Linux 2.6.20.7
[linux/fpc-iii.git] / include / asm-sh / io.h
bloba0e55b09e4fd773b30d9acf30e2e89ed60f72340
1 #ifndef __ASM_SH_IO_H
2 #define __ASM_SH_IO_H
4 /*
5 * Convention:
6 * read{b,w,l}/write{b,w,l} are for PCI,
7 * while in{b,w,l}/out{b,w,l} are for ISA
8 * These may (will) be platform specific function.
9 * In addition we have 'pausing' versions: in{b,w,l}_p/out{b,w,l}_p
10 * and 'string' versions: ins{b,w,l}/outs{b,w,l}
11 * For read{b,w,l} and write{b,w,l} there are also __raw versions, which
12 * do not have a memory barrier after them.
14 * In addition, we have
15 * ctrl_in{b,w,l}/ctrl_out{b,w,l} for SuperH specific I/O.
16 * which are processor specific.
20 * We follow the Alpha convention here:
21 * __inb expands to an inline function call (which calls via the mv)
22 * _inb is a real function call (note ___raw fns are _ version of __raw)
23 * inb by default expands to _inb, but the machine specific code may
24 * define it to __inb if it chooses.
26 #include <asm/cache.h>
27 #include <asm/system.h>
28 #include <asm/addrspace.h>
29 #include <asm/machvec.h>
30 #include <asm/pgtable.h>
31 #include <asm-generic/iomap.h>
33 #ifdef __KERNEL__
36 * Depending on which platform we are running on, we need different
37 * I/O functions.
39 #define __IO_PREFIX generic
40 #include <asm/io_generic.h>
42 #define maybebadio(port) \
43 printk(KERN_ERR "bad PC-like io %s:%u for port 0x%lx at 0x%08x\n", \
44 __FUNCTION__, __LINE__, (port), (u32)__builtin_return_address(0))
47 * Since boards are able to define their own set of I/O routines through
48 * their respective machine vector, we always wrap through the mv.
50 * Also, in the event that a board hasn't provided its own definition for
51 * a given routine, it will be wrapped to generic code at run-time.
54 #define __inb(p) sh_mv.mv_inb((p))
55 #define __inw(p) sh_mv.mv_inw((p))
56 #define __inl(p) sh_mv.mv_inl((p))
57 #define __outb(x,p) sh_mv.mv_outb((x),(p))
58 #define __outw(x,p) sh_mv.mv_outw((x),(p))
59 #define __outl(x,p) sh_mv.mv_outl((x),(p))
61 #define __inb_p(p) sh_mv.mv_inb_p((p))
62 #define __inw_p(p) sh_mv.mv_inw_p((p))
63 #define __inl_p(p) sh_mv.mv_inl_p((p))
64 #define __outb_p(x,p) sh_mv.mv_outb_p((x),(p))
65 #define __outw_p(x,p) sh_mv.mv_outw_p((x),(p))
66 #define __outl_p(x,p) sh_mv.mv_outl_p((x),(p))
68 #define __insb(p,b,c) sh_mv.mv_insb((p), (b), (c))
69 #define __insw(p,b,c) sh_mv.mv_insw((p), (b), (c))
70 #define __insl(p,b,c) sh_mv.mv_insl((p), (b), (c))
71 #define __outsb(p,b,c) sh_mv.mv_outsb((p), (b), (c))
72 #define __outsw(p,b,c) sh_mv.mv_outsw((p), (b), (c))
73 #define __outsl(p,b,c) sh_mv.mv_outsl((p), (b), (c))
75 #define __readb(a) sh_mv.mv_readb((a))
76 #define __readw(a) sh_mv.mv_readw((a))
77 #define __readl(a) sh_mv.mv_readl((a))
78 #define __writeb(v,a) sh_mv.mv_writeb((v),(a))
79 #define __writew(v,a) sh_mv.mv_writew((v),(a))
80 #define __writel(v,a) sh_mv.mv_writel((v),(a))
82 #define inb __inb
83 #define inw __inw
84 #define inl __inl
85 #define outb __outb
86 #define outw __outw
87 #define outl __outl
89 #define inb_p __inb_p
90 #define inw_p __inw_p
91 #define inl_p __inl_p
92 #define outb_p __outb_p
93 #define outw_p __outw_p
94 #define outl_p __outl_p
96 #define insb __insb
97 #define insw __insw
98 #define insl __insl
99 #define outsb __outsb
100 #define outsw __outsw
101 #define outsl __outsl
103 #define __raw_readb(a) __readb((void __iomem *)(a))
104 #define __raw_readw(a) __readw((void __iomem *)(a))
105 #define __raw_readl(a) __readl((void __iomem *)(a))
106 #define __raw_writeb(v, a) __writeb(v, (void __iomem *)(a))
107 #define __raw_writew(v, a) __writew(v, (void __iomem *)(a))
108 #define __raw_writel(v, a) __writel(v, (void __iomem *)(a))
110 void __raw_writesl(unsigned long addr, const void *data, int longlen);
111 void __raw_readsl(unsigned long addr, void *data, int longlen);
114 * The platform header files may define some of these macros to use
115 * the inlined versions where appropriate. These macros may also be
116 * redefined by userlevel programs.
118 #ifdef __readb
119 # define readb(a) ({ unsigned long r_ = __raw_readb(a); mb(); r_; })
120 #endif
121 #ifdef __raw_readw
122 # define readw(a) ({ unsigned long r_ = __raw_readw(a); mb(); r_; })
123 #endif
124 #ifdef __raw_readl
125 # define readl(a) ({ unsigned long r_ = __raw_readl(a); mb(); r_; })
126 #endif
128 #ifdef __raw_writeb
129 # define writeb(v,a) ({ __raw_writeb((v),(a)); mb(); })
130 #endif
131 #ifdef __raw_writew
132 # define writew(v,a) ({ __raw_writew((v),(a)); mb(); })
133 #endif
134 #ifdef __raw_writel
135 # define writel(v,a) ({ __raw_writel((v),(a)); mb(); })
136 #endif
138 #define writesl __raw_writesl
139 #define readsl __raw_readsl
141 #define readb_relaxed(a) readb(a)
142 #define readw_relaxed(a) readw(a)
143 #define readl_relaxed(a) readl(a)
145 /* Simple MMIO */
146 #define ioread8(a) readb(a)
147 #define ioread16(a) readw(a)
148 #define ioread16be(a) be16_to_cpu(__raw_readw((a)))
149 #define ioread32(a) readl(a)
150 #define ioread32be(a) be32_to_cpu(__raw_readl((a)))
152 #define iowrite8(v,a) writeb((v),(a))
153 #define iowrite16(v,a) writew((v),(a))
154 #define iowrite16be(v,a) __raw_writew(cpu_to_be16((v)),(a))
155 #define iowrite32(v,a) writel((v),(a))
156 #define iowrite32be(v,a) __raw_writel(cpu_to_be32((v)),(a))
158 #define ioread8_rep(a,d,c) insb((a),(d),(c))
159 #define ioread16_rep(a,d,c) insw((a),(d),(c))
160 #define ioread32_rep(a,d,c) insl((a),(d),(c))
162 #define iowrite8_rep(a,s,c) outsb((a),(s),(c))
163 #define iowrite16_rep(a,s,c) outsw((a),(s),(c))
164 #define iowrite32_rep(a,s,c) outsl((a),(s),(c))
166 #define mmiowb() wmb() /* synco on SH-4A, otherwise a nop */
169 * This function provides a method for the generic case where a board-specific
170 * ioport_map simply needs to return the port + some arbitrary port base.
172 * We use this at board setup time to implicitly set the port base, and
173 * as a result, we can use the generic ioport_map.
175 static inline void __set_io_port_base(unsigned long pbase)
177 extern unsigned long generic_io_base;
179 generic_io_base = pbase;
182 /* We really want to try and get these to memcpy etc */
183 extern void memcpy_fromio(void *, volatile void __iomem *, unsigned long);
184 extern void memcpy_toio(volatile void __iomem *, const void *, unsigned long);
185 extern void memset_io(volatile void __iomem *, int, unsigned long);
187 /* SuperH on-chip I/O functions */
188 static inline unsigned char ctrl_inb(unsigned long addr)
190 return *(volatile unsigned char*)addr;
193 static inline unsigned short ctrl_inw(unsigned long addr)
195 return *(volatile unsigned short*)addr;
198 static inline unsigned int ctrl_inl(unsigned long addr)
200 return *(volatile unsigned long*)addr;
203 static inline void ctrl_outb(unsigned char b, unsigned long addr)
205 *(volatile unsigned char*)addr = b;
208 static inline void ctrl_outw(unsigned short b, unsigned long addr)
210 *(volatile unsigned short*)addr = b;
213 static inline void ctrl_outl(unsigned int b, unsigned long addr)
215 *(volatile unsigned long*)addr = b;
218 static inline void ctrl_delay(void)
220 ctrl_inw(P2SEG);
223 #define IO_SPACE_LIMIT 0xffffffff
225 #ifdef CONFIG_MMU
227 * Change virtual addresses to physical addresses and vv.
228 * These are trivial on the 1:1 Linux/SuperH mapping
230 static inline unsigned long virt_to_phys(volatile void *address)
232 return PHYSADDR(address);
235 static inline void *phys_to_virt(unsigned long address)
237 return (void *)P1SEGADDR(address);
239 #else
240 #define phys_to_virt(address) ((void *)(address))
241 #define virt_to_phys(address) ((unsigned long)(address))
242 #endif
244 #define virt_to_bus virt_to_phys
245 #define bus_to_virt phys_to_virt
246 #define page_to_bus page_to_phys
249 * readX/writeX() are used to access memory mapped devices. On some
250 * architectures the memory mapped IO stuff needs to be accessed
251 * differently. On the x86 architecture, we just read/write the
252 * memory location directly.
254 * On SH, we traditionally have the whole physical address space mapped
255 * at all times (as MIPS does), so "ioremap()" and "iounmap()" do not
256 * need to do anything but place the address in the proper segment. This
257 * is true for P1 and P2 addresses, as well as some P3 ones. However,
258 * most of the P3 addresses and newer cores using extended addressing
259 * need to map through page tables, so the ioremap() implementation
260 * becomes a bit more complicated. See arch/sh/mm/ioremap.c for
261 * additional notes on this.
263 * We cheat a bit and always return uncachable areas until we've fixed
264 * the drivers to handle caching properly.
266 #ifdef CONFIG_MMU
267 void __iomem *__ioremap(unsigned long offset, unsigned long size,
268 unsigned long flags);
269 void __iounmap(void __iomem *addr);
270 #else
271 #define __ioremap(offset, size, flags) ((void __iomem *)(offset))
272 #define __iounmap(addr) do { } while (0)
273 #endif /* CONFIG_MMU */
275 static inline void __iomem *
276 __ioremap_mode(unsigned long offset, unsigned long size, unsigned long flags)
278 unsigned long last_addr = offset + size - 1;
281 * For P1 and P2 space this is trivial, as everything is already
282 * mapped. Uncached access for P1 addresses are done through P2.
283 * In the P3 case or for addresses outside of the 29-bit space,
284 * mapping must be done by the PMB or by using page tables.
286 if (likely(PXSEG(offset) < P3SEG && PXSEG(last_addr) < P3SEG)) {
287 if (unlikely(flags & _PAGE_CACHABLE))
288 return (void __iomem *)P1SEGADDR(offset);
290 return (void __iomem *)P2SEGADDR(offset);
293 return __ioremap(offset, size, flags);
296 #define ioremap(offset, size) \
297 __ioremap_mode((offset), (size), 0)
298 #define ioremap_nocache(offset, size) \
299 __ioremap_mode((offset), (size), 0)
300 #define ioremap_cache(offset, size) \
301 __ioremap_mode((offset), (size), _PAGE_CACHABLE)
302 #define p3_ioremap(offset, size, flags) \
303 __ioremap((offset), (size), (flags))
304 #define iounmap(addr) \
305 __iounmap((addr))
308 * The caches on some architectures aren't dma-coherent and have need to
309 * handle this in software. There are three types of operations that
310 * can be applied to dma buffers.
312 * - dma_cache_wback_inv(start, size) makes caches and RAM coherent by
313 * writing the content of the caches back to memory, if necessary.
314 * The function also invalidates the affected part of the caches as
315 * necessary before DMA transfers from outside to memory.
316 * - dma_cache_inv(start, size) invalidates the affected parts of the
317 * caches. Dirty lines of the caches may be written back or simply
318 * be discarded. This operation is necessary before dma operations
319 * to the memory.
320 * - dma_cache_wback(start, size) writes back any dirty lines but does
321 * not invalidate the cache. This can be used before DMA reads from
322 * memory,
325 #define dma_cache_wback_inv(_start,_size) \
326 __flush_purge_region(_start,_size)
327 #define dma_cache_inv(_start,_size) \
328 __flush_invalidate_region(_start,_size)
329 #define dma_cache_wback(_start,_size) \
330 __flush_wback_region(_start,_size)
333 * Convert a physical pointer to a virtual kernel pointer for /dev/mem
334 * access
336 #define xlate_dev_mem_ptr(p) __va(p)
339 * Convert a virtual cached pointer to an uncached pointer
341 #define xlate_dev_kmem_ptr(p) p
343 #endif /* __KERNEL__ */
345 #endif /* __ASM_SH_IO_H */