2 * Copyright © 2006 Keith Packard
3 * Copyright © 2007-2008 Dave Airlie
4 * Copyright © 2007-2008 Intel Corporation
5 * Jesse Barnes <jesse.barnes@intel.com>
7 * Permission is hereby granted, free of charge, to any person obtaining a
8 * copy of this software and associated documentation files (the "Software"),
9 * to deal in the Software without restriction, including without limitation
10 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
11 * and/or sell copies of the Software, and to permit persons to whom the
12 * Software is furnished to do so, subject to the following conditions:
14 * The above copyright notice and this permission notice shall be included in
15 * all copies or substantial portions of the Software.
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20 * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
21 * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
22 * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
23 * OTHER DEALINGS IN THE SOFTWARE.
25 #ifndef __DRM_CRTC_H__
26 #define __DRM_CRTC_H__
28 #include <linux/i2c.h>
29 #include <linux/spinlock.h>
30 #include <linux/types.h>
31 #include <linux/idr.h>
33 #include <linux/hdmi.h>
34 #include <linux/media-bus-format.h>
35 #include <uapi/drm/drm_mode.h>
36 #include <uapi/drm/drm_fourcc.h>
37 #include <drm/drm_modeset_lock.h>
41 struct drm_framebuffer
;
42 struct drm_object_properties
;
49 struct drm_mode_object
{
52 struct drm_object_properties
*properties
;
54 void (*free_cb
)(struct kref
*kref
);
57 #define DRM_OBJECT_MAX_PROPERTY 24
58 struct drm_object_properties
{
59 int count
, atomic_count
;
60 /* NOTE: if we ever start dynamically destroying properties (ie.
61 * not at drm_mode_config_cleanup() time), then we'd have to do
62 * a better job of detaching property from mode objects to avoid
63 * dangling property pointers:
65 struct drm_property
*properties
[DRM_OBJECT_MAX_PROPERTY
];
66 /* do not read/write values directly, but use drm_object_property_get_value()
67 * and drm_object_property_set_value():
69 uint64_t values
[DRM_OBJECT_MAX_PROPERTY
];
72 static inline int64_t U642I64(uint64_t val
)
74 return (int64_t)*((int64_t *)&val
);
76 static inline uint64_t I642U64(int64_t val
)
78 return (uint64_t)*((uint64_t *)&val
);
82 * Rotation property bits. DRM_ROTATE_<degrees> rotates the image by the
83 * specified amount in degrees in counter clockwise direction. DRM_REFLECT_X and
84 * DRM_REFLECT_Y reflects the image along the specified axis prior to rotation
86 #define DRM_ROTATE_MASK 0x0f
87 #define DRM_ROTATE_0 0
88 #define DRM_ROTATE_90 1
89 #define DRM_ROTATE_180 2
90 #define DRM_ROTATE_270 3
91 #define DRM_REFLECT_MASK (~DRM_ROTATE_MASK)
92 #define DRM_REFLECT_X 4
93 #define DRM_REFLECT_Y 5
95 enum drm_connector_force
{
96 DRM_FORCE_UNSPECIFIED
,
98 DRM_FORCE_ON
, /* force on analog part normally */
99 DRM_FORCE_ON_DIGITAL
, /* for DVI-I use digital connector */
102 #include <drm/drm_modes.h>
104 enum drm_connector_status
{
105 connector_status_connected
= 1,
106 connector_status_disconnected
= 2,
107 connector_status_unknown
= 3,
110 enum subpixel_order
{
112 SubPixelHorizontalRGB
,
113 SubPixelHorizontalBGR
,
119 #define DRM_COLOR_FORMAT_RGB444 (1<<0)
120 #define DRM_COLOR_FORMAT_YCRCB444 (1<<1)
121 #define DRM_COLOR_FORMAT_YCRCB422 (1<<2)
123 #define DRM_BUS_FLAG_DE_LOW (1<<0)
124 #define DRM_BUS_FLAG_DE_HIGH (1<<1)
125 /* drive data on pos. edge */
126 #define DRM_BUS_FLAG_PIXDATA_POSEDGE (1<<2)
127 /* drive data on neg. edge */
128 #define DRM_BUS_FLAG_PIXDATA_NEGEDGE (1<<3)
131 * Describes a given display (e.g. CRT or flat panel) and its limitations.
133 struct drm_display_info
{
134 char name
[DRM_DISPLAY_INFO_LEN
];
137 unsigned int width_mm
;
138 unsigned int height_mm
;
140 /* Clock limits FIXME: storage format */
141 unsigned int min_vfreq
, max_vfreq
;
142 unsigned int min_hfreq
, max_hfreq
;
143 unsigned int pixel_clock
;
146 enum subpixel_order subpixel_order
;
149 const u32
*bus_formats
;
150 unsigned int num_bus_formats
;
153 /* Mask of supported hdmi deep color modes */
154 u8 edid_hdmi_dc_modes
;
159 /* data corresponds to displayid vend/prod/serial */
160 struct drm_tile_group
{
161 struct kref refcount
;
162 struct drm_device
*dev
;
168 * struct drm_framebuffer_funcs - framebuffer hooks
170 struct drm_framebuffer_funcs
{
174 * Clean up framebuffer resources, specifically also unreference the
175 * backing storage. The core guarantees to call this function for every
176 * framebuffer successfully created by ->fb_create() in
177 * &drm_mode_config_funcs. Drivers must also call
178 * drm_framebuffer_cleanup() to release DRM core resources for this
181 void (*destroy
)(struct drm_framebuffer
*framebuffer
);
186 * Create a buffer handle in the driver-specific buffer manager (either
187 * GEM or TTM) valid for the passed-in struct &drm_file. This is used by
188 * the core to implement the GETFB IOCTL, which returns (for
189 * sufficiently priviledged user) also a native buffer handle. This can
190 * be used for seamless transitions between modesetting clients by
191 * copying the current screen contents to a private buffer and blending
192 * between that and the new contents.
194 * GEM based drivers should call drm_gem_handle_create() to create the
199 * 0 on success or a negative error code on failure.
201 int (*create_handle
)(struct drm_framebuffer
*fb
,
202 struct drm_file
*file_priv
,
203 unsigned int *handle
);
207 * Optional callback for the dirty fb IOCTL.
209 * Userspace can notify the driver via this callback that an area of the
210 * framebuffer has changed and should be flushed to the display
211 * hardware. This can also be used internally, e.g. by the fbdev
212 * emulation, though that's not the case currently.
214 * See documentation in drm_mode.h for the struct drm_mode_fb_dirty_cmd
215 * for more information as all the semantics and arguments have a one to
216 * one mapping on this function.
220 * 0 on success or a negative error code on failure.
222 int (*dirty
)(struct drm_framebuffer
*framebuffer
,
223 struct drm_file
*file_priv
, unsigned flags
,
224 unsigned color
, struct drm_clip_rect
*clips
,
228 struct drm_framebuffer
{
229 struct drm_device
*dev
;
231 * Note that the fb is refcounted for the benefit of driver internals,
232 * for example some hw, disabling a CRTC/plane is asynchronous, and
233 * scanout does not actually complete until the next vblank. So some
234 * cleanup (like releasing the reference(s) on the backing GEM bo(s))
235 * should be deferred. In cases like this, the driver would like to
236 * hold a ref to the fb even though it has already been removed from
237 * userspace perspective.
238 * The refcount is stored inside the mode object.
241 * Place on the dev->mode_config.fb_list, access protected by
242 * dev->mode_config.fb_lock.
244 struct list_head head
;
245 struct drm_mode_object base
;
246 const struct drm_framebuffer_funcs
*funcs
;
247 unsigned int pitches
[4];
248 unsigned int offsets
[4];
249 uint64_t modifier
[4];
252 /* depth can be 15 or 16 */
256 uint32_t pixel_format
; /* fourcc format */
259 struct list_head filp_head
;
262 struct drm_property_blob
{
263 struct drm_mode_object base
;
264 struct drm_device
*dev
;
265 struct list_head head_global
;
266 struct list_head head_file
;
268 unsigned char data
[];
271 struct drm_property_enum
{
273 struct list_head head
;
274 char name
[DRM_PROP_NAME_LEN
];
277 struct drm_property
{
278 struct list_head head
;
279 struct drm_mode_object base
;
281 char name
[DRM_PROP_NAME_LEN
];
284 struct drm_device
*dev
;
286 struct list_head enum_list
;
290 struct drm_connector
;
292 struct drm_pending_vblank_event
;
295 struct drm_atomic_state
;
297 struct drm_crtc_helper_funcs
;
298 struct drm_encoder_helper_funcs
;
299 struct drm_connector_helper_funcs
;
300 struct drm_plane_helper_funcs
;
303 * struct drm_crtc_state - mutable CRTC state
304 * @crtc: backpointer to the CRTC
305 * @enable: whether the CRTC should be enabled, gates all other state
306 * @active: whether the CRTC is actively displaying (used for DPMS)
307 * @planes_changed: planes on this crtc are updated
308 * @mode_changed: crtc_state->mode or crtc_state->enable has been changed
309 * @active_changed: crtc_state->active has been toggled.
310 * @connectors_changed: connectors to this crtc have been updated
311 * @zpos_changed: zpos values of planes on this crtc have been updated
312 * @color_mgmt_changed: color management properties have changed (degamma or
313 * gamma LUT or CSC matrix)
314 * @plane_mask: bitmask of (1 << drm_plane_index(plane)) of attached planes
315 * @connector_mask: bitmask of (1 << drm_connector_index(connector)) of attached connectors
316 * @encoder_mask: bitmask of (1 << drm_encoder_index(encoder)) of attached encoders
317 * @last_vblank_count: for helpers and drivers to capture the vblank of the
318 * update to ensure framebuffer cleanup isn't done too early
319 * @adjusted_mode: for use by helpers and drivers to compute adjusted mode timings
320 * @mode: current mode timings
321 * @mode_blob: &drm_property_blob for @mode
322 * @degamma_lut: Lookup table for converting framebuffer pixel data
323 * before apply the conversion matrix
324 * @ctm: Transformation matrix
325 * @gamma_lut: Lookup table for converting pixel data after the
327 * @event: optional pointer to a DRM event to signal upon completion of the
329 * @state: backpointer to global drm_atomic_state
331 * Note that the distinction between @enable and @active is rather subtile:
332 * Flipping @active while @enable is set without changing anything else may
333 * never return in a failure from the ->atomic_check callback. Userspace assumes
334 * that a DPMS On will always succeed. In other words: @enable controls resource
335 * assignment, @active controls the actual hardware state.
337 struct drm_crtc_state
{
338 struct drm_crtc
*crtc
;
343 /* computed state bits used by helpers and drivers */
344 bool planes_changed
: 1;
345 bool mode_changed
: 1;
346 bool active_changed
: 1;
347 bool connectors_changed
: 1;
348 bool zpos_changed
: 1;
349 bool color_mgmt_changed
: 1;
351 /* attached planes bitmask:
352 * WARNING: transitional helpers do not maintain plane_mask so
353 * drivers not converted over to atomic helpers should not rely
354 * on plane_mask being accurate!
361 /* last_vblank_count: for vblank waits before cleanup */
362 u32 last_vblank_count
;
364 /* adjusted_mode: for use by helpers and drivers */
365 struct drm_display_mode adjusted_mode
;
367 struct drm_display_mode mode
;
369 /* blob property to expose current mode to atomic userspace */
370 struct drm_property_blob
*mode_blob
;
372 /* blob property to expose color management to userspace */
373 struct drm_property_blob
*degamma_lut
;
374 struct drm_property_blob
*ctm
;
375 struct drm_property_blob
*gamma_lut
;
377 struct drm_pending_vblank_event
*event
;
379 struct drm_atomic_state
*state
;
383 * struct drm_crtc_funcs - control CRTCs for a given device
385 * The drm_crtc_funcs structure is the central CRTC management structure
386 * in the DRM. Each CRTC controls one or more connectors (note that the name
387 * CRTC is simply historical, a CRTC may control LVDS, VGA, DVI, TV out, etc.
388 * connectors, not just CRTs).
390 * Each driver is responsible for filling out this structure at startup time,
391 * in addition to providing other modesetting features, like i2c and DDC
394 struct drm_crtc_funcs
{
398 * Reset CRTC hardware and software state to off. This function isn't
399 * called by the core directly, only through drm_mode_config_reset().
400 * It's not a helper hook only for historical reasons.
402 * Atomic drivers can use drm_atomic_helper_crtc_reset() to reset
403 * atomic state using this hook.
405 void (*reset
)(struct drm_crtc
*crtc
);
410 * Update the cursor image. The cursor position is relative to the CRTC
411 * and can be partially or fully outside of the visible area.
413 * Note that contrary to all other KMS functions the legacy cursor entry
414 * points don't take a framebuffer object, but instead take directly a
415 * raw buffer object id from the driver's buffer manager (which is
416 * either GEM or TTM for current drivers).
418 * This entry point is deprecated, drivers should instead implement
419 * universal plane support and register a proper cursor plane using
420 * drm_crtc_init_with_planes().
422 * This callback is optional
426 * 0 on success or a negative error code on failure.
428 int (*cursor_set
)(struct drm_crtc
*crtc
, struct drm_file
*file_priv
,
429 uint32_t handle
, uint32_t width
, uint32_t height
);
434 * Update the cursor image, including hotspot information. The hotspot
435 * must not affect the cursor position in CRTC coordinates, but is only
436 * meant as a hint for virtualized display hardware to coordinate the
437 * guests and hosts cursor position. The cursor hotspot is relative to
438 * the cursor image. Otherwise this works exactly like @cursor_set.
440 * This entry point is deprecated, drivers should instead implement
441 * universal plane support and register a proper cursor plane using
442 * drm_crtc_init_with_planes().
444 * This callback is optional.
448 * 0 on success or a negative error code on failure.
450 int (*cursor_set2
)(struct drm_crtc
*crtc
, struct drm_file
*file_priv
,
451 uint32_t handle
, uint32_t width
, uint32_t height
,
452 int32_t hot_x
, int32_t hot_y
);
457 * Update the cursor position. The cursor does not need to be visible
458 * when this hook is called.
460 * This entry point is deprecated, drivers should instead implement
461 * universal plane support and register a proper cursor plane using
462 * drm_crtc_init_with_planes().
464 * This callback is optional.
468 * 0 on success or a negative error code on failure.
470 int (*cursor_move
)(struct drm_crtc
*crtc
, int x
, int y
);
475 * Set gamma on the CRTC.
477 * This callback is optional.
481 * Drivers that support gamma tables and also fbdev emulation through
482 * the provided helper library need to take care to fill out the gamma
483 * hooks for both. Currently there's a bit an unfortunate duplication
484 * going on, which should eventually be unified to just one set of
487 int (*gamma_set
)(struct drm_crtc
*crtc
, u16
*r
, u16
*g
, u16
*b
,
493 * Clean up plane resources. This is only called at driver unload time
494 * through drm_mode_config_cleanup() since a CRTC cannot be hotplugged
497 void (*destroy
)(struct drm_crtc
*crtc
);
502 * This is the main legacy entry point to change the modeset state on a
503 * CRTC. All the details of the desired configuration are passed in a
504 * struct &drm_mode_set - see there for details.
506 * Drivers implementing atomic modeset should use
507 * drm_atomic_helper_set_config() to implement this hook.
511 * 0 on success or a negative error code on failure.
513 int (*set_config
)(struct drm_mode_set
*set
);
518 * Legacy entry point to schedule a flip to the given framebuffer.
520 * Page flipping is a synchronization mechanism that replaces the frame
521 * buffer being scanned out by the CRTC with a new frame buffer during
522 * vertical blanking, avoiding tearing (except when requested otherwise
523 * through the DRM_MODE_PAGE_FLIP_ASYNC flag). When an application
524 * requests a page flip the DRM core verifies that the new frame buffer
525 * is large enough to be scanned out by the CRTC in the currently
526 * configured mode and then calls the CRTC ->page_flip() operation with a
527 * pointer to the new frame buffer.
529 * The driver must wait for any pending rendering to the new framebuffer
530 * to complete before executing the flip. It should also wait for any
531 * pending rendering from other drivers if the underlying buffer is a
534 * An application can request to be notified when the page flip has
535 * completed. The drm core will supply a struct &drm_event in the event
536 * parameter in this case. This can be handled by the
537 * drm_crtc_send_vblank_event() function, which the driver should call on
538 * the provided event upon completion of the flip. Note that if
539 * the driver supports vblank signalling and timestamping the vblank
540 * counters and timestamps must agree with the ones returned from page
541 * flip events. With the current vblank helper infrastructure this can
542 * be achieved by holding a vblank reference while the page flip is
543 * pending, acquired through drm_crtc_vblank_get() and released with
544 * drm_crtc_vblank_put(). Drivers are free to implement their own vblank
545 * counter and timestamp tracking though, e.g. if they have accurate
546 * timestamp registers in hardware.
550 * Up to that point drivers need to manage events themselves and can use
551 * even->base.list freely for that. Specifically they need to ensure
552 * that they don't send out page flip (or vblank) events for which the
553 * corresponding drm file has been closed already. The drm core
554 * unfortunately does not (yet) take care of that. Therefore drivers
555 * currently must clean up and release pending events in their
556 * ->preclose driver function.
558 * This callback is optional.
562 * Very early versions of the KMS ABI mandated that the driver must
563 * block (but not reject) any rendering to the old framebuffer until the
564 * flip operation has completed and the old framebuffer is no longer
565 * visible. This requirement has been lifted, and userspace is instead
566 * expected to request delivery of an event and wait with recycling old
567 * buffers until such has been received.
571 * 0 on success or a negative error code on failure. Note that if a
572 * ->page_flip() operation is already pending the callback should return
573 * -EBUSY. Pageflips on a disabled CRTC (either by setting a NULL mode
574 * or just runtime disabled through DPMS respectively the new atomic
575 * "ACTIVE" state) should result in an -EINVAL error code. Note that
576 * drm_atomic_helper_page_flip() checks this already for atomic drivers.
578 int (*page_flip
)(struct drm_crtc
*crtc
,
579 struct drm_framebuffer
*fb
,
580 struct drm_pending_vblank_event
*event
,
586 * This is the legacy entry point to update a property attached to the
589 * Drivers implementing atomic modeset should use
590 * drm_atomic_helper_crtc_set_property() to implement this hook.
592 * This callback is optional if the driver does not support any legacy
593 * driver-private properties.
597 * 0 on success or a negative error code on failure.
599 int (*set_property
)(struct drm_crtc
*crtc
,
600 struct drm_property
*property
, uint64_t val
);
603 * @atomic_duplicate_state:
605 * Duplicate the current atomic state for this CRTC and return it.
606 * The core and helpers gurantee that any atomic state duplicated with
607 * this hook and still owned by the caller (i.e. not transferred to the
608 * driver by calling ->atomic_commit() from struct
609 * &drm_mode_config_funcs) will be cleaned up by calling the
610 * @atomic_destroy_state hook in this structure.
612 * Atomic drivers which don't subclass struct &drm_crtc should use
613 * drm_atomic_helper_crtc_duplicate_state(). Drivers that subclass the
614 * state structure to extend it with driver-private state should use
615 * __drm_atomic_helper_crtc_duplicate_state() to make sure shared state is
616 * duplicated in a consistent fashion across drivers.
618 * It is an error to call this hook before crtc->state has been
619 * initialized correctly.
623 * If the duplicate state references refcounted resources this hook must
624 * acquire a reference for each of them. The driver must release these
625 * references again in @atomic_destroy_state.
629 * Duplicated atomic state or NULL when the allocation failed.
631 struct drm_crtc_state
*(*atomic_duplicate_state
)(struct drm_crtc
*crtc
);
634 * @atomic_destroy_state:
636 * Destroy a state duplicated with @atomic_duplicate_state and release
637 * or unreference all resources it references
639 void (*atomic_destroy_state
)(struct drm_crtc
*crtc
,
640 struct drm_crtc_state
*state
);
643 * @atomic_set_property:
645 * Decode a driver-private property value and store the decoded value
646 * into the passed-in state structure. Since the atomic core decodes all
647 * standardized properties (even for extensions beyond the core set of
648 * properties which might not be implemented by all drivers) this
649 * requires drivers to subclass the state structure.
651 * Such driver-private properties should really only be implemented for
652 * truly hardware/vendor specific state. Instead it is preferred to
653 * standardize atomic extension and decode the properties used to expose
654 * such an extension in the core.
656 * Do not call this function directly, use
657 * drm_atomic_crtc_set_property() instead.
659 * This callback is optional if the driver does not support any
660 * driver-private atomic properties.
664 * This function is called in the state assembly phase of atomic
665 * modesets, which can be aborted for any reason (including on
666 * userspace's request to just check whether a configuration would be
667 * possible). Drivers MUST NOT touch any persistent state (hardware or
668 * software) or data structures except the passed in @state parameter.
670 * Also since userspace controls in which order properties are set this
671 * function must not do any input validation (since the state update is
672 * incomplete and hence likely inconsistent). Instead any such input
673 * validation must be done in the various atomic_check callbacks.
677 * 0 if the property has been found, -EINVAL if the property isn't
678 * implemented by the driver (which should never happen, the core only
679 * asks for properties attached to this CRTC). No other validation is
680 * allowed by the driver. The core already checks that the property
681 * value is within the range (integer, valid enum value, ...) the driver
682 * set when registering the property.
684 int (*atomic_set_property
)(struct drm_crtc
*crtc
,
685 struct drm_crtc_state
*state
,
686 struct drm_property
*property
,
689 * @atomic_get_property:
691 * Reads out the decoded driver-private property. This is used to
692 * implement the GETCRTC IOCTL.
694 * Do not call this function directly, use
695 * drm_atomic_crtc_get_property() instead.
697 * This callback is optional if the driver does not support any
698 * driver-private atomic properties.
702 * 0 on success, -EINVAL if the property isn't implemented by the
703 * driver (which should never happen, the core only asks for
704 * properties attached to this CRTC).
706 int (*atomic_get_property
)(struct drm_crtc
*crtc
,
707 const struct drm_crtc_state
*state
,
708 struct drm_property
*property
,
714 * This optional hook can be used to register additional userspace
715 * interfaces attached to the crtc like debugfs interfaces.
716 * It is called late in the driver load sequence from drm_dev_register().
717 * Everything added from this callback should be unregistered in
718 * the early_unregister callback.
722 * 0 on success, or a negative error code on failure.
724 int (*late_register
)(struct drm_crtc
*crtc
);
729 * This optional hook should be used to unregister the additional
730 * userspace interfaces attached to the crtc from
731 * late_unregister(). It is called from drm_dev_unregister(),
732 * early in the driver unload sequence to disable userspace access
733 * before data structures are torndown.
735 void (*early_unregister
)(struct drm_crtc
*crtc
);
739 * struct drm_crtc - central CRTC control structure
740 * @dev: parent DRM device
741 * @port: OF node used by drm_of_find_possible_crtcs()
742 * @head: list management
743 * @name: human readable name, can be overwritten by the driver
744 * @mutex: per-CRTC locking
745 * @base: base KMS object for ID tracking etc.
746 * @primary: primary plane for this CRTC
747 * @cursor: cursor plane for this CRTC
748 * @cursor_x: current x position of the cursor, used for universal cursor planes
749 * @cursor_y: current y position of the cursor, used for universal cursor planes
750 * @enabled: is this CRTC enabled?
751 * @mode: current mode timings
752 * @hwmode: mode timings as programmed to hw regs
753 * @x: x position on screen
754 * @y: y position on screen
755 * @funcs: CRTC control functions
756 * @gamma_size: size of gamma ramp
757 * @gamma_store: gamma ramp values
758 * @helper_private: mid-layer private data
759 * @properties: property tracking for this CRTC
761 * Each CRTC may have one or more connectors associated with it. This structure
762 * allows the CRTC to be controlled.
765 struct drm_device
*dev
;
766 struct device_node
*port
;
767 struct list_head head
;
774 * This provides a read lock for the overall crtc state (mode, dpms
775 * state, ...) and a write lock for everything which can be update
776 * without a full modeset (fb, cursor data, crtc properties ...). Full
777 * modeset also need to grab dev->mode_config.connection_mutex.
779 struct drm_modeset_lock mutex
;
781 struct drm_mode_object base
;
783 /* primary and cursor planes for CRTC */
784 struct drm_plane
*primary
;
785 struct drm_plane
*cursor
;
788 * @index: Position inside the mode_config.list, can be used as an array
789 * index. It is invariant over the lifetime of the CRTC.
793 /* position of cursor plane on crtc */
799 /* Requested mode from modesetting. */
800 struct drm_display_mode mode
;
802 /* Programmed mode in hw, after adjustments for encoders,
803 * crtc, panel scaling etc. Needed for timestamping etc.
805 struct drm_display_mode hwmode
;
808 const struct drm_crtc_funcs
*funcs
;
810 /* Legacy FB CRTC gamma size for reporting to userspace */
812 uint16_t *gamma_store
;
814 /* if you are using the helper */
815 const struct drm_crtc_helper_funcs
*helper_private
;
817 struct drm_object_properties properties
;
822 * Current atomic state for this CRTC.
824 struct drm_crtc_state
*state
;
829 * List of &drm_crtc_commit structures tracking pending commits.
830 * Protected by @commit_lock. This list doesn't hold its own full
831 * reference, but burrows it from the ongoing commit. Commit entries
832 * must be removed from this list once the commit is fully completed,
833 * but before it's correspoding &drm_atomic_state gets destroyed.
835 struct list_head commit_list
;
840 * Spinlock to protect @commit_list.
842 spinlock_t commit_lock
;
847 * Per-CRTC implicit acquire context used by atomic drivers for legacy
848 * IOCTLs, so that atomic drivers can get at the locking acquire
851 struct drm_modeset_acquire_ctx
*acquire_ctx
;
855 * struct drm_connector_state - mutable connector state
856 * @connector: backpointer to the connector
857 * @crtc: CRTC to connect connector to, NULL if disabled
858 * @best_encoder: can be used by helpers and drivers to select the encoder
859 * @state: backpointer to global drm_atomic_state
861 struct drm_connector_state
{
862 struct drm_connector
*connector
;
864 struct drm_crtc
*crtc
; /* do not write directly, use drm_atomic_set_crtc_for_connector() */
866 struct drm_encoder
*best_encoder
;
868 struct drm_atomic_state
*state
;
872 * struct drm_connector_funcs - control connectors on a given device
874 * Each CRTC may have one or more connectors attached to it. The functions
875 * below allow the core DRM code to control connectors, enumerate available modes,
878 struct drm_connector_funcs
{
882 * Legacy entry point to set the per-connector DPMS state. Legacy DPMS
883 * is exposed as a standard property on the connector, but diverted to
884 * this callback in the drm core. Note that atomic drivers don't
885 * implement the 4 level DPMS support on the connector any more, but
886 * instead only have an on/off "ACTIVE" property on the CRTC object.
888 * Drivers implementing atomic modeset should use
889 * drm_atomic_helper_connector_dpms() to implement this hook.
893 * 0 on success or a negative error code on failure.
895 int (*dpms
)(struct drm_connector
*connector
, int mode
);
900 * Reset connector hardware and software state to off. This function isn't
901 * called by the core directly, only through drm_mode_config_reset().
902 * It's not a helper hook only for historical reasons.
904 * Atomic drivers can use drm_atomic_helper_connector_reset() to reset
905 * atomic state using this hook.
907 void (*reset
)(struct drm_connector
*connector
);
912 * Check to see if anything is attached to the connector. The parameter
913 * force is set to false whilst polling, true when checking the
914 * connector due to a user request. force can be used by the driver to
915 * avoid expensive, destructive operations during automated probing.
919 * Note that this hook is only called by the probe helper. It's not in
920 * the helper library vtable purely for historical reasons. The only DRM
921 * core entry point to probe connector state is @fill_modes.
925 * drm_connector_status indicating the connector's status.
927 enum drm_connector_status (*detect
)(struct drm_connector
*connector
,
933 * This function is called to update internal encoder state when the
934 * connector is forced to a certain state by userspace, either through
935 * the sysfs interfaces or on the kernel cmdline. In that case the
936 * @detect callback isn't called.
940 * Note that this hook is only called by the probe helper. It's not in
941 * the helper library vtable purely for historical reasons. The only DRM
942 * core entry point to probe connector state is @fill_modes.
944 void (*force
)(struct drm_connector
*connector
);
949 * Entry point for output detection and basic mode validation. The
950 * driver should reprobe the output if needed (e.g. when hotplug
951 * handling is unreliable), add all detected modes to connector->modes
952 * and filter out any the device can't support in any configuration. It
953 * also needs to filter out any modes wider or higher than the
954 * parameters max_width and max_height indicate.
956 * The drivers must also prune any modes no longer valid from
957 * connector->modes. Furthermore it must update connector->status and
958 * connector->edid. If no EDID has been received for this output
959 * connector->edid must be NULL.
961 * Drivers using the probe helpers should use
962 * drm_helper_probe_single_connector_modes() or
963 * drm_helper_probe_single_connector_modes_nomerge() to implement this
968 * The number of modes detected and filled into connector->modes.
970 int (*fill_modes
)(struct drm_connector
*connector
, uint32_t max_width
, uint32_t max_height
);
975 * This is the legacy entry point to update a property attached to the
978 * Drivers implementing atomic modeset should use
979 * drm_atomic_helper_connector_set_property() to implement this hook.
981 * This callback is optional if the driver does not support any legacy
982 * driver-private properties.
986 * 0 on success or a negative error code on failure.
988 int (*set_property
)(struct drm_connector
*connector
, struct drm_property
*property
,
994 * This optional hook can be used to register additional userspace
995 * interfaces attached to the connector, light backlight control, i2c,
996 * DP aux or similar interfaces. It is called late in the driver load
997 * sequence from drm_connector_register() when registering all the
998 * core drm connector interfaces. Everything added from this callback
999 * should be unregistered in the early_unregister callback.
1003 * 0 on success, or a negative error code on failure.
1005 int (*late_register
)(struct drm_connector
*connector
);
1008 * @early_unregister:
1010 * This optional hook should be used to unregister the additional
1011 * userspace interfaces attached to the connector from
1012 * late_unregister(). It is called from drm_connector_unregister(),
1013 * early in the driver unload sequence to disable userspace access
1014 * before data structures are torndown.
1016 void (*early_unregister
)(struct drm_connector
*connector
);
1021 * Clean up connector resources. This is called at driver unload time
1022 * through drm_mode_config_cleanup(). It can also be called at runtime
1023 * when a connector is being hot-unplugged for drivers that support
1024 * connector hotplugging (e.g. DisplayPort MST).
1026 void (*destroy
)(struct drm_connector
*connector
);
1029 * @atomic_duplicate_state:
1031 * Duplicate the current atomic state for this connector and return it.
1032 * The core and helpers gurantee that any atomic state duplicated with
1033 * this hook and still owned by the caller (i.e. not transferred to the
1034 * driver by calling ->atomic_commit() from struct
1035 * &drm_mode_config_funcs) will be cleaned up by calling the
1036 * @atomic_destroy_state hook in this structure.
1038 * Atomic drivers which don't subclass struct &drm_connector_state should use
1039 * drm_atomic_helper_connector_duplicate_state(). Drivers that subclass the
1040 * state structure to extend it with driver-private state should use
1041 * __drm_atomic_helper_connector_duplicate_state() to make sure shared state is
1042 * duplicated in a consistent fashion across drivers.
1044 * It is an error to call this hook before connector->state has been
1045 * initialized correctly.
1049 * If the duplicate state references refcounted resources this hook must
1050 * acquire a reference for each of them. The driver must release these
1051 * references again in @atomic_destroy_state.
1055 * Duplicated atomic state or NULL when the allocation failed.
1057 struct drm_connector_state
*(*atomic_duplicate_state
)(struct drm_connector
*connector
);
1060 * @atomic_destroy_state:
1062 * Destroy a state duplicated with @atomic_duplicate_state and release
1063 * or unreference all resources it references
1065 void (*atomic_destroy_state
)(struct drm_connector
*connector
,
1066 struct drm_connector_state
*state
);
1069 * @atomic_set_property:
1071 * Decode a driver-private property value and store the decoded value
1072 * into the passed-in state structure. Since the atomic core decodes all
1073 * standardized properties (even for extensions beyond the core set of
1074 * properties which might not be implemented by all drivers) this
1075 * requires drivers to subclass the state structure.
1077 * Such driver-private properties should really only be implemented for
1078 * truly hardware/vendor specific state. Instead it is preferred to
1079 * standardize atomic extension and decode the properties used to expose
1080 * such an extension in the core.
1082 * Do not call this function directly, use
1083 * drm_atomic_connector_set_property() instead.
1085 * This callback is optional if the driver does not support any
1086 * driver-private atomic properties.
1090 * This function is called in the state assembly phase of atomic
1091 * modesets, which can be aborted for any reason (including on
1092 * userspace's request to just check whether a configuration would be
1093 * possible). Drivers MUST NOT touch any persistent state (hardware or
1094 * software) or data structures except the passed in @state parameter.
1096 * Also since userspace controls in which order properties are set this
1097 * function must not do any input validation (since the state update is
1098 * incomplete and hence likely inconsistent). Instead any such input
1099 * validation must be done in the various atomic_check callbacks.
1103 * 0 if the property has been found, -EINVAL if the property isn't
1104 * implemented by the driver (which shouldn't ever happen, the core only
1105 * asks for properties attached to this connector). No other validation
1106 * is allowed by the driver. The core already checks that the property
1107 * value is within the range (integer, valid enum value, ...) the driver
1108 * set when registering the property.
1110 int (*atomic_set_property
)(struct drm_connector
*connector
,
1111 struct drm_connector_state
*state
,
1112 struct drm_property
*property
,
1116 * @atomic_get_property:
1118 * Reads out the decoded driver-private property. This is used to
1119 * implement the GETCONNECTOR IOCTL.
1121 * Do not call this function directly, use
1122 * drm_atomic_connector_get_property() instead.
1124 * This callback is optional if the driver does not support any
1125 * driver-private atomic properties.
1129 * 0 on success, -EINVAL if the property isn't implemented by the
1130 * driver (which shouldn't ever happen, the core only asks for
1131 * properties attached to this connector).
1133 int (*atomic_get_property
)(struct drm_connector
*connector
,
1134 const struct drm_connector_state
*state
,
1135 struct drm_property
*property
,
1140 * struct drm_encoder_funcs - encoder controls
1142 * Encoders sit between CRTCs and connectors.
1144 struct drm_encoder_funcs
{
1148 * Reset encoder hardware and software state to off. This function isn't
1149 * called by the core directly, only through drm_mode_config_reset().
1150 * It's not a helper hook only for historical reasons.
1152 void (*reset
)(struct drm_encoder
*encoder
);
1157 * Clean up encoder resources. This is only called at driver unload time
1158 * through drm_mode_config_cleanup() since an encoder cannot be
1159 * hotplugged in DRM.
1161 void (*destroy
)(struct drm_encoder
*encoder
);
1166 * This optional hook can be used to register additional userspace
1167 * interfaces attached to the encoder like debugfs interfaces.
1168 * It is called late in the driver load sequence from drm_dev_register().
1169 * Everything added from this callback should be unregistered in
1170 * the early_unregister callback.
1174 * 0 on success, or a negative error code on failure.
1176 int (*late_register
)(struct drm_encoder
*encoder
);
1179 * @early_unregister:
1181 * This optional hook should be used to unregister the additional
1182 * userspace interfaces attached to the encoder from
1183 * late_unregister(). It is called from drm_dev_unregister(),
1184 * early in the driver unload sequence to disable userspace access
1185 * before data structures are torndown.
1187 void (*early_unregister
)(struct drm_encoder
*encoder
);
1190 #define DRM_CONNECTOR_MAX_ENCODER 3
1193 * struct drm_encoder - central DRM encoder structure
1194 * @dev: parent DRM device
1195 * @head: list management
1196 * @base: base KMS object
1197 * @name: human readable name, can be overwritten by the driver
1198 * @encoder_type: one of the %DRM_MODE_ENCODER_<foo> types in drm_mode.h
1199 * @possible_crtcs: bitmask of potential CRTC bindings
1200 * @possible_clones: bitmask of potential sibling encoders for cloning
1201 * @crtc: currently bound CRTC
1202 * @bridge: bridge associated to the encoder
1203 * @funcs: control functions
1204 * @helper_private: mid-layer private data
1206 * CRTCs drive pixels to encoders, which convert them into signals
1207 * appropriate for a given connector or set of connectors.
1209 struct drm_encoder
{
1210 struct drm_device
*dev
;
1211 struct list_head head
;
1213 struct drm_mode_object base
;
1218 * @index: Position inside the mode_config.list, can be used as an array
1219 * index. It is invariant over the lifetime of the encoder.
1223 uint32_t possible_crtcs
;
1224 uint32_t possible_clones
;
1226 struct drm_crtc
*crtc
;
1227 struct drm_bridge
*bridge
;
1228 const struct drm_encoder_funcs
*funcs
;
1229 const struct drm_encoder_helper_funcs
*helper_private
;
1232 /* should we poll this connector for connects and disconnects */
1233 /* hot plug detectable */
1234 #define DRM_CONNECTOR_POLL_HPD (1 << 0)
1235 /* poll for connections */
1236 #define DRM_CONNECTOR_POLL_CONNECT (1 << 1)
1237 /* can cleanly poll for disconnections without flickering the screen */
1238 /* DACs should rarely do this without a lot of testing */
1239 #define DRM_CONNECTOR_POLL_DISCONNECT (1 << 2)
1241 #define MAX_ELD_BYTES 128
1244 * struct drm_connector - central DRM connector control structure
1245 * @dev: parent DRM device
1246 * @kdev: kernel device for sysfs attributes
1247 * @attr: sysfs attributes
1248 * @head: list management
1249 * @base: base KMS object
1250 * @name: human readable name, can be overwritten by the driver
1251 * @connector_type: one of the %DRM_MODE_CONNECTOR_<foo> types from drm_mode.h
1252 * @connector_type_id: index into connector type enum
1253 * @interlace_allowed: can this connector handle interlaced modes?
1254 * @doublescan_allowed: can this connector handle doublescan?
1255 * @stereo_allowed: can this connector handle stereo modes?
1256 * @registered: is this connector exposed (registered) with userspace?
1257 * @modes: modes available on this connector (from fill_modes() + user)
1258 * @status: one of the drm_connector_status enums (connected, not, or unknown)
1259 * @probed_modes: list of modes derived directly from the display
1260 * @display_info: information about attached display (e.g. from EDID)
1261 * @funcs: connector control functions
1262 * @edid_blob_ptr: DRM property containing EDID if present
1263 * @properties: property tracking for this connector
1264 * @polled: a %DRM_CONNECTOR_POLL_<foo> value for core driven polling
1265 * @dpms: current dpms state
1266 * @helper_private: mid-layer private data
1267 * @cmdline_mode: mode line parsed from the kernel cmdline for this connector
1268 * @force: a %DRM_FORCE_<foo> state for forced mode sets
1269 * @override_edid: has the EDID been overwritten through debugfs for testing?
1270 * @encoder_ids: valid encoders for this connector
1271 * @encoder: encoder driving this connector, if any
1272 * @eld: EDID-like data, if present
1273 * @dvi_dual: dual link DVI, if found
1274 * @max_tmds_clock: max clock rate, if found
1275 * @latency_present: AV delay info from ELD, if found
1276 * @video_latency: video latency info from ELD, if found
1277 * @audio_latency: audio latency info from ELD, if found
1278 * @null_edid_counter: track sinks that give us all zeros for the EDID
1279 * @bad_edid_counter: track sinks that give us an EDID with invalid checksum
1280 * @edid_corrupt: indicates whether the last read EDID was corrupt
1281 * @debugfs_entry: debugfs directory for this connector
1282 * @state: current atomic state for this connector
1283 * @has_tile: is this connector connected to a tiled monitor
1284 * @tile_group: tile group for the connected monitor
1285 * @tile_is_single_monitor: whether the tile is one monitor housing
1286 * @num_h_tile: number of horizontal tiles in the tile group
1287 * @num_v_tile: number of vertical tiles in the tile group
1288 * @tile_h_loc: horizontal location of this tile
1289 * @tile_v_loc: vertical location of this tile
1290 * @tile_h_size: horizontal size of this tile.
1291 * @tile_v_size: vertical size of this tile.
1293 * Each connector may be connected to one or more CRTCs, or may be clonable by
1294 * another connector if they can share a CRTC. Each connector also has a specific
1295 * position in the broader display (referred to as a 'screen' though it could
1296 * span multiple monitors).
1298 struct drm_connector
{
1299 struct drm_device
*dev
;
1300 struct device
*kdev
;
1301 struct device_attribute
*attr
;
1302 struct list_head head
;
1304 struct drm_mode_object base
;
1309 * @index: Compacted connector index, which matches the position inside
1310 * the mode_config.list for drivers not supporting hot-add/removing. Can
1311 * be used as an array index. It is invariant over the lifetime of the
1317 int connector_type_id
;
1318 bool interlace_allowed
;
1319 bool doublescan_allowed
;
1320 bool stereo_allowed
;
1322 struct list_head modes
; /* list of modes on this connector */
1324 enum drm_connector_status status
;
1326 /* these are modes added by probing with DDC or the BIOS */
1327 struct list_head probed_modes
;
1329 struct drm_display_info display_info
;
1330 const struct drm_connector_funcs
*funcs
;
1332 struct drm_property_blob
*edid_blob_ptr
;
1333 struct drm_object_properties properties
;
1338 * DRM blob property data for the DP MST path property.
1340 struct drm_property_blob
*path_blob_ptr
;
1345 * DRM blob property data for the tile property (used mostly by DP MST).
1346 * This is meant for screens which are driven through separate display
1347 * pipelines represented by &drm_crtc, which might not be running with
1348 * genlocked clocks. For tiled panels which are genlocked, like
1349 * dual-link LVDS or dual-link DSI, the driver should try to not expose
1350 * the tiling and virtualize both &drm_crtc and &drm_plane if needed.
1352 struct drm_property_blob
*tile_blob_ptr
;
1354 uint8_t polled
; /* DRM_CONNECTOR_POLL_* */
1356 /* requested DPMS state */
1359 const struct drm_connector_helper_funcs
*helper_private
;
1361 /* forced on connector */
1362 struct drm_cmdline_mode cmdline_mode
;
1363 enum drm_connector_force force
;
1365 uint32_t encoder_ids
[DRM_CONNECTOR_MAX_ENCODER
];
1366 struct drm_encoder
*encoder
; /* currently active encoder */
1369 uint8_t eld
[MAX_ELD_BYTES
];
1371 int max_tmds_clock
; /* in MHz */
1372 bool latency_present
[2];
1373 int video_latency
[2]; /* [0]: progressive, [1]: interlaced */
1374 int audio_latency
[2];
1375 int null_edid_counter
; /* needed to workaround some HW bugs where we get all 0s */
1376 unsigned bad_edid_counter
;
1378 /* Flag for raw EDID header corruption - used in Displayport
1379 * compliance testing - * Displayport Link CTS Core 1.2 rev1.1 4.2.2.6
1383 struct dentry
*debugfs_entry
;
1385 struct drm_connector_state
*state
;
1387 /* DisplayID bits */
1389 struct drm_tile_group
*tile_group
;
1390 bool tile_is_single_monitor
;
1392 uint8_t num_h_tile
, num_v_tile
;
1393 uint8_t tile_h_loc
, tile_v_loc
;
1394 uint16_t tile_h_size
, tile_v_size
;
1398 * struct drm_plane_state - mutable plane state
1399 * @plane: backpointer to the plane
1400 * @crtc: currently bound CRTC, NULL if disabled
1401 * @fb: currently bound framebuffer
1402 * @fence: optional fence to wait for before scanning out @fb
1403 * @crtc_x: left position of visible portion of plane on crtc
1404 * @crtc_y: upper position of visible portion of plane on crtc
1405 * @crtc_w: width of visible portion of plane on crtc
1406 * @crtc_h: height of visible portion of plane on crtc
1407 * @src_x: left position of visible portion of plane within
1409 * @src_y: upper position of visible portion of plane within
1411 * @src_w: width of visible portion of plane (in 16.16)
1412 * @src_h: height of visible portion of plane (in 16.16)
1413 * @rotation: rotation of the plane
1414 * @zpos: priority of the given plane on crtc (optional)
1415 * @normalized_zpos: normalized value of zpos: unique, range from 0 to N-1
1416 * where N is the number of active planes for given crtc
1417 * @state: backpointer to global drm_atomic_state
1419 struct drm_plane_state
{
1420 struct drm_plane
*plane
;
1422 struct drm_crtc
*crtc
; /* do not write directly, use drm_atomic_set_crtc_for_plane() */
1423 struct drm_framebuffer
*fb
; /* do not write directly, use drm_atomic_set_fb_for_plane() */
1424 struct fence
*fence
;
1426 /* Signed dest location allows it to be partially off screen */
1427 int32_t crtc_x
, crtc_y
;
1428 uint32_t crtc_w
, crtc_h
;
1430 /* Source values are 16.16 fixed point */
1431 uint32_t src_x
, src_y
;
1432 uint32_t src_h
, src_w
;
1434 /* Plane rotation */
1435 unsigned int rotation
;
1439 unsigned int normalized_zpos
;
1441 struct drm_atomic_state
*state
;
1446 * struct drm_plane_funcs - driver plane control functions
1448 struct drm_plane_funcs
{
1452 * This is the legacy entry point to enable and configure the plane for
1453 * the given CRTC and framebuffer. It is never called to disable the
1454 * plane, i.e. the passed-in crtc and fb paramters are never NULL.
1456 * The source rectangle in frame buffer memory coordinates is given by
1457 * the src_x, src_y, src_w and src_h parameters (as 16.16 fixed point
1458 * values). Devices that don't support subpixel plane coordinates can
1459 * ignore the fractional part.
1461 * The destination rectangle in CRTC coordinates is given by the
1462 * crtc_x, crtc_y, crtc_w and crtc_h parameters (as integer values).
1463 * Devices scale the source rectangle to the destination rectangle. If
1464 * scaling is not supported, and the source rectangle size doesn't match
1465 * the destination rectangle size, the driver must return a
1466 * -<errorname>EINVAL</errorname> error.
1468 * Drivers implementing atomic modeset should use
1469 * drm_atomic_helper_update_plane() to implement this hook.
1473 * 0 on success or a negative error code on failure.
1475 int (*update_plane
)(struct drm_plane
*plane
,
1476 struct drm_crtc
*crtc
, struct drm_framebuffer
*fb
,
1477 int crtc_x
, int crtc_y
,
1478 unsigned int crtc_w
, unsigned int crtc_h
,
1479 uint32_t src_x
, uint32_t src_y
,
1480 uint32_t src_w
, uint32_t src_h
);
1485 * This is the legacy entry point to disable the plane. The DRM core
1486 * calls this method in response to a DRM_IOCTL_MODE_SETPLANE IOCTL call
1487 * with the frame buffer ID set to 0. Disabled planes must not be
1488 * processed by the CRTC.
1490 * Drivers implementing atomic modeset should use
1491 * drm_atomic_helper_disable_plane() to implement this hook.
1495 * 0 on success or a negative error code on failure.
1497 int (*disable_plane
)(struct drm_plane
*plane
);
1502 * Clean up plane resources. This is only called at driver unload time
1503 * through drm_mode_config_cleanup() since a plane cannot be hotplugged
1506 void (*destroy
)(struct drm_plane
*plane
);
1511 * Reset plane hardware and software state to off. This function isn't
1512 * called by the core directly, only through drm_mode_config_reset().
1513 * It's not a helper hook only for historical reasons.
1515 * Atomic drivers can use drm_atomic_helper_plane_reset() to reset
1516 * atomic state using this hook.
1518 void (*reset
)(struct drm_plane
*plane
);
1523 * This is the legacy entry point to update a property attached to the
1526 * Drivers implementing atomic modeset should use
1527 * drm_atomic_helper_plane_set_property() to implement this hook.
1529 * This callback is optional if the driver does not support any legacy
1530 * driver-private properties.
1534 * 0 on success or a negative error code on failure.
1536 int (*set_property
)(struct drm_plane
*plane
,
1537 struct drm_property
*property
, uint64_t val
);
1540 * @atomic_duplicate_state:
1542 * Duplicate the current atomic state for this plane and return it.
1543 * The core and helpers gurantee that any atomic state duplicated with
1544 * this hook and still owned by the caller (i.e. not transferred to the
1545 * driver by calling ->atomic_commit() from struct
1546 * &drm_mode_config_funcs) will be cleaned up by calling the
1547 * @atomic_destroy_state hook in this structure.
1549 * Atomic drivers which don't subclass struct &drm_plane_state should use
1550 * drm_atomic_helper_plane_duplicate_state(). Drivers that subclass the
1551 * state structure to extend it with driver-private state should use
1552 * __drm_atomic_helper_plane_duplicate_state() to make sure shared state is
1553 * duplicated in a consistent fashion across drivers.
1555 * It is an error to call this hook before plane->state has been
1556 * initialized correctly.
1560 * If the duplicate state references refcounted resources this hook must
1561 * acquire a reference for each of them. The driver must release these
1562 * references again in @atomic_destroy_state.
1566 * Duplicated atomic state or NULL when the allocation failed.
1568 struct drm_plane_state
*(*atomic_duplicate_state
)(struct drm_plane
*plane
);
1571 * @atomic_destroy_state:
1573 * Destroy a state duplicated with @atomic_duplicate_state and release
1574 * or unreference all resources it references
1576 void (*atomic_destroy_state
)(struct drm_plane
*plane
,
1577 struct drm_plane_state
*state
);
1580 * @atomic_set_property:
1582 * Decode a driver-private property value and store the decoded value
1583 * into the passed-in state structure. Since the atomic core decodes all
1584 * standardized properties (even for extensions beyond the core set of
1585 * properties which might not be implemented by all drivers) this
1586 * requires drivers to subclass the state structure.
1588 * Such driver-private properties should really only be implemented for
1589 * truly hardware/vendor specific state. Instead it is preferred to
1590 * standardize atomic extension and decode the properties used to expose
1591 * such an extension in the core.
1593 * Do not call this function directly, use
1594 * drm_atomic_plane_set_property() instead.
1596 * This callback is optional if the driver does not support any
1597 * driver-private atomic properties.
1601 * This function is called in the state assembly phase of atomic
1602 * modesets, which can be aborted for any reason (including on
1603 * userspace's request to just check whether a configuration would be
1604 * possible). Drivers MUST NOT touch any persistent state (hardware or
1605 * software) or data structures except the passed in @state parameter.
1607 * Also since userspace controls in which order properties are set this
1608 * function must not do any input validation (since the state update is
1609 * incomplete and hence likely inconsistent). Instead any such input
1610 * validation must be done in the various atomic_check callbacks.
1614 * 0 if the property has been found, -EINVAL if the property isn't
1615 * implemented by the driver (which shouldn't ever happen, the core only
1616 * asks for properties attached to this plane). No other validation is
1617 * allowed by the driver. The core already checks that the property
1618 * value is within the range (integer, valid enum value, ...) the driver
1619 * set when registering the property.
1621 int (*atomic_set_property
)(struct drm_plane
*plane
,
1622 struct drm_plane_state
*state
,
1623 struct drm_property
*property
,
1627 * @atomic_get_property:
1629 * Reads out the decoded driver-private property. This is used to
1630 * implement the GETPLANE IOCTL.
1632 * Do not call this function directly, use
1633 * drm_atomic_plane_get_property() instead.
1635 * This callback is optional if the driver does not support any
1636 * driver-private atomic properties.
1640 * 0 on success, -EINVAL if the property isn't implemented by the
1641 * driver (which should never happen, the core only asks for
1642 * properties attached to this plane).
1644 int (*atomic_get_property
)(struct drm_plane
*plane
,
1645 const struct drm_plane_state
*state
,
1646 struct drm_property
*property
,
1651 * This optional hook can be used to register additional userspace
1652 * interfaces attached to the plane like debugfs interfaces.
1653 * It is called late in the driver load sequence from drm_dev_register().
1654 * Everything added from this callback should be unregistered in
1655 * the early_unregister callback.
1659 * 0 on success, or a negative error code on failure.
1661 int (*late_register
)(struct drm_plane
*plane
);
1664 * @early_unregister:
1666 * This optional hook should be used to unregister the additional
1667 * userspace interfaces attached to the plane from
1668 * late_unregister(). It is called from drm_dev_unregister(),
1669 * early in the driver unload sequence to disable userspace access
1670 * before data structures are torndown.
1672 void (*early_unregister
)(struct drm_plane
*plane
);
1675 enum drm_plane_type
{
1676 DRM_PLANE_TYPE_OVERLAY
,
1677 DRM_PLANE_TYPE_PRIMARY
,
1678 DRM_PLANE_TYPE_CURSOR
,
1683 * struct drm_plane - central DRM plane control structure
1684 * @dev: DRM device this plane belongs to
1685 * @head: for list management
1686 * @name: human readable name, can be overwritten by the driver
1687 * @base: base mode object
1688 * @possible_crtcs: pipes this plane can be bound to
1689 * @format_types: array of formats supported by this plane
1690 * @format_count: number of formats supported
1691 * @format_default: driver hasn't supplied supported formats for the plane
1692 * @crtc: currently bound CRTC
1693 * @fb: currently bound fb
1694 * @old_fb: Temporary tracking of the old fb while a modeset is ongoing. Used by
1695 * drm_mode_set_config_internal() to implement correct refcounting.
1696 * @funcs: helper functions
1697 * @properties: property tracking for this plane
1698 * @type: type of plane (overlay, primary, cursor)
1699 * @state: current atomic state for this plane
1700 * @zpos_property: zpos property for this plane
1701 * @helper_private: mid-layer private data
1704 struct drm_device
*dev
;
1705 struct list_head head
;
1712 * Protects modeset plane state, together with the mutex of &drm_crtc
1713 * this plane is linked to (when active, getting actived or getting
1716 struct drm_modeset_lock mutex
;
1718 struct drm_mode_object base
;
1720 uint32_t possible_crtcs
;
1721 uint32_t *format_types
;
1722 unsigned int format_count
;
1723 bool format_default
;
1725 struct drm_crtc
*crtc
;
1726 struct drm_framebuffer
*fb
;
1728 struct drm_framebuffer
*old_fb
;
1730 const struct drm_plane_funcs
*funcs
;
1732 struct drm_object_properties properties
;
1734 enum drm_plane_type type
;
1737 * @index: Position inside the mode_config.list, can be used as an array
1738 * index. It is invariant over the lifetime of the plane.
1742 const struct drm_plane_helper_funcs
*helper_private
;
1744 struct drm_plane_state
*state
;
1746 struct drm_property
*zpos_property
;
1750 * struct drm_bridge_funcs - drm_bridge control functions
1751 * @attach: Called during drm_bridge_attach
1753 struct drm_bridge_funcs
{
1754 int (*attach
)(struct drm_bridge
*bridge
);
1759 * This callback is used to validate and adjust a mode. The paramater
1760 * mode is the display mode that should be fed to the next element in
1761 * the display chain, either the final &drm_connector or the next
1762 * &drm_bridge. The parameter adjusted_mode is the input mode the bridge
1763 * requires. It can be modified by this callback and does not need to
1766 * This is the only hook that allows a bridge to reject a modeset. If
1767 * this function passes all other callbacks must succeed for this
1772 * This function is called in the check phase of atomic modesets, which
1773 * can be aborted for any reason (including on userspace's request to
1774 * just check whether a configuration would be possible). Drivers MUST
1775 * NOT touch any persistent state (hardware or software) or data
1776 * structures except the passed in @state parameter.
1780 * True if an acceptable configuration is possible, false if the modeset
1781 * operation should be rejected.
1783 bool (*mode_fixup
)(struct drm_bridge
*bridge
,
1784 const struct drm_display_mode
*mode
,
1785 struct drm_display_mode
*adjusted_mode
);
1789 * This callback should disable the bridge. It is called right before
1790 * the preceding element in the display pipe is disabled. If the
1791 * preceding element is a bridge this means it's called before that
1792 * bridge's ->disable() function. If the preceding element is a
1793 * &drm_encoder it's called right before the encoder's ->disable(),
1794 * ->prepare() or ->dpms() hook from struct &drm_encoder_helper_funcs.
1796 * The bridge can assume that the display pipe (i.e. clocks and timing
1797 * signals) feeding it is still running when this callback is called.
1799 * The disable callback is optional.
1801 void (*disable
)(struct drm_bridge
*bridge
);
1806 * This callback should disable the bridge. It is called right after
1807 * the preceding element in the display pipe is disabled. If the
1808 * preceding element is a bridge this means it's called after that
1809 * bridge's ->post_disable() function. If the preceding element is a
1810 * &drm_encoder it's called right after the encoder's ->disable(),
1811 * ->prepare() or ->dpms() hook from struct &drm_encoder_helper_funcs.
1813 * The bridge must assume that the display pipe (i.e. clocks and timing
1814 * singals) feeding it is no longer running when this callback is
1817 * The post_disable callback is optional.
1819 void (*post_disable
)(struct drm_bridge
*bridge
);
1824 * This callback should set the given mode on the bridge. It is called
1825 * after the ->mode_set() callback for the preceding element in the
1826 * display pipeline has been called already. The display pipe (i.e.
1827 * clocks and timing signals) is off when this function is called.
1829 void (*mode_set
)(struct drm_bridge
*bridge
,
1830 struct drm_display_mode
*mode
,
1831 struct drm_display_mode
*adjusted_mode
);
1835 * This callback should enable the bridge. It is called right before
1836 * the preceding element in the display pipe is enabled. If the
1837 * preceding element is a bridge this means it's called before that
1838 * bridge's ->pre_enable() function. If the preceding element is a
1839 * &drm_encoder it's called right before the encoder's ->enable(),
1840 * ->commit() or ->dpms() hook from struct &drm_encoder_helper_funcs.
1842 * The display pipe (i.e. clocks and timing signals) feeding this bridge
1843 * will not yet be running when this callback is called. The bridge must
1844 * not enable the display link feeding the next bridge in the chain (if
1845 * there is one) when this callback is called.
1847 * The pre_enable callback is optional.
1849 void (*pre_enable
)(struct drm_bridge
*bridge
);
1854 * This callback should enable the bridge. It is called right after
1855 * the preceding element in the display pipe is enabled. If the
1856 * preceding element is a bridge this means it's called after that
1857 * bridge's ->enable() function. If the preceding element is a
1858 * &drm_encoder it's called right after the encoder's ->enable(),
1859 * ->commit() or ->dpms() hook from struct &drm_encoder_helper_funcs.
1861 * The bridge can assume that the display pipe (i.e. clocks and timing
1862 * signals) feeding it is running when this callback is called. This
1863 * callback must enable the display link feeding the next bridge in the
1864 * chain if there is one.
1866 * The enable callback is optional.
1868 void (*enable
)(struct drm_bridge
*bridge
);
1872 * struct drm_bridge - central DRM bridge control structure
1873 * @dev: DRM device this bridge belongs to
1874 * @encoder: encoder to which this bridge is connected
1875 * @next: the next bridge in the encoder chain
1876 * @of_node: device node pointer to the bridge
1877 * @list: to keep track of all added bridges
1878 * @funcs: control functions
1879 * @driver_private: pointer to the bridge driver's internal context
1882 struct drm_device
*dev
;
1883 struct drm_encoder
*encoder
;
1884 struct drm_bridge
*next
;
1886 struct device_node
*of_node
;
1888 struct list_head list
;
1890 const struct drm_bridge_funcs
*funcs
;
1891 void *driver_private
;
1895 * struct drm_crtc_commit - track modeset commits on a CRTC
1897 * This structure is used to track pending modeset changes and atomic commit on
1898 * a per-CRTC basis. Since updating the list should never block this structure
1899 * is reference counted to allow waiters to safely wait on an event to complete,
1900 * without holding any locks.
1902 * It has 3 different events in total to allow a fine-grained synchronization
1903 * between outstanding updates::
1905 * atomic commit thread hardware
1907 * write new state into hardware ----> ...
1909 * switch to new state on next
1912 * wait for buffers to show up ...
1914 * ... send completion irq
1915 * irq handler signals flip_done
1916 * cleanup old buffers
1918 * signal cleanup_done
1920 * wait for flip_done <----
1921 * clean up atomic state
1923 * The important bit to know is that cleanup_done is the terminal event, but the
1924 * ordering between flip_done and hw_done is entirely up to the specific driver
1925 * and modeset state change.
1927 * For an implementation of how to use this look at
1928 * drm_atomic_helper_setup_commit() from the atomic helper library.
1930 struct drm_crtc_commit
{
1934 * DRM CRTC for this commit.
1936 struct drm_crtc
*crtc
;
1941 * Reference count for this structure. Needed to allow blocking on
1942 * completions without the risk of the completion disappearing
1950 * Will be signaled when the hardware has flipped to the new set of
1951 * buffers. Signals at the same time as when the drm event for this
1952 * commit is sent to userspace, or when an out-fence is singalled. Note
1953 * that for most hardware, in most cases this happens after @hw_done is
1956 struct completion flip_done
;
1961 * Will be signalled when all hw register changes for this commit have
1962 * been written out. Especially when disabling a pipe this can be much
1963 * later than than @flip_done, since that can signal already when the
1964 * screen goes black, whereas to fully shut down a pipe more register
1967 * Note that this does not need to include separately reference-counted
1968 * resources like backing storage buffer pinning, or runtime pm
1971 struct completion hw_done
;
1976 * Will be signalled after old buffers have been cleaned up by calling
1977 * drm_atomic_helper_cleanup_planes(). Since this can only happen after
1978 * a vblank wait completed it might be a bit later. This completion is
1979 * useful to throttle updates and avoid hardware updates getting ahead
1980 * of the buffer cleanup too much.
1982 struct completion cleanup_done
;
1987 * Entry on the per-CRTC commit_list. Protected by crtc->commit_lock.
1989 struct list_head commit_entry
;
1994 * &drm_pending_vblank_event pointer to clean up private events.
1996 struct drm_pending_vblank_event
*event
;
1999 struct __drm_planes_state
{
2000 struct drm_plane
*ptr
;
2001 struct drm_plane_state
*state
;
2004 struct __drm_crtcs_state
{
2005 struct drm_crtc
*ptr
;
2006 struct drm_crtc_state
*state
;
2007 struct drm_crtc_commit
*commit
;
2010 struct __drm_connnectors_state
{
2011 struct drm_connector
*ptr
;
2012 struct drm_connector_state
*state
;
2016 * struct drm_atomic_state - the global state object for atomic updates
2017 * @dev: parent DRM device
2018 * @allow_modeset: allow full modeset
2019 * @legacy_cursor_update: hint to enforce legacy cursor IOCTL semantics
2020 * @legacy_set_config: Disable conflicting encoders instead of failing with -EINVAL.
2021 * @planes: pointer to array of structures with per-plane data
2022 * @crtcs: pointer to array of CRTC pointers
2023 * @num_connector: size of the @connectors and @connector_states arrays
2024 * @connectors: pointer to array of structures with per-connector data
2025 * @acquire_ctx: acquire context for this atomic modeset state update
2027 struct drm_atomic_state
{
2028 struct drm_device
*dev
;
2029 bool allow_modeset
: 1;
2030 bool legacy_cursor_update
: 1;
2031 bool legacy_set_config
: 1;
2032 struct __drm_planes_state
*planes
;
2033 struct __drm_crtcs_state
*crtcs
;
2035 struct __drm_connnectors_state
*connectors
;
2037 struct drm_modeset_acquire_ctx
*acquire_ctx
;
2042 * Work item which can be used by the driver or helpers to execute the
2043 * commit without blocking.
2045 struct work_struct commit_work
;
2050 * struct drm_mode_set - new values for a CRTC config change
2051 * @fb: framebuffer to use for new config
2052 * @crtc: CRTC whose configuration we're about to change
2053 * @mode: mode timings to use
2054 * @x: position of this CRTC relative to @fb
2055 * @y: position of this CRTC relative to @fb
2056 * @connectors: array of connectors to drive with this CRTC if possible
2057 * @num_connectors: size of @connectors array
2059 * Represents a single crtc the connectors that it drives with what mode
2060 * and from which framebuffer it scans out from.
2062 * This is used to set modes.
2064 struct drm_mode_set
{
2065 struct drm_framebuffer
*fb
;
2066 struct drm_crtc
*crtc
;
2067 struct drm_display_mode
*mode
;
2072 struct drm_connector
**connectors
;
2073 size_t num_connectors
;
2077 * struct drm_mode_config_funcs - basic driver provided mode setting functions
2079 * Some global (i.e. not per-CRTC, connector, etc) mode setting functions that
2082 struct drm_mode_config_funcs
{
2086 * Create a new framebuffer object. The core does basic checks on the
2087 * requested metadata, but most of that is left to the driver. See
2088 * struct &drm_mode_fb_cmd2 for details.
2090 * If the parameters are deemed valid and the backing storage objects in
2091 * the underlying memory manager all exist, then the driver allocates
2092 * a new &drm_framebuffer structure, subclassed to contain
2093 * driver-specific information (like the internal native buffer object
2094 * references). It also needs to fill out all relevant metadata, which
2095 * should be done by calling drm_helper_mode_fill_fb_struct().
2097 * The initialization is finalized by calling drm_framebuffer_init(),
2098 * which registers the framebuffer and makes it accessible to other
2103 * A new framebuffer with an initial reference count of 1 or a negative
2104 * error code encoded with ERR_PTR().
2106 struct drm_framebuffer
*(*fb_create
)(struct drm_device
*dev
,
2107 struct drm_file
*file_priv
,
2108 const struct drm_mode_fb_cmd2
*mode_cmd
);
2111 * @output_poll_changed:
2113 * Callback used by helpers to inform the driver of output configuration
2116 * Drivers implementing fbdev emulation with the helpers can call
2117 * drm_fb_helper_hotplug_changed from this hook to inform the fbdev
2118 * helper of output changes.
2122 * Except that there's no vtable for device-level helper callbacks
2123 * there's no reason this is a core function.
2125 void (*output_poll_changed
)(struct drm_device
*dev
);
2130 * This is the only hook to validate an atomic modeset update. This
2131 * function must reject any modeset and state changes which the hardware
2132 * or driver doesn't support. This includes but is of course not limited
2135 * - Checking that the modes, framebuffers, scaling and placement
2136 * requirements and so on are within the limits of the hardware.
2138 * - Checking that any hidden shared resources are not oversubscribed.
2139 * This can be shared PLLs, shared lanes, overall memory bandwidth,
2140 * display fifo space (where shared between planes or maybe even
2143 * - Checking that virtualized resources exported to userspace are not
2144 * oversubscribed. For various reasons it can make sense to expose
2145 * more planes, crtcs or encoders than which are physically there. One
2146 * example is dual-pipe operations (which generally should be hidden
2147 * from userspace if when lockstepped in hardware, exposed otherwise),
2148 * where a plane might need 1 hardware plane (if it's just on one
2149 * pipe), 2 hardware planes (when it spans both pipes) or maybe even
2150 * shared a hardware plane with a 2nd plane (if there's a compatible
2151 * plane requested on the area handled by the other pipe).
2153 * - Check that any transitional state is possible and that if
2154 * requested, the update can indeed be done in the vblank period
2155 * without temporarily disabling some functions.
2157 * - Check any other constraints the driver or hardware might have.
2159 * - This callback also needs to correctly fill out the &drm_crtc_state
2160 * in this update to make sure that drm_atomic_crtc_needs_modeset()
2161 * reflects the nature of the possible update and returns true if and
2162 * only if the update cannot be applied without tearing within one
2163 * vblank on that CRTC. The core uses that information to reject
2164 * updates which require a full modeset (i.e. blanking the screen, or
2165 * at least pausing updates for a substantial amount of time) if
2166 * userspace has disallowed that in its request.
2168 * - The driver also does not need to repeat basic input validation
2169 * like done for the corresponding legacy entry points. The core does
2170 * that before calling this hook.
2172 * See the documentation of @atomic_commit for an exhaustive list of
2173 * error conditions which don't have to be checked at the
2174 * ->atomic_check() stage?
2176 * See the documentation for struct &drm_atomic_state for how exactly
2177 * an atomic modeset update is described.
2179 * Drivers using the atomic helpers can implement this hook using
2180 * drm_atomic_helper_check(), or one of the exported sub-functions of
2185 * 0 on success or one of the below negative error codes:
2187 * - -EINVAL, if any of the above constraints are violated.
2189 * - -EDEADLK, when returned from an attempt to acquire an additional
2190 * &drm_modeset_lock through drm_modeset_lock().
2192 * - -ENOMEM, if allocating additional state sub-structures failed due
2193 * to lack of memory.
2195 * - -EINTR, -EAGAIN or -ERESTARTSYS, if the IOCTL should be restarted.
2196 * This can either be due to a pending signal, or because the driver
2197 * needs to completely bail out to recover from an exceptional
2198 * situation like a GPU hang. From a userspace point all errors are
2201 int (*atomic_check
)(struct drm_device
*dev
,
2202 struct drm_atomic_state
*state
);
2207 * This is the only hook to commit an atomic modeset update. The core
2208 * guarantees that @atomic_check has been called successfully before
2209 * calling this function, and that nothing has been changed in the
2212 * See the documentation for struct &drm_atomic_state for how exactly
2213 * an atomic modeset update is described.
2215 * Drivers using the atomic helpers can implement this hook using
2216 * drm_atomic_helper_commit(), or one of the exported sub-functions of
2219 * Nonblocking commits (as indicated with the nonblock parameter) must
2220 * do any preparatory work which might result in an unsuccessful commit
2221 * in the context of this callback. The only exceptions are hardware
2222 * errors resulting in -EIO. But even in that case the driver must
2223 * ensure that the display pipe is at least running, to avoid
2224 * compositors crashing when pageflips don't work. Anything else,
2225 * specifically committing the update to the hardware, should be done
2226 * without blocking the caller. For updates which do not require a
2227 * modeset this must be guaranteed.
2229 * The driver must wait for any pending rendering to the new
2230 * framebuffers to complete before executing the flip. It should also
2231 * wait for any pending rendering from other drivers if the underlying
2232 * buffer is a shared dma-buf. Nonblocking commits must not wait for
2233 * rendering in the context of this callback.
2235 * An application can request to be notified when the atomic commit has
2236 * completed. These events are per-CRTC and can be distinguished by the
2237 * CRTC index supplied in &drm_event to userspace.
2239 * The drm core will supply a struct &drm_event in the event
2240 * member of each CRTC's &drm_crtc_state structure. This can be handled by the
2241 * drm_crtc_send_vblank_event() function, which the driver should call on
2242 * the provided event upon completion of the atomic commit. Note that if
2243 * the driver supports vblank signalling and timestamping the vblank
2244 * counters and timestamps must agree with the ones returned from page
2245 * flip events. With the current vblank helper infrastructure this can
2246 * be achieved by holding a vblank reference while the page flip is
2247 * pending, acquired through drm_crtc_vblank_get() and released with
2248 * drm_crtc_vblank_put(). Drivers are free to implement their own vblank
2249 * counter and timestamp tracking though, e.g. if they have accurate
2250 * timestamp registers in hardware.
2254 * Drivers are not allowed to shut down any display pipe successfully
2255 * enabled through an atomic commit on their own. Doing so can result in
2256 * compositors crashing if a page flip is suddenly rejected because the
2261 * 0 on success or one of the below negative error codes:
2263 * - -EBUSY, if a nonblocking updated is requested and there is
2264 * an earlier updated pending. Drivers are allowed to support a queue
2265 * of outstanding updates, but currently no driver supports that.
2266 * Note that drivers must wait for preceding updates to complete if a
2267 * synchronous update is requested, they are not allowed to fail the
2268 * commit in that case.
2270 * - -ENOMEM, if the driver failed to allocate memory. Specifically
2271 * this can happen when trying to pin framebuffers, which must only
2272 * be done when committing the state.
2274 * - -ENOSPC, as a refinement of the more generic -ENOMEM to indicate
2275 * that the driver has run out of vram, iommu space or similar GPU
2276 * address space needed for framebuffer.
2278 * - -EIO, if the hardware completely died.
2280 * - -EINTR, -EAGAIN or -ERESTARTSYS, if the IOCTL should be restarted.
2281 * This can either be due to a pending signal, or because the driver
2282 * needs to completely bail out to recover from an exceptional
2283 * situation like a GPU hang. From a userspace point of view all errors are
2286 * This list is exhaustive. Specifically this hook is not allowed to
2287 * return -EINVAL (any invalid requests should be caught in
2288 * @atomic_check) or -EDEADLK (this function must not acquire
2289 * additional modeset locks).
2291 int (*atomic_commit
)(struct drm_device
*dev
,
2292 struct drm_atomic_state
*state
,
2296 * @atomic_state_alloc:
2298 * This optional hook can be used by drivers that want to subclass struct
2299 * &drm_atomic_state to be able to track their own driver-private global
2300 * state easily. If this hook is implemented, drivers must also
2301 * implement @atomic_state_clear and @atomic_state_free.
2305 * A new &drm_atomic_state on success or NULL on failure.
2307 struct drm_atomic_state
*(*atomic_state_alloc
)(struct drm_device
*dev
);
2310 * @atomic_state_clear:
2312 * This hook must clear any driver private state duplicated into the
2313 * passed-in &drm_atomic_state. This hook is called when the caller
2314 * encountered a &drm_modeset_lock deadlock and needs to drop all
2315 * already acquired locks as part of the deadlock avoidance dance
2316 * implemented in drm_modeset_lock_backoff().
2318 * Any duplicated state must be invalidated since a concurrent atomic
2319 * update might change it, and the drm atomic interfaces always apply
2320 * updates as relative changes to the current state.
2322 * Drivers that implement this must call drm_atomic_state_default_clear()
2323 * to clear common state.
2325 void (*atomic_state_clear
)(struct drm_atomic_state
*state
);
2328 * @atomic_state_free:
2330 * This hook needs driver private resources and the &drm_atomic_state
2331 * itself. Note that the core first calls drm_atomic_state_clear() to
2332 * avoid code duplicate between the clear and free hooks.
2334 * Drivers that implement this must call drm_atomic_state_default_free()
2335 * to release common resources.
2337 void (*atomic_state_free
)(struct drm_atomic_state
*state
);
2341 * struct drm_mode_config - Mode configuration control structure
2342 * @mutex: mutex protecting KMS related lists and structures
2343 * @connection_mutex: ww mutex protecting connector state and routing
2344 * @acquire_ctx: global implicit acquire context used by atomic drivers for
2346 * @fb_lock: mutex to protect fb state and lists
2347 * @num_fb: number of fbs available
2348 * @fb_list: list of framebuffers available
2349 * @num_encoder: number of encoders on this device
2350 * @encoder_list: list of encoder objects
2351 * @num_overlay_plane: number of overlay planes on this device
2352 * @num_total_plane: number of universal (i.e. with primary/curso) planes on this device
2353 * @plane_list: list of plane objects
2354 * @num_crtc: number of CRTCs on this device
2355 * @crtc_list: list of CRTC objects
2356 * @property_list: list of property objects
2357 * @min_width: minimum pixel width on this device
2358 * @min_height: minimum pixel height on this device
2359 * @max_width: maximum pixel width on this device
2360 * @max_height: maximum pixel height on this device
2361 * @funcs: core driver provided mode setting functions
2362 * @fb_base: base address of the framebuffer
2363 * @poll_enabled: track polling support for this device
2364 * @poll_running: track polling status for this device
2365 * @delayed_event: track delayed poll uevent deliver for this device
2366 * @output_poll_work: delayed work for polling in process context
2367 * @property_blob_list: list of all the blob property objects
2368 * @blob_lock: mutex for blob property allocation and management
2369 * @*_property: core property tracking
2370 * @preferred_depth: preferred RBG pixel depth, used by fb helpers
2371 * @prefer_shadow: hint to userspace to prefer shadow-fb rendering
2372 * @cursor_width: hint to userspace for max cursor width
2373 * @cursor_height: hint to userspace for max cursor height
2374 * @helper_private: mid-layer private data
2376 * Core mode resource tracking structure. All CRTC, encoders, and connectors
2377 * enumerated by the driver are added here, as are global properties. Some
2378 * global restrictions are also here, e.g. dimension restrictions.
2380 struct drm_mode_config
{
2381 struct mutex mutex
; /* protects configuration (mode lists etc.) */
2382 struct drm_modeset_lock connection_mutex
; /* protects connector->encoder and encoder->crtc links */
2383 struct drm_modeset_acquire_ctx
*acquire_ctx
; /* for legacy _lock_all() / _unlock_all() */
2388 * Mutex for KMS ID allocation and management. Protects both @crtc_idr
2391 struct mutex idr_mutex
;
2396 * Main KMS ID tracking object. Use this idr for all IDs, fb, crtc,
2397 * connector, modes - just makes life easier to have only one.
2399 struct idr crtc_idr
;
2404 * Use this idr for allocating new IDs for tiled sinks like use in some
2405 * high-res DP MST screens.
2407 struct idr tile_idr
;
2409 struct mutex fb_lock
; /* proctects global and per-file fb lists */
2411 struct list_head fb_list
;
2414 * @num_connector: Number of connectors on this device.
2418 * @connector_ida: ID allocator for connector indices.
2420 struct ida connector_ida
;
2422 * @connector_list: List of connector objects.
2424 struct list_head connector_list
;
2426 struct list_head encoder_list
;
2429 * Track # of overlay planes separately from # of total planes. By
2430 * default we only advertise overlay planes to userspace; if userspace
2431 * sets the "universal plane" capability bit, we'll go ahead and
2432 * expose all planes.
2434 int num_overlay_plane
;
2435 int num_total_plane
;
2436 struct list_head plane_list
;
2439 struct list_head crtc_list
;
2441 struct list_head property_list
;
2443 int min_width
, min_height
;
2444 int max_width
, max_height
;
2445 const struct drm_mode_config_funcs
*funcs
;
2446 resource_size_t fb_base
;
2448 /* output poll support */
2452 struct delayed_work output_poll_work
;
2454 struct mutex blob_lock
;
2456 /* pointers to standard properties */
2457 struct list_head property_blob_list
;
2459 * @edid_property: Default connector property to hold the EDID of the
2460 * currently connected sink, if any.
2462 struct drm_property
*edid_property
;
2464 * @dpms_property: Default connector property to control the
2465 * connector's DPMS state.
2467 struct drm_property
*dpms_property
;
2469 * @path_property: Default connector property to hold the DP MST path
2472 struct drm_property
*path_property
;
2474 * @tile_property: Default connector property to store the tile
2475 * position of a tiled screen, for sinks which need to be driven with
2478 struct drm_property
*tile_property
;
2480 * @plane_type_property: Default plane property to differentiate
2481 * CURSOR, PRIMARY and OVERLAY legacy uses of planes.
2483 struct drm_property
*plane_type_property
;
2485 * @rotation_property: Optional property for planes or CRTCs to specifiy
2488 struct drm_property
*rotation_property
;
2490 * @prop_src_x: Default atomic plane property for the plane source
2491 * position in the connected &drm_framebuffer.
2493 struct drm_property
*prop_src_x
;
2495 * @prop_src_y: Default atomic plane property for the plane source
2496 * position in the connected &drm_framebuffer.
2498 struct drm_property
*prop_src_y
;
2500 * @prop_src_w: Default atomic plane property for the plane source
2501 * position in the connected &drm_framebuffer.
2503 struct drm_property
*prop_src_w
;
2505 * @prop_src_h: Default atomic plane property for the plane source
2506 * position in the connected &drm_framebuffer.
2508 struct drm_property
*prop_src_h
;
2510 * @prop_crtc_x: Default atomic plane property for the plane destination
2511 * position in the &drm_crtc is is being shown on.
2513 struct drm_property
*prop_crtc_x
;
2515 * @prop_crtc_y: Default atomic plane property for the plane destination
2516 * position in the &drm_crtc is is being shown on.
2518 struct drm_property
*prop_crtc_y
;
2520 * @prop_crtc_w: Default atomic plane property for the plane destination
2521 * position in the &drm_crtc is is being shown on.
2523 struct drm_property
*prop_crtc_w
;
2525 * @prop_crtc_h: Default atomic plane property for the plane destination
2526 * position in the &drm_crtc is is being shown on.
2528 struct drm_property
*prop_crtc_h
;
2530 * @prop_fb_id: Default atomic plane property to specify the
2533 struct drm_property
*prop_fb_id
;
2535 * @prop_crtc_id: Default atomic plane property to specify the
2538 struct drm_property
*prop_crtc_id
;
2540 * @prop_active: Default atomic CRTC property to control the active
2541 * state, which is the simplified implementation for DPMS in atomic
2544 struct drm_property
*prop_active
;
2546 * @prop_mode_id: Default atomic CRTC property to set the mode for a
2547 * CRTC. A 0 mode implies that the CRTC is entirely disabled - all
2548 * connectors must be of and active must be set to disabled, too.
2550 struct drm_property
*prop_mode_id
;
2553 * @dvi_i_subconnector_property: Optional DVI-I property to
2554 * differentiate between analog or digital mode.
2556 struct drm_property
*dvi_i_subconnector_property
;
2558 * @dvi_i_select_subconnector_property: Optional DVI-I property to
2559 * select between analog or digital mode.
2561 struct drm_property
*dvi_i_select_subconnector_property
;
2564 * @tv_subconnector_property: Optional TV property to differentiate
2565 * between different TV connector types.
2567 struct drm_property
*tv_subconnector_property
;
2569 * @tv_select_subconnector_property: Optional TV property to select
2570 * between different TV connector types.
2572 struct drm_property
*tv_select_subconnector_property
;
2574 * @tv_mode_property: Optional TV property to select
2575 * the output TV mode.
2577 struct drm_property
*tv_mode_property
;
2579 * @tv_left_margin_property: Optional TV property to set the left
2582 struct drm_property
*tv_left_margin_property
;
2584 * @tv_right_margin_property: Optional TV property to set the right
2587 struct drm_property
*tv_right_margin_property
;
2589 * @tv_top_margin_property: Optional TV property to set the right
2592 struct drm_property
*tv_top_margin_property
;
2594 * @tv_bottom_margin_property: Optional TV property to set the right
2597 struct drm_property
*tv_bottom_margin_property
;
2599 * @tv_brightness_property: Optional TV property to set the
2602 struct drm_property
*tv_brightness_property
;
2604 * @tv_contrast_property: Optional TV property to set the
2607 struct drm_property
*tv_contrast_property
;
2609 * @tv_flicker_reduction_property: Optional TV property to control the
2610 * flicker reduction mode.
2612 struct drm_property
*tv_flicker_reduction_property
;
2614 * @tv_overscan_property: Optional TV property to control the overscan
2617 struct drm_property
*tv_overscan_property
;
2619 * @tv_saturation_property: Optional TV property to set the
2622 struct drm_property
*tv_saturation_property
;
2624 * @tv_hue_property: Optional TV property to set the hue.
2626 struct drm_property
*tv_hue_property
;
2629 * @scaling_mode_property: Optional connector property to control the
2630 * upscaling, mostly used for built-in panels.
2632 struct drm_property
*scaling_mode_property
;
2634 * @aspect_ratio_property: Optional connector property to control the
2635 * HDMI infoframe aspect ratio setting.
2637 struct drm_property
*aspect_ratio_property
;
2639 * @dirty_info_property: Optional connector property to give userspace a
2640 * hint that the DIRTY_FB ioctl should be used.
2642 struct drm_property
*dirty_info_property
;
2645 * @degamma_lut_property: Optional CRTC property to set the LUT used to
2646 * convert the framebuffer's colors to linear gamma.
2648 struct drm_property
*degamma_lut_property
;
2650 * @degamma_lut_size_property: Optional CRTC property for the size of
2651 * the degamma LUT as supported by the driver (read-only).
2653 struct drm_property
*degamma_lut_size_property
;
2655 * @ctm_property: Optional CRTC property to set the
2656 * matrix used to convert colors after the lookup in the
2659 struct drm_property
*ctm_property
;
2661 * @gamma_lut_property: Optional CRTC property to set the LUT used to
2662 * convert the colors, after the CTM matrix, to the gamma space of the
2665 struct drm_property
*gamma_lut_property
;
2667 * @gamma_lut_size_property: Optional CRTC property for the size of the
2668 * gamma LUT as supported by the driver (read-only).
2670 struct drm_property
*gamma_lut_size_property
;
2673 * @suggested_x_property: Optional connector property with a hint for
2674 * the position of the output on the host's screen.
2676 struct drm_property
*suggested_x_property
;
2678 * @suggested_y_property: Optional connector property with a hint for
2679 * the position of the output on the host's screen.
2681 struct drm_property
*suggested_y_property
;
2683 /* dumb ioctl parameters */
2684 uint32_t preferred_depth
, prefer_shadow
;
2687 * @async_page_flip: Does this device support async flips on the primary
2690 bool async_page_flip
;
2693 * @allow_fb_modifiers:
2695 * Whether the driver supports fb modifiers in the ADDFB2.1 ioctl call.
2697 bool allow_fb_modifiers
;
2700 uint32_t cursor_width
, cursor_height
;
2702 struct drm_mode_config_helper_funcs
*helper_private
;
2706 * drm_for_each_plane_mask - iterate over planes specified by bitmask
2707 * @plane: the loop cursor
2708 * @dev: the DRM device
2709 * @plane_mask: bitmask of plane indices
2711 * Iterate over all planes specified by bitmask.
2713 #define drm_for_each_plane_mask(plane, dev, plane_mask) \
2714 list_for_each_entry((plane), &(dev)->mode_config.plane_list, head) \
2715 for_each_if ((plane_mask) & (1 << drm_plane_index(plane)))
2718 * drm_for_each_encoder_mask - iterate over encoders specified by bitmask
2719 * @encoder: the loop cursor
2720 * @dev: the DRM device
2721 * @encoder_mask: bitmask of encoder indices
2723 * Iterate over all encoders specified by bitmask.
2725 #define drm_for_each_encoder_mask(encoder, dev, encoder_mask) \
2726 list_for_each_entry((encoder), &(dev)->mode_config.encoder_list, head) \
2727 for_each_if ((encoder_mask) & (1 << drm_encoder_index(encoder)))
2729 #define obj_to_crtc(x) container_of(x, struct drm_crtc, base)
2730 #define obj_to_connector(x) container_of(x, struct drm_connector, base)
2731 #define obj_to_encoder(x) container_of(x, struct drm_encoder, base)
2732 #define obj_to_mode(x) container_of(x, struct drm_display_mode, base)
2733 #define obj_to_fb(x) container_of(x, struct drm_framebuffer, base)
2734 #define obj_to_property(x) container_of(x, struct drm_property, base)
2735 #define obj_to_blob(x) container_of(x, struct drm_property_blob, base)
2736 #define obj_to_plane(x) container_of(x, struct drm_plane, base)
2738 struct drm_prop_enum_list
{
2743 extern __printf(6, 7)
2744 int drm_crtc_init_with_planes(struct drm_device
*dev
,
2745 struct drm_crtc
*crtc
,
2746 struct drm_plane
*primary
,
2747 struct drm_plane
*cursor
,
2748 const struct drm_crtc_funcs
*funcs
,
2749 const char *name
, ...);
2750 extern void drm_crtc_cleanup(struct drm_crtc
*crtc
);
2753 * drm_crtc_index - find the index of a registered CRTC
2754 * @crtc: CRTC to find index for
2756 * Given a registered CRTC, return the index of that CRTC within a DRM
2757 * device's list of CRTCs.
2759 static inline unsigned int drm_crtc_index(struct drm_crtc
*crtc
)
2765 * drm_crtc_mask - find the mask of a registered CRTC
2766 * @crtc: CRTC to find mask for
2768 * Given a registered CRTC, return the mask bit of that CRTC for an
2769 * encoder's possible_crtcs field.
2771 static inline uint32_t drm_crtc_mask(struct drm_crtc
*crtc
)
2773 return 1 << drm_crtc_index(crtc
);
2776 int drm_connector_init(struct drm_device
*dev
,
2777 struct drm_connector
*connector
,
2778 const struct drm_connector_funcs
*funcs
,
2779 int connector_type
);
2780 int drm_connector_register(struct drm_connector
*connector
);
2781 void drm_connector_unregister(struct drm_connector
*connector
);
2783 extern void drm_connector_cleanup(struct drm_connector
*connector
);
2784 static inline unsigned drm_connector_index(struct drm_connector
*connector
)
2786 return connector
->index
;
2789 extern __printf(5, 6)
2790 int drm_encoder_init(struct drm_device
*dev
,
2791 struct drm_encoder
*encoder
,
2792 const struct drm_encoder_funcs
*funcs
,
2793 int encoder_type
, const char *name
, ...);
2796 * drm_encoder_index - find the index of a registered encoder
2797 * @encoder: encoder to find index for
2799 * Given a registered encoder, return the index of that encoder within a DRM
2800 * device's list of encoders.
2802 static inline unsigned int drm_encoder_index(struct drm_encoder
*encoder
)
2804 return encoder
->index
;
2808 * drm_encoder_crtc_ok - can a given crtc drive a given encoder?
2809 * @encoder: encoder to test
2810 * @crtc: crtc to test
2812 * Return false if @encoder can't be driven by @crtc, true otherwise.
2814 static inline bool drm_encoder_crtc_ok(struct drm_encoder
*encoder
,
2815 struct drm_crtc
*crtc
)
2817 return !!(encoder
->possible_crtcs
& drm_crtc_mask(crtc
));
2820 extern __printf(8, 9)
2821 int drm_universal_plane_init(struct drm_device
*dev
,
2822 struct drm_plane
*plane
,
2823 unsigned long possible_crtcs
,
2824 const struct drm_plane_funcs
*funcs
,
2825 const uint32_t *formats
,
2826 unsigned int format_count
,
2827 enum drm_plane_type type
,
2828 const char *name
, ...);
2829 extern int drm_plane_init(struct drm_device
*dev
,
2830 struct drm_plane
*plane
,
2831 unsigned long possible_crtcs
,
2832 const struct drm_plane_funcs
*funcs
,
2833 const uint32_t *formats
, unsigned int format_count
,
2835 extern void drm_plane_cleanup(struct drm_plane
*plane
);
2838 * drm_plane_index - find the index of a registered plane
2839 * @plane: plane to find index for
2841 * Given a registered plane, return the index of that plane within a DRM
2842 * device's list of planes.
2844 static inline unsigned int drm_plane_index(struct drm_plane
*plane
)
2846 return plane
->index
;
2848 extern struct drm_plane
* drm_plane_from_index(struct drm_device
*dev
, int idx
);
2849 extern void drm_plane_force_disable(struct drm_plane
*plane
);
2850 extern void drm_crtc_get_hv_timing(const struct drm_display_mode
*mode
,
2851 int *hdisplay
, int *vdisplay
);
2852 extern int drm_crtc_force_disable(struct drm_crtc
*crtc
);
2853 extern int drm_crtc_force_disable_all(struct drm_device
*dev
);
2855 extern void drm_encoder_cleanup(struct drm_encoder
*encoder
);
2857 extern const char *drm_get_connector_status_name(enum drm_connector_status status
);
2858 extern const char *drm_get_subpixel_order_name(enum subpixel_order order
);
2859 extern const char *drm_get_dpms_name(int val
);
2860 extern const char *drm_get_dvi_i_subconnector_name(int val
);
2861 extern const char *drm_get_dvi_i_select_name(int val
);
2862 extern const char *drm_get_tv_subconnector_name(int val
);
2863 extern const char *drm_get_tv_select_name(int val
);
2864 extern void drm_mode_config_init(struct drm_device
*dev
);
2865 extern void drm_mode_config_reset(struct drm_device
*dev
);
2866 extern void drm_mode_config_cleanup(struct drm_device
*dev
);
2868 extern int drm_mode_connector_set_path_property(struct drm_connector
*connector
,
2870 int drm_mode_connector_set_tile_property(struct drm_connector
*connector
);
2871 extern int drm_mode_connector_update_edid_property(struct drm_connector
*connector
,
2872 const struct edid
*edid
);
2874 extern int drm_display_info_set_bus_formats(struct drm_display_info
*info
,
2876 unsigned int num_formats
);
2878 static inline bool drm_property_type_is(struct drm_property
*property
,
2881 /* instanceof for props.. handles extended type vs original types: */
2882 if (property
->flags
& DRM_MODE_PROP_EXTENDED_TYPE
)
2883 return (property
->flags
& DRM_MODE_PROP_EXTENDED_TYPE
) == type
;
2884 return property
->flags
& type
;
2887 extern int drm_object_property_set_value(struct drm_mode_object
*obj
,
2888 struct drm_property
*property
,
2890 extern int drm_object_property_get_value(struct drm_mode_object
*obj
,
2891 struct drm_property
*property
,
2893 extern int drm_framebuffer_init(struct drm_device
*dev
,
2894 struct drm_framebuffer
*fb
,
2895 const struct drm_framebuffer_funcs
*funcs
);
2896 extern struct drm_framebuffer
*drm_framebuffer_lookup(struct drm_device
*dev
,
2898 extern void drm_framebuffer_remove(struct drm_framebuffer
*fb
);
2899 extern void drm_framebuffer_cleanup(struct drm_framebuffer
*fb
);
2900 extern void drm_framebuffer_unregister_private(struct drm_framebuffer
*fb
);
2902 extern void drm_object_attach_property(struct drm_mode_object
*obj
,
2903 struct drm_property
*property
,
2905 extern struct drm_property
*drm_property_create(struct drm_device
*dev
, int flags
,
2906 const char *name
, int num_values
);
2907 extern struct drm_property
*drm_property_create_enum(struct drm_device
*dev
, int flags
,
2909 const struct drm_prop_enum_list
*props
,
2911 struct drm_property
*drm_property_create_bitmask(struct drm_device
*dev
,
2912 int flags
, const char *name
,
2913 const struct drm_prop_enum_list
*props
,
2915 uint64_t supported_bits
);
2916 struct drm_property
*drm_property_create_range(struct drm_device
*dev
, int flags
,
2918 uint64_t min
, uint64_t max
);
2919 struct drm_property
*drm_property_create_signed_range(struct drm_device
*dev
,
2920 int flags
, const char *name
,
2921 int64_t min
, int64_t max
);
2922 struct drm_property
*drm_property_create_object(struct drm_device
*dev
,
2923 int flags
, const char *name
, uint32_t type
);
2924 struct drm_property
*drm_property_create_bool(struct drm_device
*dev
, int flags
,
2926 struct drm_property_blob
*drm_property_create_blob(struct drm_device
*dev
,
2929 struct drm_property_blob
*drm_property_lookup_blob(struct drm_device
*dev
,
2931 struct drm_property_blob
*drm_property_reference_blob(struct drm_property_blob
*blob
);
2932 void drm_property_unreference_blob(struct drm_property_blob
*blob
);
2933 extern void drm_property_destroy(struct drm_device
*dev
, struct drm_property
*property
);
2934 extern int drm_property_add_enum(struct drm_property
*property
, int index
,
2935 uint64_t value
, const char *name
);
2936 extern int drm_mode_create_dvi_i_properties(struct drm_device
*dev
);
2937 extern int drm_mode_create_tv_properties(struct drm_device
*dev
,
2938 unsigned int num_modes
,
2939 const char * const modes
[]);
2940 extern int drm_mode_create_scaling_mode_property(struct drm_device
*dev
);
2941 extern int drm_mode_create_aspect_ratio_property(struct drm_device
*dev
);
2942 extern int drm_mode_create_dirty_info_property(struct drm_device
*dev
);
2943 extern int drm_mode_create_suggested_offset_properties(struct drm_device
*dev
);
2945 extern int drm_mode_connector_attach_encoder(struct drm_connector
*connector
,
2946 struct drm_encoder
*encoder
);
2947 extern int drm_mode_crtc_set_gamma_size(struct drm_crtc
*crtc
,
2950 extern int drm_mode_set_config_internal(struct drm_mode_set
*set
);
2952 extern uint32_t drm_mode_legacy_fb_format(uint32_t bpp
, uint32_t depth
);
2954 extern struct drm_tile_group
*drm_mode_create_tile_group(struct drm_device
*dev
,
2956 extern struct drm_tile_group
*drm_mode_get_tile_group(struct drm_device
*dev
,
2958 extern void drm_mode_put_tile_group(struct drm_device
*dev
,
2959 struct drm_tile_group
*tg
);
2961 extern int drm_mode_plane_set_obj_prop(struct drm_plane
*plane
,
2962 struct drm_property
*property
,
2965 extern struct drm_property
*drm_mode_create_rotation_property(struct drm_device
*dev
,
2966 unsigned int supported_rotations
);
2967 extern unsigned int drm_rotation_simplify(unsigned int rotation
,
2968 unsigned int supported_rotations
);
2969 extern void drm_crtc_enable_color_mgmt(struct drm_crtc
*crtc
,
2970 uint degamma_lut_size
,
2972 uint gamma_lut_size
);
2974 int drm_plane_create_zpos_property(struct drm_plane
*plane
,
2976 unsigned int min
, unsigned int max
);
2978 int drm_plane_create_zpos_immutable_property(struct drm_plane
*plane
,
2982 struct drm_mode_object
*drm_mode_object_find(struct drm_device
*dev
,
2983 uint32_t id
, uint32_t type
);
2984 void drm_mode_object_reference(struct drm_mode_object
*obj
);
2985 void drm_mode_object_unreference(struct drm_mode_object
*obj
);
2987 static inline struct drm_plane
*drm_plane_find(struct drm_device
*dev
,
2990 struct drm_mode_object
*mo
;
2991 mo
= drm_mode_object_find(dev
, id
, DRM_MODE_OBJECT_PLANE
);
2992 return mo
? obj_to_plane(mo
) : NULL
;
2995 static inline struct drm_crtc
*drm_crtc_find(struct drm_device
*dev
,
2998 struct drm_mode_object
*mo
;
2999 mo
= drm_mode_object_find(dev
, id
, DRM_MODE_OBJECT_CRTC
);
3000 return mo
? obj_to_crtc(mo
) : NULL
;
3003 static inline struct drm_encoder
*drm_encoder_find(struct drm_device
*dev
,
3006 struct drm_mode_object
*mo
;
3007 mo
= drm_mode_object_find(dev
, id
, DRM_MODE_OBJECT_ENCODER
);
3008 return mo
? obj_to_encoder(mo
) : NULL
;
3012 * drm_connector_lookup - lookup connector object
3014 * @id: connector object id
3016 * This function looks up the connector object specified by id
3017 * add takes a reference to it.
3019 static inline struct drm_connector
*drm_connector_lookup(struct drm_device
*dev
,
3022 struct drm_mode_object
*mo
;
3023 mo
= drm_mode_object_find(dev
, id
, DRM_MODE_OBJECT_CONNECTOR
);
3024 return mo
? obj_to_connector(mo
) : NULL
;
3027 static inline struct drm_property
*drm_property_find(struct drm_device
*dev
,
3030 struct drm_mode_object
*mo
;
3031 mo
= drm_mode_object_find(dev
, id
, DRM_MODE_OBJECT_PROPERTY
);
3032 return mo
? obj_to_property(mo
) : NULL
;
3036 * Extract a degamma/gamma LUT value provided by user and round it to the
3037 * precision supported by the hardware.
3039 static inline uint32_t drm_color_lut_extract(uint32_t user_input
,
3040 uint32_t bit_precision
)
3042 uint32_t val
= user_input
;
3043 uint32_t max
= 0xffff >> (16 - bit_precision
);
3045 /* Round only if we're not using full precision. */
3046 if (bit_precision
< 16) {
3047 val
+= 1UL << (16 - bit_precision
- 1);
3048 val
>>= 16 - bit_precision
;
3051 return clamp_val(val
, 0, max
);
3055 * drm_framebuffer_reference - incr the fb refcnt
3058 * This functions increments the fb's refcount.
3060 static inline void drm_framebuffer_reference(struct drm_framebuffer
*fb
)
3062 drm_mode_object_reference(&fb
->base
);
3066 * drm_framebuffer_unreference - unref a framebuffer
3067 * @fb: framebuffer to unref
3069 * This functions decrements the fb's refcount and frees it if it drops to zero.
3071 static inline void drm_framebuffer_unreference(struct drm_framebuffer
*fb
)
3073 drm_mode_object_unreference(&fb
->base
);
3077 * drm_framebuffer_read_refcount - read the framebuffer reference count.
3080 * This functions returns the framebuffer's reference count.
3082 static inline uint32_t drm_framebuffer_read_refcount(struct drm_framebuffer
*fb
)
3084 return atomic_read(&fb
->base
.refcount
.refcount
);
3088 * drm_connector_reference - incr the connector refcnt
3089 * @connector: connector
3091 * This function increments the connector's refcount.
3093 static inline void drm_connector_reference(struct drm_connector
*connector
)
3095 drm_mode_object_reference(&connector
->base
);
3099 * drm_connector_unreference - unref a connector
3100 * @connector: connector to unref
3102 * This function decrements the connector's refcount and frees it if it drops to zero.
3104 static inline void drm_connector_unreference(struct drm_connector
*connector
)
3106 drm_mode_object_unreference(&connector
->base
);
3109 /* Plane list iterator for legacy (overlay only) planes. */
3110 #define drm_for_each_legacy_plane(plane, dev) \
3111 list_for_each_entry(plane, &(dev)->mode_config.plane_list, head) \
3112 for_each_if (plane->type == DRM_PLANE_TYPE_OVERLAY)
3114 #define drm_for_each_plane(plane, dev) \
3115 list_for_each_entry(plane, &(dev)->mode_config.plane_list, head)
3117 #define drm_for_each_crtc(crtc, dev) \
3118 list_for_each_entry(crtc, &(dev)->mode_config.crtc_list, head)
3121 assert_drm_connector_list_read_locked(struct drm_mode_config
*mode_config
)
3124 * The connector hotadd/remove code currently grabs both locks when
3125 * updating lists. Hence readers need only hold either of them to be
3126 * safe and the check amounts to
3128 * WARN_ON(not_holding(A) && not_holding(B)).
3130 WARN_ON(!mutex_is_locked(&mode_config
->mutex
) &&
3131 !drm_modeset_is_locked(&mode_config
->connection_mutex
));
3134 #define drm_for_each_connector(connector, dev) \
3135 for (assert_drm_connector_list_read_locked(&(dev)->mode_config), \
3136 connector = list_first_entry(&(dev)->mode_config.connector_list, \
3137 struct drm_connector, head); \
3138 &connector->head != (&(dev)->mode_config.connector_list); \
3139 connector = list_next_entry(connector, head))
3141 #define drm_for_each_encoder(encoder, dev) \
3142 list_for_each_entry(encoder, &(dev)->mode_config.encoder_list, head)
3144 #define drm_for_each_fb(fb, dev) \
3145 for (WARN_ON(!mutex_is_locked(&(dev)->mode_config.fb_lock)), \
3146 fb = list_first_entry(&(dev)->mode_config.fb_list, \
3147 struct drm_framebuffer, head); \
3148 &fb->head != (&(dev)->mode_config.fb_list); \
3149 fb = list_next_entry(fb, head))
3152 bool drm_probe_ddc(struct i2c_adapter
*adapter
);
3153 struct edid
*drm_get_edid(struct drm_connector
*connector
,
3154 struct i2c_adapter
*adapter
);
3155 struct edid
*drm_get_edid_switcheroo(struct drm_connector
*connector
,
3156 struct i2c_adapter
*adapter
);
3157 struct edid
*drm_edid_duplicate(const struct edid
*edid
);
3158 int drm_add_edid_modes(struct drm_connector
*connector
, struct edid
*edid
);
3160 u8
drm_match_cea_mode(const struct drm_display_mode
*to_match
);
3161 enum hdmi_picture_aspect
drm_get_cea_aspect_ratio(const u8 video_code
);
3162 bool drm_detect_hdmi_monitor(struct edid
*edid
);
3163 bool drm_detect_monitor_audio(struct edid
*edid
);
3164 bool drm_rgb_quant_range_selectable(struct edid
*edid
);
3165 int drm_add_modes_noedid(struct drm_connector
*connector
,
3166 int hdisplay
, int vdisplay
);
3167 void drm_set_preferred_mode(struct drm_connector
*connector
,
3168 int hpref
, int vpref
);
3170 int drm_edid_header_is_valid(const u8
*raw_edid
);
3171 bool drm_edid_block_valid(u8
*raw_edid
, int block
, bool print_bad_edid
,
3172 bool *edid_corrupt
);
3173 bool drm_edid_is_valid(struct edid
*edid
);
3174 void drm_edid_get_monitor_name(struct edid
*edid
, char *name
,
3176 struct drm_display_mode
*drm_mode_find_dmt(struct drm_device
*dev
,
3177 int hsize
, int vsize
, int fresh
,
3181 extern int drm_bridge_add(struct drm_bridge
*bridge
);
3182 extern void drm_bridge_remove(struct drm_bridge
*bridge
);
3183 extern struct drm_bridge
*of_drm_find_bridge(struct device_node
*np
);
3184 extern int drm_bridge_attach(struct drm_device
*dev
, struct drm_bridge
*bridge
);
3186 bool drm_bridge_mode_fixup(struct drm_bridge
*bridge
,
3187 const struct drm_display_mode
*mode
,
3188 struct drm_display_mode
*adjusted_mode
);
3189 void drm_bridge_disable(struct drm_bridge
*bridge
);
3190 void drm_bridge_post_disable(struct drm_bridge
*bridge
);
3191 void drm_bridge_mode_set(struct drm_bridge
*bridge
,
3192 struct drm_display_mode
*mode
,
3193 struct drm_display_mode
*adjusted_mode
);
3194 void drm_bridge_pre_enable(struct drm_bridge
*bridge
);
3195 void drm_bridge_enable(struct drm_bridge
*bridge
);
3197 #endif /* __DRM_CRTC_H__ */