Linux 2.6.20.7
[linux/fpc-iii.git] / drivers / net / wireless / ipw2100.c
blobb85857a848706fcde3c25d251fac7d280aea9201
1 /******************************************************************************
3 Copyright(c) 2003 - 2006 Intel Corporation. All rights reserved.
5 This program is free software; you can redistribute it and/or modify it
6 under the terms of version 2 of the GNU General Public License as
7 published by the Free Software Foundation.
9 This program is distributed in the hope that it will be useful, but WITHOUT
10 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
11 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
12 more details.
14 You should have received a copy of the GNU General Public License along with
15 this program; if not, write to the Free Software Foundation, Inc., 59
16 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 The full GNU General Public License is included in this distribution in the
19 file called LICENSE.
21 Contact Information:
22 James P. Ketrenos <ipw2100-admin@linux.intel.com>
23 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25 Portions of this file are based on the sample_* files provided by Wireless
26 Extensions 0.26 package and copyright (c) 1997-2003 Jean Tourrilhes
27 <jt@hpl.hp.com>
29 Portions of this file are based on the Host AP project,
30 Copyright (c) 2001-2002, SSH Communications Security Corp and Jouni Malinen
31 <jkmaline@cc.hut.fi>
32 Copyright (c) 2002-2003, Jouni Malinen <jkmaline@cc.hut.fi>
34 Portions of ipw2100_mod_firmware_load, ipw2100_do_mod_firmware_load, and
35 ipw2100_fw_load are loosely based on drivers/sound/sound_firmware.c
36 available in the 2.4.25 kernel sources, and are copyright (c) Alan Cox
38 ******************************************************************************/
41 Initial driver on which this is based was developed by Janusz Gorycki,
42 Maciej Urbaniak, and Maciej Sosnowski.
44 Promiscuous mode support added by Jacek Wysoczynski and Maciej Urbaniak.
46 Theory of Operation
48 Tx - Commands and Data
50 Firmware and host share a circular queue of Transmit Buffer Descriptors (TBDs)
51 Each TBD contains a pointer to the physical (dma_addr_t) address of data being
52 sent to the firmware as well as the length of the data.
54 The host writes to the TBD queue at the WRITE index. The WRITE index points
55 to the _next_ packet to be written and is advanced when after the TBD has been
56 filled.
58 The firmware pulls from the TBD queue at the READ index. The READ index points
59 to the currently being read entry, and is advanced once the firmware is
60 done with a packet.
62 When data is sent to the firmware, the first TBD is used to indicate to the
63 firmware if a Command or Data is being sent. If it is Command, all of the
64 command information is contained within the physical address referred to by the
65 TBD. If it is Data, the first TBD indicates the type of data packet, number
66 of fragments, etc. The next TBD then referrs to the actual packet location.
68 The Tx flow cycle is as follows:
70 1) ipw2100_tx() is called by kernel with SKB to transmit
71 2) Packet is move from the tx_free_list and appended to the transmit pending
72 list (tx_pend_list)
73 3) work is scheduled to move pending packets into the shared circular queue.
74 4) when placing packet in the circular queue, the incoming SKB is DMA mapped
75 to a physical address. That address is entered into a TBD. Two TBDs are
76 filled out. The first indicating a data packet, the second referring to the
77 actual payload data.
78 5) the packet is removed from tx_pend_list and placed on the end of the
79 firmware pending list (fw_pend_list)
80 6) firmware is notified that the WRITE index has
81 7) Once the firmware has processed the TBD, INTA is triggered.
82 8) For each Tx interrupt received from the firmware, the READ index is checked
83 to see which TBDs are done being processed.
84 9) For each TBD that has been processed, the ISR pulls the oldest packet
85 from the fw_pend_list.
86 10)The packet structure contained in the fw_pend_list is then used
87 to unmap the DMA address and to free the SKB originally passed to the driver
88 from the kernel.
89 11)The packet structure is placed onto the tx_free_list
91 The above steps are the same for commands, only the msg_free_list/msg_pend_list
92 are used instead of tx_free_list/tx_pend_list
94 ...
96 Critical Sections / Locking :
98 There are two locks utilized. The first is the low level lock (priv->low_lock)
99 that protects the following:
101 - Access to the Tx/Rx queue lists via priv->low_lock. The lists are as follows:
103 tx_free_list : Holds pre-allocated Tx buffers.
104 TAIL modified in __ipw2100_tx_process()
105 HEAD modified in ipw2100_tx()
107 tx_pend_list : Holds used Tx buffers waiting to go into the TBD ring
108 TAIL modified ipw2100_tx()
109 HEAD modified by ipw2100_tx_send_data()
111 msg_free_list : Holds pre-allocated Msg (Command) buffers
112 TAIL modified in __ipw2100_tx_process()
113 HEAD modified in ipw2100_hw_send_command()
115 msg_pend_list : Holds used Msg buffers waiting to go into the TBD ring
116 TAIL modified in ipw2100_hw_send_command()
117 HEAD modified in ipw2100_tx_send_commands()
119 The flow of data on the TX side is as follows:
121 MSG_FREE_LIST + COMMAND => MSG_PEND_LIST => TBD => MSG_FREE_LIST
122 TX_FREE_LIST + DATA => TX_PEND_LIST => TBD => TX_FREE_LIST
124 The methods that work on the TBD ring are protected via priv->low_lock.
126 - The internal data state of the device itself
127 - Access to the firmware read/write indexes for the BD queues
128 and associated logic
130 All external entry functions are locked with the priv->action_lock to ensure
131 that only one external action is invoked at a time.
136 #include <linux/compiler.h>
137 #include <linux/errno.h>
138 #include <linux/if_arp.h>
139 #include <linux/in6.h>
140 #include <linux/in.h>
141 #include <linux/ip.h>
142 #include <linux/kernel.h>
143 #include <linux/kmod.h>
144 #include <linux/module.h>
145 #include <linux/netdevice.h>
146 #include <linux/ethtool.h>
147 #include <linux/pci.h>
148 #include <linux/dma-mapping.h>
149 #include <linux/proc_fs.h>
150 #include <linux/skbuff.h>
151 #include <asm/uaccess.h>
152 #include <asm/io.h>
153 #include <linux/fs.h>
154 #include <linux/mm.h>
155 #include <linux/slab.h>
156 #include <linux/unistd.h>
157 #include <linux/stringify.h>
158 #include <linux/tcp.h>
159 #include <linux/types.h>
160 #include <linux/version.h>
161 #include <linux/time.h>
162 #include <linux/firmware.h>
163 #include <linux/acpi.h>
164 #include <linux/ctype.h>
165 #include <linux/latency.h>
167 #include "ipw2100.h"
169 #define IPW2100_VERSION "git-1.2.2"
171 #define DRV_NAME "ipw2100"
172 #define DRV_VERSION IPW2100_VERSION
173 #define DRV_DESCRIPTION "Intel(R) PRO/Wireless 2100 Network Driver"
174 #define DRV_COPYRIGHT "Copyright(c) 2003-2006 Intel Corporation"
176 /* Debugging stuff */
177 #ifdef CONFIG_IPW2100_DEBUG
178 #define CONFIG_IPW2100_RX_DEBUG /* Reception debugging */
179 #endif
181 MODULE_DESCRIPTION(DRV_DESCRIPTION);
182 MODULE_VERSION(DRV_VERSION);
183 MODULE_AUTHOR(DRV_COPYRIGHT);
184 MODULE_LICENSE("GPL");
186 static int debug = 0;
187 static int mode = 0;
188 static int channel = 0;
189 static int associate = 1;
190 static int disable = 0;
191 #ifdef CONFIG_PM
192 static struct ipw2100_fw ipw2100_firmware;
193 #endif
195 #include <linux/moduleparam.h>
196 module_param(debug, int, 0444);
197 module_param(mode, int, 0444);
198 module_param(channel, int, 0444);
199 module_param(associate, int, 0444);
200 module_param(disable, int, 0444);
202 MODULE_PARM_DESC(debug, "debug level");
203 MODULE_PARM_DESC(mode, "network mode (0=BSS,1=IBSS,2=Monitor)");
204 MODULE_PARM_DESC(channel, "channel");
205 MODULE_PARM_DESC(associate, "auto associate when scanning (default on)");
206 MODULE_PARM_DESC(disable, "manually disable the radio (default 0 [radio on])");
208 static u32 ipw2100_debug_level = IPW_DL_NONE;
210 #ifdef CONFIG_IPW2100_DEBUG
211 #define IPW_DEBUG(level, message...) \
212 do { \
213 if (ipw2100_debug_level & (level)) { \
214 printk(KERN_DEBUG "ipw2100: %c %s ", \
215 in_interrupt() ? 'I' : 'U', __FUNCTION__); \
216 printk(message); \
218 } while (0)
219 #else
220 #define IPW_DEBUG(level, message...) do {} while (0)
221 #endif /* CONFIG_IPW2100_DEBUG */
223 #ifdef CONFIG_IPW2100_DEBUG
224 static const char *command_types[] = {
225 "undefined",
226 "unused", /* HOST_ATTENTION */
227 "HOST_COMPLETE",
228 "unused", /* SLEEP */
229 "unused", /* HOST_POWER_DOWN */
230 "unused",
231 "SYSTEM_CONFIG",
232 "unused", /* SET_IMR */
233 "SSID",
234 "MANDATORY_BSSID",
235 "AUTHENTICATION_TYPE",
236 "ADAPTER_ADDRESS",
237 "PORT_TYPE",
238 "INTERNATIONAL_MODE",
239 "CHANNEL",
240 "RTS_THRESHOLD",
241 "FRAG_THRESHOLD",
242 "POWER_MODE",
243 "TX_RATES",
244 "BASIC_TX_RATES",
245 "WEP_KEY_INFO",
246 "unused",
247 "unused",
248 "unused",
249 "unused",
250 "WEP_KEY_INDEX",
251 "WEP_FLAGS",
252 "ADD_MULTICAST",
253 "CLEAR_ALL_MULTICAST",
254 "BEACON_INTERVAL",
255 "ATIM_WINDOW",
256 "CLEAR_STATISTICS",
257 "undefined",
258 "undefined",
259 "undefined",
260 "undefined",
261 "TX_POWER_INDEX",
262 "undefined",
263 "undefined",
264 "undefined",
265 "undefined",
266 "undefined",
267 "undefined",
268 "BROADCAST_SCAN",
269 "CARD_DISABLE",
270 "PREFERRED_BSSID",
271 "SET_SCAN_OPTIONS",
272 "SCAN_DWELL_TIME",
273 "SWEEP_TABLE",
274 "AP_OR_STATION_TABLE",
275 "GROUP_ORDINALS",
276 "SHORT_RETRY_LIMIT",
277 "LONG_RETRY_LIMIT",
278 "unused", /* SAVE_CALIBRATION */
279 "unused", /* RESTORE_CALIBRATION */
280 "undefined",
281 "undefined",
282 "undefined",
283 "HOST_PRE_POWER_DOWN",
284 "unused", /* HOST_INTERRUPT_COALESCING */
285 "undefined",
286 "CARD_DISABLE_PHY_OFF",
287 "MSDU_TX_RATES" "undefined",
288 "undefined",
289 "SET_STATION_STAT_BITS",
290 "CLEAR_STATIONS_STAT_BITS",
291 "LEAP_ROGUE_MODE",
292 "SET_SECURITY_INFORMATION",
293 "DISASSOCIATION_BSSID",
294 "SET_WPA_ASS_IE"
296 #endif
298 /* Pre-decl until we get the code solid and then we can clean it up */
299 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv);
300 static void ipw2100_tx_send_data(struct ipw2100_priv *priv);
301 static int ipw2100_adapter_setup(struct ipw2100_priv *priv);
303 static void ipw2100_queues_initialize(struct ipw2100_priv *priv);
304 static void ipw2100_queues_free(struct ipw2100_priv *priv);
305 static int ipw2100_queues_allocate(struct ipw2100_priv *priv);
307 static int ipw2100_fw_download(struct ipw2100_priv *priv,
308 struct ipw2100_fw *fw);
309 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
310 struct ipw2100_fw *fw);
311 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
312 size_t max);
313 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
314 size_t max);
315 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
316 struct ipw2100_fw *fw);
317 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
318 struct ipw2100_fw *fw);
319 static void ipw2100_wx_event_work(struct work_struct *work);
320 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev);
321 static struct iw_handler_def ipw2100_wx_handler_def;
323 static inline void read_register(struct net_device *dev, u32 reg, u32 * val)
325 *val = readl((void __iomem *)(dev->base_addr + reg));
326 IPW_DEBUG_IO("r: 0x%08X => 0x%08X\n", reg, *val);
329 static inline void write_register(struct net_device *dev, u32 reg, u32 val)
331 writel(val, (void __iomem *)(dev->base_addr + reg));
332 IPW_DEBUG_IO("w: 0x%08X <= 0x%08X\n", reg, val);
335 static inline void read_register_word(struct net_device *dev, u32 reg,
336 u16 * val)
338 *val = readw((void __iomem *)(dev->base_addr + reg));
339 IPW_DEBUG_IO("r: 0x%08X => %04X\n", reg, *val);
342 static inline void read_register_byte(struct net_device *dev, u32 reg, u8 * val)
344 *val = readb((void __iomem *)(dev->base_addr + reg));
345 IPW_DEBUG_IO("r: 0x%08X => %02X\n", reg, *val);
348 static inline void write_register_word(struct net_device *dev, u32 reg, u16 val)
350 writew(val, (void __iomem *)(dev->base_addr + reg));
351 IPW_DEBUG_IO("w: 0x%08X <= %04X\n", reg, val);
354 static inline void write_register_byte(struct net_device *dev, u32 reg, u8 val)
356 writeb(val, (void __iomem *)(dev->base_addr + reg));
357 IPW_DEBUG_IO("w: 0x%08X =< %02X\n", reg, val);
360 static inline void read_nic_dword(struct net_device *dev, u32 addr, u32 * val)
362 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
363 addr & IPW_REG_INDIRECT_ADDR_MASK);
364 read_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
367 static inline void write_nic_dword(struct net_device *dev, u32 addr, u32 val)
369 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
370 addr & IPW_REG_INDIRECT_ADDR_MASK);
371 write_register(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
374 static inline void read_nic_word(struct net_device *dev, u32 addr, u16 * val)
376 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
377 addr & IPW_REG_INDIRECT_ADDR_MASK);
378 read_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
381 static inline void write_nic_word(struct net_device *dev, u32 addr, u16 val)
383 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
384 addr & IPW_REG_INDIRECT_ADDR_MASK);
385 write_register_word(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
388 static inline void read_nic_byte(struct net_device *dev, u32 addr, u8 * val)
390 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
391 addr & IPW_REG_INDIRECT_ADDR_MASK);
392 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
395 static inline void write_nic_byte(struct net_device *dev, u32 addr, u8 val)
397 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
398 addr & IPW_REG_INDIRECT_ADDR_MASK);
399 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA, val);
402 static inline void write_nic_auto_inc_address(struct net_device *dev, u32 addr)
404 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS,
405 addr & IPW_REG_INDIRECT_ADDR_MASK);
408 static inline void write_nic_dword_auto_inc(struct net_device *dev, u32 val)
410 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, val);
413 static void write_nic_memory(struct net_device *dev, u32 addr, u32 len,
414 const u8 * buf)
416 u32 aligned_addr;
417 u32 aligned_len;
418 u32 dif_len;
419 u32 i;
421 /* read first nibble byte by byte */
422 aligned_addr = addr & (~0x3);
423 dif_len = addr - aligned_addr;
424 if (dif_len) {
425 /* Start reading at aligned_addr + dif_len */
426 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
427 aligned_addr);
428 for (i = dif_len; i < 4; i++, buf++)
429 write_register_byte(dev,
430 IPW_REG_INDIRECT_ACCESS_DATA + i,
431 *buf);
433 len -= dif_len;
434 aligned_addr += 4;
437 /* read DWs through autoincrement registers */
438 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
439 aligned_len = len & (~0x3);
440 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
441 write_register(dev, IPW_REG_AUTOINCREMENT_DATA, *(u32 *) buf);
443 /* copy the last nibble */
444 dif_len = len - aligned_len;
445 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
446 for (i = 0; i < dif_len; i++, buf++)
447 write_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i,
448 *buf);
451 static void read_nic_memory(struct net_device *dev, u32 addr, u32 len,
452 u8 * buf)
454 u32 aligned_addr;
455 u32 aligned_len;
456 u32 dif_len;
457 u32 i;
459 /* read first nibble byte by byte */
460 aligned_addr = addr & (~0x3);
461 dif_len = addr - aligned_addr;
462 if (dif_len) {
463 /* Start reading at aligned_addr + dif_len */
464 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS,
465 aligned_addr);
466 for (i = dif_len; i < 4; i++, buf++)
467 read_register_byte(dev,
468 IPW_REG_INDIRECT_ACCESS_DATA + i,
469 buf);
471 len -= dif_len;
472 aligned_addr += 4;
475 /* read DWs through autoincrement registers */
476 write_register(dev, IPW_REG_AUTOINCREMENT_ADDRESS, aligned_addr);
477 aligned_len = len & (~0x3);
478 for (i = 0; i < aligned_len; i += 4, buf += 4, aligned_addr += 4)
479 read_register(dev, IPW_REG_AUTOINCREMENT_DATA, (u32 *) buf);
481 /* copy the last nibble */
482 dif_len = len - aligned_len;
483 write_register(dev, IPW_REG_INDIRECT_ACCESS_ADDRESS, aligned_addr);
484 for (i = 0; i < dif_len; i++, buf++)
485 read_register_byte(dev, IPW_REG_INDIRECT_ACCESS_DATA + i, buf);
488 static inline int ipw2100_hw_is_adapter_in_system(struct net_device *dev)
490 return (dev->base_addr &&
491 (readl
492 ((void __iomem *)(dev->base_addr +
493 IPW_REG_DOA_DEBUG_AREA_START))
494 == IPW_DATA_DOA_DEBUG_VALUE));
497 static int ipw2100_get_ordinal(struct ipw2100_priv *priv, u32 ord,
498 void *val, u32 * len)
500 struct ipw2100_ordinals *ordinals = &priv->ordinals;
501 u32 addr;
502 u32 field_info;
503 u16 field_len;
504 u16 field_count;
505 u32 total_length;
507 if (ordinals->table1_addr == 0) {
508 printk(KERN_WARNING DRV_NAME ": attempt to use fw ordinals "
509 "before they have been loaded.\n");
510 return -EINVAL;
513 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
514 if (*len < IPW_ORD_TAB_1_ENTRY_SIZE) {
515 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
517 printk(KERN_WARNING DRV_NAME
518 ": ordinal buffer length too small, need %zd\n",
519 IPW_ORD_TAB_1_ENTRY_SIZE);
521 return -EINVAL;
524 read_nic_dword(priv->net_dev,
525 ordinals->table1_addr + (ord << 2), &addr);
526 read_nic_dword(priv->net_dev, addr, val);
528 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
530 return 0;
533 if (IS_ORDINAL_TABLE_TWO(ordinals, ord)) {
535 ord -= IPW_START_ORD_TAB_2;
537 /* get the address of statistic */
538 read_nic_dword(priv->net_dev,
539 ordinals->table2_addr + (ord << 3), &addr);
541 /* get the second DW of statistics ;
542 * two 16-bit words - first is length, second is count */
543 read_nic_dword(priv->net_dev,
544 ordinals->table2_addr + (ord << 3) + sizeof(u32),
545 &field_info);
547 /* get each entry length */
548 field_len = *((u16 *) & field_info);
550 /* get number of entries */
551 field_count = *(((u16 *) & field_info) + 1);
553 /* abort if no enought memory */
554 total_length = field_len * field_count;
555 if (total_length > *len) {
556 *len = total_length;
557 return -EINVAL;
560 *len = total_length;
561 if (!total_length)
562 return 0;
564 /* read the ordinal data from the SRAM */
565 read_nic_memory(priv->net_dev, addr, total_length, val);
567 return 0;
570 printk(KERN_WARNING DRV_NAME ": ordinal %d neither in table 1 nor "
571 "in table 2\n", ord);
573 return -EINVAL;
576 static int ipw2100_set_ordinal(struct ipw2100_priv *priv, u32 ord, u32 * val,
577 u32 * len)
579 struct ipw2100_ordinals *ordinals = &priv->ordinals;
580 u32 addr;
582 if (IS_ORDINAL_TABLE_ONE(ordinals, ord)) {
583 if (*len != IPW_ORD_TAB_1_ENTRY_SIZE) {
584 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
585 IPW_DEBUG_INFO("wrong size\n");
586 return -EINVAL;
589 read_nic_dword(priv->net_dev,
590 ordinals->table1_addr + (ord << 2), &addr);
592 write_nic_dword(priv->net_dev, addr, *val);
594 *len = IPW_ORD_TAB_1_ENTRY_SIZE;
596 return 0;
599 IPW_DEBUG_INFO("wrong table\n");
600 if (IS_ORDINAL_TABLE_TWO(ordinals, ord))
601 return -EINVAL;
603 return -EINVAL;
606 static char *snprint_line(char *buf, size_t count,
607 const u8 * data, u32 len, u32 ofs)
609 int out, i, j, l;
610 char c;
612 out = snprintf(buf, count, "%08X", ofs);
614 for (l = 0, i = 0; i < 2; i++) {
615 out += snprintf(buf + out, count - out, " ");
616 for (j = 0; j < 8 && l < len; j++, l++)
617 out += snprintf(buf + out, count - out, "%02X ",
618 data[(i * 8 + j)]);
619 for (; j < 8; j++)
620 out += snprintf(buf + out, count - out, " ");
623 out += snprintf(buf + out, count - out, " ");
624 for (l = 0, i = 0; i < 2; i++) {
625 out += snprintf(buf + out, count - out, " ");
626 for (j = 0; j < 8 && l < len; j++, l++) {
627 c = data[(i * 8 + j)];
628 if (!isascii(c) || !isprint(c))
629 c = '.';
631 out += snprintf(buf + out, count - out, "%c", c);
634 for (; j < 8; j++)
635 out += snprintf(buf + out, count - out, " ");
638 return buf;
641 static void printk_buf(int level, const u8 * data, u32 len)
643 char line[81];
644 u32 ofs = 0;
645 if (!(ipw2100_debug_level & level))
646 return;
648 while (len) {
649 printk(KERN_DEBUG "%s\n",
650 snprint_line(line, sizeof(line), &data[ofs],
651 min(len, 16U), ofs));
652 ofs += 16;
653 len -= min(len, 16U);
657 #define MAX_RESET_BACKOFF 10
659 static void schedule_reset(struct ipw2100_priv *priv)
661 unsigned long now = get_seconds();
663 /* If we haven't received a reset request within the backoff period,
664 * then we can reset the backoff interval so this reset occurs
665 * immediately */
666 if (priv->reset_backoff &&
667 (now - priv->last_reset > priv->reset_backoff))
668 priv->reset_backoff = 0;
670 priv->last_reset = get_seconds();
672 if (!(priv->status & STATUS_RESET_PENDING)) {
673 IPW_DEBUG_INFO("%s: Scheduling firmware restart (%ds).\n",
674 priv->net_dev->name, priv->reset_backoff);
675 netif_carrier_off(priv->net_dev);
676 netif_stop_queue(priv->net_dev);
677 priv->status |= STATUS_RESET_PENDING;
678 if (priv->reset_backoff)
679 queue_delayed_work(priv->workqueue, &priv->reset_work,
680 priv->reset_backoff * HZ);
681 else
682 queue_delayed_work(priv->workqueue, &priv->reset_work,
685 if (priv->reset_backoff < MAX_RESET_BACKOFF)
686 priv->reset_backoff++;
688 wake_up_interruptible(&priv->wait_command_queue);
689 } else
690 IPW_DEBUG_INFO("%s: Firmware restart already in progress.\n",
691 priv->net_dev->name);
695 #define HOST_COMPLETE_TIMEOUT (2 * HZ)
696 static int ipw2100_hw_send_command(struct ipw2100_priv *priv,
697 struct host_command *cmd)
699 struct list_head *element;
700 struct ipw2100_tx_packet *packet;
701 unsigned long flags;
702 int err = 0;
704 IPW_DEBUG_HC("Sending %s command (#%d), %d bytes\n",
705 command_types[cmd->host_command], cmd->host_command,
706 cmd->host_command_length);
707 printk_buf(IPW_DL_HC, (u8 *) cmd->host_command_parameters,
708 cmd->host_command_length);
710 spin_lock_irqsave(&priv->low_lock, flags);
712 if (priv->fatal_error) {
713 IPW_DEBUG_INFO
714 ("Attempt to send command while hardware in fatal error condition.\n");
715 err = -EIO;
716 goto fail_unlock;
719 if (!(priv->status & STATUS_RUNNING)) {
720 IPW_DEBUG_INFO
721 ("Attempt to send command while hardware is not running.\n");
722 err = -EIO;
723 goto fail_unlock;
726 if (priv->status & STATUS_CMD_ACTIVE) {
727 IPW_DEBUG_INFO
728 ("Attempt to send command while another command is pending.\n");
729 err = -EBUSY;
730 goto fail_unlock;
733 if (list_empty(&priv->msg_free_list)) {
734 IPW_DEBUG_INFO("no available msg buffers\n");
735 goto fail_unlock;
738 priv->status |= STATUS_CMD_ACTIVE;
739 priv->messages_sent++;
741 element = priv->msg_free_list.next;
743 packet = list_entry(element, struct ipw2100_tx_packet, list);
744 packet->jiffy_start = jiffies;
746 /* initialize the firmware command packet */
747 packet->info.c_struct.cmd->host_command_reg = cmd->host_command;
748 packet->info.c_struct.cmd->host_command_reg1 = cmd->host_command1;
749 packet->info.c_struct.cmd->host_command_len_reg =
750 cmd->host_command_length;
751 packet->info.c_struct.cmd->sequence = cmd->host_command_sequence;
753 memcpy(packet->info.c_struct.cmd->host_command_params_reg,
754 cmd->host_command_parameters,
755 sizeof(packet->info.c_struct.cmd->host_command_params_reg));
757 list_del(element);
758 DEC_STAT(&priv->msg_free_stat);
760 list_add_tail(element, &priv->msg_pend_list);
761 INC_STAT(&priv->msg_pend_stat);
763 ipw2100_tx_send_commands(priv);
764 ipw2100_tx_send_data(priv);
766 spin_unlock_irqrestore(&priv->low_lock, flags);
769 * We must wait for this command to complete before another
770 * command can be sent... but if we wait more than 3 seconds
771 * then there is a problem.
774 err =
775 wait_event_interruptible_timeout(priv->wait_command_queue,
776 !(priv->
777 status & STATUS_CMD_ACTIVE),
778 HOST_COMPLETE_TIMEOUT);
780 if (err == 0) {
781 IPW_DEBUG_INFO("Command completion failed out after %dms.\n",
782 1000 * (HOST_COMPLETE_TIMEOUT / HZ));
783 priv->fatal_error = IPW2100_ERR_MSG_TIMEOUT;
784 priv->status &= ~STATUS_CMD_ACTIVE;
785 schedule_reset(priv);
786 return -EIO;
789 if (priv->fatal_error) {
790 printk(KERN_WARNING DRV_NAME ": %s: firmware fatal error\n",
791 priv->net_dev->name);
792 return -EIO;
795 /* !!!!! HACK TEST !!!!!
796 * When lots of debug trace statements are enabled, the driver
797 * doesn't seem to have as many firmware restart cycles...
799 * As a test, we're sticking in a 1/100s delay here */
800 schedule_timeout_uninterruptible(msecs_to_jiffies(10));
802 return 0;
804 fail_unlock:
805 spin_unlock_irqrestore(&priv->low_lock, flags);
807 return err;
811 * Verify the values and data access of the hardware
812 * No locks needed or used. No functions called.
814 static int ipw2100_verify(struct ipw2100_priv *priv)
816 u32 data1, data2;
817 u32 address;
819 u32 val1 = 0x76543210;
820 u32 val2 = 0xFEDCBA98;
822 /* Domain 0 check - all values should be DOA_DEBUG */
823 for (address = IPW_REG_DOA_DEBUG_AREA_START;
824 address < IPW_REG_DOA_DEBUG_AREA_END; address += sizeof(u32)) {
825 read_register(priv->net_dev, address, &data1);
826 if (data1 != IPW_DATA_DOA_DEBUG_VALUE)
827 return -EIO;
830 /* Domain 1 check - use arbitrary read/write compare */
831 for (address = 0; address < 5; address++) {
832 /* The memory area is not used now */
833 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
834 val1);
835 write_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
836 val2);
837 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x32,
838 &data1);
839 read_register(priv->net_dev, IPW_REG_DOMAIN_1_OFFSET + 0x36,
840 &data2);
841 if (val1 == data1 && val2 == data2)
842 return 0;
845 return -EIO;
850 * Loop until the CARD_DISABLED bit is the same value as the
851 * supplied parameter
853 * TODO: See if it would be more efficient to do a wait/wake
854 * cycle and have the completion event trigger the wakeup
857 #define IPW_CARD_DISABLE_COMPLETE_WAIT 100 // 100 milli
858 static int ipw2100_wait_for_card_state(struct ipw2100_priv *priv, int state)
860 int i;
861 u32 card_state;
862 u32 len = sizeof(card_state);
863 int err;
865 for (i = 0; i <= IPW_CARD_DISABLE_COMPLETE_WAIT * 1000; i += 50) {
866 err = ipw2100_get_ordinal(priv, IPW_ORD_CARD_DISABLED,
867 &card_state, &len);
868 if (err) {
869 IPW_DEBUG_INFO("Query of CARD_DISABLED ordinal "
870 "failed.\n");
871 return 0;
874 /* We'll break out if either the HW state says it is
875 * in the state we want, or if HOST_COMPLETE command
876 * finishes */
877 if ((card_state == state) ||
878 ((priv->status & STATUS_ENABLED) ?
879 IPW_HW_STATE_ENABLED : IPW_HW_STATE_DISABLED) == state) {
880 if (state == IPW_HW_STATE_ENABLED)
881 priv->status |= STATUS_ENABLED;
882 else
883 priv->status &= ~STATUS_ENABLED;
885 return 0;
888 udelay(50);
891 IPW_DEBUG_INFO("ipw2100_wait_for_card_state to %s state timed out\n",
892 state ? "DISABLED" : "ENABLED");
893 return -EIO;
896 /*********************************************************************
897 Procedure : sw_reset_and_clock
898 Purpose : Asserts s/w reset, asserts clock initialization
899 and waits for clock stabilization
900 ********************************************************************/
901 static int sw_reset_and_clock(struct ipw2100_priv *priv)
903 int i;
904 u32 r;
906 // assert s/w reset
907 write_register(priv->net_dev, IPW_REG_RESET_REG,
908 IPW_AUX_HOST_RESET_REG_SW_RESET);
910 // wait for clock stabilization
911 for (i = 0; i < 1000; i++) {
912 udelay(IPW_WAIT_RESET_ARC_COMPLETE_DELAY);
914 // check clock ready bit
915 read_register(priv->net_dev, IPW_REG_RESET_REG, &r);
916 if (r & IPW_AUX_HOST_RESET_REG_PRINCETON_RESET)
917 break;
920 if (i == 1000)
921 return -EIO; // TODO: better error value
923 /* set "initialization complete" bit to move adapter to
924 * D0 state */
925 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
926 IPW_AUX_HOST_GP_CNTRL_BIT_INIT_DONE);
928 /* wait for clock stabilization */
929 for (i = 0; i < 10000; i++) {
930 udelay(IPW_WAIT_CLOCK_STABILIZATION_DELAY * 4);
932 /* check clock ready bit */
933 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
934 if (r & IPW_AUX_HOST_GP_CNTRL_BIT_CLOCK_READY)
935 break;
938 if (i == 10000)
939 return -EIO; /* TODO: better error value */
941 /* set D0 standby bit */
942 read_register(priv->net_dev, IPW_REG_GP_CNTRL, &r);
943 write_register(priv->net_dev, IPW_REG_GP_CNTRL,
944 r | IPW_AUX_HOST_GP_CNTRL_BIT_HOST_ALLOWS_STANDBY);
946 return 0;
949 /*********************************************************************
950 Procedure : ipw2100_download_firmware
951 Purpose : Initiaze adapter after power on.
952 The sequence is:
953 1. assert s/w reset first!
954 2. awake clocks & wait for clock stabilization
955 3. hold ARC (don't ask me why...)
956 4. load Dino ucode and reset/clock init again
957 5. zero-out shared mem
958 6. download f/w
959 *******************************************************************/
960 static int ipw2100_download_firmware(struct ipw2100_priv *priv)
962 u32 address;
963 int err;
965 #ifndef CONFIG_PM
966 /* Fetch the firmware and microcode */
967 struct ipw2100_fw ipw2100_firmware;
968 #endif
970 if (priv->fatal_error) {
971 IPW_DEBUG_ERROR("%s: ipw2100_download_firmware called after "
972 "fatal error %d. Interface must be brought down.\n",
973 priv->net_dev->name, priv->fatal_error);
974 return -EINVAL;
976 #ifdef CONFIG_PM
977 if (!ipw2100_firmware.version) {
978 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
979 if (err) {
980 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
981 priv->net_dev->name, err);
982 priv->fatal_error = IPW2100_ERR_FW_LOAD;
983 goto fail;
986 #else
987 err = ipw2100_get_firmware(priv, &ipw2100_firmware);
988 if (err) {
989 IPW_DEBUG_ERROR("%s: ipw2100_get_firmware failed: %d\n",
990 priv->net_dev->name, err);
991 priv->fatal_error = IPW2100_ERR_FW_LOAD;
992 goto fail;
994 #endif
995 priv->firmware_version = ipw2100_firmware.version;
997 /* s/w reset and clock stabilization */
998 err = sw_reset_and_clock(priv);
999 if (err) {
1000 IPW_DEBUG_ERROR("%s: sw_reset_and_clock failed: %d\n",
1001 priv->net_dev->name, err);
1002 goto fail;
1005 err = ipw2100_verify(priv);
1006 if (err) {
1007 IPW_DEBUG_ERROR("%s: ipw2100_verify failed: %d\n",
1008 priv->net_dev->name, err);
1009 goto fail;
1012 /* Hold ARC */
1013 write_nic_dword(priv->net_dev,
1014 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x80000000);
1016 /* allow ARC to run */
1017 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1019 /* load microcode */
1020 err = ipw2100_ucode_download(priv, &ipw2100_firmware);
1021 if (err) {
1022 printk(KERN_ERR DRV_NAME ": %s: Error loading microcode: %d\n",
1023 priv->net_dev->name, err);
1024 goto fail;
1027 /* release ARC */
1028 write_nic_dword(priv->net_dev,
1029 IPW_INTERNAL_REGISTER_HALT_AND_RESET, 0x00000000);
1031 /* s/w reset and clock stabilization (again!!!) */
1032 err = sw_reset_and_clock(priv);
1033 if (err) {
1034 printk(KERN_ERR DRV_NAME
1035 ": %s: sw_reset_and_clock failed: %d\n",
1036 priv->net_dev->name, err);
1037 goto fail;
1040 /* load f/w */
1041 err = ipw2100_fw_download(priv, &ipw2100_firmware);
1042 if (err) {
1043 IPW_DEBUG_ERROR("%s: Error loading firmware: %d\n",
1044 priv->net_dev->name, err);
1045 goto fail;
1047 #ifndef CONFIG_PM
1049 * When the .resume method of the driver is called, the other
1050 * part of the system, i.e. the ide driver could still stay in
1051 * the suspend stage. This prevents us from loading the firmware
1052 * from the disk. --YZ
1055 /* free any storage allocated for firmware image */
1056 ipw2100_release_firmware(priv, &ipw2100_firmware);
1057 #endif
1059 /* zero out Domain 1 area indirectly (Si requirement) */
1060 for (address = IPW_HOST_FW_SHARED_AREA0;
1061 address < IPW_HOST_FW_SHARED_AREA0_END; address += 4)
1062 write_nic_dword(priv->net_dev, address, 0);
1063 for (address = IPW_HOST_FW_SHARED_AREA1;
1064 address < IPW_HOST_FW_SHARED_AREA1_END; address += 4)
1065 write_nic_dword(priv->net_dev, address, 0);
1066 for (address = IPW_HOST_FW_SHARED_AREA2;
1067 address < IPW_HOST_FW_SHARED_AREA2_END; address += 4)
1068 write_nic_dword(priv->net_dev, address, 0);
1069 for (address = IPW_HOST_FW_SHARED_AREA3;
1070 address < IPW_HOST_FW_SHARED_AREA3_END; address += 4)
1071 write_nic_dword(priv->net_dev, address, 0);
1072 for (address = IPW_HOST_FW_INTERRUPT_AREA;
1073 address < IPW_HOST_FW_INTERRUPT_AREA_END; address += 4)
1074 write_nic_dword(priv->net_dev, address, 0);
1076 return 0;
1078 fail:
1079 ipw2100_release_firmware(priv, &ipw2100_firmware);
1080 return err;
1083 static inline void ipw2100_enable_interrupts(struct ipw2100_priv *priv)
1085 if (priv->status & STATUS_INT_ENABLED)
1086 return;
1087 priv->status |= STATUS_INT_ENABLED;
1088 write_register(priv->net_dev, IPW_REG_INTA_MASK, IPW_INTERRUPT_MASK);
1091 static inline void ipw2100_disable_interrupts(struct ipw2100_priv *priv)
1093 if (!(priv->status & STATUS_INT_ENABLED))
1094 return;
1095 priv->status &= ~STATUS_INT_ENABLED;
1096 write_register(priv->net_dev, IPW_REG_INTA_MASK, 0x0);
1099 static void ipw2100_initialize_ordinals(struct ipw2100_priv *priv)
1101 struct ipw2100_ordinals *ord = &priv->ordinals;
1103 IPW_DEBUG_INFO("enter\n");
1105 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_1,
1106 &ord->table1_addr);
1108 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_ORDINALS_TABLE_2,
1109 &ord->table2_addr);
1111 read_nic_dword(priv->net_dev, ord->table1_addr, &ord->table1_size);
1112 read_nic_dword(priv->net_dev, ord->table2_addr, &ord->table2_size);
1114 ord->table2_size &= 0x0000FFFF;
1116 IPW_DEBUG_INFO("table 1 size: %d\n", ord->table1_size);
1117 IPW_DEBUG_INFO("table 2 size: %d\n", ord->table2_size);
1118 IPW_DEBUG_INFO("exit\n");
1121 static inline void ipw2100_hw_set_gpio(struct ipw2100_priv *priv)
1123 u32 reg = 0;
1125 * Set GPIO 3 writable by FW; GPIO 1 writable
1126 * by driver and enable clock
1128 reg = (IPW_BIT_GPIO_GPIO3_MASK | IPW_BIT_GPIO_GPIO1_ENABLE |
1129 IPW_BIT_GPIO_LED_OFF);
1130 write_register(priv->net_dev, IPW_REG_GPIO, reg);
1133 static int rf_kill_active(struct ipw2100_priv *priv)
1135 #define MAX_RF_KILL_CHECKS 5
1136 #define RF_KILL_CHECK_DELAY 40
1138 unsigned short value = 0;
1139 u32 reg = 0;
1140 int i;
1142 if (!(priv->hw_features & HW_FEATURE_RFKILL)) {
1143 priv->status &= ~STATUS_RF_KILL_HW;
1144 return 0;
1147 for (i = 0; i < MAX_RF_KILL_CHECKS; i++) {
1148 udelay(RF_KILL_CHECK_DELAY);
1149 read_register(priv->net_dev, IPW_REG_GPIO, &reg);
1150 value = (value << 1) | ((reg & IPW_BIT_GPIO_RF_KILL) ? 0 : 1);
1153 if (value == 0)
1154 priv->status |= STATUS_RF_KILL_HW;
1155 else
1156 priv->status &= ~STATUS_RF_KILL_HW;
1158 return (value == 0);
1161 static int ipw2100_get_hw_features(struct ipw2100_priv *priv)
1163 u32 addr, len;
1164 u32 val;
1167 * EEPROM_SRAM_DB_START_ADDRESS using ordinal in ordinal table 1
1169 len = sizeof(addr);
1170 if (ipw2100_get_ordinal
1171 (priv, IPW_ORD_EEPROM_SRAM_DB_BLOCK_START_ADDRESS, &addr, &len)) {
1172 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1173 __LINE__);
1174 return -EIO;
1177 IPW_DEBUG_INFO("EEPROM address: %08X\n", addr);
1180 * EEPROM version is the byte at offset 0xfd in firmware
1181 * We read 4 bytes, then shift out the byte we actually want */
1182 read_nic_dword(priv->net_dev, addr + 0xFC, &val);
1183 priv->eeprom_version = (val >> 24) & 0xFF;
1184 IPW_DEBUG_INFO("EEPROM version: %d\n", priv->eeprom_version);
1187 * HW RF Kill enable is bit 0 in byte at offset 0x21 in firmware
1189 * notice that the EEPROM bit is reverse polarity, i.e.
1190 * bit = 0 signifies HW RF kill switch is supported
1191 * bit = 1 signifies HW RF kill switch is NOT supported
1193 read_nic_dword(priv->net_dev, addr + 0x20, &val);
1194 if (!((val >> 24) & 0x01))
1195 priv->hw_features |= HW_FEATURE_RFKILL;
1197 IPW_DEBUG_INFO("HW RF Kill: %ssupported.\n",
1198 (priv->hw_features & HW_FEATURE_RFKILL) ? "" : "not ");
1200 return 0;
1204 * Start firmware execution after power on and intialization
1205 * The sequence is:
1206 * 1. Release ARC
1207 * 2. Wait for f/w initialization completes;
1209 static int ipw2100_start_adapter(struct ipw2100_priv *priv)
1211 int i;
1212 u32 inta, inta_mask, gpio;
1214 IPW_DEBUG_INFO("enter\n");
1216 if (priv->status & STATUS_RUNNING)
1217 return 0;
1220 * Initialize the hw - drive adapter to DO state by setting
1221 * init_done bit. Wait for clk_ready bit and Download
1222 * fw & dino ucode
1224 if (ipw2100_download_firmware(priv)) {
1225 printk(KERN_ERR DRV_NAME
1226 ": %s: Failed to power on the adapter.\n",
1227 priv->net_dev->name);
1228 return -EIO;
1231 /* Clear the Tx, Rx and Msg queues and the r/w indexes
1232 * in the firmware RBD and TBD ring queue */
1233 ipw2100_queues_initialize(priv);
1235 ipw2100_hw_set_gpio(priv);
1237 /* TODO -- Look at disabling interrupts here to make sure none
1238 * get fired during FW initialization */
1240 /* Release ARC - clear reset bit */
1241 write_register(priv->net_dev, IPW_REG_RESET_REG, 0);
1243 /* wait for f/w intialization complete */
1244 IPW_DEBUG_FW("Waiting for f/w initialization to complete...\n");
1245 i = 5000;
1246 do {
1247 schedule_timeout_uninterruptible(msecs_to_jiffies(40));
1248 /* Todo... wait for sync command ... */
1250 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1252 /* check "init done" bit */
1253 if (inta & IPW2100_INTA_FW_INIT_DONE) {
1254 /* reset "init done" bit */
1255 write_register(priv->net_dev, IPW_REG_INTA,
1256 IPW2100_INTA_FW_INIT_DONE);
1257 break;
1260 /* check error conditions : we check these after the firmware
1261 * check so that if there is an error, the interrupt handler
1262 * will see it and the adapter will be reset */
1263 if (inta &
1264 (IPW2100_INTA_FATAL_ERROR | IPW2100_INTA_PARITY_ERROR)) {
1265 /* clear error conditions */
1266 write_register(priv->net_dev, IPW_REG_INTA,
1267 IPW2100_INTA_FATAL_ERROR |
1268 IPW2100_INTA_PARITY_ERROR);
1270 } while (i--);
1272 /* Clear out any pending INTAs since we aren't supposed to have
1273 * interrupts enabled at this point... */
1274 read_register(priv->net_dev, IPW_REG_INTA, &inta);
1275 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
1276 inta &= IPW_INTERRUPT_MASK;
1277 /* Clear out any pending interrupts */
1278 if (inta & inta_mask)
1279 write_register(priv->net_dev, IPW_REG_INTA, inta);
1281 IPW_DEBUG_FW("f/w initialization complete: %s\n",
1282 i ? "SUCCESS" : "FAILED");
1284 if (!i) {
1285 printk(KERN_WARNING DRV_NAME
1286 ": %s: Firmware did not initialize.\n",
1287 priv->net_dev->name);
1288 return -EIO;
1291 /* allow firmware to write to GPIO1 & GPIO3 */
1292 read_register(priv->net_dev, IPW_REG_GPIO, &gpio);
1294 gpio |= (IPW_BIT_GPIO_GPIO1_MASK | IPW_BIT_GPIO_GPIO3_MASK);
1296 write_register(priv->net_dev, IPW_REG_GPIO, gpio);
1298 /* Ready to receive commands */
1299 priv->status |= STATUS_RUNNING;
1301 /* The adapter has been reset; we are not associated */
1302 priv->status &= ~(STATUS_ASSOCIATING | STATUS_ASSOCIATED);
1304 IPW_DEBUG_INFO("exit\n");
1306 return 0;
1309 static inline void ipw2100_reset_fatalerror(struct ipw2100_priv *priv)
1311 if (!priv->fatal_error)
1312 return;
1314 priv->fatal_errors[priv->fatal_index++] = priv->fatal_error;
1315 priv->fatal_index %= IPW2100_ERROR_QUEUE;
1316 priv->fatal_error = 0;
1319 /* NOTE: Our interrupt is disabled when this method is called */
1320 static int ipw2100_power_cycle_adapter(struct ipw2100_priv *priv)
1322 u32 reg;
1323 int i;
1325 IPW_DEBUG_INFO("Power cycling the hardware.\n");
1327 ipw2100_hw_set_gpio(priv);
1329 /* Step 1. Stop Master Assert */
1330 write_register(priv->net_dev, IPW_REG_RESET_REG,
1331 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1333 /* Step 2. Wait for stop Master Assert
1334 * (not more then 50us, otherwise ret error */
1335 i = 5;
1336 do {
1337 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
1338 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1340 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1341 break;
1342 } while (i--);
1344 priv->status &= ~STATUS_RESET_PENDING;
1346 if (!i) {
1347 IPW_DEBUG_INFO
1348 ("exit - waited too long for master assert stop\n");
1349 return -EIO;
1352 write_register(priv->net_dev, IPW_REG_RESET_REG,
1353 IPW_AUX_HOST_RESET_REG_SW_RESET);
1355 /* Reset any fatal_error conditions */
1356 ipw2100_reset_fatalerror(priv);
1358 /* At this point, the adapter is now stopped and disabled */
1359 priv->status &= ~(STATUS_RUNNING | STATUS_ASSOCIATING |
1360 STATUS_ASSOCIATED | STATUS_ENABLED);
1362 return 0;
1366 * Send the CARD_DISABLE_PHY_OFF comamnd to the card to disable it
1368 * After disabling, if the card was associated, a STATUS_ASSN_LOST will be sent.
1370 * STATUS_CARD_DISABLE_NOTIFICATION will be sent regardless of
1371 * if STATUS_ASSN_LOST is sent.
1373 static int ipw2100_hw_phy_off(struct ipw2100_priv *priv)
1376 #define HW_PHY_OFF_LOOP_DELAY (HZ / 5000)
1378 struct host_command cmd = {
1379 .host_command = CARD_DISABLE_PHY_OFF,
1380 .host_command_sequence = 0,
1381 .host_command_length = 0,
1383 int err, i;
1384 u32 val1, val2;
1386 IPW_DEBUG_HC("CARD_DISABLE_PHY_OFF\n");
1388 /* Turn off the radio */
1389 err = ipw2100_hw_send_command(priv, &cmd);
1390 if (err)
1391 return err;
1393 for (i = 0; i < 2500; i++) {
1394 read_nic_dword(priv->net_dev, IPW2100_CONTROL_REG, &val1);
1395 read_nic_dword(priv->net_dev, IPW2100_COMMAND, &val2);
1397 if ((val1 & IPW2100_CONTROL_PHY_OFF) &&
1398 (val2 & IPW2100_COMMAND_PHY_OFF))
1399 return 0;
1401 schedule_timeout_uninterruptible(HW_PHY_OFF_LOOP_DELAY);
1404 return -EIO;
1407 static int ipw2100_enable_adapter(struct ipw2100_priv *priv)
1409 struct host_command cmd = {
1410 .host_command = HOST_COMPLETE,
1411 .host_command_sequence = 0,
1412 .host_command_length = 0
1414 int err = 0;
1416 IPW_DEBUG_HC("HOST_COMPLETE\n");
1418 if (priv->status & STATUS_ENABLED)
1419 return 0;
1421 mutex_lock(&priv->adapter_mutex);
1423 if (rf_kill_active(priv)) {
1424 IPW_DEBUG_HC("Command aborted due to RF kill active.\n");
1425 goto fail_up;
1428 err = ipw2100_hw_send_command(priv, &cmd);
1429 if (err) {
1430 IPW_DEBUG_INFO("Failed to send HOST_COMPLETE command\n");
1431 goto fail_up;
1434 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_ENABLED);
1435 if (err) {
1436 IPW_DEBUG_INFO("%s: card not responding to init command.\n",
1437 priv->net_dev->name);
1438 goto fail_up;
1441 if (priv->stop_hang_check) {
1442 priv->stop_hang_check = 0;
1443 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
1446 fail_up:
1447 mutex_unlock(&priv->adapter_mutex);
1448 return err;
1451 static int ipw2100_hw_stop_adapter(struct ipw2100_priv *priv)
1453 #define HW_POWER_DOWN_DELAY (msecs_to_jiffies(100))
1455 struct host_command cmd = {
1456 .host_command = HOST_PRE_POWER_DOWN,
1457 .host_command_sequence = 0,
1458 .host_command_length = 0,
1460 int err, i;
1461 u32 reg;
1463 if (!(priv->status & STATUS_RUNNING))
1464 return 0;
1466 priv->status |= STATUS_STOPPING;
1468 /* We can only shut down the card if the firmware is operational. So,
1469 * if we haven't reset since a fatal_error, then we can not send the
1470 * shutdown commands. */
1471 if (!priv->fatal_error) {
1472 /* First, make sure the adapter is enabled so that the PHY_OFF
1473 * command can shut it down */
1474 ipw2100_enable_adapter(priv);
1476 err = ipw2100_hw_phy_off(priv);
1477 if (err)
1478 printk(KERN_WARNING DRV_NAME
1479 ": Error disabling radio %d\n", err);
1482 * If in D0-standby mode going directly to D3 may cause a
1483 * PCI bus violation. Therefore we must change out of the D0
1484 * state.
1486 * Sending the PREPARE_FOR_POWER_DOWN will restrict the
1487 * hardware from going into standby mode and will transition
1488 * out of D0-standby if it is already in that state.
1490 * STATUS_PREPARE_POWER_DOWN_COMPLETE will be sent by the
1491 * driver upon completion. Once received, the driver can
1492 * proceed to the D3 state.
1494 * Prepare for power down command to fw. This command would
1495 * take HW out of D0-standby and prepare it for D3 state.
1497 * Currently FW does not support event notification for this
1498 * event. Therefore, skip waiting for it. Just wait a fixed
1499 * 100ms
1501 IPW_DEBUG_HC("HOST_PRE_POWER_DOWN\n");
1503 err = ipw2100_hw_send_command(priv, &cmd);
1504 if (err)
1505 printk(KERN_WARNING DRV_NAME ": "
1506 "%s: Power down command failed: Error %d\n",
1507 priv->net_dev->name, err);
1508 else
1509 schedule_timeout_uninterruptible(HW_POWER_DOWN_DELAY);
1512 priv->status &= ~STATUS_ENABLED;
1515 * Set GPIO 3 writable by FW; GPIO 1 writable
1516 * by driver and enable clock
1518 ipw2100_hw_set_gpio(priv);
1521 * Power down adapter. Sequence:
1522 * 1. Stop master assert (RESET_REG[9]=1)
1523 * 2. Wait for stop master (RESET_REG[8]==1)
1524 * 3. S/w reset assert (RESET_REG[7] = 1)
1527 /* Stop master assert */
1528 write_register(priv->net_dev, IPW_REG_RESET_REG,
1529 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
1531 /* wait stop master not more than 50 usec.
1532 * Otherwise return error. */
1533 for (i = 5; i > 0; i--) {
1534 udelay(10);
1536 /* Check master stop bit */
1537 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
1539 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
1540 break;
1543 if (i == 0)
1544 printk(KERN_WARNING DRV_NAME
1545 ": %s: Could now power down adapter.\n",
1546 priv->net_dev->name);
1548 /* assert s/w reset */
1549 write_register(priv->net_dev, IPW_REG_RESET_REG,
1550 IPW_AUX_HOST_RESET_REG_SW_RESET);
1552 priv->status &= ~(STATUS_RUNNING | STATUS_STOPPING);
1554 return 0;
1557 static int ipw2100_disable_adapter(struct ipw2100_priv *priv)
1559 struct host_command cmd = {
1560 .host_command = CARD_DISABLE,
1561 .host_command_sequence = 0,
1562 .host_command_length = 0
1564 int err = 0;
1566 IPW_DEBUG_HC("CARD_DISABLE\n");
1568 if (!(priv->status & STATUS_ENABLED))
1569 return 0;
1571 /* Make sure we clear the associated state */
1572 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1574 if (!priv->stop_hang_check) {
1575 priv->stop_hang_check = 1;
1576 cancel_delayed_work(&priv->hang_check);
1579 mutex_lock(&priv->adapter_mutex);
1581 err = ipw2100_hw_send_command(priv, &cmd);
1582 if (err) {
1583 printk(KERN_WARNING DRV_NAME
1584 ": exit - failed to send CARD_DISABLE command\n");
1585 goto fail_up;
1588 err = ipw2100_wait_for_card_state(priv, IPW_HW_STATE_DISABLED);
1589 if (err) {
1590 printk(KERN_WARNING DRV_NAME
1591 ": exit - card failed to change to DISABLED\n");
1592 goto fail_up;
1595 IPW_DEBUG_INFO("TODO: implement scan state machine\n");
1597 fail_up:
1598 mutex_unlock(&priv->adapter_mutex);
1599 return err;
1602 static int ipw2100_set_scan_options(struct ipw2100_priv *priv)
1604 struct host_command cmd = {
1605 .host_command = SET_SCAN_OPTIONS,
1606 .host_command_sequence = 0,
1607 .host_command_length = 8
1609 int err;
1611 IPW_DEBUG_INFO("enter\n");
1613 IPW_DEBUG_SCAN("setting scan options\n");
1615 cmd.host_command_parameters[0] = 0;
1617 if (!(priv->config & CFG_ASSOCIATE))
1618 cmd.host_command_parameters[0] |= IPW_SCAN_NOASSOCIATE;
1619 if ((priv->ieee->sec.flags & SEC_ENABLED) && priv->ieee->sec.enabled)
1620 cmd.host_command_parameters[0] |= IPW_SCAN_MIXED_CELL;
1621 if (priv->config & CFG_PASSIVE_SCAN)
1622 cmd.host_command_parameters[0] |= IPW_SCAN_PASSIVE;
1624 cmd.host_command_parameters[1] = priv->channel_mask;
1626 err = ipw2100_hw_send_command(priv, &cmd);
1628 IPW_DEBUG_HC("SET_SCAN_OPTIONS 0x%04X\n",
1629 cmd.host_command_parameters[0]);
1631 return err;
1634 static int ipw2100_start_scan(struct ipw2100_priv *priv)
1636 struct host_command cmd = {
1637 .host_command = BROADCAST_SCAN,
1638 .host_command_sequence = 0,
1639 .host_command_length = 4
1641 int err;
1643 IPW_DEBUG_HC("START_SCAN\n");
1645 cmd.host_command_parameters[0] = 0;
1647 /* No scanning if in monitor mode */
1648 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
1649 return 1;
1651 if (priv->status & STATUS_SCANNING) {
1652 IPW_DEBUG_SCAN("Scan requested while already in scan...\n");
1653 return 0;
1656 IPW_DEBUG_INFO("enter\n");
1658 /* Not clearing here; doing so makes iwlist always return nothing...
1660 * We should modify the table logic to use aging tables vs. clearing
1661 * the table on each scan start.
1663 IPW_DEBUG_SCAN("starting scan\n");
1665 priv->status |= STATUS_SCANNING;
1666 err = ipw2100_hw_send_command(priv, &cmd);
1667 if (err)
1668 priv->status &= ~STATUS_SCANNING;
1670 IPW_DEBUG_INFO("exit\n");
1672 return err;
1675 static const struct ieee80211_geo ipw_geos[] = {
1676 { /* Restricted */
1677 "---",
1678 .bg_channels = 14,
1679 .bg = {{2412, 1}, {2417, 2}, {2422, 3},
1680 {2427, 4}, {2432, 5}, {2437, 6},
1681 {2442, 7}, {2447, 8}, {2452, 9},
1682 {2457, 10}, {2462, 11}, {2467, 12},
1683 {2472, 13}, {2484, 14}},
1687 static int ipw2100_up(struct ipw2100_priv *priv, int deferred)
1689 unsigned long flags;
1690 int rc = 0;
1691 u32 lock;
1692 u32 ord_len = sizeof(lock);
1694 /* Quite if manually disabled. */
1695 if (priv->status & STATUS_RF_KILL_SW) {
1696 IPW_DEBUG_INFO("%s: Radio is disabled by Manual Disable "
1697 "switch\n", priv->net_dev->name);
1698 return 0;
1701 /* the ipw2100 hardware really doesn't want power management delays
1702 * longer than 175usec
1704 modify_acceptable_latency("ipw2100", 175);
1706 /* If the interrupt is enabled, turn it off... */
1707 spin_lock_irqsave(&priv->low_lock, flags);
1708 ipw2100_disable_interrupts(priv);
1710 /* Reset any fatal_error conditions */
1711 ipw2100_reset_fatalerror(priv);
1712 spin_unlock_irqrestore(&priv->low_lock, flags);
1714 if (priv->status & STATUS_POWERED ||
1715 (priv->status & STATUS_RESET_PENDING)) {
1716 /* Power cycle the card ... */
1717 if (ipw2100_power_cycle_adapter(priv)) {
1718 printk(KERN_WARNING DRV_NAME
1719 ": %s: Could not cycle adapter.\n",
1720 priv->net_dev->name);
1721 rc = 1;
1722 goto exit;
1724 } else
1725 priv->status |= STATUS_POWERED;
1727 /* Load the firmware, start the clocks, etc. */
1728 if (ipw2100_start_adapter(priv)) {
1729 printk(KERN_ERR DRV_NAME
1730 ": %s: Failed to start the firmware.\n",
1731 priv->net_dev->name);
1732 rc = 1;
1733 goto exit;
1736 ipw2100_initialize_ordinals(priv);
1738 /* Determine capabilities of this particular HW configuration */
1739 if (ipw2100_get_hw_features(priv)) {
1740 printk(KERN_ERR DRV_NAME
1741 ": %s: Failed to determine HW features.\n",
1742 priv->net_dev->name);
1743 rc = 1;
1744 goto exit;
1747 /* Initialize the geo */
1748 if (ieee80211_set_geo(priv->ieee, &ipw_geos[0])) {
1749 printk(KERN_WARNING DRV_NAME "Could not set geo\n");
1750 return 0;
1752 priv->ieee->freq_band = IEEE80211_24GHZ_BAND;
1754 lock = LOCK_NONE;
1755 if (ipw2100_set_ordinal(priv, IPW_ORD_PERS_DB_LOCK, &lock, &ord_len)) {
1756 printk(KERN_ERR DRV_NAME
1757 ": %s: Failed to clear ordinal lock.\n",
1758 priv->net_dev->name);
1759 rc = 1;
1760 goto exit;
1763 priv->status &= ~STATUS_SCANNING;
1765 if (rf_kill_active(priv)) {
1766 printk(KERN_INFO "%s: Radio is disabled by RF switch.\n",
1767 priv->net_dev->name);
1769 if (priv->stop_rf_kill) {
1770 priv->stop_rf_kill = 0;
1771 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
1774 deferred = 1;
1777 /* Turn on the interrupt so that commands can be processed */
1778 ipw2100_enable_interrupts(priv);
1780 /* Send all of the commands that must be sent prior to
1781 * HOST_COMPLETE */
1782 if (ipw2100_adapter_setup(priv)) {
1783 printk(KERN_ERR DRV_NAME ": %s: Failed to start the card.\n",
1784 priv->net_dev->name);
1785 rc = 1;
1786 goto exit;
1789 if (!deferred) {
1790 /* Enable the adapter - sends HOST_COMPLETE */
1791 if (ipw2100_enable_adapter(priv)) {
1792 printk(KERN_ERR DRV_NAME ": "
1793 "%s: failed in call to enable adapter.\n",
1794 priv->net_dev->name);
1795 ipw2100_hw_stop_adapter(priv);
1796 rc = 1;
1797 goto exit;
1800 /* Start a scan . . . */
1801 ipw2100_set_scan_options(priv);
1802 ipw2100_start_scan(priv);
1805 exit:
1806 return rc;
1809 /* Called by register_netdev() */
1810 static int ipw2100_net_init(struct net_device *dev)
1812 struct ipw2100_priv *priv = ieee80211_priv(dev);
1813 return ipw2100_up(priv, 1);
1816 static void ipw2100_down(struct ipw2100_priv *priv)
1818 unsigned long flags;
1819 union iwreq_data wrqu = {
1820 .ap_addr = {
1821 .sa_family = ARPHRD_ETHER}
1823 int associated = priv->status & STATUS_ASSOCIATED;
1825 /* Kill the RF switch timer */
1826 if (!priv->stop_rf_kill) {
1827 priv->stop_rf_kill = 1;
1828 cancel_delayed_work(&priv->rf_kill);
1831 /* Kill the firmare hang check timer */
1832 if (!priv->stop_hang_check) {
1833 priv->stop_hang_check = 1;
1834 cancel_delayed_work(&priv->hang_check);
1837 /* Kill any pending resets */
1838 if (priv->status & STATUS_RESET_PENDING)
1839 cancel_delayed_work(&priv->reset_work);
1841 /* Make sure the interrupt is on so that FW commands will be
1842 * processed correctly */
1843 spin_lock_irqsave(&priv->low_lock, flags);
1844 ipw2100_enable_interrupts(priv);
1845 spin_unlock_irqrestore(&priv->low_lock, flags);
1847 if (ipw2100_hw_stop_adapter(priv))
1848 printk(KERN_ERR DRV_NAME ": %s: Error stopping adapter.\n",
1849 priv->net_dev->name);
1851 /* Do not disable the interrupt until _after_ we disable
1852 * the adaptor. Otherwise the CARD_DISABLE command will never
1853 * be ack'd by the firmware */
1854 spin_lock_irqsave(&priv->low_lock, flags);
1855 ipw2100_disable_interrupts(priv);
1856 spin_unlock_irqrestore(&priv->low_lock, flags);
1858 modify_acceptable_latency("ipw2100", INFINITE_LATENCY);
1860 #ifdef ACPI_CSTATE_LIMIT_DEFINED
1861 if (priv->config & CFG_C3_DISABLED) {
1862 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
1863 acpi_set_cstate_limit(priv->cstate_limit);
1864 priv->config &= ~CFG_C3_DISABLED;
1866 #endif
1868 /* We have to signal any supplicant if we are disassociating */
1869 if (associated)
1870 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1872 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1873 netif_carrier_off(priv->net_dev);
1874 netif_stop_queue(priv->net_dev);
1877 static void ipw2100_reset_adapter(struct work_struct *work)
1879 struct ipw2100_priv *priv =
1880 container_of(work, struct ipw2100_priv, reset_work.work);
1881 unsigned long flags;
1882 union iwreq_data wrqu = {
1883 .ap_addr = {
1884 .sa_family = ARPHRD_ETHER}
1886 int associated = priv->status & STATUS_ASSOCIATED;
1888 spin_lock_irqsave(&priv->low_lock, flags);
1889 IPW_DEBUG_INFO(": %s: Restarting adapter.\n", priv->net_dev->name);
1890 priv->resets++;
1891 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
1892 priv->status |= STATUS_SECURITY_UPDATED;
1894 /* Force a power cycle even if interface hasn't been opened
1895 * yet */
1896 cancel_delayed_work(&priv->reset_work);
1897 priv->status |= STATUS_RESET_PENDING;
1898 spin_unlock_irqrestore(&priv->low_lock, flags);
1900 mutex_lock(&priv->action_mutex);
1901 /* stop timed checks so that they don't interfere with reset */
1902 priv->stop_hang_check = 1;
1903 cancel_delayed_work(&priv->hang_check);
1905 /* We have to signal any supplicant if we are disassociating */
1906 if (associated)
1907 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
1909 ipw2100_up(priv, 0);
1910 mutex_unlock(&priv->action_mutex);
1914 static void isr_indicate_associated(struct ipw2100_priv *priv, u32 status)
1917 #define MAC_ASSOCIATION_READ_DELAY (HZ)
1918 int ret, len, essid_len;
1919 char essid[IW_ESSID_MAX_SIZE];
1920 u32 txrate;
1921 u32 chan;
1922 char *txratename;
1923 u8 bssid[ETH_ALEN];
1926 * TBD: BSSID is usually 00:00:00:00:00:00 here and not
1927 * an actual MAC of the AP. Seems like FW sets this
1928 * address too late. Read it later and expose through
1929 * /proc or schedule a later task to query and update
1932 essid_len = IW_ESSID_MAX_SIZE;
1933 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID,
1934 essid, &essid_len);
1935 if (ret) {
1936 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1937 __LINE__);
1938 return;
1941 len = sizeof(u32);
1942 ret = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &txrate, &len);
1943 if (ret) {
1944 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1945 __LINE__);
1946 return;
1949 len = sizeof(u32);
1950 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &len);
1951 if (ret) {
1952 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1953 __LINE__);
1954 return;
1956 len = ETH_ALEN;
1957 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID, &bssid, &len);
1958 if (ret) {
1959 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
1960 __LINE__);
1961 return;
1963 memcpy(priv->ieee->bssid, bssid, ETH_ALEN);
1965 switch (txrate) {
1966 case TX_RATE_1_MBIT:
1967 txratename = "1Mbps";
1968 break;
1969 case TX_RATE_2_MBIT:
1970 txratename = "2Mbsp";
1971 break;
1972 case TX_RATE_5_5_MBIT:
1973 txratename = "5.5Mbps";
1974 break;
1975 case TX_RATE_11_MBIT:
1976 txratename = "11Mbps";
1977 break;
1978 default:
1979 IPW_DEBUG_INFO("Unknown rate: %d\n", txrate);
1980 txratename = "unknown rate";
1981 break;
1984 IPW_DEBUG_INFO("%s: Associated with '%s' at %s, channel %d (BSSID="
1985 MAC_FMT ")\n",
1986 priv->net_dev->name, escape_essid(essid, essid_len),
1987 txratename, chan, MAC_ARG(bssid));
1989 /* now we copy read ssid into dev */
1990 if (!(priv->config & CFG_STATIC_ESSID)) {
1991 priv->essid_len = min((u8) essid_len, (u8) IW_ESSID_MAX_SIZE);
1992 memcpy(priv->essid, essid, priv->essid_len);
1994 priv->channel = chan;
1995 memcpy(priv->bssid, bssid, ETH_ALEN);
1997 priv->status |= STATUS_ASSOCIATING;
1998 priv->connect_start = get_seconds();
2000 queue_delayed_work(priv->workqueue, &priv->wx_event_work, HZ / 10);
2003 static int ipw2100_set_essid(struct ipw2100_priv *priv, char *essid,
2004 int length, int batch_mode)
2006 int ssid_len = min(length, IW_ESSID_MAX_SIZE);
2007 struct host_command cmd = {
2008 .host_command = SSID,
2009 .host_command_sequence = 0,
2010 .host_command_length = ssid_len
2012 int err;
2014 IPW_DEBUG_HC("SSID: '%s'\n", escape_essid(essid, ssid_len));
2016 if (ssid_len)
2017 memcpy(cmd.host_command_parameters, essid, ssid_len);
2019 if (!batch_mode) {
2020 err = ipw2100_disable_adapter(priv);
2021 if (err)
2022 return err;
2025 /* Bug in FW currently doesn't honor bit 0 in SET_SCAN_OPTIONS to
2026 * disable auto association -- so we cheat by setting a bogus SSID */
2027 if (!ssid_len && !(priv->config & CFG_ASSOCIATE)) {
2028 int i;
2029 u8 *bogus = (u8 *) cmd.host_command_parameters;
2030 for (i = 0; i < IW_ESSID_MAX_SIZE; i++)
2031 bogus[i] = 0x18 + i;
2032 cmd.host_command_length = IW_ESSID_MAX_SIZE;
2035 /* NOTE: We always send the SSID command even if the provided ESSID is
2036 * the same as what we currently think is set. */
2038 err = ipw2100_hw_send_command(priv, &cmd);
2039 if (!err) {
2040 memset(priv->essid + ssid_len, 0, IW_ESSID_MAX_SIZE - ssid_len);
2041 memcpy(priv->essid, essid, ssid_len);
2042 priv->essid_len = ssid_len;
2045 if (!batch_mode) {
2046 if (ipw2100_enable_adapter(priv))
2047 err = -EIO;
2050 return err;
2053 static void isr_indicate_association_lost(struct ipw2100_priv *priv, u32 status)
2055 IPW_DEBUG(IPW_DL_NOTIF | IPW_DL_STATE | IPW_DL_ASSOC,
2056 "disassociated: '%s' " MAC_FMT " \n",
2057 escape_essid(priv->essid, priv->essid_len),
2058 MAC_ARG(priv->bssid));
2060 priv->status &= ~(STATUS_ASSOCIATED | STATUS_ASSOCIATING);
2062 if (priv->status & STATUS_STOPPING) {
2063 IPW_DEBUG_INFO("Card is stopping itself, discard ASSN_LOST.\n");
2064 return;
2067 memset(priv->bssid, 0, ETH_ALEN);
2068 memset(priv->ieee->bssid, 0, ETH_ALEN);
2070 netif_carrier_off(priv->net_dev);
2071 netif_stop_queue(priv->net_dev);
2073 if (!(priv->status & STATUS_RUNNING))
2074 return;
2076 if (priv->status & STATUS_SECURITY_UPDATED)
2077 queue_delayed_work(priv->workqueue, &priv->security_work, 0);
2079 queue_delayed_work(priv->workqueue, &priv->wx_event_work, 0);
2082 static void isr_indicate_rf_kill(struct ipw2100_priv *priv, u32 status)
2084 IPW_DEBUG_INFO("%s: RF Kill state changed to radio OFF.\n",
2085 priv->net_dev->name);
2087 /* RF_KILL is now enabled (else we wouldn't be here) */
2088 priv->status |= STATUS_RF_KILL_HW;
2090 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2091 if (priv->config & CFG_C3_DISABLED) {
2092 IPW_DEBUG_INFO(": Resetting C3 transitions.\n");
2093 acpi_set_cstate_limit(priv->cstate_limit);
2094 priv->config &= ~CFG_C3_DISABLED;
2096 #endif
2098 /* Make sure the RF Kill check timer is running */
2099 priv->stop_rf_kill = 0;
2100 cancel_delayed_work(&priv->rf_kill);
2101 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
2104 static void isr_scan_complete(struct ipw2100_priv *priv, u32 status)
2106 IPW_DEBUG_SCAN("scan complete\n");
2107 /* Age the scan results... */
2108 priv->ieee->scans++;
2109 priv->status &= ~STATUS_SCANNING;
2112 #ifdef CONFIG_IPW2100_DEBUG
2113 #define IPW2100_HANDLER(v, f) { v, f, # v }
2114 struct ipw2100_status_indicator {
2115 int status;
2116 void (*cb) (struct ipw2100_priv * priv, u32 status);
2117 char *name;
2119 #else
2120 #define IPW2100_HANDLER(v, f) { v, f }
2121 struct ipw2100_status_indicator {
2122 int status;
2123 void (*cb) (struct ipw2100_priv * priv, u32 status);
2125 #endif /* CONFIG_IPW2100_DEBUG */
2127 static void isr_indicate_scanning(struct ipw2100_priv *priv, u32 status)
2129 IPW_DEBUG_SCAN("Scanning...\n");
2130 priv->status |= STATUS_SCANNING;
2133 static const struct ipw2100_status_indicator status_handlers[] = {
2134 IPW2100_HANDLER(IPW_STATE_INITIALIZED, NULL),
2135 IPW2100_HANDLER(IPW_STATE_COUNTRY_FOUND, NULL),
2136 IPW2100_HANDLER(IPW_STATE_ASSOCIATED, isr_indicate_associated),
2137 IPW2100_HANDLER(IPW_STATE_ASSN_LOST, isr_indicate_association_lost),
2138 IPW2100_HANDLER(IPW_STATE_ASSN_CHANGED, NULL),
2139 IPW2100_HANDLER(IPW_STATE_SCAN_COMPLETE, isr_scan_complete),
2140 IPW2100_HANDLER(IPW_STATE_ENTERED_PSP, NULL),
2141 IPW2100_HANDLER(IPW_STATE_LEFT_PSP, NULL),
2142 IPW2100_HANDLER(IPW_STATE_RF_KILL, isr_indicate_rf_kill),
2143 IPW2100_HANDLER(IPW_STATE_DISABLED, NULL),
2144 IPW2100_HANDLER(IPW_STATE_POWER_DOWN, NULL),
2145 IPW2100_HANDLER(IPW_STATE_SCANNING, isr_indicate_scanning),
2146 IPW2100_HANDLER(-1, NULL)
2149 static void isr_status_change(struct ipw2100_priv *priv, int status)
2151 int i;
2153 if (status == IPW_STATE_SCANNING &&
2154 priv->status & STATUS_ASSOCIATED &&
2155 !(priv->status & STATUS_SCANNING)) {
2156 IPW_DEBUG_INFO("Scan detected while associated, with "
2157 "no scan request. Restarting firmware.\n");
2159 /* Wake up any sleeping jobs */
2160 schedule_reset(priv);
2163 for (i = 0; status_handlers[i].status != -1; i++) {
2164 if (status == status_handlers[i].status) {
2165 IPW_DEBUG_NOTIF("Status change: %s\n",
2166 status_handlers[i].name);
2167 if (status_handlers[i].cb)
2168 status_handlers[i].cb(priv, status);
2169 priv->wstats.status = status;
2170 return;
2174 IPW_DEBUG_NOTIF("unknown status received: %04x\n", status);
2177 static void isr_rx_complete_command(struct ipw2100_priv *priv,
2178 struct ipw2100_cmd_header *cmd)
2180 #ifdef CONFIG_IPW2100_DEBUG
2181 if (cmd->host_command_reg < ARRAY_SIZE(command_types)) {
2182 IPW_DEBUG_HC("Command completed '%s (%d)'\n",
2183 command_types[cmd->host_command_reg],
2184 cmd->host_command_reg);
2186 #endif
2187 if (cmd->host_command_reg == HOST_COMPLETE)
2188 priv->status |= STATUS_ENABLED;
2190 if (cmd->host_command_reg == CARD_DISABLE)
2191 priv->status &= ~STATUS_ENABLED;
2193 priv->status &= ~STATUS_CMD_ACTIVE;
2195 wake_up_interruptible(&priv->wait_command_queue);
2198 #ifdef CONFIG_IPW2100_DEBUG
2199 static const char *frame_types[] = {
2200 "COMMAND_STATUS_VAL",
2201 "STATUS_CHANGE_VAL",
2202 "P80211_DATA_VAL",
2203 "P8023_DATA_VAL",
2204 "HOST_NOTIFICATION_VAL"
2206 #endif
2208 static int ipw2100_alloc_skb(struct ipw2100_priv *priv,
2209 struct ipw2100_rx_packet *packet)
2211 packet->skb = dev_alloc_skb(sizeof(struct ipw2100_rx));
2212 if (!packet->skb)
2213 return -ENOMEM;
2215 packet->rxp = (struct ipw2100_rx *)packet->skb->data;
2216 packet->dma_addr = pci_map_single(priv->pci_dev, packet->skb->data,
2217 sizeof(struct ipw2100_rx),
2218 PCI_DMA_FROMDEVICE);
2219 /* NOTE: pci_map_single does not return an error code, and 0 is a valid
2220 * dma_addr */
2222 return 0;
2225 #define SEARCH_ERROR 0xffffffff
2226 #define SEARCH_FAIL 0xfffffffe
2227 #define SEARCH_SUCCESS 0xfffffff0
2228 #define SEARCH_DISCARD 0
2229 #define SEARCH_SNAPSHOT 1
2231 #define SNAPSHOT_ADDR(ofs) (priv->snapshot[((ofs) >> 12) & 0xff] + ((ofs) & 0xfff))
2232 static void ipw2100_snapshot_free(struct ipw2100_priv *priv)
2234 int i;
2235 if (!priv->snapshot[0])
2236 return;
2237 for (i = 0; i < 0x30; i++)
2238 kfree(priv->snapshot[i]);
2239 priv->snapshot[0] = NULL;
2242 #ifdef CONFIG_IPW2100_DEBUG_C3
2243 static int ipw2100_snapshot_alloc(struct ipw2100_priv *priv)
2245 int i;
2246 if (priv->snapshot[0])
2247 return 1;
2248 for (i = 0; i < 0x30; i++) {
2249 priv->snapshot[i] = kmalloc(0x1000, GFP_ATOMIC);
2250 if (!priv->snapshot[i]) {
2251 IPW_DEBUG_INFO("%s: Error allocating snapshot "
2252 "buffer %d\n", priv->net_dev->name, i);
2253 while (i > 0)
2254 kfree(priv->snapshot[--i]);
2255 priv->snapshot[0] = NULL;
2256 return 0;
2260 return 1;
2263 static u32 ipw2100_match_buf(struct ipw2100_priv *priv, u8 * in_buf,
2264 size_t len, int mode)
2266 u32 i, j;
2267 u32 tmp;
2268 u8 *s, *d;
2269 u32 ret;
2271 s = in_buf;
2272 if (mode == SEARCH_SNAPSHOT) {
2273 if (!ipw2100_snapshot_alloc(priv))
2274 mode = SEARCH_DISCARD;
2277 for (ret = SEARCH_FAIL, i = 0; i < 0x30000; i += 4) {
2278 read_nic_dword(priv->net_dev, i, &tmp);
2279 if (mode == SEARCH_SNAPSHOT)
2280 *(u32 *) SNAPSHOT_ADDR(i) = tmp;
2281 if (ret == SEARCH_FAIL) {
2282 d = (u8 *) & tmp;
2283 for (j = 0; j < 4; j++) {
2284 if (*s != *d) {
2285 s = in_buf;
2286 continue;
2289 s++;
2290 d++;
2292 if ((s - in_buf) == len)
2293 ret = (i + j) - len + 1;
2295 } else if (mode == SEARCH_DISCARD)
2296 return ret;
2299 return ret;
2301 #endif
2305 * 0) Disconnect the SKB from the firmware (just unmap)
2306 * 1) Pack the ETH header into the SKB
2307 * 2) Pass the SKB to the network stack
2309 * When packet is provided by the firmware, it contains the following:
2311 * . ieee80211_hdr
2312 * . ieee80211_snap_hdr
2314 * The size of the constructed ethernet
2317 #ifdef CONFIG_IPW2100_RX_DEBUG
2318 static u8 packet_data[IPW_RX_NIC_BUFFER_LENGTH];
2319 #endif
2321 static void ipw2100_corruption_detected(struct ipw2100_priv *priv, int i)
2323 #ifdef CONFIG_IPW2100_DEBUG_C3
2324 struct ipw2100_status *status = &priv->status_queue.drv[i];
2325 u32 match, reg;
2326 int j;
2327 #endif
2328 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2329 int limit;
2330 #endif
2332 IPW_DEBUG_INFO(": PCI latency error detected at 0x%04zX.\n",
2333 i * sizeof(struct ipw2100_status));
2335 #ifdef ACPI_CSTATE_LIMIT_DEFINED
2336 IPW_DEBUG_INFO(": Disabling C3 transitions.\n");
2337 limit = acpi_get_cstate_limit();
2338 if (limit > 2) {
2339 priv->cstate_limit = limit;
2340 acpi_set_cstate_limit(2);
2341 priv->config |= CFG_C3_DISABLED;
2343 #endif
2345 #ifdef CONFIG_IPW2100_DEBUG_C3
2346 /* Halt the fimrware so we can get a good image */
2347 write_register(priv->net_dev, IPW_REG_RESET_REG,
2348 IPW_AUX_HOST_RESET_REG_STOP_MASTER);
2349 j = 5;
2350 do {
2351 udelay(IPW_WAIT_RESET_MASTER_ASSERT_COMPLETE_DELAY);
2352 read_register(priv->net_dev, IPW_REG_RESET_REG, &reg);
2354 if (reg & IPW_AUX_HOST_RESET_REG_MASTER_DISABLED)
2355 break;
2356 } while (j--);
2358 match = ipw2100_match_buf(priv, (u8 *) status,
2359 sizeof(struct ipw2100_status),
2360 SEARCH_SNAPSHOT);
2361 if (match < SEARCH_SUCCESS)
2362 IPW_DEBUG_INFO("%s: DMA status match in Firmware at "
2363 "offset 0x%06X, length %d:\n",
2364 priv->net_dev->name, match,
2365 sizeof(struct ipw2100_status));
2366 else
2367 IPW_DEBUG_INFO("%s: No DMA status match in "
2368 "Firmware.\n", priv->net_dev->name);
2370 printk_buf((u8 *) priv->status_queue.drv,
2371 sizeof(struct ipw2100_status) * RX_QUEUE_LENGTH);
2372 #endif
2374 priv->fatal_error = IPW2100_ERR_C3_CORRUPTION;
2375 priv->ieee->stats.rx_errors++;
2376 schedule_reset(priv);
2379 static void isr_rx(struct ipw2100_priv *priv, int i,
2380 struct ieee80211_rx_stats *stats)
2382 struct ipw2100_status *status = &priv->status_queue.drv[i];
2383 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2385 IPW_DEBUG_RX("Handler...\n");
2387 if (unlikely(status->frame_size > skb_tailroom(packet->skb))) {
2388 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2389 " Dropping.\n",
2390 priv->net_dev->name,
2391 status->frame_size, skb_tailroom(packet->skb));
2392 priv->ieee->stats.rx_errors++;
2393 return;
2396 if (unlikely(!netif_running(priv->net_dev))) {
2397 priv->ieee->stats.rx_errors++;
2398 priv->wstats.discard.misc++;
2399 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2400 return;
2403 if (unlikely(priv->ieee->iw_mode != IW_MODE_MONITOR &&
2404 !(priv->status & STATUS_ASSOCIATED))) {
2405 IPW_DEBUG_DROP("Dropping packet while not associated.\n");
2406 priv->wstats.discard.misc++;
2407 return;
2410 pci_unmap_single(priv->pci_dev,
2411 packet->dma_addr,
2412 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2414 skb_put(packet->skb, status->frame_size);
2416 #ifdef CONFIG_IPW2100_RX_DEBUG
2417 /* Make a copy of the frame so we can dump it to the logs if
2418 * ieee80211_rx fails */
2419 memcpy(packet_data, packet->skb->data,
2420 min_t(u32, status->frame_size, IPW_RX_NIC_BUFFER_LENGTH));
2421 #endif
2423 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2424 #ifdef CONFIG_IPW2100_RX_DEBUG
2425 IPW_DEBUG_DROP("%s: Non consumed packet:\n",
2426 priv->net_dev->name);
2427 printk_buf(IPW_DL_DROP, packet_data, status->frame_size);
2428 #endif
2429 priv->ieee->stats.rx_errors++;
2431 /* ieee80211_rx failed, so it didn't free the SKB */
2432 dev_kfree_skb_any(packet->skb);
2433 packet->skb = NULL;
2436 /* We need to allocate a new SKB and attach it to the RDB. */
2437 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2438 printk(KERN_WARNING DRV_NAME ": "
2439 "%s: Unable to allocate SKB onto RBD ring - disabling "
2440 "adapter.\n", priv->net_dev->name);
2441 /* TODO: schedule adapter shutdown */
2442 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2445 /* Update the RDB entry */
2446 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2449 #ifdef CONFIG_IPW2100_MONITOR
2451 static void isr_rx_monitor(struct ipw2100_priv *priv, int i,
2452 struct ieee80211_rx_stats *stats)
2454 struct ipw2100_status *status = &priv->status_queue.drv[i];
2455 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
2457 /* Magic struct that slots into the radiotap header -- no reason
2458 * to build this manually element by element, we can write it much
2459 * more efficiently than we can parse it. ORDER MATTERS HERE */
2460 struct ipw_rt_hdr {
2461 struct ieee80211_radiotap_header rt_hdr;
2462 s8 rt_dbmsignal; /* signal in dbM, kluged to signed */
2463 } *ipw_rt;
2465 IPW_DEBUG_RX("Handler...\n");
2467 if (unlikely(status->frame_size > skb_tailroom(packet->skb) -
2468 sizeof(struct ipw_rt_hdr))) {
2469 IPW_DEBUG_INFO("%s: frame_size (%u) > skb_tailroom (%u)!"
2470 " Dropping.\n",
2471 priv->net_dev->name,
2472 status->frame_size,
2473 skb_tailroom(packet->skb));
2474 priv->ieee->stats.rx_errors++;
2475 return;
2478 if (unlikely(!netif_running(priv->net_dev))) {
2479 priv->ieee->stats.rx_errors++;
2480 priv->wstats.discard.misc++;
2481 IPW_DEBUG_DROP("Dropping packet while interface is not up.\n");
2482 return;
2485 if (unlikely(priv->config & CFG_CRC_CHECK &&
2486 status->flags & IPW_STATUS_FLAG_CRC_ERROR)) {
2487 IPW_DEBUG_RX("CRC error in packet. Dropping.\n");
2488 priv->ieee->stats.rx_errors++;
2489 return;
2492 pci_unmap_single(priv->pci_dev, packet->dma_addr,
2493 sizeof(struct ipw2100_rx), PCI_DMA_FROMDEVICE);
2494 memmove(packet->skb->data + sizeof(struct ipw_rt_hdr),
2495 packet->skb->data, status->frame_size);
2497 ipw_rt = (struct ipw_rt_hdr *) packet->skb->data;
2499 ipw_rt->rt_hdr.it_version = PKTHDR_RADIOTAP_VERSION;
2500 ipw_rt->rt_hdr.it_pad = 0; /* always good to zero */
2501 ipw_rt->rt_hdr.it_len = sizeof(struct ipw_rt_hdr); /* total hdr+data */
2503 ipw_rt->rt_hdr.it_present = 1 << IEEE80211_RADIOTAP_DBM_ANTSIGNAL;
2505 ipw_rt->rt_dbmsignal = status->rssi + IPW2100_RSSI_TO_DBM;
2507 skb_put(packet->skb, status->frame_size + sizeof(struct ipw_rt_hdr));
2509 if (!ieee80211_rx(priv->ieee, packet->skb, stats)) {
2510 priv->ieee->stats.rx_errors++;
2512 /* ieee80211_rx failed, so it didn't free the SKB */
2513 dev_kfree_skb_any(packet->skb);
2514 packet->skb = NULL;
2517 /* We need to allocate a new SKB and attach it to the RDB. */
2518 if (unlikely(ipw2100_alloc_skb(priv, packet))) {
2519 IPW_DEBUG_WARNING(
2520 "%s: Unable to allocate SKB onto RBD ring - disabling "
2521 "adapter.\n", priv->net_dev->name);
2522 /* TODO: schedule adapter shutdown */
2523 IPW_DEBUG_INFO("TODO: Shutdown adapter...\n");
2526 /* Update the RDB entry */
2527 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
2530 #endif
2532 static int ipw2100_corruption_check(struct ipw2100_priv *priv, int i)
2534 struct ipw2100_status *status = &priv->status_queue.drv[i];
2535 struct ipw2100_rx *u = priv->rx_buffers[i].rxp;
2536 u16 frame_type = status->status_fields & STATUS_TYPE_MASK;
2538 switch (frame_type) {
2539 case COMMAND_STATUS_VAL:
2540 return (status->frame_size != sizeof(u->rx_data.command));
2541 case STATUS_CHANGE_VAL:
2542 return (status->frame_size != sizeof(u->rx_data.status));
2543 case HOST_NOTIFICATION_VAL:
2544 return (status->frame_size < sizeof(u->rx_data.notification));
2545 case P80211_DATA_VAL:
2546 case P8023_DATA_VAL:
2547 #ifdef CONFIG_IPW2100_MONITOR
2548 return 0;
2549 #else
2550 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2551 case IEEE80211_FTYPE_MGMT:
2552 case IEEE80211_FTYPE_CTL:
2553 return 0;
2554 case IEEE80211_FTYPE_DATA:
2555 return (status->frame_size >
2556 IPW_MAX_802_11_PAYLOAD_LENGTH);
2558 #endif
2561 return 1;
2565 * ipw2100 interrupts are disabled at this point, and the ISR
2566 * is the only code that calls this method. So, we do not need
2567 * to play with any locks.
2569 * RX Queue works as follows:
2571 * Read index - firmware places packet in entry identified by the
2572 * Read index and advances Read index. In this manner,
2573 * Read index will always point to the next packet to
2574 * be filled--but not yet valid.
2576 * Write index - driver fills this entry with an unused RBD entry.
2577 * This entry has not filled by the firmware yet.
2579 * In between the W and R indexes are the RBDs that have been received
2580 * but not yet processed.
2582 * The process of handling packets will start at WRITE + 1 and advance
2583 * until it reaches the READ index.
2585 * The WRITE index is cached in the variable 'priv->rx_queue.next'.
2588 static void __ipw2100_rx_process(struct ipw2100_priv *priv)
2590 struct ipw2100_bd_queue *rxq = &priv->rx_queue;
2591 struct ipw2100_status_queue *sq = &priv->status_queue;
2592 struct ipw2100_rx_packet *packet;
2593 u16 frame_type;
2594 u32 r, w, i, s;
2595 struct ipw2100_rx *u;
2596 struct ieee80211_rx_stats stats = {
2597 .mac_time = jiffies,
2600 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_READ_INDEX, &r);
2601 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, &w);
2603 if (r >= rxq->entries) {
2604 IPW_DEBUG_RX("exit - bad read index\n");
2605 return;
2608 i = (rxq->next + 1) % rxq->entries;
2609 s = i;
2610 while (i != r) {
2611 /* IPW_DEBUG_RX("r = %d : w = %d : processing = %d\n",
2612 r, rxq->next, i); */
2614 packet = &priv->rx_buffers[i];
2616 /* Sync the DMA for the STATUS buffer so CPU is sure to get
2617 * the correct values */
2618 pci_dma_sync_single_for_cpu(priv->pci_dev,
2619 sq->nic +
2620 sizeof(struct ipw2100_status) * i,
2621 sizeof(struct ipw2100_status),
2622 PCI_DMA_FROMDEVICE);
2624 /* Sync the DMA for the RX buffer so CPU is sure to get
2625 * the correct values */
2626 pci_dma_sync_single_for_cpu(priv->pci_dev, packet->dma_addr,
2627 sizeof(struct ipw2100_rx),
2628 PCI_DMA_FROMDEVICE);
2630 if (unlikely(ipw2100_corruption_check(priv, i))) {
2631 ipw2100_corruption_detected(priv, i);
2632 goto increment;
2635 u = packet->rxp;
2636 frame_type = sq->drv[i].status_fields & STATUS_TYPE_MASK;
2637 stats.rssi = sq->drv[i].rssi + IPW2100_RSSI_TO_DBM;
2638 stats.len = sq->drv[i].frame_size;
2640 stats.mask = 0;
2641 if (stats.rssi != 0)
2642 stats.mask |= IEEE80211_STATMASK_RSSI;
2643 stats.freq = IEEE80211_24GHZ_BAND;
2645 IPW_DEBUG_RX("%s: '%s' frame type received (%d).\n",
2646 priv->net_dev->name, frame_types[frame_type],
2647 stats.len);
2649 switch (frame_type) {
2650 case COMMAND_STATUS_VAL:
2651 /* Reset Rx watchdog */
2652 isr_rx_complete_command(priv, &u->rx_data.command);
2653 break;
2655 case STATUS_CHANGE_VAL:
2656 isr_status_change(priv, u->rx_data.status);
2657 break;
2659 case P80211_DATA_VAL:
2660 case P8023_DATA_VAL:
2661 #ifdef CONFIG_IPW2100_MONITOR
2662 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
2663 isr_rx_monitor(priv, i, &stats);
2664 break;
2666 #endif
2667 if (stats.len < sizeof(struct ieee80211_hdr_3addr))
2668 break;
2669 switch (WLAN_FC_GET_TYPE(u->rx_data.header.frame_ctl)) {
2670 case IEEE80211_FTYPE_MGMT:
2671 ieee80211_rx_mgt(priv->ieee,
2672 &u->rx_data.header, &stats);
2673 break;
2675 case IEEE80211_FTYPE_CTL:
2676 break;
2678 case IEEE80211_FTYPE_DATA:
2679 isr_rx(priv, i, &stats);
2680 break;
2683 break;
2686 increment:
2687 /* clear status field associated with this RBD */
2688 rxq->drv[i].status.info.field = 0;
2690 i = (i + 1) % rxq->entries;
2693 if (i != s) {
2694 /* backtrack one entry, wrapping to end if at 0 */
2695 rxq->next = (i ? i : rxq->entries) - 1;
2697 write_register(priv->net_dev,
2698 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX, rxq->next);
2703 * __ipw2100_tx_process
2705 * This routine will determine whether the next packet on
2706 * the fw_pend_list has been processed by the firmware yet.
2708 * If not, then it does nothing and returns.
2710 * If so, then it removes the item from the fw_pend_list, frees
2711 * any associated storage, and places the item back on the
2712 * free list of its source (either msg_free_list or tx_free_list)
2714 * TX Queue works as follows:
2716 * Read index - points to the next TBD that the firmware will
2717 * process. The firmware will read the data, and once
2718 * done processing, it will advance the Read index.
2720 * Write index - driver fills this entry with an constructed TBD
2721 * entry. The Write index is not advanced until the
2722 * packet has been configured.
2724 * In between the W and R indexes are the TBDs that have NOT been
2725 * processed. Lagging behind the R index are packets that have
2726 * been processed but have not been freed by the driver.
2728 * In order to free old storage, an internal index will be maintained
2729 * that points to the next packet to be freed. When all used
2730 * packets have been freed, the oldest index will be the same as the
2731 * firmware's read index.
2733 * The OLDEST index is cached in the variable 'priv->tx_queue.oldest'
2735 * Because the TBD structure can not contain arbitrary data, the
2736 * driver must keep an internal queue of cached allocations such that
2737 * it can put that data back into the tx_free_list and msg_free_list
2738 * for use by future command and data packets.
2741 static int __ipw2100_tx_process(struct ipw2100_priv *priv)
2743 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2744 struct ipw2100_bd *tbd;
2745 struct list_head *element;
2746 struct ipw2100_tx_packet *packet;
2747 int descriptors_used;
2748 int e, i;
2749 u32 r, w, frag_num = 0;
2751 if (list_empty(&priv->fw_pend_list))
2752 return 0;
2754 element = priv->fw_pend_list.next;
2756 packet = list_entry(element, struct ipw2100_tx_packet, list);
2757 tbd = &txq->drv[packet->index];
2759 /* Determine how many TBD entries must be finished... */
2760 switch (packet->type) {
2761 case COMMAND:
2762 /* COMMAND uses only one slot; don't advance */
2763 descriptors_used = 1;
2764 e = txq->oldest;
2765 break;
2767 case DATA:
2768 /* DATA uses two slots; advance and loop position. */
2769 descriptors_used = tbd->num_fragments;
2770 frag_num = tbd->num_fragments - 1;
2771 e = txq->oldest + frag_num;
2772 e %= txq->entries;
2773 break;
2775 default:
2776 printk(KERN_WARNING DRV_NAME ": %s: Bad fw_pend_list entry!\n",
2777 priv->net_dev->name);
2778 return 0;
2781 /* if the last TBD is not done by NIC yet, then packet is
2782 * not ready to be released.
2785 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
2786 &r);
2787 read_register(priv->net_dev, IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2788 &w);
2789 if (w != txq->next)
2790 printk(KERN_WARNING DRV_NAME ": %s: write index mismatch\n",
2791 priv->net_dev->name);
2794 * txq->next is the index of the last packet written txq->oldest is
2795 * the index of the r is the index of the next packet to be read by
2796 * firmware
2800 * Quick graphic to help you visualize the following
2801 * if / else statement
2803 * ===>| s---->|===============
2804 * e>|
2805 * | a | b | c | d | e | f | g | h | i | j | k | l
2806 * r---->|
2809 * w - updated by driver
2810 * r - updated by firmware
2811 * s - start of oldest BD entry (txq->oldest)
2812 * e - end of oldest BD entry
2815 if (!((r <= w && (e < r || e >= w)) || (e < r && e >= w))) {
2816 IPW_DEBUG_TX("exit - no processed packets ready to release.\n");
2817 return 0;
2820 list_del(element);
2821 DEC_STAT(&priv->fw_pend_stat);
2823 #ifdef CONFIG_IPW2100_DEBUG
2825 int i = txq->oldest;
2826 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2827 &txq->drv[i],
2828 (u32) (txq->nic + i * sizeof(struct ipw2100_bd)),
2829 txq->drv[i].host_addr, txq->drv[i].buf_length);
2831 if (packet->type == DATA) {
2832 i = (i + 1) % txq->entries;
2834 IPW_DEBUG_TX("TX%d V=%p P=%04X T=%04X L=%d\n", i,
2835 &txq->drv[i],
2836 (u32) (txq->nic + i *
2837 sizeof(struct ipw2100_bd)),
2838 (u32) txq->drv[i].host_addr,
2839 txq->drv[i].buf_length);
2842 #endif
2844 switch (packet->type) {
2845 case DATA:
2846 if (txq->drv[txq->oldest].status.info.fields.txType != 0)
2847 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2848 "Expecting DATA TBD but pulled "
2849 "something else: ids %d=%d.\n",
2850 priv->net_dev->name, txq->oldest, packet->index);
2852 /* DATA packet; we have to unmap and free the SKB */
2853 for (i = 0; i < frag_num; i++) {
2854 tbd = &txq->drv[(packet->index + 1 + i) % txq->entries];
2856 IPW_DEBUG_TX("TX%d P=%08x L=%d\n",
2857 (packet->index + 1 + i) % txq->entries,
2858 tbd->host_addr, tbd->buf_length);
2860 pci_unmap_single(priv->pci_dev,
2861 tbd->host_addr,
2862 tbd->buf_length, PCI_DMA_TODEVICE);
2865 ieee80211_txb_free(packet->info.d_struct.txb);
2866 packet->info.d_struct.txb = NULL;
2868 list_add_tail(element, &priv->tx_free_list);
2869 INC_STAT(&priv->tx_free_stat);
2871 /* We have a free slot in the Tx queue, so wake up the
2872 * transmit layer if it is stopped. */
2873 if (priv->status & STATUS_ASSOCIATED)
2874 netif_wake_queue(priv->net_dev);
2876 /* A packet was processed by the hardware, so update the
2877 * watchdog */
2878 priv->net_dev->trans_start = jiffies;
2880 break;
2882 case COMMAND:
2883 if (txq->drv[txq->oldest].status.info.fields.txType != 1)
2884 printk(KERN_WARNING DRV_NAME ": %s: Queue mismatch. "
2885 "Expecting COMMAND TBD but pulled "
2886 "something else: ids %d=%d.\n",
2887 priv->net_dev->name, txq->oldest, packet->index);
2889 #ifdef CONFIG_IPW2100_DEBUG
2890 if (packet->info.c_struct.cmd->host_command_reg <
2891 sizeof(command_types) / sizeof(*command_types))
2892 IPW_DEBUG_TX("Command '%s (%d)' processed: %d.\n",
2893 command_types[packet->info.c_struct.cmd->
2894 host_command_reg],
2895 packet->info.c_struct.cmd->
2896 host_command_reg,
2897 packet->info.c_struct.cmd->cmd_status_reg);
2898 #endif
2900 list_add_tail(element, &priv->msg_free_list);
2901 INC_STAT(&priv->msg_free_stat);
2902 break;
2905 /* advance oldest used TBD pointer to start of next entry */
2906 txq->oldest = (e + 1) % txq->entries;
2907 /* increase available TBDs number */
2908 txq->available += descriptors_used;
2909 SET_STAT(&priv->txq_stat, txq->available);
2911 IPW_DEBUG_TX("packet latency (send to process) %ld jiffies\n",
2912 jiffies - packet->jiffy_start);
2914 return (!list_empty(&priv->fw_pend_list));
2917 static inline void __ipw2100_tx_complete(struct ipw2100_priv *priv)
2919 int i = 0;
2921 while (__ipw2100_tx_process(priv) && i < 200)
2922 i++;
2924 if (i == 200) {
2925 printk(KERN_WARNING DRV_NAME ": "
2926 "%s: Driver is running slow (%d iters).\n",
2927 priv->net_dev->name, i);
2931 static void ipw2100_tx_send_commands(struct ipw2100_priv *priv)
2933 struct list_head *element;
2934 struct ipw2100_tx_packet *packet;
2935 struct ipw2100_bd_queue *txq = &priv->tx_queue;
2936 struct ipw2100_bd *tbd;
2937 int next = txq->next;
2939 while (!list_empty(&priv->msg_pend_list)) {
2940 /* if there isn't enough space in TBD queue, then
2941 * don't stuff a new one in.
2942 * NOTE: 3 are needed as a command will take one,
2943 * and there is a minimum of 2 that must be
2944 * maintained between the r and w indexes
2946 if (txq->available <= 3) {
2947 IPW_DEBUG_TX("no room in tx_queue\n");
2948 break;
2951 element = priv->msg_pend_list.next;
2952 list_del(element);
2953 DEC_STAT(&priv->msg_pend_stat);
2955 packet = list_entry(element, struct ipw2100_tx_packet, list);
2957 IPW_DEBUG_TX("using TBD at virt=%p, phys=%p\n",
2958 &txq->drv[txq->next],
2959 (void *)(txq->nic + txq->next *
2960 sizeof(struct ipw2100_bd)));
2962 packet->index = txq->next;
2964 tbd = &txq->drv[txq->next];
2966 /* initialize TBD */
2967 tbd->host_addr = packet->info.c_struct.cmd_phys;
2968 tbd->buf_length = sizeof(struct ipw2100_cmd_header);
2969 /* not marking number of fragments causes problems
2970 * with f/w debug version */
2971 tbd->num_fragments = 1;
2972 tbd->status.info.field =
2973 IPW_BD_STATUS_TX_FRAME_COMMAND |
2974 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
2976 /* update TBD queue counters */
2977 txq->next++;
2978 txq->next %= txq->entries;
2979 txq->available--;
2980 DEC_STAT(&priv->txq_stat);
2982 list_add_tail(element, &priv->fw_pend_list);
2983 INC_STAT(&priv->fw_pend_stat);
2986 if (txq->next != next) {
2987 /* kick off the DMA by notifying firmware the
2988 * write index has moved; make sure TBD stores are sync'd */
2989 wmb();
2990 write_register(priv->net_dev,
2991 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
2992 txq->next);
2997 * ipw2100_tx_send_data
3000 static void ipw2100_tx_send_data(struct ipw2100_priv *priv)
3002 struct list_head *element;
3003 struct ipw2100_tx_packet *packet;
3004 struct ipw2100_bd_queue *txq = &priv->tx_queue;
3005 struct ipw2100_bd *tbd;
3006 int next = txq->next;
3007 int i = 0;
3008 struct ipw2100_data_header *ipw_hdr;
3009 struct ieee80211_hdr_3addr *hdr;
3011 while (!list_empty(&priv->tx_pend_list)) {
3012 /* if there isn't enough space in TBD queue, then
3013 * don't stuff a new one in.
3014 * NOTE: 4 are needed as a data will take two,
3015 * and there is a minimum of 2 that must be
3016 * maintained between the r and w indexes
3018 element = priv->tx_pend_list.next;
3019 packet = list_entry(element, struct ipw2100_tx_packet, list);
3021 if (unlikely(1 + packet->info.d_struct.txb->nr_frags >
3022 IPW_MAX_BDS)) {
3023 /* TODO: Support merging buffers if more than
3024 * IPW_MAX_BDS are used */
3025 IPW_DEBUG_INFO("%s: Maximum BD theshold exceeded. "
3026 "Increase fragmentation level.\n",
3027 priv->net_dev->name);
3030 if (txq->available <= 3 + packet->info.d_struct.txb->nr_frags) {
3031 IPW_DEBUG_TX("no room in tx_queue\n");
3032 break;
3035 list_del(element);
3036 DEC_STAT(&priv->tx_pend_stat);
3038 tbd = &txq->drv[txq->next];
3040 packet->index = txq->next;
3042 ipw_hdr = packet->info.d_struct.data;
3043 hdr = (struct ieee80211_hdr_3addr *)packet->info.d_struct.txb->
3044 fragments[0]->data;
3046 if (priv->ieee->iw_mode == IW_MODE_INFRA) {
3047 /* To DS: Addr1 = BSSID, Addr2 = SA,
3048 Addr3 = DA */
3049 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3050 memcpy(ipw_hdr->dst_addr, hdr->addr3, ETH_ALEN);
3051 } else if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
3052 /* not From/To DS: Addr1 = DA, Addr2 = SA,
3053 Addr3 = BSSID */
3054 memcpy(ipw_hdr->src_addr, hdr->addr2, ETH_ALEN);
3055 memcpy(ipw_hdr->dst_addr, hdr->addr1, ETH_ALEN);
3058 ipw_hdr->host_command_reg = SEND;
3059 ipw_hdr->host_command_reg1 = 0;
3061 /* For now we only support host based encryption */
3062 ipw_hdr->needs_encryption = 0;
3063 ipw_hdr->encrypted = packet->info.d_struct.txb->encrypted;
3064 if (packet->info.d_struct.txb->nr_frags > 1)
3065 ipw_hdr->fragment_size =
3066 packet->info.d_struct.txb->frag_size -
3067 IEEE80211_3ADDR_LEN;
3068 else
3069 ipw_hdr->fragment_size = 0;
3071 tbd->host_addr = packet->info.d_struct.data_phys;
3072 tbd->buf_length = sizeof(struct ipw2100_data_header);
3073 tbd->num_fragments = 1 + packet->info.d_struct.txb->nr_frags;
3074 tbd->status.info.field =
3075 IPW_BD_STATUS_TX_FRAME_802_3 |
3076 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3077 txq->next++;
3078 txq->next %= txq->entries;
3080 IPW_DEBUG_TX("data header tbd TX%d P=%08x L=%d\n",
3081 packet->index, tbd->host_addr, tbd->buf_length);
3082 #ifdef CONFIG_IPW2100_DEBUG
3083 if (packet->info.d_struct.txb->nr_frags > 1)
3084 IPW_DEBUG_FRAG("fragment Tx: %d frames\n",
3085 packet->info.d_struct.txb->nr_frags);
3086 #endif
3088 for (i = 0; i < packet->info.d_struct.txb->nr_frags; i++) {
3089 tbd = &txq->drv[txq->next];
3090 if (i == packet->info.d_struct.txb->nr_frags - 1)
3091 tbd->status.info.field =
3092 IPW_BD_STATUS_TX_FRAME_802_3 |
3093 IPW_BD_STATUS_TX_INTERRUPT_ENABLE;
3094 else
3095 tbd->status.info.field =
3096 IPW_BD_STATUS_TX_FRAME_802_3 |
3097 IPW_BD_STATUS_TX_FRAME_NOT_LAST_FRAGMENT;
3099 tbd->buf_length = packet->info.d_struct.txb->
3100 fragments[i]->len - IEEE80211_3ADDR_LEN;
3102 tbd->host_addr = pci_map_single(priv->pci_dev,
3103 packet->info.d_struct.
3104 txb->fragments[i]->
3105 data +
3106 IEEE80211_3ADDR_LEN,
3107 tbd->buf_length,
3108 PCI_DMA_TODEVICE);
3110 IPW_DEBUG_TX("data frag tbd TX%d P=%08x L=%d\n",
3111 txq->next, tbd->host_addr,
3112 tbd->buf_length);
3114 pci_dma_sync_single_for_device(priv->pci_dev,
3115 tbd->host_addr,
3116 tbd->buf_length,
3117 PCI_DMA_TODEVICE);
3119 txq->next++;
3120 txq->next %= txq->entries;
3123 txq->available -= 1 + packet->info.d_struct.txb->nr_frags;
3124 SET_STAT(&priv->txq_stat, txq->available);
3126 list_add_tail(element, &priv->fw_pend_list);
3127 INC_STAT(&priv->fw_pend_stat);
3130 if (txq->next != next) {
3131 /* kick off the DMA by notifying firmware the
3132 * write index has moved; make sure TBD stores are sync'd */
3133 write_register(priv->net_dev,
3134 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX,
3135 txq->next);
3137 return;
3140 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv)
3142 struct net_device *dev = priv->net_dev;
3143 unsigned long flags;
3144 u32 inta, tmp;
3146 spin_lock_irqsave(&priv->low_lock, flags);
3147 ipw2100_disable_interrupts(priv);
3149 read_register(dev, IPW_REG_INTA, &inta);
3151 IPW_DEBUG_ISR("enter - INTA: 0x%08lX\n",
3152 (unsigned long)inta & IPW_INTERRUPT_MASK);
3154 priv->in_isr++;
3155 priv->interrupts++;
3157 /* We do not loop and keep polling for more interrupts as this
3158 * is frowned upon and doesn't play nicely with other potentially
3159 * chained IRQs */
3160 IPW_DEBUG_ISR("INTA: 0x%08lX\n",
3161 (unsigned long)inta & IPW_INTERRUPT_MASK);
3163 if (inta & IPW2100_INTA_FATAL_ERROR) {
3164 printk(KERN_WARNING DRV_NAME
3165 ": Fatal interrupt. Scheduling firmware restart.\n");
3166 priv->inta_other++;
3167 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FATAL_ERROR);
3169 read_nic_dword(dev, IPW_NIC_FATAL_ERROR, &priv->fatal_error);
3170 IPW_DEBUG_INFO("%s: Fatal error value: 0x%08X\n",
3171 priv->net_dev->name, priv->fatal_error);
3173 read_nic_dword(dev, IPW_ERROR_ADDR(priv->fatal_error), &tmp);
3174 IPW_DEBUG_INFO("%s: Fatal error address value: 0x%08X\n",
3175 priv->net_dev->name, tmp);
3177 /* Wake up any sleeping jobs */
3178 schedule_reset(priv);
3181 if (inta & IPW2100_INTA_PARITY_ERROR) {
3182 printk(KERN_ERR DRV_NAME
3183 ": ***** PARITY ERROR INTERRUPT !!!! \n");
3184 priv->inta_other++;
3185 write_register(dev, IPW_REG_INTA, IPW2100_INTA_PARITY_ERROR);
3188 if (inta & IPW2100_INTA_RX_TRANSFER) {
3189 IPW_DEBUG_ISR("RX interrupt\n");
3191 priv->rx_interrupts++;
3193 write_register(dev, IPW_REG_INTA, IPW2100_INTA_RX_TRANSFER);
3195 __ipw2100_rx_process(priv);
3196 __ipw2100_tx_complete(priv);
3199 if (inta & IPW2100_INTA_TX_TRANSFER) {
3200 IPW_DEBUG_ISR("TX interrupt\n");
3202 priv->tx_interrupts++;
3204 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_TRANSFER);
3206 __ipw2100_tx_complete(priv);
3207 ipw2100_tx_send_commands(priv);
3208 ipw2100_tx_send_data(priv);
3211 if (inta & IPW2100_INTA_TX_COMPLETE) {
3212 IPW_DEBUG_ISR("TX complete\n");
3213 priv->inta_other++;
3214 write_register(dev, IPW_REG_INTA, IPW2100_INTA_TX_COMPLETE);
3216 __ipw2100_tx_complete(priv);
3219 if (inta & IPW2100_INTA_EVENT_INTERRUPT) {
3220 /* ipw2100_handle_event(dev); */
3221 priv->inta_other++;
3222 write_register(dev, IPW_REG_INTA, IPW2100_INTA_EVENT_INTERRUPT);
3225 if (inta & IPW2100_INTA_FW_INIT_DONE) {
3226 IPW_DEBUG_ISR("FW init done interrupt\n");
3227 priv->inta_other++;
3229 read_register(dev, IPW_REG_INTA, &tmp);
3230 if (tmp & (IPW2100_INTA_FATAL_ERROR |
3231 IPW2100_INTA_PARITY_ERROR)) {
3232 write_register(dev, IPW_REG_INTA,
3233 IPW2100_INTA_FATAL_ERROR |
3234 IPW2100_INTA_PARITY_ERROR);
3237 write_register(dev, IPW_REG_INTA, IPW2100_INTA_FW_INIT_DONE);
3240 if (inta & IPW2100_INTA_STATUS_CHANGE) {
3241 IPW_DEBUG_ISR("Status change interrupt\n");
3242 priv->inta_other++;
3243 write_register(dev, IPW_REG_INTA, IPW2100_INTA_STATUS_CHANGE);
3246 if (inta & IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE) {
3247 IPW_DEBUG_ISR("slave host mode interrupt\n");
3248 priv->inta_other++;
3249 write_register(dev, IPW_REG_INTA,
3250 IPW2100_INTA_SLAVE_MODE_HOST_COMMAND_DONE);
3253 priv->in_isr--;
3254 ipw2100_enable_interrupts(priv);
3256 spin_unlock_irqrestore(&priv->low_lock, flags);
3258 IPW_DEBUG_ISR("exit\n");
3261 static irqreturn_t ipw2100_interrupt(int irq, void *data)
3263 struct ipw2100_priv *priv = data;
3264 u32 inta, inta_mask;
3266 if (!data)
3267 return IRQ_NONE;
3269 spin_lock(&priv->low_lock);
3271 /* We check to see if we should be ignoring interrupts before
3272 * we touch the hardware. During ucode load if we try and handle
3273 * an interrupt we can cause keyboard problems as well as cause
3274 * the ucode to fail to initialize */
3275 if (!(priv->status & STATUS_INT_ENABLED)) {
3276 /* Shared IRQ */
3277 goto none;
3280 read_register(priv->net_dev, IPW_REG_INTA_MASK, &inta_mask);
3281 read_register(priv->net_dev, IPW_REG_INTA, &inta);
3283 if (inta == 0xFFFFFFFF) {
3284 /* Hardware disappeared */
3285 printk(KERN_WARNING DRV_NAME ": IRQ INTA == 0xFFFFFFFF\n");
3286 goto none;
3289 inta &= IPW_INTERRUPT_MASK;
3291 if (!(inta & inta_mask)) {
3292 /* Shared interrupt */
3293 goto none;
3296 /* We disable the hardware interrupt here just to prevent unneeded
3297 * calls to be made. We disable this again within the actual
3298 * work tasklet, so if another part of the code re-enables the
3299 * interrupt, that is fine */
3300 ipw2100_disable_interrupts(priv);
3302 tasklet_schedule(&priv->irq_tasklet);
3303 spin_unlock(&priv->low_lock);
3305 return IRQ_HANDLED;
3306 none:
3307 spin_unlock(&priv->low_lock);
3308 return IRQ_NONE;
3311 static int ipw2100_tx(struct ieee80211_txb *txb, struct net_device *dev,
3312 int pri)
3314 struct ipw2100_priv *priv = ieee80211_priv(dev);
3315 struct list_head *element;
3316 struct ipw2100_tx_packet *packet;
3317 unsigned long flags;
3319 spin_lock_irqsave(&priv->low_lock, flags);
3321 if (!(priv->status & STATUS_ASSOCIATED)) {
3322 IPW_DEBUG_INFO("Can not transmit when not connected.\n");
3323 priv->ieee->stats.tx_carrier_errors++;
3324 netif_stop_queue(dev);
3325 goto fail_unlock;
3328 if (list_empty(&priv->tx_free_list))
3329 goto fail_unlock;
3331 element = priv->tx_free_list.next;
3332 packet = list_entry(element, struct ipw2100_tx_packet, list);
3334 packet->info.d_struct.txb = txb;
3336 IPW_DEBUG_TX("Sending fragment (%d bytes):\n", txb->fragments[0]->len);
3337 printk_buf(IPW_DL_TX, txb->fragments[0]->data, txb->fragments[0]->len);
3339 packet->jiffy_start = jiffies;
3341 list_del(element);
3342 DEC_STAT(&priv->tx_free_stat);
3344 list_add_tail(element, &priv->tx_pend_list);
3345 INC_STAT(&priv->tx_pend_stat);
3347 ipw2100_tx_send_data(priv);
3349 spin_unlock_irqrestore(&priv->low_lock, flags);
3350 return 0;
3352 fail_unlock:
3353 netif_stop_queue(dev);
3354 spin_unlock_irqrestore(&priv->low_lock, flags);
3355 return 1;
3358 static int ipw2100_msg_allocate(struct ipw2100_priv *priv)
3360 int i, j, err = -EINVAL;
3361 void *v;
3362 dma_addr_t p;
3364 priv->msg_buffers =
3365 (struct ipw2100_tx_packet *)kmalloc(IPW_COMMAND_POOL_SIZE *
3366 sizeof(struct
3367 ipw2100_tx_packet),
3368 GFP_KERNEL);
3369 if (!priv->msg_buffers) {
3370 printk(KERN_ERR DRV_NAME ": %s: PCI alloc failed for msg "
3371 "buffers.\n", priv->net_dev->name);
3372 return -ENOMEM;
3375 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3376 v = pci_alloc_consistent(priv->pci_dev,
3377 sizeof(struct ipw2100_cmd_header), &p);
3378 if (!v) {
3379 printk(KERN_ERR DRV_NAME ": "
3380 "%s: PCI alloc failed for msg "
3381 "buffers.\n", priv->net_dev->name);
3382 err = -ENOMEM;
3383 break;
3386 memset(v, 0, sizeof(struct ipw2100_cmd_header));
3388 priv->msg_buffers[i].type = COMMAND;
3389 priv->msg_buffers[i].info.c_struct.cmd =
3390 (struct ipw2100_cmd_header *)v;
3391 priv->msg_buffers[i].info.c_struct.cmd_phys = p;
3394 if (i == IPW_COMMAND_POOL_SIZE)
3395 return 0;
3397 for (j = 0; j < i; j++) {
3398 pci_free_consistent(priv->pci_dev,
3399 sizeof(struct ipw2100_cmd_header),
3400 priv->msg_buffers[j].info.c_struct.cmd,
3401 priv->msg_buffers[j].info.c_struct.
3402 cmd_phys);
3405 kfree(priv->msg_buffers);
3406 priv->msg_buffers = NULL;
3408 return err;
3411 static int ipw2100_msg_initialize(struct ipw2100_priv *priv)
3413 int i;
3415 INIT_LIST_HEAD(&priv->msg_free_list);
3416 INIT_LIST_HEAD(&priv->msg_pend_list);
3418 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++)
3419 list_add_tail(&priv->msg_buffers[i].list, &priv->msg_free_list);
3420 SET_STAT(&priv->msg_free_stat, i);
3422 return 0;
3425 static void ipw2100_msg_free(struct ipw2100_priv *priv)
3427 int i;
3429 if (!priv->msg_buffers)
3430 return;
3432 for (i = 0; i < IPW_COMMAND_POOL_SIZE; i++) {
3433 pci_free_consistent(priv->pci_dev,
3434 sizeof(struct ipw2100_cmd_header),
3435 priv->msg_buffers[i].info.c_struct.cmd,
3436 priv->msg_buffers[i].info.c_struct.
3437 cmd_phys);
3440 kfree(priv->msg_buffers);
3441 priv->msg_buffers = NULL;
3444 static ssize_t show_pci(struct device *d, struct device_attribute *attr,
3445 char *buf)
3447 struct pci_dev *pci_dev = container_of(d, struct pci_dev, dev);
3448 char *out = buf;
3449 int i, j;
3450 u32 val;
3452 for (i = 0; i < 16; i++) {
3453 out += sprintf(out, "[%08X] ", i * 16);
3454 for (j = 0; j < 16; j += 4) {
3455 pci_read_config_dword(pci_dev, i * 16 + j, &val);
3456 out += sprintf(out, "%08X ", val);
3458 out += sprintf(out, "\n");
3461 return out - buf;
3464 static DEVICE_ATTR(pci, S_IRUGO, show_pci, NULL);
3466 static ssize_t show_cfg(struct device *d, struct device_attribute *attr,
3467 char *buf)
3469 struct ipw2100_priv *p = d->driver_data;
3470 return sprintf(buf, "0x%08x\n", (int)p->config);
3473 static DEVICE_ATTR(cfg, S_IRUGO, show_cfg, NULL);
3475 static ssize_t show_status(struct device *d, struct device_attribute *attr,
3476 char *buf)
3478 struct ipw2100_priv *p = d->driver_data;
3479 return sprintf(buf, "0x%08x\n", (int)p->status);
3482 static DEVICE_ATTR(status, S_IRUGO, show_status, NULL);
3484 static ssize_t show_capability(struct device *d, struct device_attribute *attr,
3485 char *buf)
3487 struct ipw2100_priv *p = d->driver_data;
3488 return sprintf(buf, "0x%08x\n", (int)p->capability);
3491 static DEVICE_ATTR(capability, S_IRUGO, show_capability, NULL);
3493 #define IPW2100_REG(x) { IPW_ ##x, #x }
3494 static const struct {
3495 u32 addr;
3496 const char *name;
3497 } hw_data[] = {
3498 IPW2100_REG(REG_GP_CNTRL),
3499 IPW2100_REG(REG_GPIO),
3500 IPW2100_REG(REG_INTA),
3501 IPW2100_REG(REG_INTA_MASK), IPW2100_REG(REG_RESET_REG),};
3502 #define IPW2100_NIC(x, s) { x, #x, s }
3503 static const struct {
3504 u32 addr;
3505 const char *name;
3506 size_t size;
3507 } nic_data[] = {
3508 IPW2100_NIC(IPW2100_CONTROL_REG, 2),
3509 IPW2100_NIC(0x210014, 1), IPW2100_NIC(0x210000, 1),};
3510 #define IPW2100_ORD(x, d) { IPW_ORD_ ##x, #x, d }
3511 static const struct {
3512 u8 index;
3513 const char *name;
3514 const char *desc;
3515 } ord_data[] = {
3516 IPW2100_ORD(STAT_TX_HOST_REQUESTS, "requested Host Tx's (MSDU)"),
3517 IPW2100_ORD(STAT_TX_HOST_COMPLETE,
3518 "successful Host Tx's (MSDU)"),
3519 IPW2100_ORD(STAT_TX_DIR_DATA,
3520 "successful Directed Tx's (MSDU)"),
3521 IPW2100_ORD(STAT_TX_DIR_DATA1,
3522 "successful Directed Tx's (MSDU) @ 1MB"),
3523 IPW2100_ORD(STAT_TX_DIR_DATA2,
3524 "successful Directed Tx's (MSDU) @ 2MB"),
3525 IPW2100_ORD(STAT_TX_DIR_DATA5_5,
3526 "successful Directed Tx's (MSDU) @ 5_5MB"),
3527 IPW2100_ORD(STAT_TX_DIR_DATA11,
3528 "successful Directed Tx's (MSDU) @ 11MB"),
3529 IPW2100_ORD(STAT_TX_NODIR_DATA1,
3530 "successful Non_Directed Tx's (MSDU) @ 1MB"),
3531 IPW2100_ORD(STAT_TX_NODIR_DATA2,
3532 "successful Non_Directed Tx's (MSDU) @ 2MB"),
3533 IPW2100_ORD(STAT_TX_NODIR_DATA5_5,
3534 "successful Non_Directed Tx's (MSDU) @ 5.5MB"),
3535 IPW2100_ORD(STAT_TX_NODIR_DATA11,
3536 "successful Non_Directed Tx's (MSDU) @ 11MB"),
3537 IPW2100_ORD(STAT_NULL_DATA, "successful NULL data Tx's"),
3538 IPW2100_ORD(STAT_TX_RTS, "successful Tx RTS"),
3539 IPW2100_ORD(STAT_TX_CTS, "successful Tx CTS"),
3540 IPW2100_ORD(STAT_TX_ACK, "successful Tx ACK"),
3541 IPW2100_ORD(STAT_TX_ASSN, "successful Association Tx's"),
3542 IPW2100_ORD(STAT_TX_ASSN_RESP,
3543 "successful Association response Tx's"),
3544 IPW2100_ORD(STAT_TX_REASSN,
3545 "successful Reassociation Tx's"),
3546 IPW2100_ORD(STAT_TX_REASSN_RESP,
3547 "successful Reassociation response Tx's"),
3548 IPW2100_ORD(STAT_TX_PROBE,
3549 "probes successfully transmitted"),
3550 IPW2100_ORD(STAT_TX_PROBE_RESP,
3551 "probe responses successfully transmitted"),
3552 IPW2100_ORD(STAT_TX_BEACON, "tx beacon"),
3553 IPW2100_ORD(STAT_TX_ATIM, "Tx ATIM"),
3554 IPW2100_ORD(STAT_TX_DISASSN,
3555 "successful Disassociation TX"),
3556 IPW2100_ORD(STAT_TX_AUTH, "successful Authentication Tx"),
3557 IPW2100_ORD(STAT_TX_DEAUTH,
3558 "successful Deauthentication TX"),
3559 IPW2100_ORD(STAT_TX_TOTAL_BYTES,
3560 "Total successful Tx data bytes"),
3561 IPW2100_ORD(STAT_TX_RETRIES, "Tx retries"),
3562 IPW2100_ORD(STAT_TX_RETRY1, "Tx retries at 1MBPS"),
3563 IPW2100_ORD(STAT_TX_RETRY2, "Tx retries at 2MBPS"),
3564 IPW2100_ORD(STAT_TX_RETRY5_5, "Tx retries at 5.5MBPS"),
3565 IPW2100_ORD(STAT_TX_RETRY11, "Tx retries at 11MBPS"),
3566 IPW2100_ORD(STAT_TX_FAILURES, "Tx Failures"),
3567 IPW2100_ORD(STAT_TX_MAX_TRIES_IN_HOP,
3568 "times max tries in a hop failed"),
3569 IPW2100_ORD(STAT_TX_DISASSN_FAIL,
3570 "times disassociation failed"),
3571 IPW2100_ORD(STAT_TX_ERR_CTS, "missed/bad CTS frames"),
3572 IPW2100_ORD(STAT_TX_ERR_ACK, "tx err due to acks"),
3573 IPW2100_ORD(STAT_RX_HOST, "packets passed to host"),
3574 IPW2100_ORD(STAT_RX_DIR_DATA, "directed packets"),
3575 IPW2100_ORD(STAT_RX_DIR_DATA1, "directed packets at 1MB"),
3576 IPW2100_ORD(STAT_RX_DIR_DATA2, "directed packets at 2MB"),
3577 IPW2100_ORD(STAT_RX_DIR_DATA5_5,
3578 "directed packets at 5.5MB"),
3579 IPW2100_ORD(STAT_RX_DIR_DATA11, "directed packets at 11MB"),
3580 IPW2100_ORD(STAT_RX_NODIR_DATA, "nondirected packets"),
3581 IPW2100_ORD(STAT_RX_NODIR_DATA1,
3582 "nondirected packets at 1MB"),
3583 IPW2100_ORD(STAT_RX_NODIR_DATA2,
3584 "nondirected packets at 2MB"),
3585 IPW2100_ORD(STAT_RX_NODIR_DATA5_5,
3586 "nondirected packets at 5.5MB"),
3587 IPW2100_ORD(STAT_RX_NODIR_DATA11,
3588 "nondirected packets at 11MB"),
3589 IPW2100_ORD(STAT_RX_NULL_DATA, "null data rx's"),
3590 IPW2100_ORD(STAT_RX_RTS, "Rx RTS"), IPW2100_ORD(STAT_RX_CTS,
3591 "Rx CTS"),
3592 IPW2100_ORD(STAT_RX_ACK, "Rx ACK"),
3593 IPW2100_ORD(STAT_RX_CFEND, "Rx CF End"),
3594 IPW2100_ORD(STAT_RX_CFEND_ACK, "Rx CF End + CF Ack"),
3595 IPW2100_ORD(STAT_RX_ASSN, "Association Rx's"),
3596 IPW2100_ORD(STAT_RX_ASSN_RESP, "Association response Rx's"),
3597 IPW2100_ORD(STAT_RX_REASSN, "Reassociation Rx's"),
3598 IPW2100_ORD(STAT_RX_REASSN_RESP,
3599 "Reassociation response Rx's"),
3600 IPW2100_ORD(STAT_RX_PROBE, "probe Rx's"),
3601 IPW2100_ORD(STAT_RX_PROBE_RESP, "probe response Rx's"),
3602 IPW2100_ORD(STAT_RX_BEACON, "Rx beacon"),
3603 IPW2100_ORD(STAT_RX_ATIM, "Rx ATIM"),
3604 IPW2100_ORD(STAT_RX_DISASSN, "disassociation Rx"),
3605 IPW2100_ORD(STAT_RX_AUTH, "authentication Rx"),
3606 IPW2100_ORD(STAT_RX_DEAUTH, "deauthentication Rx"),
3607 IPW2100_ORD(STAT_RX_TOTAL_BYTES,
3608 "Total rx data bytes received"),
3609 IPW2100_ORD(STAT_RX_ERR_CRC, "packets with Rx CRC error"),
3610 IPW2100_ORD(STAT_RX_ERR_CRC1, "Rx CRC errors at 1MB"),
3611 IPW2100_ORD(STAT_RX_ERR_CRC2, "Rx CRC errors at 2MB"),
3612 IPW2100_ORD(STAT_RX_ERR_CRC5_5, "Rx CRC errors at 5.5MB"),
3613 IPW2100_ORD(STAT_RX_ERR_CRC11, "Rx CRC errors at 11MB"),
3614 IPW2100_ORD(STAT_RX_DUPLICATE1,
3615 "duplicate rx packets at 1MB"),
3616 IPW2100_ORD(STAT_RX_DUPLICATE2,
3617 "duplicate rx packets at 2MB"),
3618 IPW2100_ORD(STAT_RX_DUPLICATE5_5,
3619 "duplicate rx packets at 5.5MB"),
3620 IPW2100_ORD(STAT_RX_DUPLICATE11,
3621 "duplicate rx packets at 11MB"),
3622 IPW2100_ORD(STAT_RX_DUPLICATE, "duplicate rx packets"),
3623 IPW2100_ORD(PERS_DB_LOCK, "locking fw permanent db"),
3624 IPW2100_ORD(PERS_DB_SIZE, "size of fw permanent db"),
3625 IPW2100_ORD(PERS_DB_ADDR, "address of fw permanent db"),
3626 IPW2100_ORD(STAT_RX_INVALID_PROTOCOL,
3627 "rx frames with invalid protocol"),
3628 IPW2100_ORD(SYS_BOOT_TIME, "Boot time"),
3629 IPW2100_ORD(STAT_RX_NO_BUFFER,
3630 "rx frames rejected due to no buffer"),
3631 IPW2100_ORD(STAT_RX_MISSING_FRAG,
3632 "rx frames dropped due to missing fragment"),
3633 IPW2100_ORD(STAT_RX_ORPHAN_FRAG,
3634 "rx frames dropped due to non-sequential fragment"),
3635 IPW2100_ORD(STAT_RX_ORPHAN_FRAME,
3636 "rx frames dropped due to unmatched 1st frame"),
3637 IPW2100_ORD(STAT_RX_FRAG_AGEOUT,
3638 "rx frames dropped due to uncompleted frame"),
3639 IPW2100_ORD(STAT_RX_ICV_ERRORS,
3640 "ICV errors during decryption"),
3641 IPW2100_ORD(STAT_PSP_SUSPENSION, "times adapter suspended"),
3642 IPW2100_ORD(STAT_PSP_BCN_TIMEOUT, "beacon timeout"),
3643 IPW2100_ORD(STAT_PSP_POLL_TIMEOUT,
3644 "poll response timeouts"),
3645 IPW2100_ORD(STAT_PSP_NONDIR_TIMEOUT,
3646 "timeouts waiting for last {broad,multi}cast pkt"),
3647 IPW2100_ORD(STAT_PSP_RX_DTIMS, "PSP DTIMs received"),
3648 IPW2100_ORD(STAT_PSP_RX_TIMS, "PSP TIMs received"),
3649 IPW2100_ORD(STAT_PSP_STATION_ID, "PSP Station ID"),
3650 IPW2100_ORD(LAST_ASSN_TIME, "RTC time of last association"),
3651 IPW2100_ORD(STAT_PERCENT_MISSED_BCNS,
3652 "current calculation of % missed beacons"),
3653 IPW2100_ORD(STAT_PERCENT_RETRIES,
3654 "current calculation of % missed tx retries"),
3655 IPW2100_ORD(ASSOCIATED_AP_PTR,
3656 "0 if not associated, else pointer to AP table entry"),
3657 IPW2100_ORD(AVAILABLE_AP_CNT,
3658 "AP's decsribed in the AP table"),
3659 IPW2100_ORD(AP_LIST_PTR, "Ptr to list of available APs"),
3660 IPW2100_ORD(STAT_AP_ASSNS, "associations"),
3661 IPW2100_ORD(STAT_ASSN_FAIL, "association failures"),
3662 IPW2100_ORD(STAT_ASSN_RESP_FAIL,
3663 "failures due to response fail"),
3664 IPW2100_ORD(STAT_FULL_SCANS, "full scans"),
3665 IPW2100_ORD(CARD_DISABLED, "Card Disabled"),
3666 IPW2100_ORD(STAT_ROAM_INHIBIT,
3667 "times roaming was inhibited due to activity"),
3668 IPW2100_ORD(RSSI_AT_ASSN,
3669 "RSSI of associated AP at time of association"),
3670 IPW2100_ORD(STAT_ASSN_CAUSE1,
3671 "reassociation: no probe response or TX on hop"),
3672 IPW2100_ORD(STAT_ASSN_CAUSE2,
3673 "reassociation: poor tx/rx quality"),
3674 IPW2100_ORD(STAT_ASSN_CAUSE3,
3675 "reassociation: tx/rx quality (excessive AP load"),
3676 IPW2100_ORD(STAT_ASSN_CAUSE4,
3677 "reassociation: AP RSSI level"),
3678 IPW2100_ORD(STAT_ASSN_CAUSE5,
3679 "reassociations due to load leveling"),
3680 IPW2100_ORD(STAT_AUTH_FAIL, "times authentication failed"),
3681 IPW2100_ORD(STAT_AUTH_RESP_FAIL,
3682 "times authentication response failed"),
3683 IPW2100_ORD(STATION_TABLE_CNT,
3684 "entries in association table"),
3685 IPW2100_ORD(RSSI_AVG_CURR, "Current avg RSSI"),
3686 IPW2100_ORD(POWER_MGMT_MODE, "Power mode - 0=CAM, 1=PSP"),
3687 IPW2100_ORD(COUNTRY_CODE,
3688 "IEEE country code as recv'd from beacon"),
3689 IPW2100_ORD(COUNTRY_CHANNELS,
3690 "channels suported by country"),
3691 IPW2100_ORD(RESET_CNT, "adapter resets (warm)"),
3692 IPW2100_ORD(BEACON_INTERVAL, "Beacon interval"),
3693 IPW2100_ORD(ANTENNA_DIVERSITY,
3694 "TRUE if antenna diversity is disabled"),
3695 IPW2100_ORD(DTIM_PERIOD, "beacon intervals between DTIMs"),
3696 IPW2100_ORD(OUR_FREQ,
3697 "current radio freq lower digits - channel ID"),
3698 IPW2100_ORD(RTC_TIME, "current RTC time"),
3699 IPW2100_ORD(PORT_TYPE, "operating mode"),
3700 IPW2100_ORD(CURRENT_TX_RATE, "current tx rate"),
3701 IPW2100_ORD(SUPPORTED_RATES, "supported tx rates"),
3702 IPW2100_ORD(ATIM_WINDOW, "current ATIM Window"),
3703 IPW2100_ORD(BASIC_RATES, "basic tx rates"),
3704 IPW2100_ORD(NIC_HIGHEST_RATE, "NIC highest tx rate"),
3705 IPW2100_ORD(AP_HIGHEST_RATE, "AP highest tx rate"),
3706 IPW2100_ORD(CAPABILITIES,
3707 "Management frame capability field"),
3708 IPW2100_ORD(AUTH_TYPE, "Type of authentication"),
3709 IPW2100_ORD(RADIO_TYPE, "Adapter card platform type"),
3710 IPW2100_ORD(RTS_THRESHOLD,
3711 "Min packet length for RTS handshaking"),
3712 IPW2100_ORD(INT_MODE, "International mode"),
3713 IPW2100_ORD(FRAGMENTATION_THRESHOLD,
3714 "protocol frag threshold"),
3715 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_START_ADDRESS,
3716 "EEPROM offset in SRAM"),
3717 IPW2100_ORD(EEPROM_SRAM_DB_BLOCK_SIZE,
3718 "EEPROM size in SRAM"),
3719 IPW2100_ORD(EEPROM_SKU_CAPABILITY, "EEPROM SKU Capability"),
3720 IPW2100_ORD(EEPROM_IBSS_11B_CHANNELS,
3721 "EEPROM IBSS 11b channel set"),
3722 IPW2100_ORD(MAC_VERSION, "MAC Version"),
3723 IPW2100_ORD(MAC_REVISION, "MAC Revision"),
3724 IPW2100_ORD(RADIO_VERSION, "Radio Version"),
3725 IPW2100_ORD(NIC_MANF_DATE_TIME, "MANF Date/Time STAMP"),
3726 IPW2100_ORD(UCODE_VERSION, "Ucode Version"),};
3728 static ssize_t show_registers(struct device *d, struct device_attribute *attr,
3729 char *buf)
3731 int i;
3732 struct ipw2100_priv *priv = dev_get_drvdata(d);
3733 struct net_device *dev = priv->net_dev;
3734 char *out = buf;
3735 u32 val = 0;
3737 out += sprintf(out, "%30s [Address ] : Hex\n", "Register");
3739 for (i = 0; i < (sizeof(hw_data) / sizeof(*hw_data)); i++) {
3740 read_register(dev, hw_data[i].addr, &val);
3741 out += sprintf(out, "%30s [%08X] : %08X\n",
3742 hw_data[i].name, hw_data[i].addr, val);
3745 return out - buf;
3748 static DEVICE_ATTR(registers, S_IRUGO, show_registers, NULL);
3750 static ssize_t show_hardware(struct device *d, struct device_attribute *attr,
3751 char *buf)
3753 struct ipw2100_priv *priv = dev_get_drvdata(d);
3754 struct net_device *dev = priv->net_dev;
3755 char *out = buf;
3756 int i;
3758 out += sprintf(out, "%30s [Address ] : Hex\n", "NIC entry");
3760 for (i = 0; i < (sizeof(nic_data) / sizeof(*nic_data)); i++) {
3761 u8 tmp8;
3762 u16 tmp16;
3763 u32 tmp32;
3765 switch (nic_data[i].size) {
3766 case 1:
3767 read_nic_byte(dev, nic_data[i].addr, &tmp8);
3768 out += sprintf(out, "%30s [%08X] : %02X\n",
3769 nic_data[i].name, nic_data[i].addr,
3770 tmp8);
3771 break;
3772 case 2:
3773 read_nic_word(dev, nic_data[i].addr, &tmp16);
3774 out += sprintf(out, "%30s [%08X] : %04X\n",
3775 nic_data[i].name, nic_data[i].addr,
3776 tmp16);
3777 break;
3778 case 4:
3779 read_nic_dword(dev, nic_data[i].addr, &tmp32);
3780 out += sprintf(out, "%30s [%08X] : %08X\n",
3781 nic_data[i].name, nic_data[i].addr,
3782 tmp32);
3783 break;
3786 return out - buf;
3789 static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
3791 static ssize_t show_memory(struct device *d, struct device_attribute *attr,
3792 char *buf)
3794 struct ipw2100_priv *priv = dev_get_drvdata(d);
3795 struct net_device *dev = priv->net_dev;
3796 static unsigned long loop = 0;
3797 int len = 0;
3798 u32 buffer[4];
3799 int i;
3800 char line[81];
3802 if (loop >= 0x30000)
3803 loop = 0;
3805 /* sysfs provides us PAGE_SIZE buffer */
3806 while (len < PAGE_SIZE - 128 && loop < 0x30000) {
3808 if (priv->snapshot[0])
3809 for (i = 0; i < 4; i++)
3810 buffer[i] =
3811 *(u32 *) SNAPSHOT_ADDR(loop + i * 4);
3812 else
3813 for (i = 0; i < 4; i++)
3814 read_nic_dword(dev, loop + i * 4, &buffer[i]);
3816 if (priv->dump_raw)
3817 len += sprintf(buf + len,
3818 "%c%c%c%c"
3819 "%c%c%c%c"
3820 "%c%c%c%c"
3821 "%c%c%c%c",
3822 ((u8 *) buffer)[0x0],
3823 ((u8 *) buffer)[0x1],
3824 ((u8 *) buffer)[0x2],
3825 ((u8 *) buffer)[0x3],
3826 ((u8 *) buffer)[0x4],
3827 ((u8 *) buffer)[0x5],
3828 ((u8 *) buffer)[0x6],
3829 ((u8 *) buffer)[0x7],
3830 ((u8 *) buffer)[0x8],
3831 ((u8 *) buffer)[0x9],
3832 ((u8 *) buffer)[0xa],
3833 ((u8 *) buffer)[0xb],
3834 ((u8 *) buffer)[0xc],
3835 ((u8 *) buffer)[0xd],
3836 ((u8 *) buffer)[0xe],
3837 ((u8 *) buffer)[0xf]);
3838 else
3839 len += sprintf(buf + len, "%s\n",
3840 snprint_line(line, sizeof(line),
3841 (u8 *) buffer, 16, loop));
3842 loop += 16;
3845 return len;
3848 static ssize_t store_memory(struct device *d, struct device_attribute *attr,
3849 const char *buf, size_t count)
3851 struct ipw2100_priv *priv = dev_get_drvdata(d);
3852 struct net_device *dev = priv->net_dev;
3853 const char *p = buf;
3855 (void)dev; /* kill unused-var warning for debug-only code */
3857 if (count < 1)
3858 return count;
3860 if (p[0] == '1' ||
3861 (count >= 2 && tolower(p[0]) == 'o' && tolower(p[1]) == 'n')) {
3862 IPW_DEBUG_INFO("%s: Setting memory dump to RAW mode.\n",
3863 dev->name);
3864 priv->dump_raw = 1;
3866 } else if (p[0] == '0' || (count >= 2 && tolower(p[0]) == 'o' &&
3867 tolower(p[1]) == 'f')) {
3868 IPW_DEBUG_INFO("%s: Setting memory dump to HEX mode.\n",
3869 dev->name);
3870 priv->dump_raw = 0;
3872 } else if (tolower(p[0]) == 'r') {
3873 IPW_DEBUG_INFO("%s: Resetting firmware snapshot.\n", dev->name);
3874 ipw2100_snapshot_free(priv);
3876 } else
3877 IPW_DEBUG_INFO("%s: Usage: 0|on = HEX, 1|off = RAW, "
3878 "reset = clear memory snapshot\n", dev->name);
3880 return count;
3883 static DEVICE_ATTR(memory, S_IWUSR | S_IRUGO, show_memory, store_memory);
3885 static ssize_t show_ordinals(struct device *d, struct device_attribute *attr,
3886 char *buf)
3888 struct ipw2100_priv *priv = dev_get_drvdata(d);
3889 u32 val = 0;
3890 int len = 0;
3891 u32 val_len;
3892 static int loop = 0;
3894 if (priv->status & STATUS_RF_KILL_MASK)
3895 return 0;
3897 if (loop >= sizeof(ord_data) / sizeof(*ord_data))
3898 loop = 0;
3900 /* sysfs provides us PAGE_SIZE buffer */
3901 while (len < PAGE_SIZE - 128 &&
3902 loop < (sizeof(ord_data) / sizeof(*ord_data))) {
3904 val_len = sizeof(u32);
3906 if (ipw2100_get_ordinal(priv, ord_data[loop].index, &val,
3907 &val_len))
3908 len += sprintf(buf + len, "[0x%02X] = ERROR %s\n",
3909 ord_data[loop].index,
3910 ord_data[loop].desc);
3911 else
3912 len += sprintf(buf + len, "[0x%02X] = 0x%08X %s\n",
3913 ord_data[loop].index, val,
3914 ord_data[loop].desc);
3915 loop++;
3918 return len;
3921 static DEVICE_ATTR(ordinals, S_IRUGO, show_ordinals, NULL);
3923 static ssize_t show_stats(struct device *d, struct device_attribute *attr,
3924 char *buf)
3926 struct ipw2100_priv *priv = dev_get_drvdata(d);
3927 char *out = buf;
3929 out += sprintf(out, "interrupts: %d {tx: %d, rx: %d, other: %d}\n",
3930 priv->interrupts, priv->tx_interrupts,
3931 priv->rx_interrupts, priv->inta_other);
3932 out += sprintf(out, "firmware resets: %d\n", priv->resets);
3933 out += sprintf(out, "firmware hangs: %d\n", priv->hangs);
3934 #ifdef CONFIG_IPW2100_DEBUG
3935 out += sprintf(out, "packet mismatch image: %s\n",
3936 priv->snapshot[0] ? "YES" : "NO");
3937 #endif
3939 return out - buf;
3942 static DEVICE_ATTR(stats, S_IRUGO, show_stats, NULL);
3944 static int ipw2100_switch_mode(struct ipw2100_priv *priv, u32 mode)
3946 int err;
3948 if (mode == priv->ieee->iw_mode)
3949 return 0;
3951 err = ipw2100_disable_adapter(priv);
3952 if (err) {
3953 printk(KERN_ERR DRV_NAME ": %s: Could not disable adapter %d\n",
3954 priv->net_dev->name, err);
3955 return err;
3958 switch (mode) {
3959 case IW_MODE_INFRA:
3960 priv->net_dev->type = ARPHRD_ETHER;
3961 break;
3962 case IW_MODE_ADHOC:
3963 priv->net_dev->type = ARPHRD_ETHER;
3964 break;
3965 #ifdef CONFIG_IPW2100_MONITOR
3966 case IW_MODE_MONITOR:
3967 priv->last_mode = priv->ieee->iw_mode;
3968 priv->net_dev->type = ARPHRD_IEEE80211_RADIOTAP;
3969 break;
3970 #endif /* CONFIG_IPW2100_MONITOR */
3973 priv->ieee->iw_mode = mode;
3975 #ifdef CONFIG_PM
3976 /* Indicate ipw2100_download_firmware download firmware
3977 * from disk instead of memory. */
3978 ipw2100_firmware.version = 0;
3979 #endif
3981 printk(KERN_INFO "%s: Reseting on mode change.\n", priv->net_dev->name);
3982 priv->reset_backoff = 0;
3983 schedule_reset(priv);
3985 return 0;
3988 static ssize_t show_internals(struct device *d, struct device_attribute *attr,
3989 char *buf)
3991 struct ipw2100_priv *priv = dev_get_drvdata(d);
3992 int len = 0;
3994 #define DUMP_VAR(x,y) len += sprintf(buf + len, # x ": %" y "\n", priv-> x)
3996 if (priv->status & STATUS_ASSOCIATED)
3997 len += sprintf(buf + len, "connected: %lu\n",
3998 get_seconds() - priv->connect_start);
3999 else
4000 len += sprintf(buf + len, "not connected\n");
4002 DUMP_VAR(ieee->crypt[priv->ieee->tx_keyidx], "p");
4003 DUMP_VAR(status, "08lx");
4004 DUMP_VAR(config, "08lx");
4005 DUMP_VAR(capability, "08lx");
4007 len +=
4008 sprintf(buf + len, "last_rtc: %lu\n",
4009 (unsigned long)priv->last_rtc);
4011 DUMP_VAR(fatal_error, "d");
4012 DUMP_VAR(stop_hang_check, "d");
4013 DUMP_VAR(stop_rf_kill, "d");
4014 DUMP_VAR(messages_sent, "d");
4016 DUMP_VAR(tx_pend_stat.value, "d");
4017 DUMP_VAR(tx_pend_stat.hi, "d");
4019 DUMP_VAR(tx_free_stat.value, "d");
4020 DUMP_VAR(tx_free_stat.lo, "d");
4022 DUMP_VAR(msg_free_stat.value, "d");
4023 DUMP_VAR(msg_free_stat.lo, "d");
4025 DUMP_VAR(msg_pend_stat.value, "d");
4026 DUMP_VAR(msg_pend_stat.hi, "d");
4028 DUMP_VAR(fw_pend_stat.value, "d");
4029 DUMP_VAR(fw_pend_stat.hi, "d");
4031 DUMP_VAR(txq_stat.value, "d");
4032 DUMP_VAR(txq_stat.lo, "d");
4034 DUMP_VAR(ieee->scans, "d");
4035 DUMP_VAR(reset_backoff, "d");
4037 return len;
4040 static DEVICE_ATTR(internals, S_IRUGO, show_internals, NULL);
4042 static ssize_t show_bssinfo(struct device *d, struct device_attribute *attr,
4043 char *buf)
4045 struct ipw2100_priv *priv = dev_get_drvdata(d);
4046 char essid[IW_ESSID_MAX_SIZE + 1];
4047 u8 bssid[ETH_ALEN];
4048 u32 chan = 0;
4049 char *out = buf;
4050 int length;
4051 int ret;
4053 if (priv->status & STATUS_RF_KILL_MASK)
4054 return 0;
4056 memset(essid, 0, sizeof(essid));
4057 memset(bssid, 0, sizeof(bssid));
4059 length = IW_ESSID_MAX_SIZE;
4060 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_SSID, essid, &length);
4061 if (ret)
4062 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4063 __LINE__);
4065 length = sizeof(bssid);
4066 ret = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
4067 bssid, &length);
4068 if (ret)
4069 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4070 __LINE__);
4072 length = sizeof(u32);
4073 ret = ipw2100_get_ordinal(priv, IPW_ORD_OUR_FREQ, &chan, &length);
4074 if (ret)
4075 IPW_DEBUG_INFO("failed querying ordinals at line %d\n",
4076 __LINE__);
4078 out += sprintf(out, "ESSID: %s\n", essid);
4079 out += sprintf(out, "BSSID: %02x:%02x:%02x:%02x:%02x:%02x\n",
4080 bssid[0], bssid[1], bssid[2],
4081 bssid[3], bssid[4], bssid[5]);
4082 out += sprintf(out, "Channel: %d\n", chan);
4084 return out - buf;
4087 static DEVICE_ATTR(bssinfo, S_IRUGO, show_bssinfo, NULL);
4089 #ifdef CONFIG_IPW2100_DEBUG
4090 static ssize_t show_debug_level(struct device_driver *d, char *buf)
4092 return sprintf(buf, "0x%08X\n", ipw2100_debug_level);
4095 static ssize_t store_debug_level(struct device_driver *d,
4096 const char *buf, size_t count)
4098 char *p = (char *)buf;
4099 u32 val;
4101 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4102 p++;
4103 if (p[0] == 'x' || p[0] == 'X')
4104 p++;
4105 val = simple_strtoul(p, &p, 16);
4106 } else
4107 val = simple_strtoul(p, &p, 10);
4108 if (p == buf)
4109 IPW_DEBUG_INFO(": %s is not in hex or decimal form.\n", buf);
4110 else
4111 ipw2100_debug_level = val;
4113 return strnlen(buf, count);
4116 static DRIVER_ATTR(debug_level, S_IWUSR | S_IRUGO, show_debug_level,
4117 store_debug_level);
4118 #endif /* CONFIG_IPW2100_DEBUG */
4120 static ssize_t show_fatal_error(struct device *d,
4121 struct device_attribute *attr, char *buf)
4123 struct ipw2100_priv *priv = dev_get_drvdata(d);
4124 char *out = buf;
4125 int i;
4127 if (priv->fatal_error)
4128 out += sprintf(out, "0x%08X\n", priv->fatal_error);
4129 else
4130 out += sprintf(out, "0\n");
4132 for (i = 1; i <= IPW2100_ERROR_QUEUE; i++) {
4133 if (!priv->fatal_errors[(priv->fatal_index - i) %
4134 IPW2100_ERROR_QUEUE])
4135 continue;
4137 out += sprintf(out, "%d. 0x%08X\n", i,
4138 priv->fatal_errors[(priv->fatal_index - i) %
4139 IPW2100_ERROR_QUEUE]);
4142 return out - buf;
4145 static ssize_t store_fatal_error(struct device *d,
4146 struct device_attribute *attr, const char *buf,
4147 size_t count)
4149 struct ipw2100_priv *priv = dev_get_drvdata(d);
4150 schedule_reset(priv);
4151 return count;
4154 static DEVICE_ATTR(fatal_error, S_IWUSR | S_IRUGO, show_fatal_error,
4155 store_fatal_error);
4157 static ssize_t show_scan_age(struct device *d, struct device_attribute *attr,
4158 char *buf)
4160 struct ipw2100_priv *priv = dev_get_drvdata(d);
4161 return sprintf(buf, "%d\n", priv->ieee->scan_age);
4164 static ssize_t store_scan_age(struct device *d, struct device_attribute *attr,
4165 const char *buf, size_t count)
4167 struct ipw2100_priv *priv = dev_get_drvdata(d);
4168 struct net_device *dev = priv->net_dev;
4169 char buffer[] = "00000000";
4170 unsigned long len =
4171 (sizeof(buffer) - 1) > count ? count : sizeof(buffer) - 1;
4172 unsigned long val;
4173 char *p = buffer;
4175 (void)dev; /* kill unused-var warning for debug-only code */
4177 IPW_DEBUG_INFO("enter\n");
4179 strncpy(buffer, buf, len);
4180 buffer[len] = 0;
4182 if (p[1] == 'x' || p[1] == 'X' || p[0] == 'x' || p[0] == 'X') {
4183 p++;
4184 if (p[0] == 'x' || p[0] == 'X')
4185 p++;
4186 val = simple_strtoul(p, &p, 16);
4187 } else
4188 val = simple_strtoul(p, &p, 10);
4189 if (p == buffer) {
4190 IPW_DEBUG_INFO("%s: user supplied invalid value.\n", dev->name);
4191 } else {
4192 priv->ieee->scan_age = val;
4193 IPW_DEBUG_INFO("set scan_age = %u\n", priv->ieee->scan_age);
4196 IPW_DEBUG_INFO("exit\n");
4197 return len;
4200 static DEVICE_ATTR(scan_age, S_IWUSR | S_IRUGO, show_scan_age, store_scan_age);
4202 static ssize_t show_rf_kill(struct device *d, struct device_attribute *attr,
4203 char *buf)
4205 /* 0 - RF kill not enabled
4206 1 - SW based RF kill active (sysfs)
4207 2 - HW based RF kill active
4208 3 - Both HW and SW baed RF kill active */
4209 struct ipw2100_priv *priv = (struct ipw2100_priv *)d->driver_data;
4210 int val = ((priv->status & STATUS_RF_KILL_SW) ? 0x1 : 0x0) |
4211 (rf_kill_active(priv) ? 0x2 : 0x0);
4212 return sprintf(buf, "%i\n", val);
4215 static int ipw_radio_kill_sw(struct ipw2100_priv *priv, int disable_radio)
4217 if ((disable_radio ? 1 : 0) ==
4218 (priv->status & STATUS_RF_KILL_SW ? 1 : 0))
4219 return 0;
4221 IPW_DEBUG_RF_KILL("Manual SW RF Kill set to: RADIO %s\n",
4222 disable_radio ? "OFF" : "ON");
4224 mutex_lock(&priv->action_mutex);
4226 if (disable_radio) {
4227 priv->status |= STATUS_RF_KILL_SW;
4228 ipw2100_down(priv);
4229 } else {
4230 priv->status &= ~STATUS_RF_KILL_SW;
4231 if (rf_kill_active(priv)) {
4232 IPW_DEBUG_RF_KILL("Can not turn radio back on - "
4233 "disabled by HW switch\n");
4234 /* Make sure the RF_KILL check timer is running */
4235 priv->stop_rf_kill = 0;
4236 cancel_delayed_work(&priv->rf_kill);
4237 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
4238 } else
4239 schedule_reset(priv);
4242 mutex_unlock(&priv->action_mutex);
4243 return 1;
4246 static ssize_t store_rf_kill(struct device *d, struct device_attribute *attr,
4247 const char *buf, size_t count)
4249 struct ipw2100_priv *priv = dev_get_drvdata(d);
4250 ipw_radio_kill_sw(priv, buf[0] == '1');
4251 return count;
4254 static DEVICE_ATTR(rf_kill, S_IWUSR | S_IRUGO, show_rf_kill, store_rf_kill);
4256 static struct attribute *ipw2100_sysfs_entries[] = {
4257 &dev_attr_hardware.attr,
4258 &dev_attr_registers.attr,
4259 &dev_attr_ordinals.attr,
4260 &dev_attr_pci.attr,
4261 &dev_attr_stats.attr,
4262 &dev_attr_internals.attr,
4263 &dev_attr_bssinfo.attr,
4264 &dev_attr_memory.attr,
4265 &dev_attr_scan_age.attr,
4266 &dev_attr_fatal_error.attr,
4267 &dev_attr_rf_kill.attr,
4268 &dev_attr_cfg.attr,
4269 &dev_attr_status.attr,
4270 &dev_attr_capability.attr,
4271 NULL,
4274 static struct attribute_group ipw2100_attribute_group = {
4275 .attrs = ipw2100_sysfs_entries,
4278 static int status_queue_allocate(struct ipw2100_priv *priv, int entries)
4280 struct ipw2100_status_queue *q = &priv->status_queue;
4282 IPW_DEBUG_INFO("enter\n");
4284 q->size = entries * sizeof(struct ipw2100_status);
4285 q->drv =
4286 (struct ipw2100_status *)pci_alloc_consistent(priv->pci_dev,
4287 q->size, &q->nic);
4288 if (!q->drv) {
4289 IPW_DEBUG_WARNING("Can not allocate status queue.\n");
4290 return -ENOMEM;
4293 memset(q->drv, 0, q->size);
4295 IPW_DEBUG_INFO("exit\n");
4297 return 0;
4300 static void status_queue_free(struct ipw2100_priv *priv)
4302 IPW_DEBUG_INFO("enter\n");
4304 if (priv->status_queue.drv) {
4305 pci_free_consistent(priv->pci_dev, priv->status_queue.size,
4306 priv->status_queue.drv,
4307 priv->status_queue.nic);
4308 priv->status_queue.drv = NULL;
4311 IPW_DEBUG_INFO("exit\n");
4314 static int bd_queue_allocate(struct ipw2100_priv *priv,
4315 struct ipw2100_bd_queue *q, int entries)
4317 IPW_DEBUG_INFO("enter\n");
4319 memset(q, 0, sizeof(struct ipw2100_bd_queue));
4321 q->entries = entries;
4322 q->size = entries * sizeof(struct ipw2100_bd);
4323 q->drv = pci_alloc_consistent(priv->pci_dev, q->size, &q->nic);
4324 if (!q->drv) {
4325 IPW_DEBUG_INFO
4326 ("can't allocate shared memory for buffer descriptors\n");
4327 return -ENOMEM;
4329 memset(q->drv, 0, q->size);
4331 IPW_DEBUG_INFO("exit\n");
4333 return 0;
4336 static void bd_queue_free(struct ipw2100_priv *priv, struct ipw2100_bd_queue *q)
4338 IPW_DEBUG_INFO("enter\n");
4340 if (!q)
4341 return;
4343 if (q->drv) {
4344 pci_free_consistent(priv->pci_dev, q->size, q->drv, q->nic);
4345 q->drv = NULL;
4348 IPW_DEBUG_INFO("exit\n");
4351 static void bd_queue_initialize(struct ipw2100_priv *priv,
4352 struct ipw2100_bd_queue *q, u32 base, u32 size,
4353 u32 r, u32 w)
4355 IPW_DEBUG_INFO("enter\n");
4357 IPW_DEBUG_INFO("initializing bd queue at virt=%p, phys=%08x\n", q->drv,
4358 (u32) q->nic);
4360 write_register(priv->net_dev, base, q->nic);
4361 write_register(priv->net_dev, size, q->entries);
4362 write_register(priv->net_dev, r, q->oldest);
4363 write_register(priv->net_dev, w, q->next);
4365 IPW_DEBUG_INFO("exit\n");
4368 static void ipw2100_kill_workqueue(struct ipw2100_priv *priv)
4370 if (priv->workqueue) {
4371 priv->stop_rf_kill = 1;
4372 priv->stop_hang_check = 1;
4373 cancel_delayed_work(&priv->reset_work);
4374 cancel_delayed_work(&priv->security_work);
4375 cancel_delayed_work(&priv->wx_event_work);
4376 cancel_delayed_work(&priv->hang_check);
4377 cancel_delayed_work(&priv->rf_kill);
4378 destroy_workqueue(priv->workqueue);
4379 priv->workqueue = NULL;
4383 static int ipw2100_tx_allocate(struct ipw2100_priv *priv)
4385 int i, j, err = -EINVAL;
4386 void *v;
4387 dma_addr_t p;
4389 IPW_DEBUG_INFO("enter\n");
4391 err = bd_queue_allocate(priv, &priv->tx_queue, TX_QUEUE_LENGTH);
4392 if (err) {
4393 IPW_DEBUG_ERROR("%s: failed bd_queue_allocate\n",
4394 priv->net_dev->name);
4395 return err;
4398 priv->tx_buffers =
4399 (struct ipw2100_tx_packet *)kmalloc(TX_PENDED_QUEUE_LENGTH *
4400 sizeof(struct
4401 ipw2100_tx_packet),
4402 GFP_ATOMIC);
4403 if (!priv->tx_buffers) {
4404 printk(KERN_ERR DRV_NAME
4405 ": %s: alloc failed form tx buffers.\n",
4406 priv->net_dev->name);
4407 bd_queue_free(priv, &priv->tx_queue);
4408 return -ENOMEM;
4411 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4412 v = pci_alloc_consistent(priv->pci_dev,
4413 sizeof(struct ipw2100_data_header),
4414 &p);
4415 if (!v) {
4416 printk(KERN_ERR DRV_NAME
4417 ": %s: PCI alloc failed for tx " "buffers.\n",
4418 priv->net_dev->name);
4419 err = -ENOMEM;
4420 break;
4423 priv->tx_buffers[i].type = DATA;
4424 priv->tx_buffers[i].info.d_struct.data =
4425 (struct ipw2100_data_header *)v;
4426 priv->tx_buffers[i].info.d_struct.data_phys = p;
4427 priv->tx_buffers[i].info.d_struct.txb = NULL;
4430 if (i == TX_PENDED_QUEUE_LENGTH)
4431 return 0;
4433 for (j = 0; j < i; j++) {
4434 pci_free_consistent(priv->pci_dev,
4435 sizeof(struct ipw2100_data_header),
4436 priv->tx_buffers[j].info.d_struct.data,
4437 priv->tx_buffers[j].info.d_struct.
4438 data_phys);
4441 kfree(priv->tx_buffers);
4442 priv->tx_buffers = NULL;
4444 return err;
4447 static void ipw2100_tx_initialize(struct ipw2100_priv *priv)
4449 int i;
4451 IPW_DEBUG_INFO("enter\n");
4454 * reinitialize packet info lists
4456 INIT_LIST_HEAD(&priv->fw_pend_list);
4457 INIT_STAT(&priv->fw_pend_stat);
4460 * reinitialize lists
4462 INIT_LIST_HEAD(&priv->tx_pend_list);
4463 INIT_LIST_HEAD(&priv->tx_free_list);
4464 INIT_STAT(&priv->tx_pend_stat);
4465 INIT_STAT(&priv->tx_free_stat);
4467 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4468 /* We simply drop any SKBs that have been queued for
4469 * transmit */
4470 if (priv->tx_buffers[i].info.d_struct.txb) {
4471 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4472 txb);
4473 priv->tx_buffers[i].info.d_struct.txb = NULL;
4476 list_add_tail(&priv->tx_buffers[i].list, &priv->tx_free_list);
4479 SET_STAT(&priv->tx_free_stat, i);
4481 priv->tx_queue.oldest = 0;
4482 priv->tx_queue.available = priv->tx_queue.entries;
4483 priv->tx_queue.next = 0;
4484 INIT_STAT(&priv->txq_stat);
4485 SET_STAT(&priv->txq_stat, priv->tx_queue.available);
4487 bd_queue_initialize(priv, &priv->tx_queue,
4488 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_BASE,
4489 IPW_MEM_HOST_SHARED_TX_QUEUE_BD_SIZE,
4490 IPW_MEM_HOST_SHARED_TX_QUEUE_READ_INDEX,
4491 IPW_MEM_HOST_SHARED_TX_QUEUE_WRITE_INDEX);
4493 IPW_DEBUG_INFO("exit\n");
4497 static void ipw2100_tx_free(struct ipw2100_priv *priv)
4499 int i;
4501 IPW_DEBUG_INFO("enter\n");
4503 bd_queue_free(priv, &priv->tx_queue);
4505 if (!priv->tx_buffers)
4506 return;
4508 for (i = 0; i < TX_PENDED_QUEUE_LENGTH; i++) {
4509 if (priv->tx_buffers[i].info.d_struct.txb) {
4510 ieee80211_txb_free(priv->tx_buffers[i].info.d_struct.
4511 txb);
4512 priv->tx_buffers[i].info.d_struct.txb = NULL;
4514 if (priv->tx_buffers[i].info.d_struct.data)
4515 pci_free_consistent(priv->pci_dev,
4516 sizeof(struct ipw2100_data_header),
4517 priv->tx_buffers[i].info.d_struct.
4518 data,
4519 priv->tx_buffers[i].info.d_struct.
4520 data_phys);
4523 kfree(priv->tx_buffers);
4524 priv->tx_buffers = NULL;
4526 IPW_DEBUG_INFO("exit\n");
4529 static int ipw2100_rx_allocate(struct ipw2100_priv *priv)
4531 int i, j, err = -EINVAL;
4533 IPW_DEBUG_INFO("enter\n");
4535 err = bd_queue_allocate(priv, &priv->rx_queue, RX_QUEUE_LENGTH);
4536 if (err) {
4537 IPW_DEBUG_INFO("failed bd_queue_allocate\n");
4538 return err;
4541 err = status_queue_allocate(priv, RX_QUEUE_LENGTH);
4542 if (err) {
4543 IPW_DEBUG_INFO("failed status_queue_allocate\n");
4544 bd_queue_free(priv, &priv->rx_queue);
4545 return err;
4549 * allocate packets
4551 priv->rx_buffers = (struct ipw2100_rx_packet *)
4552 kmalloc(RX_QUEUE_LENGTH * sizeof(struct ipw2100_rx_packet),
4553 GFP_KERNEL);
4554 if (!priv->rx_buffers) {
4555 IPW_DEBUG_INFO("can't allocate rx packet buffer table\n");
4557 bd_queue_free(priv, &priv->rx_queue);
4559 status_queue_free(priv);
4561 return -ENOMEM;
4564 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4565 struct ipw2100_rx_packet *packet = &priv->rx_buffers[i];
4567 err = ipw2100_alloc_skb(priv, packet);
4568 if (unlikely(err)) {
4569 err = -ENOMEM;
4570 break;
4573 /* The BD holds the cache aligned address */
4574 priv->rx_queue.drv[i].host_addr = packet->dma_addr;
4575 priv->rx_queue.drv[i].buf_length = IPW_RX_NIC_BUFFER_LENGTH;
4576 priv->status_queue.drv[i].status_fields = 0;
4579 if (i == RX_QUEUE_LENGTH)
4580 return 0;
4582 for (j = 0; j < i; j++) {
4583 pci_unmap_single(priv->pci_dev, priv->rx_buffers[j].dma_addr,
4584 sizeof(struct ipw2100_rx_packet),
4585 PCI_DMA_FROMDEVICE);
4586 dev_kfree_skb(priv->rx_buffers[j].skb);
4589 kfree(priv->rx_buffers);
4590 priv->rx_buffers = NULL;
4592 bd_queue_free(priv, &priv->rx_queue);
4594 status_queue_free(priv);
4596 return err;
4599 static void ipw2100_rx_initialize(struct ipw2100_priv *priv)
4601 IPW_DEBUG_INFO("enter\n");
4603 priv->rx_queue.oldest = 0;
4604 priv->rx_queue.available = priv->rx_queue.entries - 1;
4605 priv->rx_queue.next = priv->rx_queue.entries - 1;
4607 INIT_STAT(&priv->rxq_stat);
4608 SET_STAT(&priv->rxq_stat, priv->rx_queue.available);
4610 bd_queue_initialize(priv, &priv->rx_queue,
4611 IPW_MEM_HOST_SHARED_RX_BD_BASE,
4612 IPW_MEM_HOST_SHARED_RX_BD_SIZE,
4613 IPW_MEM_HOST_SHARED_RX_READ_INDEX,
4614 IPW_MEM_HOST_SHARED_RX_WRITE_INDEX);
4616 /* set up the status queue */
4617 write_register(priv->net_dev, IPW_MEM_HOST_SHARED_RX_STATUS_BASE,
4618 priv->status_queue.nic);
4620 IPW_DEBUG_INFO("exit\n");
4623 static void ipw2100_rx_free(struct ipw2100_priv *priv)
4625 int i;
4627 IPW_DEBUG_INFO("enter\n");
4629 bd_queue_free(priv, &priv->rx_queue);
4630 status_queue_free(priv);
4632 if (!priv->rx_buffers)
4633 return;
4635 for (i = 0; i < RX_QUEUE_LENGTH; i++) {
4636 if (priv->rx_buffers[i].rxp) {
4637 pci_unmap_single(priv->pci_dev,
4638 priv->rx_buffers[i].dma_addr,
4639 sizeof(struct ipw2100_rx),
4640 PCI_DMA_FROMDEVICE);
4641 dev_kfree_skb(priv->rx_buffers[i].skb);
4645 kfree(priv->rx_buffers);
4646 priv->rx_buffers = NULL;
4648 IPW_DEBUG_INFO("exit\n");
4651 static int ipw2100_read_mac_address(struct ipw2100_priv *priv)
4653 u32 length = ETH_ALEN;
4654 u8 mac[ETH_ALEN];
4656 int err;
4658 err = ipw2100_get_ordinal(priv, IPW_ORD_STAT_ADAPTER_MAC, mac, &length);
4659 if (err) {
4660 IPW_DEBUG_INFO("MAC address read failed\n");
4661 return -EIO;
4663 IPW_DEBUG_INFO("card MAC is %02X:%02X:%02X:%02X:%02X:%02X\n",
4664 mac[0], mac[1], mac[2], mac[3], mac[4], mac[5]);
4666 memcpy(priv->net_dev->dev_addr, mac, ETH_ALEN);
4668 return 0;
4671 /********************************************************************
4673 * Firmware Commands
4675 ********************************************************************/
4677 static int ipw2100_set_mac_address(struct ipw2100_priv *priv, int batch_mode)
4679 struct host_command cmd = {
4680 .host_command = ADAPTER_ADDRESS,
4681 .host_command_sequence = 0,
4682 .host_command_length = ETH_ALEN
4684 int err;
4686 IPW_DEBUG_HC("SET_MAC_ADDRESS\n");
4688 IPW_DEBUG_INFO("enter\n");
4690 if (priv->config & CFG_CUSTOM_MAC) {
4691 memcpy(cmd.host_command_parameters, priv->mac_addr, ETH_ALEN);
4692 memcpy(priv->net_dev->dev_addr, priv->mac_addr, ETH_ALEN);
4693 } else
4694 memcpy(cmd.host_command_parameters, priv->net_dev->dev_addr,
4695 ETH_ALEN);
4697 err = ipw2100_hw_send_command(priv, &cmd);
4699 IPW_DEBUG_INFO("exit\n");
4700 return err;
4703 static int ipw2100_set_port_type(struct ipw2100_priv *priv, u32 port_type,
4704 int batch_mode)
4706 struct host_command cmd = {
4707 .host_command = PORT_TYPE,
4708 .host_command_sequence = 0,
4709 .host_command_length = sizeof(u32)
4711 int err;
4713 switch (port_type) {
4714 case IW_MODE_INFRA:
4715 cmd.host_command_parameters[0] = IPW_BSS;
4716 break;
4717 case IW_MODE_ADHOC:
4718 cmd.host_command_parameters[0] = IPW_IBSS;
4719 break;
4722 IPW_DEBUG_HC("PORT_TYPE: %s\n",
4723 port_type == IPW_IBSS ? "Ad-Hoc" : "Managed");
4725 if (!batch_mode) {
4726 err = ipw2100_disable_adapter(priv);
4727 if (err) {
4728 printk(KERN_ERR DRV_NAME
4729 ": %s: Could not disable adapter %d\n",
4730 priv->net_dev->name, err);
4731 return err;
4735 /* send cmd to firmware */
4736 err = ipw2100_hw_send_command(priv, &cmd);
4738 if (!batch_mode)
4739 ipw2100_enable_adapter(priv);
4741 return err;
4744 static int ipw2100_set_channel(struct ipw2100_priv *priv, u32 channel,
4745 int batch_mode)
4747 struct host_command cmd = {
4748 .host_command = CHANNEL,
4749 .host_command_sequence = 0,
4750 .host_command_length = sizeof(u32)
4752 int err;
4754 cmd.host_command_parameters[0] = channel;
4756 IPW_DEBUG_HC("CHANNEL: %d\n", channel);
4758 /* If BSS then we don't support channel selection */
4759 if (priv->ieee->iw_mode == IW_MODE_INFRA)
4760 return 0;
4762 if ((channel != 0) &&
4763 ((channel < REG_MIN_CHANNEL) || (channel > REG_MAX_CHANNEL)))
4764 return -EINVAL;
4766 if (!batch_mode) {
4767 err = ipw2100_disable_adapter(priv);
4768 if (err)
4769 return err;
4772 err = ipw2100_hw_send_command(priv, &cmd);
4773 if (err) {
4774 IPW_DEBUG_INFO("Failed to set channel to %d", channel);
4775 return err;
4778 if (channel)
4779 priv->config |= CFG_STATIC_CHANNEL;
4780 else
4781 priv->config &= ~CFG_STATIC_CHANNEL;
4783 priv->channel = channel;
4785 if (!batch_mode) {
4786 err = ipw2100_enable_adapter(priv);
4787 if (err)
4788 return err;
4791 return 0;
4794 static int ipw2100_system_config(struct ipw2100_priv *priv, int batch_mode)
4796 struct host_command cmd = {
4797 .host_command = SYSTEM_CONFIG,
4798 .host_command_sequence = 0,
4799 .host_command_length = 12,
4801 u32 ibss_mask, len = sizeof(u32);
4802 int err;
4804 /* Set system configuration */
4806 if (!batch_mode) {
4807 err = ipw2100_disable_adapter(priv);
4808 if (err)
4809 return err;
4812 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
4813 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_AUTO_START;
4815 cmd.host_command_parameters[0] |= IPW_CFG_IBSS_MASK |
4816 IPW_CFG_BSS_MASK | IPW_CFG_802_1x_ENABLE;
4818 if (!(priv->config & CFG_LONG_PREAMBLE))
4819 cmd.host_command_parameters[0] |= IPW_CFG_PREAMBLE_AUTO;
4821 err = ipw2100_get_ordinal(priv,
4822 IPW_ORD_EEPROM_IBSS_11B_CHANNELS,
4823 &ibss_mask, &len);
4824 if (err)
4825 ibss_mask = IPW_IBSS_11B_DEFAULT_MASK;
4827 cmd.host_command_parameters[1] = REG_CHANNEL_MASK;
4828 cmd.host_command_parameters[2] = REG_CHANNEL_MASK & ibss_mask;
4830 /* 11b only */
4831 /*cmd.host_command_parameters[0] |= DIVERSITY_ANTENNA_A; */
4833 err = ipw2100_hw_send_command(priv, &cmd);
4834 if (err)
4835 return err;
4837 /* If IPv6 is configured in the kernel then we don't want to filter out all
4838 * of the multicast packets as IPv6 needs some. */
4839 #if !defined(CONFIG_IPV6) && !defined(CONFIG_IPV6_MODULE)
4840 cmd.host_command = ADD_MULTICAST;
4841 cmd.host_command_sequence = 0;
4842 cmd.host_command_length = 0;
4844 ipw2100_hw_send_command(priv, &cmd);
4845 #endif
4846 if (!batch_mode) {
4847 err = ipw2100_enable_adapter(priv);
4848 if (err)
4849 return err;
4852 return 0;
4855 static int ipw2100_set_tx_rates(struct ipw2100_priv *priv, u32 rate,
4856 int batch_mode)
4858 struct host_command cmd = {
4859 .host_command = BASIC_TX_RATES,
4860 .host_command_sequence = 0,
4861 .host_command_length = 4
4863 int err;
4865 cmd.host_command_parameters[0] = rate & TX_RATE_MASK;
4867 if (!batch_mode) {
4868 err = ipw2100_disable_adapter(priv);
4869 if (err)
4870 return err;
4873 /* Set BASIC TX Rate first */
4874 ipw2100_hw_send_command(priv, &cmd);
4876 /* Set TX Rate */
4877 cmd.host_command = TX_RATES;
4878 ipw2100_hw_send_command(priv, &cmd);
4880 /* Set MSDU TX Rate */
4881 cmd.host_command = MSDU_TX_RATES;
4882 ipw2100_hw_send_command(priv, &cmd);
4884 if (!batch_mode) {
4885 err = ipw2100_enable_adapter(priv);
4886 if (err)
4887 return err;
4890 priv->tx_rates = rate;
4892 return 0;
4895 static int ipw2100_set_power_mode(struct ipw2100_priv *priv, int power_level)
4897 struct host_command cmd = {
4898 .host_command = POWER_MODE,
4899 .host_command_sequence = 0,
4900 .host_command_length = 4
4902 int err;
4904 cmd.host_command_parameters[0] = power_level;
4906 err = ipw2100_hw_send_command(priv, &cmd);
4907 if (err)
4908 return err;
4910 if (power_level == IPW_POWER_MODE_CAM)
4911 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
4912 else
4913 priv->power_mode = IPW_POWER_ENABLED | power_level;
4915 #ifdef CONFIG_IPW2100_TX_POWER
4916 if (priv->port_type == IBSS && priv->adhoc_power != DFTL_IBSS_TX_POWER) {
4917 /* Set beacon interval */
4918 cmd.host_command = TX_POWER_INDEX;
4919 cmd.host_command_parameters[0] = (u32) priv->adhoc_power;
4921 err = ipw2100_hw_send_command(priv, &cmd);
4922 if (err)
4923 return err;
4925 #endif
4927 return 0;
4930 static int ipw2100_set_rts_threshold(struct ipw2100_priv *priv, u32 threshold)
4932 struct host_command cmd = {
4933 .host_command = RTS_THRESHOLD,
4934 .host_command_sequence = 0,
4935 .host_command_length = 4
4937 int err;
4939 if (threshold & RTS_DISABLED)
4940 cmd.host_command_parameters[0] = MAX_RTS_THRESHOLD;
4941 else
4942 cmd.host_command_parameters[0] = threshold & ~RTS_DISABLED;
4944 err = ipw2100_hw_send_command(priv, &cmd);
4945 if (err)
4946 return err;
4948 priv->rts_threshold = threshold;
4950 return 0;
4953 #if 0
4954 int ipw2100_set_fragmentation_threshold(struct ipw2100_priv *priv,
4955 u32 threshold, int batch_mode)
4957 struct host_command cmd = {
4958 .host_command = FRAG_THRESHOLD,
4959 .host_command_sequence = 0,
4960 .host_command_length = 4,
4961 .host_command_parameters[0] = 0,
4963 int err;
4965 if (!batch_mode) {
4966 err = ipw2100_disable_adapter(priv);
4967 if (err)
4968 return err;
4971 if (threshold == 0)
4972 threshold = DEFAULT_FRAG_THRESHOLD;
4973 else {
4974 threshold = max(threshold, MIN_FRAG_THRESHOLD);
4975 threshold = min(threshold, MAX_FRAG_THRESHOLD);
4978 cmd.host_command_parameters[0] = threshold;
4980 IPW_DEBUG_HC("FRAG_THRESHOLD: %u\n", threshold);
4982 err = ipw2100_hw_send_command(priv, &cmd);
4984 if (!batch_mode)
4985 ipw2100_enable_adapter(priv);
4987 if (!err)
4988 priv->frag_threshold = threshold;
4990 return err;
4992 #endif
4994 static int ipw2100_set_short_retry(struct ipw2100_priv *priv, u32 retry)
4996 struct host_command cmd = {
4997 .host_command = SHORT_RETRY_LIMIT,
4998 .host_command_sequence = 0,
4999 .host_command_length = 4
5001 int err;
5003 cmd.host_command_parameters[0] = retry;
5005 err = ipw2100_hw_send_command(priv, &cmd);
5006 if (err)
5007 return err;
5009 priv->short_retry_limit = retry;
5011 return 0;
5014 static int ipw2100_set_long_retry(struct ipw2100_priv *priv, u32 retry)
5016 struct host_command cmd = {
5017 .host_command = LONG_RETRY_LIMIT,
5018 .host_command_sequence = 0,
5019 .host_command_length = 4
5021 int err;
5023 cmd.host_command_parameters[0] = retry;
5025 err = ipw2100_hw_send_command(priv, &cmd);
5026 if (err)
5027 return err;
5029 priv->long_retry_limit = retry;
5031 return 0;
5034 static int ipw2100_set_mandatory_bssid(struct ipw2100_priv *priv, u8 * bssid,
5035 int batch_mode)
5037 struct host_command cmd = {
5038 .host_command = MANDATORY_BSSID,
5039 .host_command_sequence = 0,
5040 .host_command_length = (bssid == NULL) ? 0 : ETH_ALEN
5042 int err;
5044 #ifdef CONFIG_IPW2100_DEBUG
5045 if (bssid != NULL)
5046 IPW_DEBUG_HC("MANDATORY_BSSID: %02X:%02X:%02X:%02X:%02X:%02X\n",
5047 bssid[0], bssid[1], bssid[2], bssid[3], bssid[4],
5048 bssid[5]);
5049 else
5050 IPW_DEBUG_HC("MANDATORY_BSSID: <clear>\n");
5051 #endif
5052 /* if BSSID is empty then we disable mandatory bssid mode */
5053 if (bssid != NULL)
5054 memcpy(cmd.host_command_parameters, bssid, ETH_ALEN);
5056 if (!batch_mode) {
5057 err = ipw2100_disable_adapter(priv);
5058 if (err)
5059 return err;
5062 err = ipw2100_hw_send_command(priv, &cmd);
5064 if (!batch_mode)
5065 ipw2100_enable_adapter(priv);
5067 return err;
5070 static int ipw2100_disassociate_bssid(struct ipw2100_priv *priv)
5072 struct host_command cmd = {
5073 .host_command = DISASSOCIATION_BSSID,
5074 .host_command_sequence = 0,
5075 .host_command_length = ETH_ALEN
5077 int err;
5078 int len;
5080 IPW_DEBUG_HC("DISASSOCIATION_BSSID\n");
5082 len = ETH_ALEN;
5083 /* The Firmware currently ignores the BSSID and just disassociates from
5084 * the currently associated AP -- but in the off chance that a future
5085 * firmware does use the BSSID provided here, we go ahead and try and
5086 * set it to the currently associated AP's BSSID */
5087 memcpy(cmd.host_command_parameters, priv->bssid, ETH_ALEN);
5089 err = ipw2100_hw_send_command(priv, &cmd);
5091 return err;
5094 static int ipw2100_set_wpa_ie(struct ipw2100_priv *,
5095 struct ipw2100_wpa_assoc_frame *, int)
5096 __attribute__ ((unused));
5098 static int ipw2100_set_wpa_ie(struct ipw2100_priv *priv,
5099 struct ipw2100_wpa_assoc_frame *wpa_frame,
5100 int batch_mode)
5102 struct host_command cmd = {
5103 .host_command = SET_WPA_IE,
5104 .host_command_sequence = 0,
5105 .host_command_length = sizeof(struct ipw2100_wpa_assoc_frame),
5107 int err;
5109 IPW_DEBUG_HC("SET_WPA_IE\n");
5111 if (!batch_mode) {
5112 err = ipw2100_disable_adapter(priv);
5113 if (err)
5114 return err;
5117 memcpy(cmd.host_command_parameters, wpa_frame,
5118 sizeof(struct ipw2100_wpa_assoc_frame));
5120 err = ipw2100_hw_send_command(priv, &cmd);
5122 if (!batch_mode) {
5123 if (ipw2100_enable_adapter(priv))
5124 err = -EIO;
5127 return err;
5130 struct security_info_params {
5131 u32 allowed_ciphers;
5132 u16 version;
5133 u8 auth_mode;
5134 u8 replay_counters_number;
5135 u8 unicast_using_group;
5136 } __attribute__ ((packed));
5138 static int ipw2100_set_security_information(struct ipw2100_priv *priv,
5139 int auth_mode,
5140 int security_level,
5141 int unicast_using_group,
5142 int batch_mode)
5144 struct host_command cmd = {
5145 .host_command = SET_SECURITY_INFORMATION,
5146 .host_command_sequence = 0,
5147 .host_command_length = sizeof(struct security_info_params)
5149 struct security_info_params *security =
5150 (struct security_info_params *)&cmd.host_command_parameters;
5151 int err;
5152 memset(security, 0, sizeof(*security));
5154 /* If shared key AP authentication is turned on, then we need to
5155 * configure the firmware to try and use it.
5157 * Actual data encryption/decryption is handled by the host. */
5158 security->auth_mode = auth_mode;
5159 security->unicast_using_group = unicast_using_group;
5161 switch (security_level) {
5162 default:
5163 case SEC_LEVEL_0:
5164 security->allowed_ciphers = IPW_NONE_CIPHER;
5165 break;
5166 case SEC_LEVEL_1:
5167 security->allowed_ciphers = IPW_WEP40_CIPHER |
5168 IPW_WEP104_CIPHER;
5169 break;
5170 case SEC_LEVEL_2:
5171 security->allowed_ciphers = IPW_WEP40_CIPHER |
5172 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER;
5173 break;
5174 case SEC_LEVEL_2_CKIP:
5175 security->allowed_ciphers = IPW_WEP40_CIPHER |
5176 IPW_WEP104_CIPHER | IPW_CKIP_CIPHER;
5177 break;
5178 case SEC_LEVEL_3:
5179 security->allowed_ciphers = IPW_WEP40_CIPHER |
5180 IPW_WEP104_CIPHER | IPW_TKIP_CIPHER | IPW_CCMP_CIPHER;
5181 break;
5184 IPW_DEBUG_HC
5185 ("SET_SECURITY_INFORMATION: auth:%d cipher:0x%02X (level %d)\n",
5186 security->auth_mode, security->allowed_ciphers, security_level);
5188 security->replay_counters_number = 0;
5190 if (!batch_mode) {
5191 err = ipw2100_disable_adapter(priv);
5192 if (err)
5193 return err;
5196 err = ipw2100_hw_send_command(priv, &cmd);
5198 if (!batch_mode)
5199 ipw2100_enable_adapter(priv);
5201 return err;
5204 static int ipw2100_set_tx_power(struct ipw2100_priv *priv, u32 tx_power)
5206 struct host_command cmd = {
5207 .host_command = TX_POWER_INDEX,
5208 .host_command_sequence = 0,
5209 .host_command_length = 4
5211 int err = 0;
5212 u32 tmp = tx_power;
5214 if (tx_power != IPW_TX_POWER_DEFAULT)
5215 tmp = (tx_power - IPW_TX_POWER_MIN_DBM) * 16 /
5216 (IPW_TX_POWER_MAX_DBM - IPW_TX_POWER_MIN_DBM);
5218 cmd.host_command_parameters[0] = tmp;
5220 if (priv->ieee->iw_mode == IW_MODE_ADHOC)
5221 err = ipw2100_hw_send_command(priv, &cmd);
5222 if (!err)
5223 priv->tx_power = tx_power;
5225 return 0;
5228 static int ipw2100_set_ibss_beacon_interval(struct ipw2100_priv *priv,
5229 u32 interval, int batch_mode)
5231 struct host_command cmd = {
5232 .host_command = BEACON_INTERVAL,
5233 .host_command_sequence = 0,
5234 .host_command_length = 4
5236 int err;
5238 cmd.host_command_parameters[0] = interval;
5240 IPW_DEBUG_INFO("enter\n");
5242 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5243 if (!batch_mode) {
5244 err = ipw2100_disable_adapter(priv);
5245 if (err)
5246 return err;
5249 ipw2100_hw_send_command(priv, &cmd);
5251 if (!batch_mode) {
5252 err = ipw2100_enable_adapter(priv);
5253 if (err)
5254 return err;
5258 IPW_DEBUG_INFO("exit\n");
5260 return 0;
5263 void ipw2100_queues_initialize(struct ipw2100_priv *priv)
5265 ipw2100_tx_initialize(priv);
5266 ipw2100_rx_initialize(priv);
5267 ipw2100_msg_initialize(priv);
5270 void ipw2100_queues_free(struct ipw2100_priv *priv)
5272 ipw2100_tx_free(priv);
5273 ipw2100_rx_free(priv);
5274 ipw2100_msg_free(priv);
5277 int ipw2100_queues_allocate(struct ipw2100_priv *priv)
5279 if (ipw2100_tx_allocate(priv) ||
5280 ipw2100_rx_allocate(priv) || ipw2100_msg_allocate(priv))
5281 goto fail;
5283 return 0;
5285 fail:
5286 ipw2100_tx_free(priv);
5287 ipw2100_rx_free(priv);
5288 ipw2100_msg_free(priv);
5289 return -ENOMEM;
5292 #define IPW_PRIVACY_CAPABLE 0x0008
5294 static int ipw2100_set_wep_flags(struct ipw2100_priv *priv, u32 flags,
5295 int batch_mode)
5297 struct host_command cmd = {
5298 .host_command = WEP_FLAGS,
5299 .host_command_sequence = 0,
5300 .host_command_length = 4
5302 int err;
5304 cmd.host_command_parameters[0] = flags;
5306 IPW_DEBUG_HC("WEP_FLAGS: flags = 0x%08X\n", flags);
5308 if (!batch_mode) {
5309 err = ipw2100_disable_adapter(priv);
5310 if (err) {
5311 printk(KERN_ERR DRV_NAME
5312 ": %s: Could not disable adapter %d\n",
5313 priv->net_dev->name, err);
5314 return err;
5318 /* send cmd to firmware */
5319 err = ipw2100_hw_send_command(priv, &cmd);
5321 if (!batch_mode)
5322 ipw2100_enable_adapter(priv);
5324 return err;
5327 struct ipw2100_wep_key {
5328 u8 idx;
5329 u8 len;
5330 u8 key[13];
5333 /* Macros to ease up priting WEP keys */
5334 #define WEP_FMT_64 "%02X%02X%02X%02X-%02X"
5335 #define WEP_FMT_128 "%02X%02X%02X%02X-%02X%02X%02X%02X-%02X%02X%02X"
5336 #define WEP_STR_64(x) x[0],x[1],x[2],x[3],x[4]
5337 #define WEP_STR_128(x) x[0],x[1],x[2],x[3],x[4],x[5],x[6],x[7],x[8],x[9],x[10]
5340 * Set a the wep key
5342 * @priv: struct to work on
5343 * @idx: index of the key we want to set
5344 * @key: ptr to the key data to set
5345 * @len: length of the buffer at @key
5346 * @batch_mode: FIXME perform the operation in batch mode, not
5347 * disabling the device.
5349 * @returns 0 if OK, < 0 errno code on error.
5351 * Fill out a command structure with the new wep key, length an
5352 * index and send it down the wire.
5354 static int ipw2100_set_key(struct ipw2100_priv *priv,
5355 int idx, char *key, int len, int batch_mode)
5357 int keylen = len ? (len <= 5 ? 5 : 13) : 0;
5358 struct host_command cmd = {
5359 .host_command = WEP_KEY_INFO,
5360 .host_command_sequence = 0,
5361 .host_command_length = sizeof(struct ipw2100_wep_key),
5363 struct ipw2100_wep_key *wep_key = (void *)cmd.host_command_parameters;
5364 int err;
5366 IPW_DEBUG_HC("WEP_KEY_INFO: index = %d, len = %d/%d\n",
5367 idx, keylen, len);
5369 /* NOTE: We don't check cached values in case the firmware was reset
5370 * or some other problem is occurring. If the user is setting the key,
5371 * then we push the change */
5373 wep_key->idx = idx;
5374 wep_key->len = keylen;
5376 if (keylen) {
5377 memcpy(wep_key->key, key, len);
5378 memset(wep_key->key + len, 0, keylen - len);
5381 /* Will be optimized out on debug not being configured in */
5382 if (keylen == 0)
5383 IPW_DEBUG_WEP("%s: Clearing key %d\n",
5384 priv->net_dev->name, wep_key->idx);
5385 else if (keylen == 5)
5386 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_64 "\n",
5387 priv->net_dev->name, wep_key->idx, wep_key->len,
5388 WEP_STR_64(wep_key->key));
5389 else
5390 IPW_DEBUG_WEP("%s: idx: %d, len: %d key: " WEP_FMT_128
5391 "\n",
5392 priv->net_dev->name, wep_key->idx, wep_key->len,
5393 WEP_STR_128(wep_key->key));
5395 if (!batch_mode) {
5396 err = ipw2100_disable_adapter(priv);
5397 /* FIXME: IPG: shouldn't this prink be in _disable_adapter()? */
5398 if (err) {
5399 printk(KERN_ERR DRV_NAME
5400 ": %s: Could not disable adapter %d\n",
5401 priv->net_dev->name, err);
5402 return err;
5406 /* send cmd to firmware */
5407 err = ipw2100_hw_send_command(priv, &cmd);
5409 if (!batch_mode) {
5410 int err2 = ipw2100_enable_adapter(priv);
5411 if (err == 0)
5412 err = err2;
5414 return err;
5417 static int ipw2100_set_key_index(struct ipw2100_priv *priv,
5418 int idx, int batch_mode)
5420 struct host_command cmd = {
5421 .host_command = WEP_KEY_INDEX,
5422 .host_command_sequence = 0,
5423 .host_command_length = 4,
5424 .host_command_parameters = {idx},
5426 int err;
5428 IPW_DEBUG_HC("WEP_KEY_INDEX: index = %d\n", idx);
5430 if (idx < 0 || idx > 3)
5431 return -EINVAL;
5433 if (!batch_mode) {
5434 err = ipw2100_disable_adapter(priv);
5435 if (err) {
5436 printk(KERN_ERR DRV_NAME
5437 ": %s: Could not disable adapter %d\n",
5438 priv->net_dev->name, err);
5439 return err;
5443 /* send cmd to firmware */
5444 err = ipw2100_hw_send_command(priv, &cmd);
5446 if (!batch_mode)
5447 ipw2100_enable_adapter(priv);
5449 return err;
5452 static int ipw2100_configure_security(struct ipw2100_priv *priv, int batch_mode)
5454 int i, err, auth_mode, sec_level, use_group;
5456 if (!(priv->status & STATUS_RUNNING))
5457 return 0;
5459 if (!batch_mode) {
5460 err = ipw2100_disable_adapter(priv);
5461 if (err)
5462 return err;
5465 if (!priv->ieee->sec.enabled) {
5466 err =
5467 ipw2100_set_security_information(priv, IPW_AUTH_OPEN,
5468 SEC_LEVEL_0, 0, 1);
5469 } else {
5470 auth_mode = IPW_AUTH_OPEN;
5471 if (priv->ieee->sec.flags & SEC_AUTH_MODE) {
5472 if (priv->ieee->sec.auth_mode == WLAN_AUTH_SHARED_KEY)
5473 auth_mode = IPW_AUTH_SHARED;
5474 else if (priv->ieee->sec.auth_mode == WLAN_AUTH_LEAP)
5475 auth_mode = IPW_AUTH_LEAP_CISCO_ID;
5478 sec_level = SEC_LEVEL_0;
5479 if (priv->ieee->sec.flags & SEC_LEVEL)
5480 sec_level = priv->ieee->sec.level;
5482 use_group = 0;
5483 if (priv->ieee->sec.flags & SEC_UNICAST_GROUP)
5484 use_group = priv->ieee->sec.unicast_uses_group;
5486 err =
5487 ipw2100_set_security_information(priv, auth_mode, sec_level,
5488 use_group, 1);
5491 if (err)
5492 goto exit;
5494 if (priv->ieee->sec.enabled) {
5495 for (i = 0; i < 4; i++) {
5496 if (!(priv->ieee->sec.flags & (1 << i))) {
5497 memset(priv->ieee->sec.keys[i], 0, WEP_KEY_LEN);
5498 priv->ieee->sec.key_sizes[i] = 0;
5499 } else {
5500 err = ipw2100_set_key(priv, i,
5501 priv->ieee->sec.keys[i],
5502 priv->ieee->sec.
5503 key_sizes[i], 1);
5504 if (err)
5505 goto exit;
5509 ipw2100_set_key_index(priv, priv->ieee->tx_keyidx, 1);
5512 /* Always enable privacy so the Host can filter WEP packets if
5513 * encrypted data is sent up */
5514 err =
5515 ipw2100_set_wep_flags(priv,
5516 priv->ieee->sec.
5517 enabled ? IPW_PRIVACY_CAPABLE : 0, 1);
5518 if (err)
5519 goto exit;
5521 priv->status &= ~STATUS_SECURITY_UPDATED;
5523 exit:
5524 if (!batch_mode)
5525 ipw2100_enable_adapter(priv);
5527 return err;
5530 static void ipw2100_security_work(struct work_struct *work)
5532 struct ipw2100_priv *priv =
5533 container_of(work, struct ipw2100_priv, security_work.work);
5535 /* If we happen to have reconnected before we get a chance to
5536 * process this, then update the security settings--which causes
5537 * a disassociation to occur */
5538 if (!(priv->status & STATUS_ASSOCIATED) &&
5539 priv->status & STATUS_SECURITY_UPDATED)
5540 ipw2100_configure_security(priv, 0);
5543 static void shim__set_security(struct net_device *dev,
5544 struct ieee80211_security *sec)
5546 struct ipw2100_priv *priv = ieee80211_priv(dev);
5547 int i, force_update = 0;
5549 mutex_lock(&priv->action_mutex);
5550 if (!(priv->status & STATUS_INITIALIZED))
5551 goto done;
5553 for (i = 0; i < 4; i++) {
5554 if (sec->flags & (1 << i)) {
5555 priv->ieee->sec.key_sizes[i] = sec->key_sizes[i];
5556 if (sec->key_sizes[i] == 0)
5557 priv->ieee->sec.flags &= ~(1 << i);
5558 else
5559 memcpy(priv->ieee->sec.keys[i], sec->keys[i],
5560 sec->key_sizes[i]);
5561 if (sec->level == SEC_LEVEL_1) {
5562 priv->ieee->sec.flags |= (1 << i);
5563 priv->status |= STATUS_SECURITY_UPDATED;
5564 } else
5565 priv->ieee->sec.flags &= ~(1 << i);
5569 if ((sec->flags & SEC_ACTIVE_KEY) &&
5570 priv->ieee->sec.active_key != sec->active_key) {
5571 if (sec->active_key <= 3) {
5572 priv->ieee->sec.active_key = sec->active_key;
5573 priv->ieee->sec.flags |= SEC_ACTIVE_KEY;
5574 } else
5575 priv->ieee->sec.flags &= ~SEC_ACTIVE_KEY;
5577 priv->status |= STATUS_SECURITY_UPDATED;
5580 if ((sec->flags & SEC_AUTH_MODE) &&
5581 (priv->ieee->sec.auth_mode != sec->auth_mode)) {
5582 priv->ieee->sec.auth_mode = sec->auth_mode;
5583 priv->ieee->sec.flags |= SEC_AUTH_MODE;
5584 priv->status |= STATUS_SECURITY_UPDATED;
5587 if (sec->flags & SEC_ENABLED && priv->ieee->sec.enabled != sec->enabled) {
5588 priv->ieee->sec.flags |= SEC_ENABLED;
5589 priv->ieee->sec.enabled = sec->enabled;
5590 priv->status |= STATUS_SECURITY_UPDATED;
5591 force_update = 1;
5594 if (sec->flags & SEC_ENCRYPT)
5595 priv->ieee->sec.encrypt = sec->encrypt;
5597 if (sec->flags & SEC_LEVEL && priv->ieee->sec.level != sec->level) {
5598 priv->ieee->sec.level = sec->level;
5599 priv->ieee->sec.flags |= SEC_LEVEL;
5600 priv->status |= STATUS_SECURITY_UPDATED;
5603 IPW_DEBUG_WEP("Security flags: %c %c%c%c%c %c%c%c%c\n",
5604 priv->ieee->sec.flags & (1 << 8) ? '1' : '0',
5605 priv->ieee->sec.flags & (1 << 7) ? '1' : '0',
5606 priv->ieee->sec.flags & (1 << 6) ? '1' : '0',
5607 priv->ieee->sec.flags & (1 << 5) ? '1' : '0',
5608 priv->ieee->sec.flags & (1 << 4) ? '1' : '0',
5609 priv->ieee->sec.flags & (1 << 3) ? '1' : '0',
5610 priv->ieee->sec.flags & (1 << 2) ? '1' : '0',
5611 priv->ieee->sec.flags & (1 << 1) ? '1' : '0',
5612 priv->ieee->sec.flags & (1 << 0) ? '1' : '0');
5614 /* As a temporary work around to enable WPA until we figure out why
5615 * wpa_supplicant toggles the security capability of the driver, which
5616 * forces a disassocation with force_update...
5618 * if (force_update || !(priv->status & STATUS_ASSOCIATED))*/
5619 if (!(priv->status & (STATUS_ASSOCIATED | STATUS_ASSOCIATING)))
5620 ipw2100_configure_security(priv, 0);
5621 done:
5622 mutex_unlock(&priv->action_mutex);
5625 static int ipw2100_adapter_setup(struct ipw2100_priv *priv)
5627 int err;
5628 int batch_mode = 1;
5629 u8 *bssid;
5631 IPW_DEBUG_INFO("enter\n");
5633 err = ipw2100_disable_adapter(priv);
5634 if (err)
5635 return err;
5636 #ifdef CONFIG_IPW2100_MONITOR
5637 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
5638 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5639 if (err)
5640 return err;
5642 IPW_DEBUG_INFO("exit\n");
5644 return 0;
5646 #endif /* CONFIG_IPW2100_MONITOR */
5648 err = ipw2100_read_mac_address(priv);
5649 if (err)
5650 return -EIO;
5652 err = ipw2100_set_mac_address(priv, batch_mode);
5653 if (err)
5654 return err;
5656 err = ipw2100_set_port_type(priv, priv->ieee->iw_mode, batch_mode);
5657 if (err)
5658 return err;
5660 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5661 err = ipw2100_set_channel(priv, priv->channel, batch_mode);
5662 if (err)
5663 return err;
5666 err = ipw2100_system_config(priv, batch_mode);
5667 if (err)
5668 return err;
5670 err = ipw2100_set_tx_rates(priv, priv->tx_rates, batch_mode);
5671 if (err)
5672 return err;
5674 /* Default to power mode OFF */
5675 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
5676 if (err)
5677 return err;
5679 err = ipw2100_set_rts_threshold(priv, priv->rts_threshold);
5680 if (err)
5681 return err;
5683 if (priv->config & CFG_STATIC_BSSID)
5684 bssid = priv->bssid;
5685 else
5686 bssid = NULL;
5687 err = ipw2100_set_mandatory_bssid(priv, bssid, batch_mode);
5688 if (err)
5689 return err;
5691 if (priv->config & CFG_STATIC_ESSID)
5692 err = ipw2100_set_essid(priv, priv->essid, priv->essid_len,
5693 batch_mode);
5694 else
5695 err = ipw2100_set_essid(priv, NULL, 0, batch_mode);
5696 if (err)
5697 return err;
5699 err = ipw2100_configure_security(priv, batch_mode);
5700 if (err)
5701 return err;
5703 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
5704 err =
5705 ipw2100_set_ibss_beacon_interval(priv,
5706 priv->beacon_interval,
5707 batch_mode);
5708 if (err)
5709 return err;
5711 err = ipw2100_set_tx_power(priv, priv->tx_power);
5712 if (err)
5713 return err;
5717 err = ipw2100_set_fragmentation_threshold(
5718 priv, priv->frag_threshold, batch_mode);
5719 if (err)
5720 return err;
5723 IPW_DEBUG_INFO("exit\n");
5725 return 0;
5728 /*************************************************************************
5730 * EXTERNALLY CALLED METHODS
5732 *************************************************************************/
5734 /* This method is called by the network layer -- not to be confused with
5735 * ipw2100_set_mac_address() declared above called by this driver (and this
5736 * method as well) to talk to the firmware */
5737 static int ipw2100_set_address(struct net_device *dev, void *p)
5739 struct ipw2100_priv *priv = ieee80211_priv(dev);
5740 struct sockaddr *addr = p;
5741 int err = 0;
5743 if (!is_valid_ether_addr(addr->sa_data))
5744 return -EADDRNOTAVAIL;
5746 mutex_lock(&priv->action_mutex);
5748 priv->config |= CFG_CUSTOM_MAC;
5749 memcpy(priv->mac_addr, addr->sa_data, ETH_ALEN);
5751 err = ipw2100_set_mac_address(priv, 0);
5752 if (err)
5753 goto done;
5755 priv->reset_backoff = 0;
5756 mutex_unlock(&priv->action_mutex);
5757 ipw2100_reset_adapter(&priv->reset_work.work);
5758 return 0;
5760 done:
5761 mutex_unlock(&priv->action_mutex);
5762 return err;
5765 static int ipw2100_open(struct net_device *dev)
5767 struct ipw2100_priv *priv = ieee80211_priv(dev);
5768 unsigned long flags;
5769 IPW_DEBUG_INFO("dev->open\n");
5771 spin_lock_irqsave(&priv->low_lock, flags);
5772 if (priv->status & STATUS_ASSOCIATED) {
5773 netif_carrier_on(dev);
5774 netif_start_queue(dev);
5776 spin_unlock_irqrestore(&priv->low_lock, flags);
5778 return 0;
5781 static int ipw2100_close(struct net_device *dev)
5783 struct ipw2100_priv *priv = ieee80211_priv(dev);
5784 unsigned long flags;
5785 struct list_head *element;
5786 struct ipw2100_tx_packet *packet;
5788 IPW_DEBUG_INFO("enter\n");
5790 spin_lock_irqsave(&priv->low_lock, flags);
5792 if (priv->status & STATUS_ASSOCIATED)
5793 netif_carrier_off(dev);
5794 netif_stop_queue(dev);
5796 /* Flush the TX queue ... */
5797 while (!list_empty(&priv->tx_pend_list)) {
5798 element = priv->tx_pend_list.next;
5799 packet = list_entry(element, struct ipw2100_tx_packet, list);
5801 list_del(element);
5802 DEC_STAT(&priv->tx_pend_stat);
5804 ieee80211_txb_free(packet->info.d_struct.txb);
5805 packet->info.d_struct.txb = NULL;
5807 list_add_tail(element, &priv->tx_free_list);
5808 INC_STAT(&priv->tx_free_stat);
5810 spin_unlock_irqrestore(&priv->low_lock, flags);
5812 IPW_DEBUG_INFO("exit\n");
5814 return 0;
5818 * TODO: Fix this function... its just wrong
5820 static void ipw2100_tx_timeout(struct net_device *dev)
5822 struct ipw2100_priv *priv = ieee80211_priv(dev);
5824 priv->ieee->stats.tx_errors++;
5826 #ifdef CONFIG_IPW2100_MONITOR
5827 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
5828 return;
5829 #endif
5831 IPW_DEBUG_INFO("%s: TX timed out. Scheduling firmware restart.\n",
5832 dev->name);
5833 schedule_reset(priv);
5836 static int ipw2100_wpa_enable(struct ipw2100_priv *priv, int value)
5838 /* This is called when wpa_supplicant loads and closes the driver
5839 * interface. */
5840 priv->ieee->wpa_enabled = value;
5841 return 0;
5844 static int ipw2100_wpa_set_auth_algs(struct ipw2100_priv *priv, int value)
5847 struct ieee80211_device *ieee = priv->ieee;
5848 struct ieee80211_security sec = {
5849 .flags = SEC_AUTH_MODE,
5851 int ret = 0;
5853 if (value & IW_AUTH_ALG_SHARED_KEY) {
5854 sec.auth_mode = WLAN_AUTH_SHARED_KEY;
5855 ieee->open_wep = 0;
5856 } else if (value & IW_AUTH_ALG_OPEN_SYSTEM) {
5857 sec.auth_mode = WLAN_AUTH_OPEN;
5858 ieee->open_wep = 1;
5859 } else if (value & IW_AUTH_ALG_LEAP) {
5860 sec.auth_mode = WLAN_AUTH_LEAP;
5861 ieee->open_wep = 1;
5862 } else
5863 return -EINVAL;
5865 if (ieee->set_security)
5866 ieee->set_security(ieee->dev, &sec);
5867 else
5868 ret = -EOPNOTSUPP;
5870 return ret;
5873 static void ipw2100_wpa_assoc_frame(struct ipw2100_priv *priv,
5874 char *wpa_ie, int wpa_ie_len)
5877 struct ipw2100_wpa_assoc_frame frame;
5879 frame.fixed_ie_mask = 0;
5881 /* copy WPA IE */
5882 memcpy(frame.var_ie, wpa_ie, wpa_ie_len);
5883 frame.var_ie_len = wpa_ie_len;
5885 /* make sure WPA is enabled */
5886 ipw2100_wpa_enable(priv, 1);
5887 ipw2100_set_wpa_ie(priv, &frame, 0);
5890 static void ipw_ethtool_get_drvinfo(struct net_device *dev,
5891 struct ethtool_drvinfo *info)
5893 struct ipw2100_priv *priv = ieee80211_priv(dev);
5894 char fw_ver[64], ucode_ver[64];
5896 strcpy(info->driver, DRV_NAME);
5897 strcpy(info->version, DRV_VERSION);
5899 ipw2100_get_fwversion(priv, fw_ver, sizeof(fw_ver));
5900 ipw2100_get_ucodeversion(priv, ucode_ver, sizeof(ucode_ver));
5902 snprintf(info->fw_version, sizeof(info->fw_version), "%s:%d:%s",
5903 fw_ver, priv->eeprom_version, ucode_ver);
5905 strcpy(info->bus_info, pci_name(priv->pci_dev));
5908 static u32 ipw2100_ethtool_get_link(struct net_device *dev)
5910 struct ipw2100_priv *priv = ieee80211_priv(dev);
5911 return (priv->status & STATUS_ASSOCIATED) ? 1 : 0;
5914 static const struct ethtool_ops ipw2100_ethtool_ops = {
5915 .get_link = ipw2100_ethtool_get_link,
5916 .get_drvinfo = ipw_ethtool_get_drvinfo,
5919 static void ipw2100_hang_check(struct work_struct *work)
5921 struct ipw2100_priv *priv =
5922 container_of(work, struct ipw2100_priv, hang_check.work);
5923 unsigned long flags;
5924 u32 rtc = 0xa5a5a5a5;
5925 u32 len = sizeof(rtc);
5926 int restart = 0;
5928 spin_lock_irqsave(&priv->low_lock, flags);
5930 if (priv->fatal_error != 0) {
5931 /* If fatal_error is set then we need to restart */
5932 IPW_DEBUG_INFO("%s: Hardware fatal error detected.\n",
5933 priv->net_dev->name);
5935 restart = 1;
5936 } else if (ipw2100_get_ordinal(priv, IPW_ORD_RTC_TIME, &rtc, &len) ||
5937 (rtc == priv->last_rtc)) {
5938 /* Check if firmware is hung */
5939 IPW_DEBUG_INFO("%s: Firmware RTC stalled.\n",
5940 priv->net_dev->name);
5942 restart = 1;
5945 if (restart) {
5946 /* Kill timer */
5947 priv->stop_hang_check = 1;
5948 priv->hangs++;
5950 /* Restart the NIC */
5951 schedule_reset(priv);
5954 priv->last_rtc = rtc;
5956 if (!priv->stop_hang_check)
5957 queue_delayed_work(priv->workqueue, &priv->hang_check, HZ / 2);
5959 spin_unlock_irqrestore(&priv->low_lock, flags);
5962 static void ipw2100_rf_kill(struct work_struct *work)
5964 struct ipw2100_priv *priv =
5965 container_of(work, struct ipw2100_priv, rf_kill.work);
5966 unsigned long flags;
5968 spin_lock_irqsave(&priv->low_lock, flags);
5970 if (rf_kill_active(priv)) {
5971 IPW_DEBUG_RF_KILL("RF Kill active, rescheduling GPIO check\n");
5972 if (!priv->stop_rf_kill)
5973 queue_delayed_work(priv->workqueue, &priv->rf_kill, HZ);
5974 goto exit_unlock;
5977 /* RF Kill is now disabled, so bring the device back up */
5979 if (!(priv->status & STATUS_RF_KILL_MASK)) {
5980 IPW_DEBUG_RF_KILL("HW RF Kill no longer active, restarting "
5981 "device\n");
5982 schedule_reset(priv);
5983 } else
5984 IPW_DEBUG_RF_KILL("HW RF Kill deactivated. SW RF Kill still "
5985 "enabled\n");
5987 exit_unlock:
5988 spin_unlock_irqrestore(&priv->low_lock, flags);
5991 static void ipw2100_irq_tasklet(struct ipw2100_priv *priv);
5993 /* Look into using netdev destructor to shutdown ieee80211? */
5995 static struct net_device *ipw2100_alloc_device(struct pci_dev *pci_dev,
5996 void __iomem * base_addr,
5997 unsigned long mem_start,
5998 unsigned long mem_len)
6000 struct ipw2100_priv *priv;
6001 struct net_device *dev;
6003 dev = alloc_ieee80211(sizeof(struct ipw2100_priv));
6004 if (!dev)
6005 return NULL;
6006 priv = ieee80211_priv(dev);
6007 priv->ieee = netdev_priv(dev);
6008 priv->pci_dev = pci_dev;
6009 priv->net_dev = dev;
6011 priv->ieee->hard_start_xmit = ipw2100_tx;
6012 priv->ieee->set_security = shim__set_security;
6014 priv->ieee->perfect_rssi = -20;
6015 priv->ieee->worst_rssi = -85;
6017 dev->open = ipw2100_open;
6018 dev->stop = ipw2100_close;
6019 dev->init = ipw2100_net_init;
6020 dev->ethtool_ops = &ipw2100_ethtool_ops;
6021 dev->tx_timeout = ipw2100_tx_timeout;
6022 dev->wireless_handlers = &ipw2100_wx_handler_def;
6023 priv->wireless_data.ieee80211 = priv->ieee;
6024 dev->wireless_data = &priv->wireless_data;
6025 dev->set_mac_address = ipw2100_set_address;
6026 dev->watchdog_timeo = 3 * HZ;
6027 dev->irq = 0;
6029 dev->base_addr = (unsigned long)base_addr;
6030 dev->mem_start = mem_start;
6031 dev->mem_end = dev->mem_start + mem_len - 1;
6033 /* NOTE: We don't use the wireless_handlers hook
6034 * in dev as the system will start throwing WX requests
6035 * to us before we're actually initialized and it just
6036 * ends up causing problems. So, we just handle
6037 * the WX extensions through the ipw2100_ioctl interface */
6039 /* memset() puts everything to 0, so we only have explicitely set
6040 * those values that need to be something else */
6042 /* If power management is turned on, default to AUTO mode */
6043 priv->power_mode = IPW_POWER_AUTO;
6045 #ifdef CONFIG_IPW2100_MONITOR
6046 priv->config |= CFG_CRC_CHECK;
6047 #endif
6048 priv->ieee->wpa_enabled = 0;
6049 priv->ieee->drop_unencrypted = 0;
6050 priv->ieee->privacy_invoked = 0;
6051 priv->ieee->ieee802_1x = 1;
6053 /* Set module parameters */
6054 switch (mode) {
6055 case 1:
6056 priv->ieee->iw_mode = IW_MODE_ADHOC;
6057 break;
6058 #ifdef CONFIG_IPW2100_MONITOR
6059 case 2:
6060 priv->ieee->iw_mode = IW_MODE_MONITOR;
6061 break;
6062 #endif
6063 default:
6064 case 0:
6065 priv->ieee->iw_mode = IW_MODE_INFRA;
6066 break;
6069 if (disable == 1)
6070 priv->status |= STATUS_RF_KILL_SW;
6072 if (channel != 0 &&
6073 ((channel >= REG_MIN_CHANNEL) && (channel <= REG_MAX_CHANNEL))) {
6074 priv->config |= CFG_STATIC_CHANNEL;
6075 priv->channel = channel;
6078 if (associate)
6079 priv->config |= CFG_ASSOCIATE;
6081 priv->beacon_interval = DEFAULT_BEACON_INTERVAL;
6082 priv->short_retry_limit = DEFAULT_SHORT_RETRY_LIMIT;
6083 priv->long_retry_limit = DEFAULT_LONG_RETRY_LIMIT;
6084 priv->rts_threshold = DEFAULT_RTS_THRESHOLD | RTS_DISABLED;
6085 priv->frag_threshold = DEFAULT_FTS | FRAG_DISABLED;
6086 priv->tx_power = IPW_TX_POWER_DEFAULT;
6087 priv->tx_rates = DEFAULT_TX_RATES;
6089 strcpy(priv->nick, "ipw2100");
6091 spin_lock_init(&priv->low_lock);
6092 mutex_init(&priv->action_mutex);
6093 mutex_init(&priv->adapter_mutex);
6095 init_waitqueue_head(&priv->wait_command_queue);
6097 netif_carrier_off(dev);
6099 INIT_LIST_HEAD(&priv->msg_free_list);
6100 INIT_LIST_HEAD(&priv->msg_pend_list);
6101 INIT_STAT(&priv->msg_free_stat);
6102 INIT_STAT(&priv->msg_pend_stat);
6104 INIT_LIST_HEAD(&priv->tx_free_list);
6105 INIT_LIST_HEAD(&priv->tx_pend_list);
6106 INIT_STAT(&priv->tx_free_stat);
6107 INIT_STAT(&priv->tx_pend_stat);
6109 INIT_LIST_HEAD(&priv->fw_pend_list);
6110 INIT_STAT(&priv->fw_pend_stat);
6112 priv->workqueue = create_workqueue(DRV_NAME);
6114 INIT_DELAYED_WORK(&priv->reset_work, ipw2100_reset_adapter);
6115 INIT_DELAYED_WORK(&priv->security_work, ipw2100_security_work);
6116 INIT_DELAYED_WORK(&priv->wx_event_work, ipw2100_wx_event_work);
6117 INIT_DELAYED_WORK(&priv->hang_check, ipw2100_hang_check);
6118 INIT_DELAYED_WORK(&priv->rf_kill, ipw2100_rf_kill);
6120 tasklet_init(&priv->irq_tasklet, (void (*)(unsigned long))
6121 ipw2100_irq_tasklet, (unsigned long)priv);
6123 /* NOTE: We do not start the deferred work for status checks yet */
6124 priv->stop_rf_kill = 1;
6125 priv->stop_hang_check = 1;
6127 return dev;
6130 static int ipw2100_pci_init_one(struct pci_dev *pci_dev,
6131 const struct pci_device_id *ent)
6133 unsigned long mem_start, mem_len, mem_flags;
6134 void __iomem *base_addr = NULL;
6135 struct net_device *dev = NULL;
6136 struct ipw2100_priv *priv = NULL;
6137 int err = 0;
6138 int registered = 0;
6139 u32 val;
6141 IPW_DEBUG_INFO("enter\n");
6143 mem_start = pci_resource_start(pci_dev, 0);
6144 mem_len = pci_resource_len(pci_dev, 0);
6145 mem_flags = pci_resource_flags(pci_dev, 0);
6147 if ((mem_flags & IORESOURCE_MEM) != IORESOURCE_MEM) {
6148 IPW_DEBUG_INFO("weird - resource type is not memory\n");
6149 err = -ENODEV;
6150 goto fail;
6153 base_addr = ioremap_nocache(mem_start, mem_len);
6154 if (!base_addr) {
6155 printk(KERN_WARNING DRV_NAME
6156 "Error calling ioremap_nocache.\n");
6157 err = -EIO;
6158 goto fail;
6161 /* allocate and initialize our net_device */
6162 dev = ipw2100_alloc_device(pci_dev, base_addr, mem_start, mem_len);
6163 if (!dev) {
6164 printk(KERN_WARNING DRV_NAME
6165 "Error calling ipw2100_alloc_device.\n");
6166 err = -ENOMEM;
6167 goto fail;
6170 /* set up PCI mappings for device */
6171 err = pci_enable_device(pci_dev);
6172 if (err) {
6173 printk(KERN_WARNING DRV_NAME
6174 "Error calling pci_enable_device.\n");
6175 return err;
6178 priv = ieee80211_priv(dev);
6180 pci_set_master(pci_dev);
6181 pci_set_drvdata(pci_dev, priv);
6183 err = pci_set_dma_mask(pci_dev, DMA_32BIT_MASK);
6184 if (err) {
6185 printk(KERN_WARNING DRV_NAME
6186 "Error calling pci_set_dma_mask.\n");
6187 pci_disable_device(pci_dev);
6188 return err;
6191 err = pci_request_regions(pci_dev, DRV_NAME);
6192 if (err) {
6193 printk(KERN_WARNING DRV_NAME
6194 "Error calling pci_request_regions.\n");
6195 pci_disable_device(pci_dev);
6196 return err;
6199 /* We disable the RETRY_TIMEOUT register (0x41) to keep
6200 * PCI Tx retries from interfering with C3 CPU state */
6201 pci_read_config_dword(pci_dev, 0x40, &val);
6202 if ((val & 0x0000ff00) != 0)
6203 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6205 pci_set_power_state(pci_dev, PCI_D0);
6207 if (!ipw2100_hw_is_adapter_in_system(dev)) {
6208 printk(KERN_WARNING DRV_NAME
6209 "Device not found via register read.\n");
6210 err = -ENODEV;
6211 goto fail;
6214 SET_NETDEV_DEV(dev, &pci_dev->dev);
6216 /* Force interrupts to be shut off on the device */
6217 priv->status |= STATUS_INT_ENABLED;
6218 ipw2100_disable_interrupts(priv);
6220 /* Allocate and initialize the Tx/Rx queues and lists */
6221 if (ipw2100_queues_allocate(priv)) {
6222 printk(KERN_WARNING DRV_NAME
6223 "Error calling ipw2100_queues_allocate.\n");
6224 err = -ENOMEM;
6225 goto fail;
6227 ipw2100_queues_initialize(priv);
6229 err = request_irq(pci_dev->irq,
6230 ipw2100_interrupt, IRQF_SHARED, dev->name, priv);
6231 if (err) {
6232 printk(KERN_WARNING DRV_NAME
6233 "Error calling request_irq: %d.\n", pci_dev->irq);
6234 goto fail;
6236 dev->irq = pci_dev->irq;
6238 IPW_DEBUG_INFO("Attempting to register device...\n");
6240 SET_MODULE_OWNER(dev);
6242 printk(KERN_INFO DRV_NAME
6243 ": Detected Intel PRO/Wireless 2100 Network Connection\n");
6245 /* Bring up the interface. Pre 0.46, after we registered the
6246 * network device we would call ipw2100_up. This introduced a race
6247 * condition with newer hotplug configurations (network was coming
6248 * up and making calls before the device was initialized).
6250 * If we called ipw2100_up before we registered the device, then the
6251 * device name wasn't registered. So, we instead use the net_dev->init
6252 * member to call a function that then just turns and calls ipw2100_up.
6253 * net_dev->init is called after name allocation but before the
6254 * notifier chain is called */
6255 err = register_netdev(dev);
6256 if (err) {
6257 printk(KERN_WARNING DRV_NAME
6258 "Error calling register_netdev.\n");
6259 goto fail;
6262 mutex_lock(&priv->action_mutex);
6263 registered = 1;
6265 IPW_DEBUG_INFO("%s: Bound to %s\n", dev->name, pci_name(pci_dev));
6267 /* perform this after register_netdev so that dev->name is set */
6268 err = sysfs_create_group(&pci_dev->dev.kobj, &ipw2100_attribute_group);
6269 if (err)
6270 goto fail_unlock;
6272 /* If the RF Kill switch is disabled, go ahead and complete the
6273 * startup sequence */
6274 if (!(priv->status & STATUS_RF_KILL_MASK)) {
6275 /* Enable the adapter - sends HOST_COMPLETE */
6276 if (ipw2100_enable_adapter(priv)) {
6277 printk(KERN_WARNING DRV_NAME
6278 ": %s: failed in call to enable adapter.\n",
6279 priv->net_dev->name);
6280 ipw2100_hw_stop_adapter(priv);
6281 err = -EIO;
6282 goto fail_unlock;
6285 /* Start a scan . . . */
6286 ipw2100_set_scan_options(priv);
6287 ipw2100_start_scan(priv);
6290 IPW_DEBUG_INFO("exit\n");
6292 priv->status |= STATUS_INITIALIZED;
6294 mutex_unlock(&priv->action_mutex);
6296 return 0;
6298 fail_unlock:
6299 mutex_unlock(&priv->action_mutex);
6301 fail:
6302 if (dev) {
6303 if (registered)
6304 unregister_netdev(dev);
6306 ipw2100_hw_stop_adapter(priv);
6308 ipw2100_disable_interrupts(priv);
6310 if (dev->irq)
6311 free_irq(dev->irq, priv);
6313 ipw2100_kill_workqueue(priv);
6315 /* These are safe to call even if they weren't allocated */
6316 ipw2100_queues_free(priv);
6317 sysfs_remove_group(&pci_dev->dev.kobj,
6318 &ipw2100_attribute_group);
6320 free_ieee80211(dev);
6321 pci_set_drvdata(pci_dev, NULL);
6324 if (base_addr)
6325 iounmap(base_addr);
6327 pci_release_regions(pci_dev);
6328 pci_disable_device(pci_dev);
6330 return err;
6333 static void __devexit ipw2100_pci_remove_one(struct pci_dev *pci_dev)
6335 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6336 struct net_device *dev;
6338 if (priv) {
6339 mutex_lock(&priv->action_mutex);
6341 priv->status &= ~STATUS_INITIALIZED;
6343 dev = priv->net_dev;
6344 sysfs_remove_group(&pci_dev->dev.kobj,
6345 &ipw2100_attribute_group);
6347 #ifdef CONFIG_PM
6348 if (ipw2100_firmware.version)
6349 ipw2100_release_firmware(priv, &ipw2100_firmware);
6350 #endif
6351 /* Take down the hardware */
6352 ipw2100_down(priv);
6354 /* Release the mutex so that the network subsystem can
6355 * complete any needed calls into the driver... */
6356 mutex_unlock(&priv->action_mutex);
6358 /* Unregister the device first - this results in close()
6359 * being called if the device is open. If we free storage
6360 * first, then close() will crash. */
6361 unregister_netdev(dev);
6363 /* ipw2100_down will ensure that there is no more pending work
6364 * in the workqueue's, so we can safely remove them now. */
6365 ipw2100_kill_workqueue(priv);
6367 ipw2100_queues_free(priv);
6369 /* Free potential debugging firmware snapshot */
6370 ipw2100_snapshot_free(priv);
6372 if (dev->irq)
6373 free_irq(dev->irq, priv);
6375 if (dev->base_addr)
6376 iounmap((void __iomem *)dev->base_addr);
6378 free_ieee80211(dev);
6381 pci_release_regions(pci_dev);
6382 pci_disable_device(pci_dev);
6384 IPW_DEBUG_INFO("exit\n");
6387 #ifdef CONFIG_PM
6388 static int ipw2100_suspend(struct pci_dev *pci_dev, pm_message_t state)
6390 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6391 struct net_device *dev = priv->net_dev;
6393 IPW_DEBUG_INFO("%s: Going into suspend...\n", dev->name);
6395 mutex_lock(&priv->action_mutex);
6396 if (priv->status & STATUS_INITIALIZED) {
6397 /* Take down the device; powers it off, etc. */
6398 ipw2100_down(priv);
6401 /* Remove the PRESENT state of the device */
6402 netif_device_detach(dev);
6404 pci_save_state(pci_dev);
6405 pci_disable_device(pci_dev);
6406 pci_set_power_state(pci_dev, PCI_D3hot);
6408 mutex_unlock(&priv->action_mutex);
6410 return 0;
6413 static int ipw2100_resume(struct pci_dev *pci_dev)
6415 struct ipw2100_priv *priv = pci_get_drvdata(pci_dev);
6416 struct net_device *dev = priv->net_dev;
6417 int err;
6418 u32 val;
6420 if (IPW2100_PM_DISABLED)
6421 return 0;
6423 mutex_lock(&priv->action_mutex);
6425 IPW_DEBUG_INFO("%s: Coming out of suspend...\n", dev->name);
6427 pci_set_power_state(pci_dev, PCI_D0);
6428 err = pci_enable_device(pci_dev);
6429 if (err) {
6430 printk(KERN_ERR "%s: pci_enable_device failed on resume\n",
6431 dev->name);
6432 return err;
6434 pci_restore_state(pci_dev);
6437 * Suspend/Resume resets the PCI configuration space, so we have to
6438 * re-disable the RETRY_TIMEOUT register (0x41) to keep PCI Tx retries
6439 * from interfering with C3 CPU state. pci_restore_state won't help
6440 * here since it only restores the first 64 bytes pci config header.
6442 pci_read_config_dword(pci_dev, 0x40, &val);
6443 if ((val & 0x0000ff00) != 0)
6444 pci_write_config_dword(pci_dev, 0x40, val & 0xffff00ff);
6446 /* Set the device back into the PRESENT state; this will also wake
6447 * the queue of needed */
6448 netif_device_attach(dev);
6450 /* Bring the device back up */
6451 if (!(priv->status & STATUS_RF_KILL_SW))
6452 ipw2100_up(priv, 0);
6454 mutex_unlock(&priv->action_mutex);
6456 return 0;
6458 #endif
6460 #define IPW2100_DEV_ID(x) { PCI_VENDOR_ID_INTEL, 0x1043, 0x8086, x }
6462 static struct pci_device_id ipw2100_pci_id_table[] __devinitdata = {
6463 IPW2100_DEV_ID(0x2520), /* IN 2100A mPCI 3A */
6464 IPW2100_DEV_ID(0x2521), /* IN 2100A mPCI 3B */
6465 IPW2100_DEV_ID(0x2524), /* IN 2100A mPCI 3B */
6466 IPW2100_DEV_ID(0x2525), /* IN 2100A mPCI 3B */
6467 IPW2100_DEV_ID(0x2526), /* IN 2100A mPCI Gen A3 */
6468 IPW2100_DEV_ID(0x2522), /* IN 2100 mPCI 3B */
6469 IPW2100_DEV_ID(0x2523), /* IN 2100 mPCI 3A */
6470 IPW2100_DEV_ID(0x2527), /* IN 2100 mPCI 3B */
6471 IPW2100_DEV_ID(0x2528), /* IN 2100 mPCI 3B */
6472 IPW2100_DEV_ID(0x2529), /* IN 2100 mPCI 3B */
6473 IPW2100_DEV_ID(0x252B), /* IN 2100 mPCI 3A */
6474 IPW2100_DEV_ID(0x252C), /* IN 2100 mPCI 3A */
6475 IPW2100_DEV_ID(0x252D), /* IN 2100 mPCI 3A */
6477 IPW2100_DEV_ID(0x2550), /* IB 2100A mPCI 3B */
6478 IPW2100_DEV_ID(0x2551), /* IB 2100 mPCI 3B */
6479 IPW2100_DEV_ID(0x2553), /* IB 2100 mPCI 3B */
6480 IPW2100_DEV_ID(0x2554), /* IB 2100 mPCI 3B */
6481 IPW2100_DEV_ID(0x2555), /* IB 2100 mPCI 3B */
6483 IPW2100_DEV_ID(0x2560), /* DE 2100A mPCI 3A */
6484 IPW2100_DEV_ID(0x2562), /* DE 2100A mPCI 3A */
6485 IPW2100_DEV_ID(0x2563), /* DE 2100A mPCI 3A */
6486 IPW2100_DEV_ID(0x2561), /* DE 2100 mPCI 3A */
6487 IPW2100_DEV_ID(0x2565), /* DE 2100 mPCI 3A */
6488 IPW2100_DEV_ID(0x2566), /* DE 2100 mPCI 3A */
6489 IPW2100_DEV_ID(0x2567), /* DE 2100 mPCI 3A */
6491 IPW2100_DEV_ID(0x2570), /* GA 2100 mPCI 3B */
6493 IPW2100_DEV_ID(0x2580), /* TO 2100A mPCI 3B */
6494 IPW2100_DEV_ID(0x2582), /* TO 2100A mPCI 3B */
6495 IPW2100_DEV_ID(0x2583), /* TO 2100A mPCI 3B */
6496 IPW2100_DEV_ID(0x2581), /* TO 2100 mPCI 3B */
6497 IPW2100_DEV_ID(0x2585), /* TO 2100 mPCI 3B */
6498 IPW2100_DEV_ID(0x2586), /* TO 2100 mPCI 3B */
6499 IPW2100_DEV_ID(0x2587), /* TO 2100 mPCI 3B */
6501 IPW2100_DEV_ID(0x2590), /* SO 2100A mPCI 3B */
6502 IPW2100_DEV_ID(0x2592), /* SO 2100A mPCI 3B */
6503 IPW2100_DEV_ID(0x2591), /* SO 2100 mPCI 3B */
6504 IPW2100_DEV_ID(0x2593), /* SO 2100 mPCI 3B */
6505 IPW2100_DEV_ID(0x2596), /* SO 2100 mPCI 3B */
6506 IPW2100_DEV_ID(0x2598), /* SO 2100 mPCI 3B */
6508 IPW2100_DEV_ID(0x25A0), /* HP 2100 mPCI 3B */
6509 {0,},
6512 MODULE_DEVICE_TABLE(pci, ipw2100_pci_id_table);
6514 static struct pci_driver ipw2100_pci_driver = {
6515 .name = DRV_NAME,
6516 .id_table = ipw2100_pci_id_table,
6517 .probe = ipw2100_pci_init_one,
6518 .remove = __devexit_p(ipw2100_pci_remove_one),
6519 #ifdef CONFIG_PM
6520 .suspend = ipw2100_suspend,
6521 .resume = ipw2100_resume,
6522 #endif
6526 * Initialize the ipw2100 driver/module
6528 * @returns 0 if ok, < 0 errno node con error.
6530 * Note: we cannot init the /proc stuff until the PCI driver is there,
6531 * or we risk an unlikely race condition on someone accessing
6532 * uninitialized data in the PCI dev struct through /proc.
6534 static int __init ipw2100_init(void)
6536 int ret;
6538 printk(KERN_INFO DRV_NAME ": %s, %s\n", DRV_DESCRIPTION, DRV_VERSION);
6539 printk(KERN_INFO DRV_NAME ": %s\n", DRV_COPYRIGHT);
6541 ret = pci_register_driver(&ipw2100_pci_driver);
6542 if (ret)
6543 goto out;
6545 set_acceptable_latency("ipw2100", INFINITE_LATENCY);
6546 #ifdef CONFIG_IPW2100_DEBUG
6547 ipw2100_debug_level = debug;
6548 ret = driver_create_file(&ipw2100_pci_driver.driver,
6549 &driver_attr_debug_level);
6550 #endif
6552 out:
6553 return ret;
6557 * Cleanup ipw2100 driver registration
6559 static void __exit ipw2100_exit(void)
6561 /* FIXME: IPG: check that we have no instances of the devices open */
6562 #ifdef CONFIG_IPW2100_DEBUG
6563 driver_remove_file(&ipw2100_pci_driver.driver,
6564 &driver_attr_debug_level);
6565 #endif
6566 pci_unregister_driver(&ipw2100_pci_driver);
6567 remove_acceptable_latency("ipw2100");
6570 module_init(ipw2100_init);
6571 module_exit(ipw2100_exit);
6573 #define WEXT_USECHANNELS 1
6575 static const long ipw2100_frequencies[] = {
6576 2412, 2417, 2422, 2427,
6577 2432, 2437, 2442, 2447,
6578 2452, 2457, 2462, 2467,
6579 2472, 2484
6582 #define FREQ_COUNT (sizeof(ipw2100_frequencies) / \
6583 sizeof(ipw2100_frequencies[0]))
6585 static const long ipw2100_rates_11b[] = {
6586 1000000,
6587 2000000,
6588 5500000,
6589 11000000
6592 #define RATE_COUNT (sizeof(ipw2100_rates_11b) / sizeof(ipw2100_rates_11b[0]))
6594 static int ipw2100_wx_get_name(struct net_device *dev,
6595 struct iw_request_info *info,
6596 union iwreq_data *wrqu, char *extra)
6599 * This can be called at any time. No action lock required
6602 struct ipw2100_priv *priv = ieee80211_priv(dev);
6603 if (!(priv->status & STATUS_ASSOCIATED))
6604 strcpy(wrqu->name, "unassociated");
6605 else
6606 snprintf(wrqu->name, IFNAMSIZ, "IEEE 802.11b");
6608 IPW_DEBUG_WX("Name: %s\n", wrqu->name);
6609 return 0;
6612 static int ipw2100_wx_set_freq(struct net_device *dev,
6613 struct iw_request_info *info,
6614 union iwreq_data *wrqu, char *extra)
6616 struct ipw2100_priv *priv = ieee80211_priv(dev);
6617 struct iw_freq *fwrq = &wrqu->freq;
6618 int err = 0;
6620 if (priv->ieee->iw_mode == IW_MODE_INFRA)
6621 return -EOPNOTSUPP;
6623 mutex_lock(&priv->action_mutex);
6624 if (!(priv->status & STATUS_INITIALIZED)) {
6625 err = -EIO;
6626 goto done;
6629 /* if setting by freq convert to channel */
6630 if (fwrq->e == 1) {
6631 if ((fwrq->m >= (int)2.412e8 && fwrq->m <= (int)2.487e8)) {
6632 int f = fwrq->m / 100000;
6633 int c = 0;
6635 while ((c < REG_MAX_CHANNEL) &&
6636 (f != ipw2100_frequencies[c]))
6637 c++;
6639 /* hack to fall through */
6640 fwrq->e = 0;
6641 fwrq->m = c + 1;
6645 if (fwrq->e > 0 || fwrq->m > 1000) {
6646 err = -EOPNOTSUPP;
6647 goto done;
6648 } else { /* Set the channel */
6649 IPW_DEBUG_WX("SET Freq/Channel -> %d \n", fwrq->m);
6650 err = ipw2100_set_channel(priv, fwrq->m, 0);
6653 done:
6654 mutex_unlock(&priv->action_mutex);
6655 return err;
6658 static int ipw2100_wx_get_freq(struct net_device *dev,
6659 struct iw_request_info *info,
6660 union iwreq_data *wrqu, char *extra)
6663 * This can be called at any time. No action lock required
6666 struct ipw2100_priv *priv = ieee80211_priv(dev);
6668 wrqu->freq.e = 0;
6670 /* If we are associated, trying to associate, or have a statically
6671 * configured CHANNEL then return that; otherwise return ANY */
6672 if (priv->config & CFG_STATIC_CHANNEL ||
6673 priv->status & STATUS_ASSOCIATED)
6674 wrqu->freq.m = priv->channel;
6675 else
6676 wrqu->freq.m = 0;
6678 IPW_DEBUG_WX("GET Freq/Channel -> %d \n", priv->channel);
6679 return 0;
6683 static int ipw2100_wx_set_mode(struct net_device *dev,
6684 struct iw_request_info *info,
6685 union iwreq_data *wrqu, char *extra)
6687 struct ipw2100_priv *priv = ieee80211_priv(dev);
6688 int err = 0;
6690 IPW_DEBUG_WX("SET Mode -> %d \n", wrqu->mode);
6692 if (wrqu->mode == priv->ieee->iw_mode)
6693 return 0;
6695 mutex_lock(&priv->action_mutex);
6696 if (!(priv->status & STATUS_INITIALIZED)) {
6697 err = -EIO;
6698 goto done;
6701 switch (wrqu->mode) {
6702 #ifdef CONFIG_IPW2100_MONITOR
6703 case IW_MODE_MONITOR:
6704 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
6705 break;
6706 #endif /* CONFIG_IPW2100_MONITOR */
6707 case IW_MODE_ADHOC:
6708 err = ipw2100_switch_mode(priv, IW_MODE_ADHOC);
6709 break;
6710 case IW_MODE_INFRA:
6711 case IW_MODE_AUTO:
6712 default:
6713 err = ipw2100_switch_mode(priv, IW_MODE_INFRA);
6714 break;
6717 done:
6718 mutex_unlock(&priv->action_mutex);
6719 return err;
6722 static int ipw2100_wx_get_mode(struct net_device *dev,
6723 struct iw_request_info *info,
6724 union iwreq_data *wrqu, char *extra)
6727 * This can be called at any time. No action lock required
6730 struct ipw2100_priv *priv = ieee80211_priv(dev);
6732 wrqu->mode = priv->ieee->iw_mode;
6733 IPW_DEBUG_WX("GET Mode -> %d\n", wrqu->mode);
6735 return 0;
6738 #define POWER_MODES 5
6740 /* Values are in microsecond */
6741 static const s32 timeout_duration[POWER_MODES] = {
6742 350000,
6743 250000,
6744 75000,
6745 37000,
6746 25000,
6749 static const s32 period_duration[POWER_MODES] = {
6750 400000,
6751 700000,
6752 1000000,
6753 1000000,
6754 1000000
6757 static int ipw2100_wx_get_range(struct net_device *dev,
6758 struct iw_request_info *info,
6759 union iwreq_data *wrqu, char *extra)
6762 * This can be called at any time. No action lock required
6765 struct ipw2100_priv *priv = ieee80211_priv(dev);
6766 struct iw_range *range = (struct iw_range *)extra;
6767 u16 val;
6768 int i, level;
6770 wrqu->data.length = sizeof(*range);
6771 memset(range, 0, sizeof(*range));
6773 /* Let's try to keep this struct in the same order as in
6774 * linux/include/wireless.h
6777 /* TODO: See what values we can set, and remove the ones we can't
6778 * set, or fill them with some default data.
6781 /* ~5 Mb/s real (802.11b) */
6782 range->throughput = 5 * 1000 * 1000;
6784 // range->sensitivity; /* signal level threshold range */
6786 range->max_qual.qual = 100;
6787 /* TODO: Find real max RSSI and stick here */
6788 range->max_qual.level = 0;
6789 range->max_qual.noise = 0;
6790 range->max_qual.updated = 7; /* Updated all three */
6792 range->avg_qual.qual = 70; /* > 8% missed beacons is 'bad' */
6793 /* TODO: Find real 'good' to 'bad' threshol value for RSSI */
6794 range->avg_qual.level = 20 + IPW2100_RSSI_TO_DBM;
6795 range->avg_qual.noise = 0;
6796 range->avg_qual.updated = 7; /* Updated all three */
6798 range->num_bitrates = RATE_COUNT;
6800 for (i = 0; i < RATE_COUNT && i < IW_MAX_BITRATES; i++) {
6801 range->bitrate[i] = ipw2100_rates_11b[i];
6804 range->min_rts = MIN_RTS_THRESHOLD;
6805 range->max_rts = MAX_RTS_THRESHOLD;
6806 range->min_frag = MIN_FRAG_THRESHOLD;
6807 range->max_frag = MAX_FRAG_THRESHOLD;
6809 range->min_pmp = period_duration[0]; /* Minimal PM period */
6810 range->max_pmp = period_duration[POWER_MODES - 1]; /* Maximal PM period */
6811 range->min_pmt = timeout_duration[POWER_MODES - 1]; /* Minimal PM timeout */
6812 range->max_pmt = timeout_duration[0]; /* Maximal PM timeout */
6814 /* How to decode max/min PM period */
6815 range->pmp_flags = IW_POWER_PERIOD;
6816 /* How to decode max/min PM period */
6817 range->pmt_flags = IW_POWER_TIMEOUT;
6818 /* What PM options are supported */
6819 range->pm_capa = IW_POWER_TIMEOUT | IW_POWER_PERIOD;
6821 range->encoding_size[0] = 5;
6822 range->encoding_size[1] = 13; /* Different token sizes */
6823 range->num_encoding_sizes = 2; /* Number of entry in the list */
6824 range->max_encoding_tokens = WEP_KEYS; /* Max number of tokens */
6825 // range->encoding_login_index; /* token index for login token */
6827 if (priv->ieee->iw_mode == IW_MODE_ADHOC) {
6828 range->txpower_capa = IW_TXPOW_DBM;
6829 range->num_txpower = IW_MAX_TXPOWER;
6830 for (i = 0, level = (IPW_TX_POWER_MAX_DBM * 16);
6831 i < IW_MAX_TXPOWER;
6832 i++, level -=
6833 ((IPW_TX_POWER_MAX_DBM -
6834 IPW_TX_POWER_MIN_DBM) * 16) / (IW_MAX_TXPOWER - 1))
6835 range->txpower[i] = level / 16;
6836 } else {
6837 range->txpower_capa = 0;
6838 range->num_txpower = 0;
6841 /* Set the Wireless Extension versions */
6842 range->we_version_compiled = WIRELESS_EXT;
6843 range->we_version_source = 18;
6845 // range->retry_capa; /* What retry options are supported */
6846 // range->retry_flags; /* How to decode max/min retry limit */
6847 // range->r_time_flags; /* How to decode max/min retry life */
6848 // range->min_retry; /* Minimal number of retries */
6849 // range->max_retry; /* Maximal number of retries */
6850 // range->min_r_time; /* Minimal retry lifetime */
6851 // range->max_r_time; /* Maximal retry lifetime */
6853 range->num_channels = FREQ_COUNT;
6855 val = 0;
6856 for (i = 0; i < FREQ_COUNT; i++) {
6857 // TODO: Include only legal frequencies for some countries
6858 // if (local->channel_mask & (1 << i)) {
6859 range->freq[val].i = i + 1;
6860 range->freq[val].m = ipw2100_frequencies[i] * 100000;
6861 range->freq[val].e = 1;
6862 val++;
6863 // }
6864 if (val == IW_MAX_FREQUENCIES)
6865 break;
6867 range->num_frequency = val;
6869 /* Event capability (kernel + driver) */
6870 range->event_capa[0] = (IW_EVENT_CAPA_K_0 |
6871 IW_EVENT_CAPA_MASK(SIOCGIWAP));
6872 range->event_capa[1] = IW_EVENT_CAPA_K_1;
6874 range->enc_capa = IW_ENC_CAPA_WPA | IW_ENC_CAPA_WPA2 |
6875 IW_ENC_CAPA_CIPHER_TKIP | IW_ENC_CAPA_CIPHER_CCMP;
6877 IPW_DEBUG_WX("GET Range\n");
6879 return 0;
6882 static int ipw2100_wx_set_wap(struct net_device *dev,
6883 struct iw_request_info *info,
6884 union iwreq_data *wrqu, char *extra)
6886 struct ipw2100_priv *priv = ieee80211_priv(dev);
6887 int err = 0;
6889 static const unsigned char any[] = {
6890 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
6892 static const unsigned char off[] = {
6893 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
6896 // sanity checks
6897 if (wrqu->ap_addr.sa_family != ARPHRD_ETHER)
6898 return -EINVAL;
6900 mutex_lock(&priv->action_mutex);
6901 if (!(priv->status & STATUS_INITIALIZED)) {
6902 err = -EIO;
6903 goto done;
6906 if (!memcmp(any, wrqu->ap_addr.sa_data, ETH_ALEN) ||
6907 !memcmp(off, wrqu->ap_addr.sa_data, ETH_ALEN)) {
6908 /* we disable mandatory BSSID association */
6909 IPW_DEBUG_WX("exit - disable mandatory BSSID\n");
6910 priv->config &= ~CFG_STATIC_BSSID;
6911 err = ipw2100_set_mandatory_bssid(priv, NULL, 0);
6912 goto done;
6915 priv->config |= CFG_STATIC_BSSID;
6916 memcpy(priv->mandatory_bssid_mac, wrqu->ap_addr.sa_data, ETH_ALEN);
6918 err = ipw2100_set_mandatory_bssid(priv, wrqu->ap_addr.sa_data, 0);
6920 IPW_DEBUG_WX("SET BSSID -> %02X:%02X:%02X:%02X:%02X:%02X\n",
6921 wrqu->ap_addr.sa_data[0] & 0xff,
6922 wrqu->ap_addr.sa_data[1] & 0xff,
6923 wrqu->ap_addr.sa_data[2] & 0xff,
6924 wrqu->ap_addr.sa_data[3] & 0xff,
6925 wrqu->ap_addr.sa_data[4] & 0xff,
6926 wrqu->ap_addr.sa_data[5] & 0xff);
6928 done:
6929 mutex_unlock(&priv->action_mutex);
6930 return err;
6933 static int ipw2100_wx_get_wap(struct net_device *dev,
6934 struct iw_request_info *info,
6935 union iwreq_data *wrqu, char *extra)
6938 * This can be called at any time. No action lock required
6941 struct ipw2100_priv *priv = ieee80211_priv(dev);
6943 /* If we are associated, trying to associate, or have a statically
6944 * configured BSSID then return that; otherwise return ANY */
6945 if (priv->config & CFG_STATIC_BSSID || priv->status & STATUS_ASSOCIATED) {
6946 wrqu->ap_addr.sa_family = ARPHRD_ETHER;
6947 memcpy(wrqu->ap_addr.sa_data, priv->bssid, ETH_ALEN);
6948 } else
6949 memset(wrqu->ap_addr.sa_data, 0, ETH_ALEN);
6951 IPW_DEBUG_WX("Getting WAP BSSID: " MAC_FMT "\n",
6952 MAC_ARG(wrqu->ap_addr.sa_data));
6953 return 0;
6956 static int ipw2100_wx_set_essid(struct net_device *dev,
6957 struct iw_request_info *info,
6958 union iwreq_data *wrqu, char *extra)
6960 struct ipw2100_priv *priv = ieee80211_priv(dev);
6961 char *essid = ""; /* ANY */
6962 int length = 0;
6963 int err = 0;
6965 mutex_lock(&priv->action_mutex);
6966 if (!(priv->status & STATUS_INITIALIZED)) {
6967 err = -EIO;
6968 goto done;
6971 if (wrqu->essid.flags && wrqu->essid.length) {
6972 length = wrqu->essid.length;
6973 essid = extra;
6976 if (length == 0) {
6977 IPW_DEBUG_WX("Setting ESSID to ANY\n");
6978 priv->config &= ~CFG_STATIC_ESSID;
6979 err = ipw2100_set_essid(priv, NULL, 0, 0);
6980 goto done;
6983 length = min(length, IW_ESSID_MAX_SIZE);
6985 priv->config |= CFG_STATIC_ESSID;
6987 if (priv->essid_len == length && !memcmp(priv->essid, extra, length)) {
6988 IPW_DEBUG_WX("ESSID set to current ESSID.\n");
6989 err = 0;
6990 goto done;
6993 IPW_DEBUG_WX("Setting ESSID: '%s' (%d)\n", escape_essid(essid, length),
6994 length);
6996 priv->essid_len = length;
6997 memcpy(priv->essid, essid, priv->essid_len);
6999 err = ipw2100_set_essid(priv, essid, length, 0);
7001 done:
7002 mutex_unlock(&priv->action_mutex);
7003 return err;
7006 static int ipw2100_wx_get_essid(struct net_device *dev,
7007 struct iw_request_info *info,
7008 union iwreq_data *wrqu, char *extra)
7011 * This can be called at any time. No action lock required
7014 struct ipw2100_priv *priv = ieee80211_priv(dev);
7016 /* If we are associated, trying to associate, or have a statically
7017 * configured ESSID then return that; otherwise return ANY */
7018 if (priv->config & CFG_STATIC_ESSID || priv->status & STATUS_ASSOCIATED) {
7019 IPW_DEBUG_WX("Getting essid: '%s'\n",
7020 escape_essid(priv->essid, priv->essid_len));
7021 memcpy(extra, priv->essid, priv->essid_len);
7022 wrqu->essid.length = priv->essid_len;
7023 wrqu->essid.flags = 1; /* active */
7024 } else {
7025 IPW_DEBUG_WX("Getting essid: ANY\n");
7026 wrqu->essid.length = 0;
7027 wrqu->essid.flags = 0; /* active */
7030 return 0;
7033 static int ipw2100_wx_set_nick(struct net_device *dev,
7034 struct iw_request_info *info,
7035 union iwreq_data *wrqu, char *extra)
7038 * This can be called at any time. No action lock required
7041 struct ipw2100_priv *priv = ieee80211_priv(dev);
7043 if (wrqu->data.length > IW_ESSID_MAX_SIZE)
7044 return -E2BIG;
7046 wrqu->data.length = min((size_t) wrqu->data.length, sizeof(priv->nick));
7047 memset(priv->nick, 0, sizeof(priv->nick));
7048 memcpy(priv->nick, extra, wrqu->data.length);
7050 IPW_DEBUG_WX("SET Nickname -> %s \n", priv->nick);
7052 return 0;
7055 static int ipw2100_wx_get_nick(struct net_device *dev,
7056 struct iw_request_info *info,
7057 union iwreq_data *wrqu, char *extra)
7060 * This can be called at any time. No action lock required
7063 struct ipw2100_priv *priv = ieee80211_priv(dev);
7065 wrqu->data.length = strlen(priv->nick);
7066 memcpy(extra, priv->nick, wrqu->data.length);
7067 wrqu->data.flags = 1; /* active */
7069 IPW_DEBUG_WX("GET Nickname -> %s \n", extra);
7071 return 0;
7074 static int ipw2100_wx_set_rate(struct net_device *dev,
7075 struct iw_request_info *info,
7076 union iwreq_data *wrqu, char *extra)
7078 struct ipw2100_priv *priv = ieee80211_priv(dev);
7079 u32 target_rate = wrqu->bitrate.value;
7080 u32 rate;
7081 int err = 0;
7083 mutex_lock(&priv->action_mutex);
7084 if (!(priv->status & STATUS_INITIALIZED)) {
7085 err = -EIO;
7086 goto done;
7089 rate = 0;
7091 if (target_rate == 1000000 ||
7092 (!wrqu->bitrate.fixed && target_rate > 1000000))
7093 rate |= TX_RATE_1_MBIT;
7094 if (target_rate == 2000000 ||
7095 (!wrqu->bitrate.fixed && target_rate > 2000000))
7096 rate |= TX_RATE_2_MBIT;
7097 if (target_rate == 5500000 ||
7098 (!wrqu->bitrate.fixed && target_rate > 5500000))
7099 rate |= TX_RATE_5_5_MBIT;
7100 if (target_rate == 11000000 ||
7101 (!wrqu->bitrate.fixed && target_rate > 11000000))
7102 rate |= TX_RATE_11_MBIT;
7103 if (rate == 0)
7104 rate = DEFAULT_TX_RATES;
7106 err = ipw2100_set_tx_rates(priv, rate, 0);
7108 IPW_DEBUG_WX("SET Rate -> %04X \n", rate);
7109 done:
7110 mutex_unlock(&priv->action_mutex);
7111 return err;
7114 static int ipw2100_wx_get_rate(struct net_device *dev,
7115 struct iw_request_info *info,
7116 union iwreq_data *wrqu, char *extra)
7118 struct ipw2100_priv *priv = ieee80211_priv(dev);
7119 int val;
7120 int len = sizeof(val);
7121 int err = 0;
7123 if (!(priv->status & STATUS_ENABLED) ||
7124 priv->status & STATUS_RF_KILL_MASK ||
7125 !(priv->status & STATUS_ASSOCIATED)) {
7126 wrqu->bitrate.value = 0;
7127 return 0;
7130 mutex_lock(&priv->action_mutex);
7131 if (!(priv->status & STATUS_INITIALIZED)) {
7132 err = -EIO;
7133 goto done;
7136 err = ipw2100_get_ordinal(priv, IPW_ORD_CURRENT_TX_RATE, &val, &len);
7137 if (err) {
7138 IPW_DEBUG_WX("failed querying ordinals.\n");
7139 return err;
7142 switch (val & TX_RATE_MASK) {
7143 case TX_RATE_1_MBIT:
7144 wrqu->bitrate.value = 1000000;
7145 break;
7146 case TX_RATE_2_MBIT:
7147 wrqu->bitrate.value = 2000000;
7148 break;
7149 case TX_RATE_5_5_MBIT:
7150 wrqu->bitrate.value = 5500000;
7151 break;
7152 case TX_RATE_11_MBIT:
7153 wrqu->bitrate.value = 11000000;
7154 break;
7155 default:
7156 wrqu->bitrate.value = 0;
7159 IPW_DEBUG_WX("GET Rate -> %d \n", wrqu->bitrate.value);
7161 done:
7162 mutex_unlock(&priv->action_mutex);
7163 return err;
7166 static int ipw2100_wx_set_rts(struct net_device *dev,
7167 struct iw_request_info *info,
7168 union iwreq_data *wrqu, char *extra)
7170 struct ipw2100_priv *priv = ieee80211_priv(dev);
7171 int value, err;
7173 /* Auto RTS not yet supported */
7174 if (wrqu->rts.fixed == 0)
7175 return -EINVAL;
7177 mutex_lock(&priv->action_mutex);
7178 if (!(priv->status & STATUS_INITIALIZED)) {
7179 err = -EIO;
7180 goto done;
7183 if (wrqu->rts.disabled)
7184 value = priv->rts_threshold | RTS_DISABLED;
7185 else {
7186 if (wrqu->rts.value < 1 || wrqu->rts.value > 2304) {
7187 err = -EINVAL;
7188 goto done;
7190 value = wrqu->rts.value;
7193 err = ipw2100_set_rts_threshold(priv, value);
7195 IPW_DEBUG_WX("SET RTS Threshold -> 0x%08X \n", value);
7196 done:
7197 mutex_unlock(&priv->action_mutex);
7198 return err;
7201 static int ipw2100_wx_get_rts(struct net_device *dev,
7202 struct iw_request_info *info,
7203 union iwreq_data *wrqu, char *extra)
7206 * This can be called at any time. No action lock required
7209 struct ipw2100_priv *priv = ieee80211_priv(dev);
7211 wrqu->rts.value = priv->rts_threshold & ~RTS_DISABLED;
7212 wrqu->rts.fixed = 1; /* no auto select */
7214 /* If RTS is set to the default value, then it is disabled */
7215 wrqu->rts.disabled = (priv->rts_threshold & RTS_DISABLED) ? 1 : 0;
7217 IPW_DEBUG_WX("GET RTS Threshold -> 0x%08X \n", wrqu->rts.value);
7219 return 0;
7222 static int ipw2100_wx_set_txpow(struct net_device *dev,
7223 struct iw_request_info *info,
7224 union iwreq_data *wrqu, char *extra)
7226 struct ipw2100_priv *priv = ieee80211_priv(dev);
7227 int err = 0, value;
7229 if (ipw_radio_kill_sw(priv, wrqu->txpower.disabled))
7230 return -EINPROGRESS;
7232 if (priv->ieee->iw_mode != IW_MODE_ADHOC)
7233 return 0;
7235 if ((wrqu->txpower.flags & IW_TXPOW_TYPE) != IW_TXPOW_DBM)
7236 return -EINVAL;
7238 if (wrqu->txpower.fixed == 0)
7239 value = IPW_TX_POWER_DEFAULT;
7240 else {
7241 if (wrqu->txpower.value < IPW_TX_POWER_MIN_DBM ||
7242 wrqu->txpower.value > IPW_TX_POWER_MAX_DBM)
7243 return -EINVAL;
7245 value = wrqu->txpower.value;
7248 mutex_lock(&priv->action_mutex);
7249 if (!(priv->status & STATUS_INITIALIZED)) {
7250 err = -EIO;
7251 goto done;
7254 err = ipw2100_set_tx_power(priv, value);
7256 IPW_DEBUG_WX("SET TX Power -> %d \n", value);
7258 done:
7259 mutex_unlock(&priv->action_mutex);
7260 return err;
7263 static int ipw2100_wx_get_txpow(struct net_device *dev,
7264 struct iw_request_info *info,
7265 union iwreq_data *wrqu, char *extra)
7268 * This can be called at any time. No action lock required
7271 struct ipw2100_priv *priv = ieee80211_priv(dev);
7273 wrqu->txpower.disabled = (priv->status & STATUS_RF_KILL_MASK) ? 1 : 0;
7275 if (priv->tx_power == IPW_TX_POWER_DEFAULT) {
7276 wrqu->txpower.fixed = 0;
7277 wrqu->txpower.value = IPW_TX_POWER_MAX_DBM;
7278 } else {
7279 wrqu->txpower.fixed = 1;
7280 wrqu->txpower.value = priv->tx_power;
7283 wrqu->txpower.flags = IW_TXPOW_DBM;
7285 IPW_DEBUG_WX("GET TX Power -> %d \n", wrqu->txpower.value);
7287 return 0;
7290 static int ipw2100_wx_set_frag(struct net_device *dev,
7291 struct iw_request_info *info,
7292 union iwreq_data *wrqu, char *extra)
7295 * This can be called at any time. No action lock required
7298 struct ipw2100_priv *priv = ieee80211_priv(dev);
7300 if (!wrqu->frag.fixed)
7301 return -EINVAL;
7303 if (wrqu->frag.disabled) {
7304 priv->frag_threshold |= FRAG_DISABLED;
7305 priv->ieee->fts = DEFAULT_FTS;
7306 } else {
7307 if (wrqu->frag.value < MIN_FRAG_THRESHOLD ||
7308 wrqu->frag.value > MAX_FRAG_THRESHOLD)
7309 return -EINVAL;
7311 priv->ieee->fts = wrqu->frag.value & ~0x1;
7312 priv->frag_threshold = priv->ieee->fts;
7315 IPW_DEBUG_WX("SET Frag Threshold -> %d \n", priv->ieee->fts);
7317 return 0;
7320 static int ipw2100_wx_get_frag(struct net_device *dev,
7321 struct iw_request_info *info,
7322 union iwreq_data *wrqu, char *extra)
7325 * This can be called at any time. No action lock required
7328 struct ipw2100_priv *priv = ieee80211_priv(dev);
7329 wrqu->frag.value = priv->frag_threshold & ~FRAG_DISABLED;
7330 wrqu->frag.fixed = 0; /* no auto select */
7331 wrqu->frag.disabled = (priv->frag_threshold & FRAG_DISABLED) ? 1 : 0;
7333 IPW_DEBUG_WX("GET Frag Threshold -> %d \n", wrqu->frag.value);
7335 return 0;
7338 static int ipw2100_wx_set_retry(struct net_device *dev,
7339 struct iw_request_info *info,
7340 union iwreq_data *wrqu, char *extra)
7342 struct ipw2100_priv *priv = ieee80211_priv(dev);
7343 int err = 0;
7345 if (wrqu->retry.flags & IW_RETRY_LIFETIME || wrqu->retry.disabled)
7346 return -EINVAL;
7348 if (!(wrqu->retry.flags & IW_RETRY_LIMIT))
7349 return 0;
7351 mutex_lock(&priv->action_mutex);
7352 if (!(priv->status & STATUS_INITIALIZED)) {
7353 err = -EIO;
7354 goto done;
7357 if (wrqu->retry.flags & IW_RETRY_SHORT) {
7358 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7359 IPW_DEBUG_WX("SET Short Retry Limit -> %d \n",
7360 wrqu->retry.value);
7361 goto done;
7364 if (wrqu->retry.flags & IW_RETRY_LONG) {
7365 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7366 IPW_DEBUG_WX("SET Long Retry Limit -> %d \n",
7367 wrqu->retry.value);
7368 goto done;
7371 err = ipw2100_set_short_retry(priv, wrqu->retry.value);
7372 if (!err)
7373 err = ipw2100_set_long_retry(priv, wrqu->retry.value);
7375 IPW_DEBUG_WX("SET Both Retry Limits -> %d \n", wrqu->retry.value);
7377 done:
7378 mutex_unlock(&priv->action_mutex);
7379 return err;
7382 static int ipw2100_wx_get_retry(struct net_device *dev,
7383 struct iw_request_info *info,
7384 union iwreq_data *wrqu, char *extra)
7387 * This can be called at any time. No action lock required
7390 struct ipw2100_priv *priv = ieee80211_priv(dev);
7392 wrqu->retry.disabled = 0; /* can't be disabled */
7394 if ((wrqu->retry.flags & IW_RETRY_TYPE) == IW_RETRY_LIFETIME)
7395 return -EINVAL;
7397 if (wrqu->retry.flags & IW_RETRY_LONG) {
7398 wrqu->retry.flags = IW_RETRY_LIMIT | IW_RETRY_LONG;
7399 wrqu->retry.value = priv->long_retry_limit;
7400 } else {
7401 wrqu->retry.flags =
7402 (priv->short_retry_limit !=
7403 priv->long_retry_limit) ?
7404 IW_RETRY_LIMIT | IW_RETRY_SHORT : IW_RETRY_LIMIT;
7406 wrqu->retry.value = priv->short_retry_limit;
7409 IPW_DEBUG_WX("GET Retry -> %d \n", wrqu->retry.value);
7411 return 0;
7414 static int ipw2100_wx_set_scan(struct net_device *dev,
7415 struct iw_request_info *info,
7416 union iwreq_data *wrqu, char *extra)
7418 struct ipw2100_priv *priv = ieee80211_priv(dev);
7419 int err = 0;
7421 mutex_lock(&priv->action_mutex);
7422 if (!(priv->status & STATUS_INITIALIZED)) {
7423 err = -EIO;
7424 goto done;
7427 IPW_DEBUG_WX("Initiating scan...\n");
7428 if (ipw2100_set_scan_options(priv) || ipw2100_start_scan(priv)) {
7429 IPW_DEBUG_WX("Start scan failed.\n");
7431 /* TODO: Mark a scan as pending so when hardware initialized
7432 * a scan starts */
7435 done:
7436 mutex_unlock(&priv->action_mutex);
7437 return err;
7440 static int ipw2100_wx_get_scan(struct net_device *dev,
7441 struct iw_request_info *info,
7442 union iwreq_data *wrqu, char *extra)
7445 * This can be called at any time. No action lock required
7448 struct ipw2100_priv *priv = ieee80211_priv(dev);
7449 return ieee80211_wx_get_scan(priv->ieee, info, wrqu, extra);
7453 * Implementation based on code in hostap-driver v0.1.3 hostap_ioctl.c
7455 static int ipw2100_wx_set_encode(struct net_device *dev,
7456 struct iw_request_info *info,
7457 union iwreq_data *wrqu, char *key)
7460 * No check of STATUS_INITIALIZED required
7463 struct ipw2100_priv *priv = ieee80211_priv(dev);
7464 return ieee80211_wx_set_encode(priv->ieee, info, wrqu, key);
7467 static int ipw2100_wx_get_encode(struct net_device *dev,
7468 struct iw_request_info *info,
7469 union iwreq_data *wrqu, char *key)
7472 * This can be called at any time. No action lock required
7475 struct ipw2100_priv *priv = ieee80211_priv(dev);
7476 return ieee80211_wx_get_encode(priv->ieee, info, wrqu, key);
7479 static int ipw2100_wx_set_power(struct net_device *dev,
7480 struct iw_request_info *info,
7481 union iwreq_data *wrqu, char *extra)
7483 struct ipw2100_priv *priv = ieee80211_priv(dev);
7484 int err = 0;
7486 mutex_lock(&priv->action_mutex);
7487 if (!(priv->status & STATUS_INITIALIZED)) {
7488 err = -EIO;
7489 goto done;
7492 if (wrqu->power.disabled) {
7493 priv->power_mode = IPW_POWER_LEVEL(priv->power_mode);
7494 err = ipw2100_set_power_mode(priv, IPW_POWER_MODE_CAM);
7495 IPW_DEBUG_WX("SET Power Management Mode -> off\n");
7496 goto done;
7499 switch (wrqu->power.flags & IW_POWER_MODE) {
7500 case IW_POWER_ON: /* If not specified */
7501 case IW_POWER_MODE: /* If set all mask */
7502 case IW_POWER_ALL_R: /* If explicitely state all */
7503 break;
7504 default: /* Otherwise we don't support it */
7505 IPW_DEBUG_WX("SET PM Mode: %X not supported.\n",
7506 wrqu->power.flags);
7507 err = -EOPNOTSUPP;
7508 goto done;
7511 /* If the user hasn't specified a power management mode yet, default
7512 * to BATTERY */
7513 priv->power_mode = IPW_POWER_ENABLED | priv->power_mode;
7514 err = ipw2100_set_power_mode(priv, IPW_POWER_LEVEL(priv->power_mode));
7516 IPW_DEBUG_WX("SET Power Management Mode -> 0x%02X\n", priv->power_mode);
7518 done:
7519 mutex_unlock(&priv->action_mutex);
7520 return err;
7524 static int ipw2100_wx_get_power(struct net_device *dev,
7525 struct iw_request_info *info,
7526 union iwreq_data *wrqu, char *extra)
7529 * This can be called at any time. No action lock required
7532 struct ipw2100_priv *priv = ieee80211_priv(dev);
7534 if (!(priv->power_mode & IPW_POWER_ENABLED))
7535 wrqu->power.disabled = 1;
7536 else {
7537 wrqu->power.disabled = 0;
7538 wrqu->power.flags = 0;
7541 IPW_DEBUG_WX("GET Power Management Mode -> %02X\n", priv->power_mode);
7543 return 0;
7547 * WE-18 WPA support
7550 /* SIOCSIWGENIE */
7551 static int ipw2100_wx_set_genie(struct net_device *dev,
7552 struct iw_request_info *info,
7553 union iwreq_data *wrqu, char *extra)
7556 struct ipw2100_priv *priv = ieee80211_priv(dev);
7557 struct ieee80211_device *ieee = priv->ieee;
7558 u8 *buf;
7560 if (!ieee->wpa_enabled)
7561 return -EOPNOTSUPP;
7563 if (wrqu->data.length > MAX_WPA_IE_LEN ||
7564 (wrqu->data.length && extra == NULL))
7565 return -EINVAL;
7567 if (wrqu->data.length) {
7568 buf = kmemdup(extra, wrqu->data.length, GFP_KERNEL);
7569 if (buf == NULL)
7570 return -ENOMEM;
7572 kfree(ieee->wpa_ie);
7573 ieee->wpa_ie = buf;
7574 ieee->wpa_ie_len = wrqu->data.length;
7575 } else {
7576 kfree(ieee->wpa_ie);
7577 ieee->wpa_ie = NULL;
7578 ieee->wpa_ie_len = 0;
7581 ipw2100_wpa_assoc_frame(priv, ieee->wpa_ie, ieee->wpa_ie_len);
7583 return 0;
7586 /* SIOCGIWGENIE */
7587 static int ipw2100_wx_get_genie(struct net_device *dev,
7588 struct iw_request_info *info,
7589 union iwreq_data *wrqu, char *extra)
7591 struct ipw2100_priv *priv = ieee80211_priv(dev);
7592 struct ieee80211_device *ieee = priv->ieee;
7594 if (ieee->wpa_ie_len == 0 || ieee->wpa_ie == NULL) {
7595 wrqu->data.length = 0;
7596 return 0;
7599 if (wrqu->data.length < ieee->wpa_ie_len)
7600 return -E2BIG;
7602 wrqu->data.length = ieee->wpa_ie_len;
7603 memcpy(extra, ieee->wpa_ie, ieee->wpa_ie_len);
7605 return 0;
7608 /* SIOCSIWAUTH */
7609 static int ipw2100_wx_set_auth(struct net_device *dev,
7610 struct iw_request_info *info,
7611 union iwreq_data *wrqu, char *extra)
7613 struct ipw2100_priv *priv = ieee80211_priv(dev);
7614 struct ieee80211_device *ieee = priv->ieee;
7615 struct iw_param *param = &wrqu->param;
7616 struct ieee80211_crypt_data *crypt;
7617 unsigned long flags;
7618 int ret = 0;
7620 switch (param->flags & IW_AUTH_INDEX) {
7621 case IW_AUTH_WPA_VERSION:
7622 case IW_AUTH_CIPHER_PAIRWISE:
7623 case IW_AUTH_CIPHER_GROUP:
7624 case IW_AUTH_KEY_MGMT:
7626 * ipw2200 does not use these parameters
7628 break;
7630 case IW_AUTH_TKIP_COUNTERMEASURES:
7631 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7632 if (!crypt || !crypt->ops->set_flags || !crypt->ops->get_flags)
7633 break;
7635 flags = crypt->ops->get_flags(crypt->priv);
7637 if (param->value)
7638 flags |= IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7639 else
7640 flags &= ~IEEE80211_CRYPTO_TKIP_COUNTERMEASURES;
7642 crypt->ops->set_flags(flags, crypt->priv);
7644 break;
7646 case IW_AUTH_DROP_UNENCRYPTED:{
7647 /* HACK:
7649 * wpa_supplicant calls set_wpa_enabled when the driver
7650 * is loaded and unloaded, regardless of if WPA is being
7651 * used. No other calls are made which can be used to
7652 * determine if encryption will be used or not prior to
7653 * association being expected. If encryption is not being
7654 * used, drop_unencrypted is set to false, else true -- we
7655 * can use this to determine if the CAP_PRIVACY_ON bit should
7656 * be set.
7658 struct ieee80211_security sec = {
7659 .flags = SEC_ENABLED,
7660 .enabled = param->value,
7662 priv->ieee->drop_unencrypted = param->value;
7663 /* We only change SEC_LEVEL for open mode. Others
7664 * are set by ipw_wpa_set_encryption.
7666 if (!param->value) {
7667 sec.flags |= SEC_LEVEL;
7668 sec.level = SEC_LEVEL_0;
7669 } else {
7670 sec.flags |= SEC_LEVEL;
7671 sec.level = SEC_LEVEL_1;
7673 if (priv->ieee->set_security)
7674 priv->ieee->set_security(priv->ieee->dev, &sec);
7675 break;
7678 case IW_AUTH_80211_AUTH_ALG:
7679 ret = ipw2100_wpa_set_auth_algs(priv, param->value);
7680 break;
7682 case IW_AUTH_WPA_ENABLED:
7683 ret = ipw2100_wpa_enable(priv, param->value);
7684 break;
7686 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7687 ieee->ieee802_1x = param->value;
7688 break;
7690 //case IW_AUTH_ROAMING_CONTROL:
7691 case IW_AUTH_PRIVACY_INVOKED:
7692 ieee->privacy_invoked = param->value;
7693 break;
7695 default:
7696 return -EOPNOTSUPP;
7698 return ret;
7701 /* SIOCGIWAUTH */
7702 static int ipw2100_wx_get_auth(struct net_device *dev,
7703 struct iw_request_info *info,
7704 union iwreq_data *wrqu, char *extra)
7706 struct ipw2100_priv *priv = ieee80211_priv(dev);
7707 struct ieee80211_device *ieee = priv->ieee;
7708 struct ieee80211_crypt_data *crypt;
7709 struct iw_param *param = &wrqu->param;
7710 int ret = 0;
7712 switch (param->flags & IW_AUTH_INDEX) {
7713 case IW_AUTH_WPA_VERSION:
7714 case IW_AUTH_CIPHER_PAIRWISE:
7715 case IW_AUTH_CIPHER_GROUP:
7716 case IW_AUTH_KEY_MGMT:
7718 * wpa_supplicant will control these internally
7720 ret = -EOPNOTSUPP;
7721 break;
7723 case IW_AUTH_TKIP_COUNTERMEASURES:
7724 crypt = priv->ieee->crypt[priv->ieee->tx_keyidx];
7725 if (!crypt || !crypt->ops->get_flags) {
7726 IPW_DEBUG_WARNING("Can't get TKIP countermeasures: "
7727 "crypt not set!\n");
7728 break;
7731 param->value = (crypt->ops->get_flags(crypt->priv) &
7732 IEEE80211_CRYPTO_TKIP_COUNTERMEASURES) ? 1 : 0;
7734 break;
7736 case IW_AUTH_DROP_UNENCRYPTED:
7737 param->value = ieee->drop_unencrypted;
7738 break;
7740 case IW_AUTH_80211_AUTH_ALG:
7741 param->value = priv->ieee->sec.auth_mode;
7742 break;
7744 case IW_AUTH_WPA_ENABLED:
7745 param->value = ieee->wpa_enabled;
7746 break;
7748 case IW_AUTH_RX_UNENCRYPTED_EAPOL:
7749 param->value = ieee->ieee802_1x;
7750 break;
7752 case IW_AUTH_ROAMING_CONTROL:
7753 case IW_AUTH_PRIVACY_INVOKED:
7754 param->value = ieee->privacy_invoked;
7755 break;
7757 default:
7758 return -EOPNOTSUPP;
7760 return 0;
7763 /* SIOCSIWENCODEEXT */
7764 static int ipw2100_wx_set_encodeext(struct net_device *dev,
7765 struct iw_request_info *info,
7766 union iwreq_data *wrqu, char *extra)
7768 struct ipw2100_priv *priv = ieee80211_priv(dev);
7769 return ieee80211_wx_set_encodeext(priv->ieee, info, wrqu, extra);
7772 /* SIOCGIWENCODEEXT */
7773 static int ipw2100_wx_get_encodeext(struct net_device *dev,
7774 struct iw_request_info *info,
7775 union iwreq_data *wrqu, char *extra)
7777 struct ipw2100_priv *priv = ieee80211_priv(dev);
7778 return ieee80211_wx_get_encodeext(priv->ieee, info, wrqu, extra);
7781 /* SIOCSIWMLME */
7782 static int ipw2100_wx_set_mlme(struct net_device *dev,
7783 struct iw_request_info *info,
7784 union iwreq_data *wrqu, char *extra)
7786 struct ipw2100_priv *priv = ieee80211_priv(dev);
7787 struct iw_mlme *mlme = (struct iw_mlme *)extra;
7788 u16 reason;
7790 reason = cpu_to_le16(mlme->reason_code);
7792 switch (mlme->cmd) {
7793 case IW_MLME_DEAUTH:
7794 // silently ignore
7795 break;
7797 case IW_MLME_DISASSOC:
7798 ipw2100_disassociate_bssid(priv);
7799 break;
7801 default:
7802 return -EOPNOTSUPP;
7804 return 0;
7809 * IWPRIV handlers
7812 #ifdef CONFIG_IPW2100_MONITOR
7813 static int ipw2100_wx_set_promisc(struct net_device *dev,
7814 struct iw_request_info *info,
7815 union iwreq_data *wrqu, char *extra)
7817 struct ipw2100_priv *priv = ieee80211_priv(dev);
7818 int *parms = (int *)extra;
7819 int enable = (parms[0] > 0);
7820 int err = 0;
7822 mutex_lock(&priv->action_mutex);
7823 if (!(priv->status & STATUS_INITIALIZED)) {
7824 err = -EIO;
7825 goto done;
7828 if (enable) {
7829 if (priv->ieee->iw_mode == IW_MODE_MONITOR) {
7830 err = ipw2100_set_channel(priv, parms[1], 0);
7831 goto done;
7833 priv->channel = parms[1];
7834 err = ipw2100_switch_mode(priv, IW_MODE_MONITOR);
7835 } else {
7836 if (priv->ieee->iw_mode == IW_MODE_MONITOR)
7837 err = ipw2100_switch_mode(priv, priv->last_mode);
7839 done:
7840 mutex_unlock(&priv->action_mutex);
7841 return err;
7844 static int ipw2100_wx_reset(struct net_device *dev,
7845 struct iw_request_info *info,
7846 union iwreq_data *wrqu, char *extra)
7848 struct ipw2100_priv *priv = ieee80211_priv(dev);
7849 if (priv->status & STATUS_INITIALIZED)
7850 schedule_reset(priv);
7851 return 0;
7854 #endif
7856 static int ipw2100_wx_set_powermode(struct net_device *dev,
7857 struct iw_request_info *info,
7858 union iwreq_data *wrqu, char *extra)
7860 struct ipw2100_priv *priv = ieee80211_priv(dev);
7861 int err = 0, mode = *(int *)extra;
7863 mutex_lock(&priv->action_mutex);
7864 if (!(priv->status & STATUS_INITIALIZED)) {
7865 err = -EIO;
7866 goto done;
7869 if ((mode < 1) || (mode > POWER_MODES))
7870 mode = IPW_POWER_AUTO;
7872 if (priv->power_mode != mode)
7873 err = ipw2100_set_power_mode(priv, mode);
7874 done:
7875 mutex_unlock(&priv->action_mutex);
7876 return err;
7879 #define MAX_POWER_STRING 80
7880 static int ipw2100_wx_get_powermode(struct net_device *dev,
7881 struct iw_request_info *info,
7882 union iwreq_data *wrqu, char *extra)
7885 * This can be called at any time. No action lock required
7888 struct ipw2100_priv *priv = ieee80211_priv(dev);
7889 int level = IPW_POWER_LEVEL(priv->power_mode);
7890 s32 timeout, period;
7892 if (!(priv->power_mode & IPW_POWER_ENABLED)) {
7893 snprintf(extra, MAX_POWER_STRING,
7894 "Power save level: %d (Off)", level);
7895 } else {
7896 switch (level) {
7897 case IPW_POWER_MODE_CAM:
7898 snprintf(extra, MAX_POWER_STRING,
7899 "Power save level: %d (None)", level);
7900 break;
7901 case IPW_POWER_AUTO:
7902 snprintf(extra, MAX_POWER_STRING,
7903 "Power save level: %d (Auto)", 0);
7904 break;
7905 default:
7906 timeout = timeout_duration[level - 1] / 1000;
7907 period = period_duration[level - 1] / 1000;
7908 snprintf(extra, MAX_POWER_STRING,
7909 "Power save level: %d "
7910 "(Timeout %dms, Period %dms)",
7911 level, timeout, period);
7915 wrqu->data.length = strlen(extra) + 1;
7917 return 0;
7920 static int ipw2100_wx_set_preamble(struct net_device *dev,
7921 struct iw_request_info *info,
7922 union iwreq_data *wrqu, char *extra)
7924 struct ipw2100_priv *priv = ieee80211_priv(dev);
7925 int err, mode = *(int *)extra;
7927 mutex_lock(&priv->action_mutex);
7928 if (!(priv->status & STATUS_INITIALIZED)) {
7929 err = -EIO;
7930 goto done;
7933 if (mode == 1)
7934 priv->config |= CFG_LONG_PREAMBLE;
7935 else if (mode == 0)
7936 priv->config &= ~CFG_LONG_PREAMBLE;
7937 else {
7938 err = -EINVAL;
7939 goto done;
7942 err = ipw2100_system_config(priv, 0);
7944 done:
7945 mutex_unlock(&priv->action_mutex);
7946 return err;
7949 static int ipw2100_wx_get_preamble(struct net_device *dev,
7950 struct iw_request_info *info,
7951 union iwreq_data *wrqu, char *extra)
7954 * This can be called at any time. No action lock required
7957 struct ipw2100_priv *priv = ieee80211_priv(dev);
7959 if (priv->config & CFG_LONG_PREAMBLE)
7960 snprintf(wrqu->name, IFNAMSIZ, "long (1)");
7961 else
7962 snprintf(wrqu->name, IFNAMSIZ, "auto (0)");
7964 return 0;
7967 #ifdef CONFIG_IPW2100_MONITOR
7968 static int ipw2100_wx_set_crc_check(struct net_device *dev,
7969 struct iw_request_info *info,
7970 union iwreq_data *wrqu, char *extra)
7972 struct ipw2100_priv *priv = ieee80211_priv(dev);
7973 int err, mode = *(int *)extra;
7975 mutex_lock(&priv->action_mutex);
7976 if (!(priv->status & STATUS_INITIALIZED)) {
7977 err = -EIO;
7978 goto done;
7981 if (mode == 1)
7982 priv->config |= CFG_CRC_CHECK;
7983 else if (mode == 0)
7984 priv->config &= ~CFG_CRC_CHECK;
7985 else {
7986 err = -EINVAL;
7987 goto done;
7989 err = 0;
7991 done:
7992 mutex_unlock(&priv->action_mutex);
7993 return err;
7996 static int ipw2100_wx_get_crc_check(struct net_device *dev,
7997 struct iw_request_info *info,
7998 union iwreq_data *wrqu, char *extra)
8001 * This can be called at any time. No action lock required
8004 struct ipw2100_priv *priv = ieee80211_priv(dev);
8006 if (priv->config & CFG_CRC_CHECK)
8007 snprintf(wrqu->name, IFNAMSIZ, "CRC checked (1)");
8008 else
8009 snprintf(wrqu->name, IFNAMSIZ, "CRC ignored (0)");
8011 return 0;
8013 #endif /* CONFIG_IPW2100_MONITOR */
8015 static iw_handler ipw2100_wx_handlers[] = {
8016 NULL, /* SIOCSIWCOMMIT */
8017 ipw2100_wx_get_name, /* SIOCGIWNAME */
8018 NULL, /* SIOCSIWNWID */
8019 NULL, /* SIOCGIWNWID */
8020 ipw2100_wx_set_freq, /* SIOCSIWFREQ */
8021 ipw2100_wx_get_freq, /* SIOCGIWFREQ */
8022 ipw2100_wx_set_mode, /* SIOCSIWMODE */
8023 ipw2100_wx_get_mode, /* SIOCGIWMODE */
8024 NULL, /* SIOCSIWSENS */
8025 NULL, /* SIOCGIWSENS */
8026 NULL, /* SIOCSIWRANGE */
8027 ipw2100_wx_get_range, /* SIOCGIWRANGE */
8028 NULL, /* SIOCSIWPRIV */
8029 NULL, /* SIOCGIWPRIV */
8030 NULL, /* SIOCSIWSTATS */
8031 NULL, /* SIOCGIWSTATS */
8032 NULL, /* SIOCSIWSPY */
8033 NULL, /* SIOCGIWSPY */
8034 NULL, /* SIOCGIWTHRSPY */
8035 NULL, /* SIOCWIWTHRSPY */
8036 ipw2100_wx_set_wap, /* SIOCSIWAP */
8037 ipw2100_wx_get_wap, /* SIOCGIWAP */
8038 ipw2100_wx_set_mlme, /* SIOCSIWMLME */
8039 NULL, /* SIOCGIWAPLIST -- deprecated */
8040 ipw2100_wx_set_scan, /* SIOCSIWSCAN */
8041 ipw2100_wx_get_scan, /* SIOCGIWSCAN */
8042 ipw2100_wx_set_essid, /* SIOCSIWESSID */
8043 ipw2100_wx_get_essid, /* SIOCGIWESSID */
8044 ipw2100_wx_set_nick, /* SIOCSIWNICKN */
8045 ipw2100_wx_get_nick, /* SIOCGIWNICKN */
8046 NULL, /* -- hole -- */
8047 NULL, /* -- hole -- */
8048 ipw2100_wx_set_rate, /* SIOCSIWRATE */
8049 ipw2100_wx_get_rate, /* SIOCGIWRATE */
8050 ipw2100_wx_set_rts, /* SIOCSIWRTS */
8051 ipw2100_wx_get_rts, /* SIOCGIWRTS */
8052 ipw2100_wx_set_frag, /* SIOCSIWFRAG */
8053 ipw2100_wx_get_frag, /* SIOCGIWFRAG */
8054 ipw2100_wx_set_txpow, /* SIOCSIWTXPOW */
8055 ipw2100_wx_get_txpow, /* SIOCGIWTXPOW */
8056 ipw2100_wx_set_retry, /* SIOCSIWRETRY */
8057 ipw2100_wx_get_retry, /* SIOCGIWRETRY */
8058 ipw2100_wx_set_encode, /* SIOCSIWENCODE */
8059 ipw2100_wx_get_encode, /* SIOCGIWENCODE */
8060 ipw2100_wx_set_power, /* SIOCSIWPOWER */
8061 ipw2100_wx_get_power, /* SIOCGIWPOWER */
8062 NULL, /* -- hole -- */
8063 NULL, /* -- hole -- */
8064 ipw2100_wx_set_genie, /* SIOCSIWGENIE */
8065 ipw2100_wx_get_genie, /* SIOCGIWGENIE */
8066 ipw2100_wx_set_auth, /* SIOCSIWAUTH */
8067 ipw2100_wx_get_auth, /* SIOCGIWAUTH */
8068 ipw2100_wx_set_encodeext, /* SIOCSIWENCODEEXT */
8069 ipw2100_wx_get_encodeext, /* SIOCGIWENCODEEXT */
8070 NULL, /* SIOCSIWPMKSA */
8073 #define IPW2100_PRIV_SET_MONITOR SIOCIWFIRSTPRIV
8074 #define IPW2100_PRIV_RESET SIOCIWFIRSTPRIV+1
8075 #define IPW2100_PRIV_SET_POWER SIOCIWFIRSTPRIV+2
8076 #define IPW2100_PRIV_GET_POWER SIOCIWFIRSTPRIV+3
8077 #define IPW2100_PRIV_SET_LONGPREAMBLE SIOCIWFIRSTPRIV+4
8078 #define IPW2100_PRIV_GET_LONGPREAMBLE SIOCIWFIRSTPRIV+5
8079 #define IPW2100_PRIV_SET_CRC_CHECK SIOCIWFIRSTPRIV+6
8080 #define IPW2100_PRIV_GET_CRC_CHECK SIOCIWFIRSTPRIV+7
8082 static const struct iw_priv_args ipw2100_private_args[] = {
8084 #ifdef CONFIG_IPW2100_MONITOR
8086 IPW2100_PRIV_SET_MONITOR,
8087 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 2, 0, "monitor"},
8089 IPW2100_PRIV_RESET,
8090 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 0, 0, "reset"},
8091 #endif /* CONFIG_IPW2100_MONITOR */
8094 IPW2100_PRIV_SET_POWER,
8095 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_power"},
8097 IPW2100_PRIV_GET_POWER,
8098 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | MAX_POWER_STRING,
8099 "get_power"},
8101 IPW2100_PRIV_SET_LONGPREAMBLE,
8102 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_preamble"},
8104 IPW2100_PRIV_GET_LONGPREAMBLE,
8105 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_preamble"},
8106 #ifdef CONFIG_IPW2100_MONITOR
8108 IPW2100_PRIV_SET_CRC_CHECK,
8109 IW_PRIV_TYPE_INT | IW_PRIV_SIZE_FIXED | 1, 0, "set_crc_check"},
8111 IPW2100_PRIV_GET_CRC_CHECK,
8112 0, IW_PRIV_TYPE_CHAR | IW_PRIV_SIZE_FIXED | IFNAMSIZ, "get_crc_check"},
8113 #endif /* CONFIG_IPW2100_MONITOR */
8116 static iw_handler ipw2100_private_handler[] = {
8117 #ifdef CONFIG_IPW2100_MONITOR
8118 ipw2100_wx_set_promisc,
8119 ipw2100_wx_reset,
8120 #else /* CONFIG_IPW2100_MONITOR */
8121 NULL,
8122 NULL,
8123 #endif /* CONFIG_IPW2100_MONITOR */
8124 ipw2100_wx_set_powermode,
8125 ipw2100_wx_get_powermode,
8126 ipw2100_wx_set_preamble,
8127 ipw2100_wx_get_preamble,
8128 #ifdef CONFIG_IPW2100_MONITOR
8129 ipw2100_wx_set_crc_check,
8130 ipw2100_wx_get_crc_check,
8131 #else /* CONFIG_IPW2100_MONITOR */
8132 NULL,
8133 NULL,
8134 #endif /* CONFIG_IPW2100_MONITOR */
8138 * Get wireless statistics.
8139 * Called by /proc/net/wireless
8140 * Also called by SIOCGIWSTATS
8142 static struct iw_statistics *ipw2100_wx_wireless_stats(struct net_device *dev)
8144 enum {
8145 POOR = 30,
8146 FAIR = 60,
8147 GOOD = 80,
8148 VERY_GOOD = 90,
8149 EXCELLENT = 95,
8150 PERFECT = 100
8152 int rssi_qual;
8153 int tx_qual;
8154 int beacon_qual;
8156 struct ipw2100_priv *priv = ieee80211_priv(dev);
8157 struct iw_statistics *wstats;
8158 u32 rssi, quality, tx_retries, missed_beacons, tx_failures;
8159 u32 ord_len = sizeof(u32);
8161 if (!priv)
8162 return (struct iw_statistics *)NULL;
8164 wstats = &priv->wstats;
8166 /* if hw is disabled, then ipw2100_get_ordinal() can't be called.
8167 * ipw2100_wx_wireless_stats seems to be called before fw is
8168 * initialized. STATUS_ASSOCIATED will only be set if the hw is up
8169 * and associated; if not associcated, the values are all meaningless
8170 * anyway, so set them all to NULL and INVALID */
8171 if (!(priv->status & STATUS_ASSOCIATED)) {
8172 wstats->miss.beacon = 0;
8173 wstats->discard.retries = 0;
8174 wstats->qual.qual = 0;
8175 wstats->qual.level = 0;
8176 wstats->qual.noise = 0;
8177 wstats->qual.updated = 7;
8178 wstats->qual.updated |= IW_QUAL_NOISE_INVALID |
8179 IW_QUAL_QUAL_INVALID | IW_QUAL_LEVEL_INVALID;
8180 return wstats;
8183 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_MISSED_BCNS,
8184 &missed_beacons, &ord_len))
8185 goto fail_get_ordinal;
8187 /* If we don't have a connection the quality and level is 0 */
8188 if (!(priv->status & STATUS_ASSOCIATED)) {
8189 wstats->qual.qual = 0;
8190 wstats->qual.level = 0;
8191 } else {
8192 if (ipw2100_get_ordinal(priv, IPW_ORD_RSSI_AVG_CURR,
8193 &rssi, &ord_len))
8194 goto fail_get_ordinal;
8195 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8196 if (rssi < 10)
8197 rssi_qual = rssi * POOR / 10;
8198 else if (rssi < 15)
8199 rssi_qual = (rssi - 10) * (FAIR - POOR) / 5 + POOR;
8200 else if (rssi < 20)
8201 rssi_qual = (rssi - 15) * (GOOD - FAIR) / 5 + FAIR;
8202 else if (rssi < 30)
8203 rssi_qual = (rssi - 20) * (VERY_GOOD - GOOD) /
8204 10 + GOOD;
8205 else
8206 rssi_qual = (rssi - 30) * (PERFECT - VERY_GOOD) /
8207 10 + VERY_GOOD;
8209 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_PERCENT_RETRIES,
8210 &tx_retries, &ord_len))
8211 goto fail_get_ordinal;
8213 if (tx_retries > 75)
8214 tx_qual = (90 - tx_retries) * POOR / 15;
8215 else if (tx_retries > 70)
8216 tx_qual = (75 - tx_retries) * (FAIR - POOR) / 5 + POOR;
8217 else if (tx_retries > 65)
8218 tx_qual = (70 - tx_retries) * (GOOD - FAIR) / 5 + FAIR;
8219 else if (tx_retries > 50)
8220 tx_qual = (65 - tx_retries) * (VERY_GOOD - GOOD) /
8221 15 + GOOD;
8222 else
8223 tx_qual = (50 - tx_retries) *
8224 (PERFECT - VERY_GOOD) / 50 + VERY_GOOD;
8226 if (missed_beacons > 50)
8227 beacon_qual = (60 - missed_beacons) * POOR / 10;
8228 else if (missed_beacons > 40)
8229 beacon_qual = (50 - missed_beacons) * (FAIR - POOR) /
8230 10 + POOR;
8231 else if (missed_beacons > 32)
8232 beacon_qual = (40 - missed_beacons) * (GOOD - FAIR) /
8233 18 + FAIR;
8234 else if (missed_beacons > 20)
8235 beacon_qual = (32 - missed_beacons) *
8236 (VERY_GOOD - GOOD) / 20 + GOOD;
8237 else
8238 beacon_qual = (20 - missed_beacons) *
8239 (PERFECT - VERY_GOOD) / 20 + VERY_GOOD;
8241 quality = min(beacon_qual, min(tx_qual, rssi_qual));
8243 #ifdef CONFIG_IPW2100_DEBUG
8244 if (beacon_qual == quality)
8245 IPW_DEBUG_WX("Quality clamped by Missed Beacons\n");
8246 else if (tx_qual == quality)
8247 IPW_DEBUG_WX("Quality clamped by Tx Retries\n");
8248 else if (quality != 100)
8249 IPW_DEBUG_WX("Quality clamped by Signal Strength\n");
8250 else
8251 IPW_DEBUG_WX("Quality not clamped.\n");
8252 #endif
8254 wstats->qual.qual = quality;
8255 wstats->qual.level = rssi + IPW2100_RSSI_TO_DBM;
8258 wstats->qual.noise = 0;
8259 wstats->qual.updated = 7;
8260 wstats->qual.updated |= IW_QUAL_NOISE_INVALID;
8262 /* FIXME: this is percent and not a # */
8263 wstats->miss.beacon = missed_beacons;
8265 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_TX_FAILURES,
8266 &tx_failures, &ord_len))
8267 goto fail_get_ordinal;
8268 wstats->discard.retries = tx_failures;
8270 return wstats;
8272 fail_get_ordinal:
8273 IPW_DEBUG_WX("failed querying ordinals.\n");
8275 return (struct iw_statistics *)NULL;
8278 static struct iw_handler_def ipw2100_wx_handler_def = {
8279 .standard = ipw2100_wx_handlers,
8280 .num_standard = sizeof(ipw2100_wx_handlers) / sizeof(iw_handler),
8281 .num_private = sizeof(ipw2100_private_handler) / sizeof(iw_handler),
8282 .num_private_args = sizeof(ipw2100_private_args) /
8283 sizeof(struct iw_priv_args),
8284 .private = (iw_handler *) ipw2100_private_handler,
8285 .private_args = (struct iw_priv_args *)ipw2100_private_args,
8286 .get_wireless_stats = ipw2100_wx_wireless_stats,
8289 static void ipw2100_wx_event_work(struct work_struct *work)
8291 struct ipw2100_priv *priv =
8292 container_of(work, struct ipw2100_priv, wx_event_work.work);
8293 union iwreq_data wrqu;
8294 int len = ETH_ALEN;
8296 if (priv->status & STATUS_STOPPING)
8297 return;
8299 mutex_lock(&priv->action_mutex);
8301 IPW_DEBUG_WX("enter\n");
8303 mutex_unlock(&priv->action_mutex);
8305 wrqu.ap_addr.sa_family = ARPHRD_ETHER;
8307 /* Fetch BSSID from the hardware */
8308 if (!(priv->status & (STATUS_ASSOCIATING | STATUS_ASSOCIATED)) ||
8309 priv->status & STATUS_RF_KILL_MASK ||
8310 ipw2100_get_ordinal(priv, IPW_ORD_STAT_ASSN_AP_BSSID,
8311 &priv->bssid, &len)) {
8312 memset(wrqu.ap_addr.sa_data, 0, ETH_ALEN);
8313 } else {
8314 /* We now have the BSSID, so can finish setting to the full
8315 * associated state */
8316 memcpy(wrqu.ap_addr.sa_data, priv->bssid, ETH_ALEN);
8317 memcpy(priv->ieee->bssid, priv->bssid, ETH_ALEN);
8318 priv->status &= ~STATUS_ASSOCIATING;
8319 priv->status |= STATUS_ASSOCIATED;
8320 netif_carrier_on(priv->net_dev);
8321 netif_wake_queue(priv->net_dev);
8324 if (!(priv->status & STATUS_ASSOCIATED)) {
8325 IPW_DEBUG_WX("Configuring ESSID\n");
8326 mutex_lock(&priv->action_mutex);
8327 /* This is a disassociation event, so kick the firmware to
8328 * look for another AP */
8329 if (priv->config & CFG_STATIC_ESSID)
8330 ipw2100_set_essid(priv, priv->essid, priv->essid_len,
8332 else
8333 ipw2100_set_essid(priv, NULL, 0, 0);
8334 mutex_unlock(&priv->action_mutex);
8337 wireless_send_event(priv->net_dev, SIOCGIWAP, &wrqu, NULL);
8340 #define IPW2100_FW_MAJOR_VERSION 1
8341 #define IPW2100_FW_MINOR_VERSION 3
8343 #define IPW2100_FW_MINOR(x) ((x & 0xff) >> 8)
8344 #define IPW2100_FW_MAJOR(x) (x & 0xff)
8346 #define IPW2100_FW_VERSION ((IPW2100_FW_MINOR_VERSION << 8) | \
8347 IPW2100_FW_MAJOR_VERSION)
8349 #define IPW2100_FW_PREFIX "ipw2100-" __stringify(IPW2100_FW_MAJOR_VERSION) \
8350 "." __stringify(IPW2100_FW_MINOR_VERSION)
8352 #define IPW2100_FW_NAME(x) IPW2100_FW_PREFIX "" x ".fw"
8356 BINARY FIRMWARE HEADER FORMAT
8358 offset length desc
8359 0 2 version
8360 2 2 mode == 0:BSS,1:IBSS,2:MONITOR
8361 4 4 fw_len
8362 8 4 uc_len
8363 C fw_len firmware data
8364 12 + fw_len uc_len microcode data
8368 struct ipw2100_fw_header {
8369 short version;
8370 short mode;
8371 unsigned int fw_size;
8372 unsigned int uc_size;
8373 } __attribute__ ((packed));
8375 static int ipw2100_mod_firmware_load(struct ipw2100_fw *fw)
8377 struct ipw2100_fw_header *h =
8378 (struct ipw2100_fw_header *)fw->fw_entry->data;
8380 if (IPW2100_FW_MAJOR(h->version) != IPW2100_FW_MAJOR_VERSION) {
8381 printk(KERN_WARNING DRV_NAME ": Firmware image not compatible "
8382 "(detected version id of %u). "
8383 "See Documentation/networking/README.ipw2100\n",
8384 h->version);
8385 return 1;
8388 fw->version = h->version;
8389 fw->fw.data = fw->fw_entry->data + sizeof(struct ipw2100_fw_header);
8390 fw->fw.size = h->fw_size;
8391 fw->uc.data = fw->fw.data + h->fw_size;
8392 fw->uc.size = h->uc_size;
8394 return 0;
8397 static int ipw2100_get_firmware(struct ipw2100_priv *priv,
8398 struct ipw2100_fw *fw)
8400 char *fw_name;
8401 int rc;
8403 IPW_DEBUG_INFO("%s: Using hotplug firmware load.\n",
8404 priv->net_dev->name);
8406 switch (priv->ieee->iw_mode) {
8407 case IW_MODE_ADHOC:
8408 fw_name = IPW2100_FW_NAME("-i");
8409 break;
8410 #ifdef CONFIG_IPW2100_MONITOR
8411 case IW_MODE_MONITOR:
8412 fw_name = IPW2100_FW_NAME("-p");
8413 break;
8414 #endif
8415 case IW_MODE_INFRA:
8416 default:
8417 fw_name = IPW2100_FW_NAME("");
8418 break;
8421 rc = request_firmware(&fw->fw_entry, fw_name, &priv->pci_dev->dev);
8423 if (rc < 0) {
8424 printk(KERN_ERR DRV_NAME ": "
8425 "%s: Firmware '%s' not available or load failed.\n",
8426 priv->net_dev->name, fw_name);
8427 return rc;
8429 IPW_DEBUG_INFO("firmware data %p size %zd\n", fw->fw_entry->data,
8430 fw->fw_entry->size);
8432 ipw2100_mod_firmware_load(fw);
8434 return 0;
8437 static void ipw2100_release_firmware(struct ipw2100_priv *priv,
8438 struct ipw2100_fw *fw)
8440 fw->version = 0;
8441 if (fw->fw_entry)
8442 release_firmware(fw->fw_entry);
8443 fw->fw_entry = NULL;
8446 static int ipw2100_get_fwversion(struct ipw2100_priv *priv, char *buf,
8447 size_t max)
8449 char ver[MAX_FW_VERSION_LEN];
8450 u32 len = MAX_FW_VERSION_LEN;
8451 u32 tmp;
8452 int i;
8453 /* firmware version is an ascii string (max len of 14) */
8454 if (ipw2100_get_ordinal(priv, IPW_ORD_STAT_FW_VER_NUM, ver, &len))
8455 return -EIO;
8456 tmp = max;
8457 if (len >= max)
8458 len = max - 1;
8459 for (i = 0; i < len; i++)
8460 buf[i] = ver[i];
8461 buf[i] = '\0';
8462 return tmp;
8465 static int ipw2100_get_ucodeversion(struct ipw2100_priv *priv, char *buf,
8466 size_t max)
8468 u32 ver;
8469 u32 len = sizeof(ver);
8470 /* microcode version is a 32 bit integer */
8471 if (ipw2100_get_ordinal(priv, IPW_ORD_UCODE_VERSION, &ver, &len))
8472 return -EIO;
8473 return snprintf(buf, max, "%08X", ver);
8477 * On exit, the firmware will have been freed from the fw list
8479 static int ipw2100_fw_download(struct ipw2100_priv *priv, struct ipw2100_fw *fw)
8481 /* firmware is constructed of N contiguous entries, each entry is
8482 * structured as:
8484 * offset sie desc
8485 * 0 4 address to write to
8486 * 4 2 length of data run
8487 * 6 length data
8489 unsigned int addr;
8490 unsigned short len;
8492 const unsigned char *firmware_data = fw->fw.data;
8493 unsigned int firmware_data_left = fw->fw.size;
8495 while (firmware_data_left > 0) {
8496 addr = *(u32 *) (firmware_data);
8497 firmware_data += 4;
8498 firmware_data_left -= 4;
8500 len = *(u16 *) (firmware_data);
8501 firmware_data += 2;
8502 firmware_data_left -= 2;
8504 if (len > 32) {
8505 printk(KERN_ERR DRV_NAME ": "
8506 "Invalid firmware run-length of %d bytes\n",
8507 len);
8508 return -EINVAL;
8511 write_nic_memory(priv->net_dev, addr, len, firmware_data);
8512 firmware_data += len;
8513 firmware_data_left -= len;
8516 return 0;
8519 struct symbol_alive_response {
8520 u8 cmd_id;
8521 u8 seq_num;
8522 u8 ucode_rev;
8523 u8 eeprom_valid;
8524 u16 valid_flags;
8525 u8 IEEE_addr[6];
8526 u16 flags;
8527 u16 pcb_rev;
8528 u16 clock_settle_time; // 1us LSB
8529 u16 powerup_settle_time; // 1us LSB
8530 u16 hop_settle_time; // 1us LSB
8531 u8 date[3]; // month, day, year
8532 u8 time[2]; // hours, minutes
8533 u8 ucode_valid;
8536 static int ipw2100_ucode_download(struct ipw2100_priv *priv,
8537 struct ipw2100_fw *fw)
8539 struct net_device *dev = priv->net_dev;
8540 const unsigned char *microcode_data = fw->uc.data;
8541 unsigned int microcode_data_left = fw->uc.size;
8542 void __iomem *reg = (void __iomem *)dev->base_addr;
8544 struct symbol_alive_response response;
8545 int i, j;
8546 u8 data;
8548 /* Symbol control */
8549 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8550 readl(reg);
8551 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8552 readl(reg);
8554 /* HW config */
8555 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8556 readl(reg);
8557 write_nic_byte(dev, 0x210014, 0x72); /* fifo width =16 */
8558 readl(reg);
8560 /* EN_CS_ACCESS bit to reset control store pointer */
8561 write_nic_byte(dev, 0x210000, 0x40);
8562 readl(reg);
8563 write_nic_byte(dev, 0x210000, 0x0);
8564 readl(reg);
8565 write_nic_byte(dev, 0x210000, 0x40);
8566 readl(reg);
8568 /* copy microcode from buffer into Symbol */
8570 while (microcode_data_left > 0) {
8571 write_nic_byte(dev, 0x210010, *microcode_data++);
8572 write_nic_byte(dev, 0x210010, *microcode_data++);
8573 microcode_data_left -= 2;
8576 /* EN_CS_ACCESS bit to reset the control store pointer */
8577 write_nic_byte(dev, 0x210000, 0x0);
8578 readl(reg);
8580 /* Enable System (Reg 0)
8581 * first enable causes garbage in RX FIFO */
8582 write_nic_byte(dev, 0x210000, 0x0);
8583 readl(reg);
8584 write_nic_byte(dev, 0x210000, 0x80);
8585 readl(reg);
8587 /* Reset External Baseband Reg */
8588 write_nic_word(dev, IPW2100_CONTROL_REG, 0x703);
8589 readl(reg);
8590 write_nic_word(dev, IPW2100_CONTROL_REG, 0x707);
8591 readl(reg);
8593 /* HW Config (Reg 5) */
8594 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8595 readl(reg);
8596 write_nic_byte(dev, 0x210014, 0x72); // fifo width =16
8597 readl(reg);
8599 /* Enable System (Reg 0)
8600 * second enable should be OK */
8601 write_nic_byte(dev, 0x210000, 0x00); // clear enable system
8602 readl(reg);
8603 write_nic_byte(dev, 0x210000, 0x80); // set enable system
8605 /* check Symbol is enabled - upped this from 5 as it wasn't always
8606 * catching the update */
8607 for (i = 0; i < 10; i++) {
8608 udelay(10);
8610 /* check Dino is enabled bit */
8611 read_nic_byte(dev, 0x210000, &data);
8612 if (data & 0x1)
8613 break;
8616 if (i == 10) {
8617 printk(KERN_ERR DRV_NAME ": %s: Error initializing Symbol\n",
8618 dev->name);
8619 return -EIO;
8622 /* Get Symbol alive response */
8623 for (i = 0; i < 30; i++) {
8624 /* Read alive response structure */
8625 for (j = 0;
8626 j < (sizeof(struct symbol_alive_response) >> 1); j++)
8627 read_nic_word(dev, 0x210004, ((u16 *) & response) + j);
8629 if ((response.cmd_id == 1) && (response.ucode_valid == 0x1))
8630 break;
8631 udelay(10);
8634 if (i == 30) {
8635 printk(KERN_ERR DRV_NAME
8636 ": %s: No response from Symbol - hw not alive\n",
8637 dev->name);
8638 printk_buf(IPW_DL_ERROR, (u8 *) & response, sizeof(response));
8639 return -EIO;
8642 return 0;