped
++;
1477 c
->stats
.tx_fifo_errors
++;
1479 release_dma_lock(flags
);
1485 c
->txcount
=c
->tx_skb
->len
;
1491 * FIXME. DMA is broken for the original 8530,
1492 * on the older parts we need to set a flag and
1493 * wait for a further TX interrupt to fire this
1497 flags
=claim_dma_lock();
1498 disable_dma(c
->txdma
);
1501 * These two are needed by the 8530/85C30
1502 * and must be issued when idling.
1505 if(c
->dev
->type
!=Z85230
)
1507 write_zsctrl(c
, RES_Tx_CRC
);
1508 write_zsctrl(c
, RES_EOM_L
);
1510 write_zsreg(c
, R10
, c
->regs
[10]&~ABUNDER
);
1511 clear_dma_ff(c
->txdma
);
1512 set_dma_addr(c
->txdma
, virt_to_bus(c
->tx_ptr
));
1513 set_dma_count(c
->txdma
, c
->txcount
);
1514 enable_dma(c
->txdma
);
1515 release_dma_lock(flags
);
1516 write_zsctrl(c
, RES_EOM_L
);
1517 write_zsreg(c
, R5
, c
->regs
[R5
]|TxENAB
);
1523 write_zsreg(c
, R10
, c
->regs
[10]);
1524 write_zsctrl(c
, RES_Tx_CRC
);
1526 while(c
->txcount
&& (read_zsreg(c
,R0
)&Tx_BUF_EMP
))
1528 write_zsreg(c
, R8
, *c
->tx_ptr
++);
1535 * Since we emptied tx_skb we can ask for more
1537 netif_wake_queue(c
->netdevice
);
1541 * z8530_tx_done - TX complete callback
1542 * @c: The channel that completed a transmit.
1544 * This is called when we complete a packet send. We wake the queue,
1545 * start the next packet going and then free the buffer of the existing
1546 * packet. This code is fairly timing sensitive.
1548 * Called with the register lock held.
1551 static void z8530_tx_done(struct z8530_channel
*c
)
1553 struct sk_buff
*skb
;
1555 /* Actually this can happen.*/
1562 c
->stats
.tx_packets
++;
1563 c
->stats
.tx_bytes
+=skb
->len
;
1564 dev_kfree_skb_irq(skb
);
1568 * z8530_null_rx - Discard a packet
1569 * @c: The channel the packet arrived on
1572 * We point the receive handler at this function when idle. Instead
1573 * of syncppp processing the frames we get to throw them away.
1576 void z8530_null_rx(struct z8530_channel
*c
, struct sk_buff
*skb
)
1578 dev_kfree_skb_any(skb
);
1581 EXPORT_SYMBOL(z8530_null_rx
);
1584 * z8530_rx_done - Receive completion callback
1585 * @c: The channel that completed a receive
1587 * A new packet is complete. Our goal here is to get back into receive
1588 * mode as fast as possible. On the Z85230 we could change to using
1589 * ESCC mode, but on the older chips we have no choice. We flip to the
1590 * new buffer immediately in DMA mode so that the DMA of the next
1591 * frame can occur while we are copying the previous buffer to an sk_buff
1593 * Called with the lock held
1596 static void z8530_rx_done(struct z8530_channel
*c
)
1598 struct sk_buff
*skb
;
1602 * Is our receive engine in DMA mode
1608 * Save the ready state and the buffer currently
1609 * being used as the DMA target
1612 int ready
=c
->dma_ready
;
1613 unsigned char *rxb
=c
->rx_buf
[c
->dma_num
];
1614 unsigned long flags
;
1617 * Complete this DMA. Neccessary to find the length
1620 flags
=claim_dma_lock();
1622 disable_dma(c
->rxdma
);
1623 clear_dma_ff(c
->rxdma
);
1625 ct
=c
->mtu
-get_dma_residue(c
->rxdma
);
1627 ct
=2; /* Shit happens.. */
1631 * Normal case: the other slot is free, start the next DMA
1632 * into it immediately.
1638 set_dma_mode(c
->rxdma
, DMA_MODE_READ
|0x10);
1639 set_dma_addr(c
->rxdma
, virt_to_bus(c
->rx_buf
[c
->dma_num
]));
1640 set_dma_count(c
->rxdma
, c
->mtu
);
1642 enable_dma(c
->rxdma
);
1643 /* Stop any frames that we missed the head of
1645 write_zsreg(c
, R0
, RES_Rx_CRC
);
1648 /* Can't occur as we dont reenable the DMA irq until
1649 after the flip is done */
1650 printk(KERN_WARNING
"%s: DMA flip overrun!\n", c
->netdevice
->name
);
1652 release_dma_lock(flags
);
1655 * Shove the old buffer into an sk_buff. We can't DMA
1656 * directly into one on a PC - it might be above the 16Mb
1657 * boundary. Optimisation - we could check to see if we
1658 * can avoid the copy. Optimisation 2 - make the memcpy
1662 skb
=dev_alloc_skb(ct
);
1665 c
->stats
.rx_dropped
++;
1666 printk(KERN_WARNING
"%s: Memory squeeze.\n", c
->netdevice
->name
);
1671 memcpy(skb
->data
, rxb
, ct
);
1672 c
->stats
.rx_packets
++;
1673 c
->stats
.rx_bytes
+=ct
;
1683 * The game we play for non DMA is similar. We want to
1684 * get the controller set up for the next packet as fast
1685 * as possible. We potentially only have one byte + the
1686 * fifo length for this. Thus we want to flip to the new
1687 * buffer and then mess around copying and allocating
1688 * things. For the current case it doesn't matter but
1689 * if you build a system where the sync irq isnt blocked
1690 * by the kernel IRQ disable then you need only block the
1691 * sync IRQ for the RT_LOCK area.
1701 c
->dptr
= c
->skb
->data
;
1711 c
->skb2
= dev_alloc_skb(c
->mtu
);
1713 printk(KERN_WARNING
"%s: memory squeeze.\n",
1714 c
->netdevice
->name
);
1717 skb_put(c
->skb2
,c
->mtu
);
1719 c
->stats
.rx_packets
++;
1720 c
->stats
.rx_bytes
+=ct
;
1724 * If we received a frame we must now process it.
1729 c
->rx_function(c
,skb
);
1733 c
->stats
.rx_dropped
++;
1734 printk(KERN_ERR
"%s: Lost a frame\n", c
->netdevice
->name
);
1739 * spans_boundary - Check a packet can be ISA DMA'd
1740 * @skb: The buffer to check
1742 * Returns true if the buffer cross a DMA boundary on a PC. The poor
1743 * thing can only DMA within a 64K block not across the edges of it.
1746 static inline int spans_boundary(struct sk_buff
*skb
)
1748 unsigned long a
=(unsigned long)skb
->data
;
1750 if(a
&0x00010000) /* If the 64K bit is different.. */
1756 * z8530_queue_xmit - Queue a packet
1757 * @c: The channel to use
1758 * @skb: The packet to kick down the channel
1760 * Queue a packet for transmission. Because we have rather
1761 * hard to hit interrupt latencies for the Z85230 per packet
1762 * even in DMA mode we do the flip to DMA buffer if needed here
1765 * Called from the network code. The lock is not held at this
1769 int z8530_queue_xmit(struct z8530_channel
*c
, struct sk_buff
*skb
)
1771 unsigned long flags
;
1773 netif_stop_queue(c
->netdevice
);
1779 /* PC SPECIFIC - DMA limits */
1782 * If we will DMA the transmit and its gone over the ISA bus
1783 * limit, then copy to the flip buffer
1786 if(c
->dma_tx
&& ((unsigned long)(virt_to_bus(skb
->data
+skb
->len
))>=16*1024*1024 || spans_boundary(skb
)))
1789 * Send the flip buffer, and flip the flippy bit.
1790 * We don't care which is used when just so long as
1791 * we never use the same buffer twice in a row. Since
1792 * only one buffer can be going out at a time the other
1795 c
->tx_next_ptr
=c
->tx_dma_buf
[c
->tx_dma_used
];
1796 c
->tx_dma_used
^=1; /* Flip temp buffer */
1797 memcpy(c
->tx_next_ptr
, skb
->data
, skb
->len
);
1800 c
->tx_next_ptr
=skb
->data
;
1805 spin_lock_irqsave(c
->lock
, flags
);
1807 spin_unlock_irqrestore(c
->lock
, flags
);
1812 EXPORT_SYMBOL(z8530_queue_xmit
);
1815 * z8530_get_stats - Get network statistics
1816 * @c: The channel to use
1818 * Get the statistics block. We keep the statistics in software as
1819 * the chip doesn't do it for us.
1821 * Locking is ignored here - we could lock for a copy but its
1822 * not likely to be that big an issue
1825 struct net_device_stats
*z8530_get_stats(struct z8530_channel
*c
)
1830 EXPORT_SYMBOL(z8530_get_stats
);
1835 static char banner
[] __initdata
= KERN_INFO
"Generic Z85C30/Z85230 interface driver v0.02\n";
1837 static int __init
z85230_init_driver(void)
1842 module_init(z85230_init_driver
);
1844 static void __exit
z85230_cleanup_driver(void)
1847 module_exit(z85230_cleanup_driver
);
1849 MODULE_AUTHOR("Red Hat Inc.");
1850 MODULE_DESCRIPTION("Z85x30 synchronous driver core");
1851 MODULE_LICENSE("GPL");