1 /* $Id: bbc_envctrl.c,v 1.4 2001/04/06 16:48:08 davem Exp $
2 * bbc_envctrl.c: UltraSPARC-III environment control driver.
4 * Copyright (C) 2001 David S. Miller (davem@redhat.com)
7 #include <linux/kthread.h>
8 #include <linux/delay.h>
9 #include <linux/kmod.h>
10 #include <asm/oplib.h>
18 /* WARNING: Making changes to this driver is very dangerous.
19 * If you misprogram the sensor chips they can
20 * cut the power on you instantly.
23 /* Two temperature sensors exist in the SunBLADE-1000 enclosure.
24 * Both are implemented using max1617 i2c devices. Each max1617
25 * monitors 2 temperatures, one for one of the cpu dies and the other
26 * for the ambient temperature.
28 * The max1617 is capable of being programmed with power-off
29 * temperature values, one low limit and one high limit. These
30 * can be controlled independently for the cpu or ambient temperature.
31 * If a limit is violated, the power is simply shut off. The frequency
32 * with which the max1617 does temperature sampling can be controlled
35 * Three fans exist inside the machine, all three are controlled with
36 * an i2c digital to analog converter. There is a fan directed at the
37 * two processor slots, another for the rest of the enclosure, and the
38 * third is for the power supply. The first two fans may be speed
39 * controlled by changing the voltage fed to them. The third fan may
40 * only be completely off or on. The third fan is meant to only be
41 * disabled/enabled when entering/exiting the lowest power-saving
42 * mode of the machine.
44 * An environmental control kernel thread periodically monitors all
45 * temperature sensors. Based upon the samples it will adjust the
46 * fan speeds to try and keep the system within a certain temperature
47 * range (the goal being to make the fans as quiet as possible without
48 * allowing the system to get too hot).
50 * If the temperature begins to rise/fall outside of the acceptable
51 * operating range, a periodic warning will be sent to the kernel log.
52 * The fans will be put on full blast to attempt to deal with this
53 * situation. After exceeding the acceptable operating range by a
54 * certain threshold, the kernel thread will shut down the system.
55 * Here, the thread is attempting to shut the machine down cleanly
56 * before the hardware based power-off event is triggered.
59 /* These settings are in Celsius. We use these defaults only
60 * if we cannot interrogate the cpu-fru SEEPROM.
63 s8 high_pwroff
, high_shutdown
, high_warn
;
64 s8 low_warn
, low_shutdown
, low_pwroff
;
67 static struct temp_limits cpu_temp_limits
[2] = {
68 { 100, 85, 80, 5, -5, -10 },
69 { 100, 85, 80, 5, -5, -10 },
72 static struct temp_limits amb_temp_limits
[2] = {
73 { 65, 55, 40, 5, -5, -10 },
74 { 65, 55, 40, 5, -5, -10 },
77 enum fan_action
{ FAN_SLOWER
, FAN_SAME
, FAN_FASTER
, FAN_FULLBLAST
, FAN_STATE_MAX
};
79 struct bbc_cpu_temperature
{
80 struct bbc_cpu_temperature
*next
;
82 struct bbc_i2c_client
*client
;
85 /* Current readings, and history. */
95 enum fan_action fan_todo
[2];
100 struct bbc_cpu_temperature
*all_bbc_temps
;
102 struct bbc_fan_control
{
103 struct bbc_fan_control
*next
;
105 struct bbc_i2c_client
*client
;
110 int system_fan_speed
;
113 struct bbc_fan_control
*all_bbc_fans
;
115 #define CPU_FAN_REG 0xf0
116 #define SYS_FAN_REG 0xf2
117 #define PSUPPLY_FAN_REG 0xf4
119 #define FAN_SPEED_MIN 0x0c
120 #define FAN_SPEED_MAX 0x3f
122 #define PSUPPLY_FAN_ON 0x1f
123 #define PSUPPLY_FAN_OFF 0x00
125 static void set_fan_speeds(struct bbc_fan_control
*fp
)
127 /* Put temperatures into range so we don't mis-program
130 if (fp
->cpu_fan_speed
< FAN_SPEED_MIN
)
131 fp
->cpu_fan_speed
= FAN_SPEED_MIN
;
132 if (fp
->cpu_fan_speed
> FAN_SPEED_MAX
)
133 fp
->cpu_fan_speed
= FAN_SPEED_MAX
;
134 if (fp
->system_fan_speed
< FAN_SPEED_MIN
)
135 fp
->system_fan_speed
= FAN_SPEED_MIN
;
136 if (fp
->system_fan_speed
> FAN_SPEED_MAX
)
137 fp
->system_fan_speed
= FAN_SPEED_MAX
;
139 printk("fan%d: Changed fan speed to cpu(%02x) sys(%02x)\n",
141 fp
->cpu_fan_speed
, fp
->system_fan_speed
);
144 bbc_i2c_writeb(fp
->client
, fp
->cpu_fan_speed
, CPU_FAN_REG
);
145 bbc_i2c_writeb(fp
->client
, fp
->system_fan_speed
, SYS_FAN_REG
);
146 bbc_i2c_writeb(fp
->client
,
147 (fp
->psupply_fan_on
?
148 PSUPPLY_FAN_ON
: PSUPPLY_FAN_OFF
),
152 static void get_current_temps(struct bbc_cpu_temperature
*tp
)
154 tp
->prev_amb_temp
= tp
->curr_amb_temp
;
155 bbc_i2c_readb(tp
->client
,
156 (unsigned char *) &tp
->curr_amb_temp
,
158 tp
->prev_cpu_temp
= tp
->curr_cpu_temp
;
159 bbc_i2c_readb(tp
->client
,
160 (unsigned char *) &tp
->curr_cpu_temp
,
163 printk("temp%d: cpu(%d C) amb(%d C)\n",
165 (int) tp
->curr_cpu_temp
, (int) tp
->curr_amb_temp
);
170 static void do_envctrl_shutdown(struct bbc_cpu_temperature
*tp
)
172 static int shutting_down
= 0;
173 static char *envp
[] = { "HOME=/", "TERM=linux", "PATH=/sbin:/usr/sbin:/bin:/usr/bin", NULL
};
174 char *argv
[] = { "/sbin/shutdown", "-h", "now", NULL
};
178 if (shutting_down
!= 0)
181 if (tp
->curr_amb_temp
>= amb_temp_limits
[tp
->index
].high_shutdown
||
182 tp
->curr_amb_temp
< amb_temp_limits
[tp
->index
].low_shutdown
) {
184 val
= tp
->curr_amb_temp
;
185 } else if (tp
->curr_cpu_temp
>= cpu_temp_limits
[tp
->index
].high_shutdown
||
186 tp
->curr_cpu_temp
< cpu_temp_limits
[tp
->index
].low_shutdown
) {
188 val
= tp
->curr_cpu_temp
;
191 printk(KERN_CRIT
"temp%d: Outside of safe %s "
192 "operating temperature, %d C.\n",
193 tp
->index
, type
, val
);
195 printk(KERN_CRIT
"kenvctrld: Shutting down the system now.\n");
198 if (call_usermodehelper("/sbin/shutdown", argv
, envp
, 0) < 0)
199 printk(KERN_CRIT
"envctrl: shutdown execution failed\n");
202 #define WARN_INTERVAL (30 * HZ)
204 static void analyze_ambient_temp(struct bbc_cpu_temperature
*tp
, unsigned long *last_warn
, int tick
)
208 if (time_after(jiffies
, (*last_warn
+ WARN_INTERVAL
))) {
209 if (tp
->curr_amb_temp
>=
210 amb_temp_limits
[tp
->index
].high_warn
) {
211 printk(KERN_WARNING
"temp%d: "
212 "Above safe ambient operating temperature, %d C.\n",
213 tp
->index
, (int) tp
->curr_amb_temp
);
215 } else if (tp
->curr_amb_temp
<
216 amb_temp_limits
[tp
->index
].low_warn
) {
217 printk(KERN_WARNING
"temp%d: "
218 "Below safe ambient operating temperature, %d C.\n",
219 tp
->index
, (int) tp
->curr_amb_temp
);
223 *last_warn
= jiffies
;
224 } else if (tp
->curr_amb_temp
>= amb_temp_limits
[tp
->index
].high_warn
||
225 tp
->curr_amb_temp
< amb_temp_limits
[tp
->index
].low_warn
)
228 /* Now check the shutdown limits. */
229 if (tp
->curr_amb_temp
>= amb_temp_limits
[tp
->index
].high_shutdown
||
230 tp
->curr_amb_temp
< amb_temp_limits
[tp
->index
].low_shutdown
) {
231 do_envctrl_shutdown(tp
);
236 tp
->fan_todo
[FAN_AMBIENT
] = FAN_FULLBLAST
;
237 } else if ((tick
& (8 - 1)) == 0) {
238 s8 amb_goal_hi
= amb_temp_limits
[tp
->index
].high_warn
- 10;
241 amb_goal_lo
= amb_goal_hi
- 3;
243 /* We do not try to avoid 'too cold' events. Basically we
244 * only try to deal with over-heating and fan noise reduction.
246 if (tp
->avg_amb_temp
< amb_goal_hi
) {
247 if (tp
->avg_amb_temp
>= amb_goal_lo
)
248 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SAME
;
250 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SLOWER
;
252 tp
->fan_todo
[FAN_AMBIENT
] = FAN_FASTER
;
255 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SAME
;
259 static void analyze_cpu_temp(struct bbc_cpu_temperature
*tp
, unsigned long *last_warn
, int tick
)
263 if (time_after(jiffies
, (*last_warn
+ WARN_INTERVAL
))) {
264 if (tp
->curr_cpu_temp
>=
265 cpu_temp_limits
[tp
->index
].high_warn
) {
266 printk(KERN_WARNING
"temp%d: "
267 "Above safe CPU operating temperature, %d C.\n",
268 tp
->index
, (int) tp
->curr_cpu_temp
);
270 } else if (tp
->curr_cpu_temp
<
271 cpu_temp_limits
[tp
->index
].low_warn
) {
272 printk(KERN_WARNING
"temp%d: "
273 "Below safe CPU operating temperature, %d C.\n",
274 tp
->index
, (int) tp
->curr_cpu_temp
);
278 *last_warn
= jiffies
;
279 } else if (tp
->curr_cpu_temp
>= cpu_temp_limits
[tp
->index
].high_warn
||
280 tp
->curr_cpu_temp
< cpu_temp_limits
[tp
->index
].low_warn
)
283 /* Now check the shutdown limits. */
284 if (tp
->curr_cpu_temp
>= cpu_temp_limits
[tp
->index
].high_shutdown
||
285 tp
->curr_cpu_temp
< cpu_temp_limits
[tp
->index
].low_shutdown
) {
286 do_envctrl_shutdown(tp
);
291 tp
->fan_todo
[FAN_CPU
] = FAN_FULLBLAST
;
292 } else if ((tick
& (8 - 1)) == 0) {
293 s8 cpu_goal_hi
= cpu_temp_limits
[tp
->index
].high_warn
- 10;
296 cpu_goal_lo
= cpu_goal_hi
- 3;
298 /* We do not try to avoid 'too cold' events. Basically we
299 * only try to deal with over-heating and fan noise reduction.
301 if (tp
->avg_cpu_temp
< cpu_goal_hi
) {
302 if (tp
->avg_cpu_temp
>= cpu_goal_lo
)
303 tp
->fan_todo
[FAN_CPU
] = FAN_SAME
;
305 tp
->fan_todo
[FAN_CPU
] = FAN_SLOWER
;
307 tp
->fan_todo
[FAN_CPU
] = FAN_FASTER
;
310 tp
->fan_todo
[FAN_CPU
] = FAN_SAME
;
314 static void analyze_temps(struct bbc_cpu_temperature
*tp
, unsigned long *last_warn
)
316 tp
->avg_amb_temp
= (s8
)((int)((int)tp
->avg_amb_temp
+ (int)tp
->curr_amb_temp
) / 2);
317 tp
->avg_cpu_temp
= (s8
)((int)((int)tp
->avg_cpu_temp
+ (int)tp
->curr_cpu_temp
) / 2);
319 analyze_ambient_temp(tp
, last_warn
, tp
->sample_tick
);
320 analyze_cpu_temp(tp
, last_warn
, tp
->sample_tick
);
325 static enum fan_action
prioritize_fan_action(int which_fan
)
327 struct bbc_cpu_temperature
*tp
;
328 enum fan_action decision
= FAN_STATE_MAX
;
330 /* Basically, prioritize what the temperature sensors
331 * recommend we do, and perform that action on all the
334 for (tp
= all_bbc_temps
; tp
; tp
= tp
->next
) {
335 if (tp
->fan_todo
[which_fan
] == FAN_FULLBLAST
) {
336 decision
= FAN_FULLBLAST
;
339 if (tp
->fan_todo
[which_fan
] == FAN_SAME
&&
340 decision
!= FAN_FASTER
)
342 else if (tp
->fan_todo
[which_fan
] == FAN_FASTER
)
343 decision
= FAN_FASTER
;
344 else if (decision
!= FAN_FASTER
&&
345 decision
!= FAN_SAME
&&
346 tp
->fan_todo
[which_fan
] == FAN_SLOWER
)
347 decision
= FAN_SLOWER
;
349 if (decision
== FAN_STATE_MAX
)
355 static int maybe_new_ambient_fan_speed(struct bbc_fan_control
*fp
)
357 enum fan_action decision
= prioritize_fan_action(FAN_AMBIENT
);
360 if (decision
== FAN_SAME
)
364 if (decision
== FAN_FULLBLAST
) {
365 if (fp
->system_fan_speed
>= FAN_SPEED_MAX
)
368 fp
->system_fan_speed
= FAN_SPEED_MAX
;
370 if (decision
== FAN_FASTER
) {
371 if (fp
->system_fan_speed
>= FAN_SPEED_MAX
)
374 fp
->system_fan_speed
+= 2;
376 int orig_speed
= fp
->system_fan_speed
;
378 if (orig_speed
<= FAN_SPEED_MIN
||
379 orig_speed
<= (fp
->cpu_fan_speed
- 3))
382 fp
->system_fan_speed
-= 1;
389 static int maybe_new_cpu_fan_speed(struct bbc_fan_control
*fp
)
391 enum fan_action decision
= prioritize_fan_action(FAN_CPU
);
394 if (decision
== FAN_SAME
)
398 if (decision
== FAN_FULLBLAST
) {
399 if (fp
->cpu_fan_speed
>= FAN_SPEED_MAX
)
402 fp
->cpu_fan_speed
= FAN_SPEED_MAX
;
404 if (decision
== FAN_FASTER
) {
405 if (fp
->cpu_fan_speed
>= FAN_SPEED_MAX
)
408 fp
->cpu_fan_speed
+= 2;
409 if (fp
->system_fan_speed
<
410 (fp
->cpu_fan_speed
- 3))
411 fp
->system_fan_speed
=
412 fp
->cpu_fan_speed
- 3;
415 if (fp
->cpu_fan_speed
<= FAN_SPEED_MIN
)
418 fp
->cpu_fan_speed
-= 1;
425 static void maybe_new_fan_speeds(struct bbc_fan_control
*fp
)
429 new = maybe_new_ambient_fan_speed(fp
);
430 new |= maybe_new_cpu_fan_speed(fp
);
436 static void fans_full_blast(void)
438 struct bbc_fan_control
*fp
;
440 /* Since we will not be monitoring things anymore, put
441 * the fans on full blast.
443 for (fp
= all_bbc_fans
; fp
; fp
= fp
->next
) {
444 fp
->cpu_fan_speed
= FAN_SPEED_MAX
;
445 fp
->system_fan_speed
= FAN_SPEED_MAX
;
446 fp
->psupply_fan_on
= 1;
451 #define POLL_INTERVAL (5 * 1000)
452 static unsigned long last_warning_jiffies
;
453 static struct task_struct
*kenvctrld_task
;
455 static int kenvctrld(void *__unused
)
457 printk(KERN_INFO
"bbc_envctrl: kenvctrld starting...\n");
458 last_warning_jiffies
= jiffies
- WARN_INTERVAL
;
460 struct bbc_cpu_temperature
*tp
;
461 struct bbc_fan_control
*fp
;
463 msleep_interruptible(POLL_INTERVAL
);
464 if (kthread_should_stop())
467 for (tp
= all_bbc_temps
; tp
; tp
= tp
->next
) {
468 get_current_temps(tp
);
469 analyze_temps(tp
, &last_warning_jiffies
);
471 for (fp
= all_bbc_fans
; fp
; fp
= fp
->next
)
472 maybe_new_fan_speeds(fp
);
474 printk(KERN_INFO
"bbc_envctrl: kenvctrld exiting...\n");
481 static void attach_one_temp(struct linux_ebus_child
*echild
, int temp_idx
)
483 struct bbc_cpu_temperature
*tp
= kmalloc(sizeof(*tp
), GFP_KERNEL
);
487 memset(tp
, 0, sizeof(*tp
));
488 tp
->client
= bbc_i2c_attach(echild
);
494 tp
->index
= temp_idx
;
496 struct bbc_cpu_temperature
**tpp
= &all_bbc_temps
;
498 tpp
= &((*tpp
)->next
);
503 /* Tell it to convert once every 5 seconds, clear all cfg
506 bbc_i2c_writeb(tp
->client
, 0x00, MAX1617_WR_CFG_BYTE
);
507 bbc_i2c_writeb(tp
->client
, 0x02, MAX1617_WR_CVRATE_BYTE
);
509 /* Program the hard temperature limits into the chip. */
510 bbc_i2c_writeb(tp
->client
, amb_temp_limits
[tp
->index
].high_pwroff
,
511 MAX1617_WR_AMB_HIGHLIM
);
512 bbc_i2c_writeb(tp
->client
, amb_temp_limits
[tp
->index
].low_pwroff
,
513 MAX1617_WR_AMB_LOWLIM
);
514 bbc_i2c_writeb(tp
->client
, cpu_temp_limits
[tp
->index
].high_pwroff
,
515 MAX1617_WR_CPU_HIGHLIM
);
516 bbc_i2c_writeb(tp
->client
, cpu_temp_limits
[tp
->index
].low_pwroff
,
517 MAX1617_WR_CPU_LOWLIM
);
519 get_current_temps(tp
);
520 tp
->prev_cpu_temp
= tp
->avg_cpu_temp
= tp
->curr_cpu_temp
;
521 tp
->prev_amb_temp
= tp
->avg_amb_temp
= tp
->curr_amb_temp
;
523 tp
->fan_todo
[FAN_AMBIENT
] = FAN_SAME
;
524 tp
->fan_todo
[FAN_CPU
] = FAN_SAME
;
527 static void attach_one_fan(struct linux_ebus_child
*echild
, int fan_idx
)
529 struct bbc_fan_control
*fp
= kmalloc(sizeof(*fp
), GFP_KERNEL
);
533 memset(fp
, 0, sizeof(*fp
));
534 fp
->client
= bbc_i2c_attach(echild
);
543 struct bbc_fan_control
**fpp
= &all_bbc_fans
;
545 fpp
= &((*fpp
)->next
);
550 /* The i2c device controlling the fans is write-only.
551 * So the only way to keep track of the current power
552 * level fed to the fans is via software. Choose half
553 * power for cpu/system and 'on' fo the powersupply fan
556 fp
->psupply_fan_on
= 1;
557 fp
->cpu_fan_speed
= (FAN_SPEED_MAX
- FAN_SPEED_MIN
) / 2;
558 fp
->cpu_fan_speed
+= FAN_SPEED_MIN
;
559 fp
->system_fan_speed
= (FAN_SPEED_MAX
- FAN_SPEED_MIN
) / 2;
560 fp
->system_fan_speed
+= FAN_SPEED_MIN
;
565 int bbc_envctrl_init(void)
567 struct linux_ebus_child
*echild
;
572 while ((echild
= bbc_i2c_getdev(devidx
++)) != NULL
) {
573 if (!strcmp(echild
->prom_node
->name
, "temperature"))
574 attach_one_temp(echild
, temp_index
++);
575 if (!strcmp(echild
->prom_node
->name
, "fan-control"))
576 attach_one_fan(echild
, fan_index
++);
578 if (temp_index
!= 0 && fan_index
!= 0) {
579 kenvctrld_task
= kthread_run(kenvctrld
, NULL
, "kenvctrld");
580 if (IS_ERR(kenvctrld_task
))
581 return PTR_ERR(kenvctrld_task
);
587 static void destroy_one_temp(struct bbc_cpu_temperature
*tp
)
589 bbc_i2c_detach(tp
->client
);
593 static void destroy_one_fan(struct bbc_fan_control
*fp
)
595 bbc_i2c_detach(fp
->client
);
599 void bbc_envctrl_cleanup(void)
601 struct bbc_cpu_temperature
*tp
;
602 struct bbc_fan_control
*fp
;
604 kthread_stop(kenvctrld_task
);
608 struct bbc_cpu_temperature
*next
= tp
->next
;
609 destroy_one_temp(tp
);
612 all_bbc_temps
= NULL
;
616 struct bbc_fan_control
*next
= fp
->next
;