1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/ceph/ceph_debug.h>
4 #include <linux/crc32c.h>
5 #include <linux/ctype.h>
6 #include <linux/highmem.h>
7 #include <linux/inet.h>
8 #include <linux/kthread.h>
10 #include <linux/nsproxy.h>
11 #include <linux/sched/mm.h>
12 #include <linux/slab.h>
13 #include <linux/socket.h>
14 #include <linux/string.h>
16 #include <linux/bio.h>
17 #endif /* CONFIG_BLOCK */
18 #include <linux/dns_resolver.h>
21 #include <linux/ceph/ceph_features.h>
22 #include <linux/ceph/libceph.h>
23 #include <linux/ceph/messenger.h>
24 #include <linux/ceph/decode.h>
25 #include <linux/ceph/pagelist.h>
26 #include <linux/export.h>
29 * Ceph uses the messenger to exchange ceph_msg messages with other
30 * hosts in the system. The messenger provides ordered and reliable
31 * delivery. We tolerate TCP disconnects by reconnecting (with
32 * exponential backoff) in the case of a fault (disconnection, bad
33 * crc, protocol error). Acks allow sent messages to be discarded by
38 * We track the state of the socket on a given connection using
39 * values defined below. The transition to a new socket state is
40 * handled by a function which verifies we aren't coming from an
44 * | NEW* | transient initial state
46 * | con_sock_state_init()
49 * | CLOSED | initialized, but no socket (and no
50 * ---------- TCP connection)
52 * | \ con_sock_state_connecting()
53 * | ----------------------
55 * + con_sock_state_closed() \
56 * |+--------------------------- \
59 * | | CLOSING | socket event; \ \
60 * | ----------- await close \ \
63 * | + con_sock_state_closing() \ |
65 * | / --------------- | |
68 * | / -----------------| CONNECTING | socket created, TCP
69 * | | / -------------- connect initiated
70 * | | | con_sock_state_connected()
73 * | CONNECTED | TCP connection established
76 * State values for ceph_connection->sock_state; NEW is assumed to be 0.
79 #define CON_SOCK_STATE_NEW 0 /* -> CLOSED */
80 #define CON_SOCK_STATE_CLOSED 1 /* -> CONNECTING */
81 #define CON_SOCK_STATE_CONNECTING 2 /* -> CONNECTED or -> CLOSING */
82 #define CON_SOCK_STATE_CONNECTED 3 /* -> CLOSING or -> CLOSED */
83 #define CON_SOCK_STATE_CLOSING 4 /* -> CLOSED */
88 #define CON_STATE_CLOSED 1 /* -> PREOPEN */
89 #define CON_STATE_PREOPEN 2 /* -> CONNECTING, CLOSED */
90 #define CON_STATE_CONNECTING 3 /* -> NEGOTIATING, CLOSED */
91 #define CON_STATE_NEGOTIATING 4 /* -> OPEN, CLOSED */
92 #define CON_STATE_OPEN 5 /* -> STANDBY, CLOSED */
93 #define CON_STATE_STANDBY 6 /* -> PREOPEN, CLOSED */
96 * ceph_connection flag bits
98 #define CON_FLAG_LOSSYTX 0 /* we can close channel or drop
99 * messages on errors */
100 #define CON_FLAG_KEEPALIVE_PENDING 1 /* we need to send a keepalive */
101 #define CON_FLAG_WRITE_PENDING 2 /* we have data ready to send */
102 #define CON_FLAG_SOCK_CLOSED 3 /* socket state changed to closed */
103 #define CON_FLAG_BACKOFF 4 /* need to retry queuing delayed work */
105 static bool con_flag_valid(unsigned long con_flag
)
108 case CON_FLAG_LOSSYTX
:
109 case CON_FLAG_KEEPALIVE_PENDING
:
110 case CON_FLAG_WRITE_PENDING
:
111 case CON_FLAG_SOCK_CLOSED
:
112 case CON_FLAG_BACKOFF
:
119 static void con_flag_clear(struct ceph_connection
*con
, unsigned long con_flag
)
121 BUG_ON(!con_flag_valid(con_flag
));
123 clear_bit(con_flag
, &con
->flags
);
126 static void con_flag_set(struct ceph_connection
*con
, unsigned long con_flag
)
128 BUG_ON(!con_flag_valid(con_flag
));
130 set_bit(con_flag
, &con
->flags
);
133 static bool con_flag_test(struct ceph_connection
*con
, unsigned long con_flag
)
135 BUG_ON(!con_flag_valid(con_flag
));
137 return test_bit(con_flag
, &con
->flags
);
140 static bool con_flag_test_and_clear(struct ceph_connection
*con
,
141 unsigned long con_flag
)
143 BUG_ON(!con_flag_valid(con_flag
));
145 return test_and_clear_bit(con_flag
, &con
->flags
);
148 static bool con_flag_test_and_set(struct ceph_connection
*con
,
149 unsigned long con_flag
)
151 BUG_ON(!con_flag_valid(con_flag
));
153 return test_and_set_bit(con_flag
, &con
->flags
);
156 /* Slab caches for frequently-allocated structures */
158 static struct kmem_cache
*ceph_msg_cache
;
159 static struct kmem_cache
*ceph_msg_data_cache
;
161 /* static tag bytes (protocol control messages) */
162 static char tag_msg
= CEPH_MSGR_TAG_MSG
;
163 static char tag_ack
= CEPH_MSGR_TAG_ACK
;
164 static char tag_keepalive
= CEPH_MSGR_TAG_KEEPALIVE
;
165 static char tag_keepalive2
= CEPH_MSGR_TAG_KEEPALIVE2
;
167 #ifdef CONFIG_LOCKDEP
168 static struct lock_class_key socket_class
;
171 static void queue_con(struct ceph_connection
*con
);
172 static void cancel_con(struct ceph_connection
*con
);
173 static void ceph_con_workfn(struct work_struct
*);
174 static void con_fault(struct ceph_connection
*con
);
177 * Nicely render a sockaddr as a string. An array of formatted
178 * strings is used, to approximate reentrancy.
180 #define ADDR_STR_COUNT_LOG 5 /* log2(# address strings in array) */
181 #define ADDR_STR_COUNT (1 << ADDR_STR_COUNT_LOG)
182 #define ADDR_STR_COUNT_MASK (ADDR_STR_COUNT - 1)
183 #define MAX_ADDR_STR_LEN 64 /* 54 is enough */
185 static char addr_str
[ADDR_STR_COUNT
][MAX_ADDR_STR_LEN
];
186 static atomic_t addr_str_seq
= ATOMIC_INIT(0);
188 static struct page
*zero_page
; /* used in certain error cases */
190 const char *ceph_pr_addr(const struct sockaddr_storage
*ss
)
194 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
195 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
197 i
= atomic_inc_return(&addr_str_seq
) & ADDR_STR_COUNT_MASK
;
200 switch (ss
->ss_family
) {
202 snprintf(s
, MAX_ADDR_STR_LEN
, "%pI4:%hu", &in4
->sin_addr
,
203 ntohs(in4
->sin_port
));
207 snprintf(s
, MAX_ADDR_STR_LEN
, "[%pI6c]:%hu", &in6
->sin6_addr
,
208 ntohs(in6
->sin6_port
));
212 snprintf(s
, MAX_ADDR_STR_LEN
, "(unknown sockaddr family %hu)",
218 EXPORT_SYMBOL(ceph_pr_addr
);
220 static void encode_my_addr(struct ceph_messenger
*msgr
)
222 memcpy(&msgr
->my_enc_addr
, &msgr
->inst
.addr
, sizeof(msgr
->my_enc_addr
));
223 ceph_encode_addr(&msgr
->my_enc_addr
);
227 * work queue for all reading and writing to/from the socket.
229 static struct workqueue_struct
*ceph_msgr_wq
;
231 static int ceph_msgr_slab_init(void)
233 BUG_ON(ceph_msg_cache
);
234 ceph_msg_cache
= KMEM_CACHE(ceph_msg
, 0);
238 BUG_ON(ceph_msg_data_cache
);
239 ceph_msg_data_cache
= KMEM_CACHE(ceph_msg_data
, 0);
240 if (ceph_msg_data_cache
)
243 kmem_cache_destroy(ceph_msg_cache
);
244 ceph_msg_cache
= NULL
;
249 static void ceph_msgr_slab_exit(void)
251 BUG_ON(!ceph_msg_data_cache
);
252 kmem_cache_destroy(ceph_msg_data_cache
);
253 ceph_msg_data_cache
= NULL
;
255 BUG_ON(!ceph_msg_cache
);
256 kmem_cache_destroy(ceph_msg_cache
);
257 ceph_msg_cache
= NULL
;
260 static void _ceph_msgr_exit(void)
263 destroy_workqueue(ceph_msgr_wq
);
267 BUG_ON(zero_page
== NULL
);
271 ceph_msgr_slab_exit();
274 int __init
ceph_msgr_init(void)
276 if (ceph_msgr_slab_init())
279 BUG_ON(zero_page
!= NULL
);
280 zero_page
= ZERO_PAGE(0);
284 * The number of active work items is limited by the number of
285 * connections, so leave @max_active at default.
287 ceph_msgr_wq
= alloc_workqueue("ceph-msgr", WQ_MEM_RECLAIM
, 0);
291 pr_err("msgr_init failed to create workqueue\n");
297 void ceph_msgr_exit(void)
299 BUG_ON(ceph_msgr_wq
== NULL
);
304 void ceph_msgr_flush(void)
306 flush_workqueue(ceph_msgr_wq
);
308 EXPORT_SYMBOL(ceph_msgr_flush
);
310 /* Connection socket state transition functions */
312 static void con_sock_state_init(struct ceph_connection
*con
)
316 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
317 if (WARN_ON(old_state
!= CON_SOCK_STATE_NEW
))
318 printk("%s: unexpected old state %d\n", __func__
, old_state
);
319 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
320 CON_SOCK_STATE_CLOSED
);
323 static void con_sock_state_connecting(struct ceph_connection
*con
)
327 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTING
);
328 if (WARN_ON(old_state
!= CON_SOCK_STATE_CLOSED
))
329 printk("%s: unexpected old state %d\n", __func__
, old_state
);
330 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
331 CON_SOCK_STATE_CONNECTING
);
334 static void con_sock_state_connected(struct ceph_connection
*con
)
338 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CONNECTED
);
339 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
))
340 printk("%s: unexpected old state %d\n", __func__
, old_state
);
341 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
342 CON_SOCK_STATE_CONNECTED
);
345 static void con_sock_state_closing(struct ceph_connection
*con
)
349 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSING
);
350 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTING
&&
351 old_state
!= CON_SOCK_STATE_CONNECTED
&&
352 old_state
!= CON_SOCK_STATE_CLOSING
))
353 printk("%s: unexpected old state %d\n", __func__
, old_state
);
354 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
355 CON_SOCK_STATE_CLOSING
);
358 static void con_sock_state_closed(struct ceph_connection
*con
)
362 old_state
= atomic_xchg(&con
->sock_state
, CON_SOCK_STATE_CLOSED
);
363 if (WARN_ON(old_state
!= CON_SOCK_STATE_CONNECTED
&&
364 old_state
!= CON_SOCK_STATE_CLOSING
&&
365 old_state
!= CON_SOCK_STATE_CONNECTING
&&
366 old_state
!= CON_SOCK_STATE_CLOSED
))
367 printk("%s: unexpected old state %d\n", __func__
, old_state
);
368 dout("%s con %p sock %d -> %d\n", __func__
, con
, old_state
,
369 CON_SOCK_STATE_CLOSED
);
373 * socket callback functions
376 /* data available on socket, or listen socket received a connect */
377 static void ceph_sock_data_ready(struct sock
*sk
)
379 struct ceph_connection
*con
= sk
->sk_user_data
;
380 if (atomic_read(&con
->msgr
->stopping
)) {
384 if (sk
->sk_state
!= TCP_CLOSE_WAIT
) {
385 dout("%s on %p state = %lu, queueing work\n", __func__
,
391 /* socket has buffer space for writing */
392 static void ceph_sock_write_space(struct sock
*sk
)
394 struct ceph_connection
*con
= sk
->sk_user_data
;
396 /* only queue to workqueue if there is data we want to write,
397 * and there is sufficient space in the socket buffer to accept
398 * more data. clear SOCK_NOSPACE so that ceph_sock_write_space()
399 * doesn't get called again until try_write() fills the socket
400 * buffer. See net/ipv4/tcp_input.c:tcp_check_space()
401 * and net/core/stream.c:sk_stream_write_space().
403 if (con_flag_test(con
, CON_FLAG_WRITE_PENDING
)) {
404 if (sk_stream_is_writeable(sk
)) {
405 dout("%s %p queueing write work\n", __func__
, con
);
406 clear_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
410 dout("%s %p nothing to write\n", __func__
, con
);
414 /* socket's state has changed */
415 static void ceph_sock_state_change(struct sock
*sk
)
417 struct ceph_connection
*con
= sk
->sk_user_data
;
419 dout("%s %p state = %lu sk_state = %u\n", __func__
,
420 con
, con
->state
, sk
->sk_state
);
422 switch (sk
->sk_state
) {
424 dout("%s TCP_CLOSE\n", __func__
);
427 dout("%s TCP_CLOSE_WAIT\n", __func__
);
428 con_sock_state_closing(con
);
429 con_flag_set(con
, CON_FLAG_SOCK_CLOSED
);
432 case TCP_ESTABLISHED
:
433 dout("%s TCP_ESTABLISHED\n", __func__
);
434 con_sock_state_connected(con
);
437 default: /* Everything else is uninteresting */
443 * set up socket callbacks
445 static void set_sock_callbacks(struct socket
*sock
,
446 struct ceph_connection
*con
)
448 struct sock
*sk
= sock
->sk
;
449 sk
->sk_user_data
= con
;
450 sk
->sk_data_ready
= ceph_sock_data_ready
;
451 sk
->sk_write_space
= ceph_sock_write_space
;
452 sk
->sk_state_change
= ceph_sock_state_change
;
461 * initiate connection to a remote socket.
463 static int ceph_tcp_connect(struct ceph_connection
*con
)
465 struct sockaddr_storage
*paddr
= &con
->peer_addr
.in_addr
;
467 unsigned int noio_flag
;
472 /* sock_create_kern() allocates with GFP_KERNEL */
473 noio_flag
= memalloc_noio_save();
474 ret
= sock_create_kern(read_pnet(&con
->msgr
->net
), paddr
->ss_family
,
475 SOCK_STREAM
, IPPROTO_TCP
, &sock
);
476 memalloc_noio_restore(noio_flag
);
479 sock
->sk
->sk_allocation
= GFP_NOFS
;
481 #ifdef CONFIG_LOCKDEP
482 lockdep_set_class(&sock
->sk
->sk_lock
, &socket_class
);
485 set_sock_callbacks(sock
, con
);
487 dout("connect %s\n", ceph_pr_addr(&con
->peer_addr
.in_addr
));
489 con_sock_state_connecting(con
);
490 ret
= sock
->ops
->connect(sock
, (struct sockaddr
*)paddr
, sizeof(*paddr
),
492 if (ret
== -EINPROGRESS
) {
493 dout("connect %s EINPROGRESS sk_state = %u\n",
494 ceph_pr_addr(&con
->peer_addr
.in_addr
),
496 } else if (ret
< 0) {
497 pr_err("connect %s error %d\n",
498 ceph_pr_addr(&con
->peer_addr
.in_addr
), ret
);
503 if (ceph_test_opt(from_msgr(con
->msgr
), TCP_NODELAY
)) {
506 ret
= kernel_setsockopt(sock
, SOL_TCP
, TCP_NODELAY
,
507 (char *)&optval
, sizeof(optval
));
509 pr_err("kernel_setsockopt(TCP_NODELAY) failed: %d",
518 * If @buf is NULL, discard up to @len bytes.
520 static int ceph_tcp_recvmsg(struct socket
*sock
, void *buf
, size_t len
)
522 struct kvec iov
= {buf
, len
};
523 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
527 msg
.msg_flags
|= MSG_TRUNC
;
529 iov_iter_kvec(&msg
.msg_iter
, READ
| ITER_KVEC
, &iov
, 1, len
);
530 r
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
536 static int ceph_tcp_recvpage(struct socket
*sock
, struct page
*page
,
537 int page_offset
, size_t length
)
539 struct bio_vec bvec
= {
541 .bv_offset
= page_offset
,
544 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
547 BUG_ON(page_offset
+ length
> PAGE_SIZE
);
548 iov_iter_bvec(&msg
.msg_iter
, READ
| ITER_BVEC
, &bvec
, 1, length
);
549 r
= sock_recvmsg(sock
, &msg
, msg
.msg_flags
);
556 * write something. @more is true if caller will be sending more data
559 static int ceph_tcp_sendmsg(struct socket
*sock
, struct kvec
*iov
,
560 size_t kvlen
, size_t len
, int more
)
562 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
566 msg
.msg_flags
|= MSG_MORE
;
568 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
570 r
= kernel_sendmsg(sock
, &msg
, iov
, kvlen
, len
);
576 static int __ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
577 int offset
, size_t size
, bool more
)
579 int flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
| (more
? MSG_MORE
: MSG_EOR
);
582 ret
= kernel_sendpage(sock
, page
, offset
, size
, flags
);
589 static int ceph_tcp_sendpage(struct socket
*sock
, struct page
*page
,
590 int offset
, size_t size
, bool more
)
592 struct msghdr msg
= { .msg_flags
= MSG_DONTWAIT
| MSG_NOSIGNAL
};
596 /* sendpage cannot properly handle pages with page_count == 0,
597 * we need to fallback to sendmsg if that's the case */
598 if (page_count(page
) >= 1)
599 return __ceph_tcp_sendpage(sock
, page
, offset
, size
, more
);
602 bvec
.bv_offset
= offset
;
606 msg
.msg_flags
|= MSG_MORE
;
608 msg
.msg_flags
|= MSG_EOR
; /* superfluous, but what the hell */
610 iov_iter_bvec(&msg
.msg_iter
, WRITE
| ITER_BVEC
, &bvec
, 1, size
);
611 ret
= sock_sendmsg(sock
, &msg
);
619 * Shutdown/close the socket for the given connection.
621 static int con_close_socket(struct ceph_connection
*con
)
625 dout("con_close_socket on %p sock %p\n", con
, con
->sock
);
627 rc
= con
->sock
->ops
->shutdown(con
->sock
, SHUT_RDWR
);
628 sock_release(con
->sock
);
633 * Forcibly clear the SOCK_CLOSED flag. It gets set
634 * independent of the connection mutex, and we could have
635 * received a socket close event before we had the chance to
636 * shut the socket down.
638 con_flag_clear(con
, CON_FLAG_SOCK_CLOSED
);
640 con_sock_state_closed(con
);
645 * Reset a connection. Discard all incoming and outgoing messages
646 * and clear *_seq state.
648 static void ceph_msg_remove(struct ceph_msg
*msg
)
650 list_del_init(&msg
->list_head
);
654 static void ceph_msg_remove_list(struct list_head
*head
)
656 while (!list_empty(head
)) {
657 struct ceph_msg
*msg
= list_first_entry(head
, struct ceph_msg
,
659 ceph_msg_remove(msg
);
663 static void reset_connection(struct ceph_connection
*con
)
665 /* reset connection, out_queue, msg_ and connect_seq */
666 /* discard existing out_queue and msg_seq */
667 dout("reset_connection %p\n", con
);
668 ceph_msg_remove_list(&con
->out_queue
);
669 ceph_msg_remove_list(&con
->out_sent
);
672 BUG_ON(con
->in_msg
->con
!= con
);
673 ceph_msg_put(con
->in_msg
);
677 con
->connect_seq
= 0;
680 BUG_ON(con
->out_msg
->con
!= con
);
681 ceph_msg_put(con
->out_msg
);
685 con
->in_seq_acked
= 0;
691 * mark a peer down. drop any open connections.
693 void ceph_con_close(struct ceph_connection
*con
)
695 mutex_lock(&con
->mutex
);
696 dout("con_close %p peer %s\n", con
,
697 ceph_pr_addr(&con
->peer_addr
.in_addr
));
698 con
->state
= CON_STATE_CLOSED
;
700 con_flag_clear(con
, CON_FLAG_LOSSYTX
); /* so we retry next connect */
701 con_flag_clear(con
, CON_FLAG_KEEPALIVE_PENDING
);
702 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
703 con_flag_clear(con
, CON_FLAG_BACKOFF
);
705 reset_connection(con
);
706 con
->peer_global_seq
= 0;
708 con_close_socket(con
);
709 mutex_unlock(&con
->mutex
);
711 EXPORT_SYMBOL(ceph_con_close
);
714 * Reopen a closed connection, with a new peer address.
716 void ceph_con_open(struct ceph_connection
*con
,
717 __u8 entity_type
, __u64 entity_num
,
718 struct ceph_entity_addr
*addr
)
720 mutex_lock(&con
->mutex
);
721 dout("con_open %p %s\n", con
, ceph_pr_addr(&addr
->in_addr
));
723 WARN_ON(con
->state
!= CON_STATE_CLOSED
);
724 con
->state
= CON_STATE_PREOPEN
;
726 con
->peer_name
.type
= (__u8
) entity_type
;
727 con
->peer_name
.num
= cpu_to_le64(entity_num
);
729 memcpy(&con
->peer_addr
, addr
, sizeof(*addr
));
730 con
->delay
= 0; /* reset backoff memory */
731 mutex_unlock(&con
->mutex
);
734 EXPORT_SYMBOL(ceph_con_open
);
737 * return true if this connection ever successfully opened
739 bool ceph_con_opened(struct ceph_connection
*con
)
741 return con
->connect_seq
> 0;
745 * initialize a new connection.
747 void ceph_con_init(struct ceph_connection
*con
, void *private,
748 const struct ceph_connection_operations
*ops
,
749 struct ceph_messenger
*msgr
)
751 dout("con_init %p\n", con
);
752 memset(con
, 0, sizeof(*con
));
753 con
->private = private;
757 con_sock_state_init(con
);
759 mutex_init(&con
->mutex
);
760 INIT_LIST_HEAD(&con
->out_queue
);
761 INIT_LIST_HEAD(&con
->out_sent
);
762 INIT_DELAYED_WORK(&con
->work
, ceph_con_workfn
);
764 con
->state
= CON_STATE_CLOSED
;
766 EXPORT_SYMBOL(ceph_con_init
);
770 * We maintain a global counter to order connection attempts. Get
771 * a unique seq greater than @gt.
773 static u32
get_global_seq(struct ceph_messenger
*msgr
, u32 gt
)
777 spin_lock(&msgr
->global_seq_lock
);
778 if (msgr
->global_seq
< gt
)
779 msgr
->global_seq
= gt
;
780 ret
= ++msgr
->global_seq
;
781 spin_unlock(&msgr
->global_seq_lock
);
785 static void con_out_kvec_reset(struct ceph_connection
*con
)
787 BUG_ON(con
->out_skip
);
789 con
->out_kvec_left
= 0;
790 con
->out_kvec_bytes
= 0;
791 con
->out_kvec_cur
= &con
->out_kvec
[0];
794 static void con_out_kvec_add(struct ceph_connection
*con
,
795 size_t size
, void *data
)
797 int index
= con
->out_kvec_left
;
799 BUG_ON(con
->out_skip
);
800 BUG_ON(index
>= ARRAY_SIZE(con
->out_kvec
));
802 con
->out_kvec
[index
].iov_len
= size
;
803 con
->out_kvec
[index
].iov_base
= data
;
804 con
->out_kvec_left
++;
805 con
->out_kvec_bytes
+= size
;
809 * Chop off a kvec from the end. Return residual number of bytes for
810 * that kvec, i.e. how many bytes would have been written if the kvec
813 static int con_out_kvec_skip(struct ceph_connection
*con
)
815 int off
= con
->out_kvec_cur
- con
->out_kvec
;
818 if (con
->out_kvec_bytes
> 0) {
819 skip
= con
->out_kvec
[off
+ con
->out_kvec_left
- 1].iov_len
;
820 BUG_ON(con
->out_kvec_bytes
< skip
);
821 BUG_ON(!con
->out_kvec_left
);
822 con
->out_kvec_bytes
-= skip
;
823 con
->out_kvec_left
--;
832 * For a bio data item, a piece is whatever remains of the next
833 * entry in the current bio iovec, or the first entry in the next
836 static void ceph_msg_data_bio_cursor_init(struct ceph_msg_data_cursor
*cursor
,
839 struct ceph_msg_data
*data
= cursor
->data
;
840 struct ceph_bio_iter
*it
= &cursor
->bio_iter
;
842 cursor
->resid
= min_t(size_t, length
, data
->bio_length
);
844 if (cursor
->resid
< it
->iter
.bi_size
)
845 it
->iter
.bi_size
= cursor
->resid
;
847 BUG_ON(cursor
->resid
< bio_iter_len(it
->bio
, it
->iter
));
848 cursor
->last_piece
= cursor
->resid
== bio_iter_len(it
->bio
, it
->iter
);
851 static struct page
*ceph_msg_data_bio_next(struct ceph_msg_data_cursor
*cursor
,
855 struct bio_vec bv
= bio_iter_iovec(cursor
->bio_iter
.bio
,
856 cursor
->bio_iter
.iter
);
858 *page_offset
= bv
.bv_offset
;
863 static bool ceph_msg_data_bio_advance(struct ceph_msg_data_cursor
*cursor
,
866 struct ceph_bio_iter
*it
= &cursor
->bio_iter
;
868 BUG_ON(bytes
> cursor
->resid
);
869 BUG_ON(bytes
> bio_iter_len(it
->bio
, it
->iter
));
870 cursor
->resid
-= bytes
;
871 bio_advance_iter(it
->bio
, &it
->iter
, bytes
);
873 if (!cursor
->resid
) {
874 BUG_ON(!cursor
->last_piece
);
875 return false; /* no more data */
878 if (!bytes
|| (it
->iter
.bi_size
&& it
->iter
.bi_bvec_done
))
879 return false; /* more bytes to process in this segment */
881 if (!it
->iter
.bi_size
) {
882 it
->bio
= it
->bio
->bi_next
;
883 it
->iter
= it
->bio
->bi_iter
;
884 if (cursor
->resid
< it
->iter
.bi_size
)
885 it
->iter
.bi_size
= cursor
->resid
;
888 BUG_ON(cursor
->last_piece
);
889 BUG_ON(cursor
->resid
< bio_iter_len(it
->bio
, it
->iter
));
890 cursor
->last_piece
= cursor
->resid
== bio_iter_len(it
->bio
, it
->iter
);
893 #endif /* CONFIG_BLOCK */
895 static void ceph_msg_data_bvecs_cursor_init(struct ceph_msg_data_cursor
*cursor
,
898 struct ceph_msg_data
*data
= cursor
->data
;
899 struct bio_vec
*bvecs
= data
->bvec_pos
.bvecs
;
901 cursor
->resid
= min_t(size_t, length
, data
->bvec_pos
.iter
.bi_size
);
902 cursor
->bvec_iter
= data
->bvec_pos
.iter
;
903 cursor
->bvec_iter
.bi_size
= cursor
->resid
;
905 BUG_ON(cursor
->resid
< bvec_iter_len(bvecs
, cursor
->bvec_iter
));
907 cursor
->resid
== bvec_iter_len(bvecs
, cursor
->bvec_iter
);
910 static struct page
*ceph_msg_data_bvecs_next(struct ceph_msg_data_cursor
*cursor
,
914 struct bio_vec bv
= bvec_iter_bvec(cursor
->data
->bvec_pos
.bvecs
,
917 *page_offset
= bv
.bv_offset
;
922 static bool ceph_msg_data_bvecs_advance(struct ceph_msg_data_cursor
*cursor
,
925 struct bio_vec
*bvecs
= cursor
->data
->bvec_pos
.bvecs
;
927 BUG_ON(bytes
> cursor
->resid
);
928 BUG_ON(bytes
> bvec_iter_len(bvecs
, cursor
->bvec_iter
));
929 cursor
->resid
-= bytes
;
930 bvec_iter_advance(bvecs
, &cursor
->bvec_iter
, bytes
);
932 if (!cursor
->resid
) {
933 BUG_ON(!cursor
->last_piece
);
934 return false; /* no more data */
937 if (!bytes
|| cursor
->bvec_iter
.bi_bvec_done
)
938 return false; /* more bytes to process in this segment */
940 BUG_ON(cursor
->last_piece
);
941 BUG_ON(cursor
->resid
< bvec_iter_len(bvecs
, cursor
->bvec_iter
));
943 cursor
->resid
== bvec_iter_len(bvecs
, cursor
->bvec_iter
);
948 * For a page array, a piece comes from the first page in the array
949 * that has not already been fully consumed.
951 static void ceph_msg_data_pages_cursor_init(struct ceph_msg_data_cursor
*cursor
,
954 struct ceph_msg_data
*data
= cursor
->data
;
957 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
959 BUG_ON(!data
->pages
);
960 BUG_ON(!data
->length
);
962 cursor
->resid
= min(length
, data
->length
);
963 page_count
= calc_pages_for(data
->alignment
, (u64
)data
->length
);
964 cursor
->page_offset
= data
->alignment
& ~PAGE_MASK
;
965 cursor
->page_index
= 0;
966 BUG_ON(page_count
> (int)USHRT_MAX
);
967 cursor
->page_count
= (unsigned short)page_count
;
968 BUG_ON(length
> SIZE_MAX
- cursor
->page_offset
);
969 cursor
->last_piece
= cursor
->page_offset
+ cursor
->resid
<= PAGE_SIZE
;
973 ceph_msg_data_pages_next(struct ceph_msg_data_cursor
*cursor
,
974 size_t *page_offset
, size_t *length
)
976 struct ceph_msg_data
*data
= cursor
->data
;
978 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGES
);
980 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
981 BUG_ON(cursor
->page_offset
>= PAGE_SIZE
);
983 *page_offset
= cursor
->page_offset
;
984 if (cursor
->last_piece
)
985 *length
= cursor
->resid
;
987 *length
= PAGE_SIZE
- *page_offset
;
989 return data
->pages
[cursor
->page_index
];
992 static bool ceph_msg_data_pages_advance(struct ceph_msg_data_cursor
*cursor
,
995 BUG_ON(cursor
->data
->type
!= CEPH_MSG_DATA_PAGES
);
997 BUG_ON(cursor
->page_offset
+ bytes
> PAGE_SIZE
);
999 /* Advance the cursor page offset */
1001 cursor
->resid
-= bytes
;
1002 cursor
->page_offset
= (cursor
->page_offset
+ bytes
) & ~PAGE_MASK
;
1003 if (!bytes
|| cursor
->page_offset
)
1004 return false; /* more bytes to process in the current page */
1007 return false; /* no more data */
1009 /* Move on to the next page; offset is already at 0 */
1011 BUG_ON(cursor
->page_index
>= cursor
->page_count
);
1012 cursor
->page_index
++;
1013 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1019 * For a pagelist, a piece is whatever remains to be consumed in the
1020 * first page in the list, or the front of the next page.
1023 ceph_msg_data_pagelist_cursor_init(struct ceph_msg_data_cursor
*cursor
,
1026 struct ceph_msg_data
*data
= cursor
->data
;
1027 struct ceph_pagelist
*pagelist
;
1030 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1032 pagelist
= data
->pagelist
;
1036 return; /* pagelist can be assigned but empty */
1038 BUG_ON(list_empty(&pagelist
->head
));
1039 page
= list_first_entry(&pagelist
->head
, struct page
, lru
);
1041 cursor
->resid
= min(length
, pagelist
->length
);
1042 cursor
->page
= page
;
1044 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1047 static struct page
*
1048 ceph_msg_data_pagelist_next(struct ceph_msg_data_cursor
*cursor
,
1049 size_t *page_offset
, size_t *length
)
1051 struct ceph_msg_data
*data
= cursor
->data
;
1052 struct ceph_pagelist
*pagelist
;
1054 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1056 pagelist
= data
->pagelist
;
1059 BUG_ON(!cursor
->page
);
1060 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1062 /* offset of first page in pagelist is always 0 */
1063 *page_offset
= cursor
->offset
& ~PAGE_MASK
;
1064 if (cursor
->last_piece
)
1065 *length
= cursor
->resid
;
1067 *length
= PAGE_SIZE
- *page_offset
;
1069 return cursor
->page
;
1072 static bool ceph_msg_data_pagelist_advance(struct ceph_msg_data_cursor
*cursor
,
1075 struct ceph_msg_data
*data
= cursor
->data
;
1076 struct ceph_pagelist
*pagelist
;
1078 BUG_ON(data
->type
!= CEPH_MSG_DATA_PAGELIST
);
1080 pagelist
= data
->pagelist
;
1083 BUG_ON(cursor
->offset
+ cursor
->resid
!= pagelist
->length
);
1084 BUG_ON((cursor
->offset
& ~PAGE_MASK
) + bytes
> PAGE_SIZE
);
1086 /* Advance the cursor offset */
1088 cursor
->resid
-= bytes
;
1089 cursor
->offset
+= bytes
;
1090 /* offset of first page in pagelist is always 0 */
1091 if (!bytes
|| cursor
->offset
& ~PAGE_MASK
)
1092 return false; /* more bytes to process in the current page */
1095 return false; /* no more data */
1097 /* Move on to the next page */
1099 BUG_ON(list_is_last(&cursor
->page
->lru
, &pagelist
->head
));
1100 cursor
->page
= list_next_entry(cursor
->page
, lru
);
1101 cursor
->last_piece
= cursor
->resid
<= PAGE_SIZE
;
1107 * Message data is handled (sent or received) in pieces, where each
1108 * piece resides on a single page. The network layer might not
1109 * consume an entire piece at once. A data item's cursor keeps
1110 * track of which piece is next to process and how much remains to
1111 * be processed in that piece. It also tracks whether the current
1112 * piece is the last one in the data item.
1114 static void __ceph_msg_data_cursor_init(struct ceph_msg_data_cursor
*cursor
)
1116 size_t length
= cursor
->total_resid
;
1118 switch (cursor
->data
->type
) {
1119 case CEPH_MSG_DATA_PAGELIST
:
1120 ceph_msg_data_pagelist_cursor_init(cursor
, length
);
1122 case CEPH_MSG_DATA_PAGES
:
1123 ceph_msg_data_pages_cursor_init(cursor
, length
);
1126 case CEPH_MSG_DATA_BIO
:
1127 ceph_msg_data_bio_cursor_init(cursor
, length
);
1129 #endif /* CONFIG_BLOCK */
1130 case CEPH_MSG_DATA_BVECS
:
1131 ceph_msg_data_bvecs_cursor_init(cursor
, length
);
1133 case CEPH_MSG_DATA_NONE
:
1138 cursor
->need_crc
= true;
1141 static void ceph_msg_data_cursor_init(struct ceph_msg
*msg
, size_t length
)
1143 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1144 struct ceph_msg_data
*data
;
1147 BUG_ON(length
> msg
->data_length
);
1148 BUG_ON(list_empty(&msg
->data
));
1150 cursor
->data_head
= &msg
->data
;
1151 cursor
->total_resid
= length
;
1152 data
= list_first_entry(&msg
->data
, struct ceph_msg_data
, links
);
1153 cursor
->data
= data
;
1155 __ceph_msg_data_cursor_init(cursor
);
1159 * Return the page containing the next piece to process for a given
1160 * data item, and supply the page offset and length of that piece.
1161 * Indicate whether this is the last piece in this data item.
1163 static struct page
*ceph_msg_data_next(struct ceph_msg_data_cursor
*cursor
,
1164 size_t *page_offset
, size_t *length
,
1169 switch (cursor
->data
->type
) {
1170 case CEPH_MSG_DATA_PAGELIST
:
1171 page
= ceph_msg_data_pagelist_next(cursor
, page_offset
, length
);
1173 case CEPH_MSG_DATA_PAGES
:
1174 page
= ceph_msg_data_pages_next(cursor
, page_offset
, length
);
1177 case CEPH_MSG_DATA_BIO
:
1178 page
= ceph_msg_data_bio_next(cursor
, page_offset
, length
);
1180 #endif /* CONFIG_BLOCK */
1181 case CEPH_MSG_DATA_BVECS
:
1182 page
= ceph_msg_data_bvecs_next(cursor
, page_offset
, length
);
1184 case CEPH_MSG_DATA_NONE
:
1191 BUG_ON(*page_offset
+ *length
> PAGE_SIZE
);
1193 BUG_ON(*length
> cursor
->resid
);
1195 *last_piece
= cursor
->last_piece
;
1201 * Returns true if the result moves the cursor on to the next piece
1204 static void ceph_msg_data_advance(struct ceph_msg_data_cursor
*cursor
,
1209 BUG_ON(bytes
> cursor
->resid
);
1210 switch (cursor
->data
->type
) {
1211 case CEPH_MSG_DATA_PAGELIST
:
1212 new_piece
= ceph_msg_data_pagelist_advance(cursor
, bytes
);
1214 case CEPH_MSG_DATA_PAGES
:
1215 new_piece
= ceph_msg_data_pages_advance(cursor
, bytes
);
1218 case CEPH_MSG_DATA_BIO
:
1219 new_piece
= ceph_msg_data_bio_advance(cursor
, bytes
);
1221 #endif /* CONFIG_BLOCK */
1222 case CEPH_MSG_DATA_BVECS
:
1223 new_piece
= ceph_msg_data_bvecs_advance(cursor
, bytes
);
1225 case CEPH_MSG_DATA_NONE
:
1230 cursor
->total_resid
-= bytes
;
1232 if (!cursor
->resid
&& cursor
->total_resid
) {
1233 WARN_ON(!cursor
->last_piece
);
1234 BUG_ON(list_is_last(&cursor
->data
->links
, cursor
->data_head
));
1235 cursor
->data
= list_next_entry(cursor
->data
, links
);
1236 __ceph_msg_data_cursor_init(cursor
);
1239 cursor
->need_crc
= new_piece
;
1242 static size_t sizeof_footer(struct ceph_connection
*con
)
1244 return (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
) ?
1245 sizeof(struct ceph_msg_footer
) :
1246 sizeof(struct ceph_msg_footer_old
);
1249 static void prepare_message_data(struct ceph_msg
*msg
, u32 data_len
)
1254 /* Initialize data cursor */
1256 ceph_msg_data_cursor_init(msg
, (size_t)data_len
);
1260 * Prepare footer for currently outgoing message, and finish things
1261 * off. Assumes out_kvec* are already valid.. we just add on to the end.
1263 static void prepare_write_message_footer(struct ceph_connection
*con
)
1265 struct ceph_msg
*m
= con
->out_msg
;
1267 m
->footer
.flags
|= CEPH_MSG_FOOTER_COMPLETE
;
1269 dout("prepare_write_message_footer %p\n", con
);
1270 con_out_kvec_add(con
, sizeof_footer(con
), &m
->footer
);
1271 if (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
) {
1272 if (con
->ops
->sign_message
)
1273 con
->ops
->sign_message(m
);
1277 m
->old_footer
.flags
= m
->footer
.flags
;
1279 con
->out_more
= m
->more_to_follow
;
1280 con
->out_msg_done
= true;
1284 * Prepare headers for the next outgoing message.
1286 static void prepare_write_message(struct ceph_connection
*con
)
1291 con_out_kvec_reset(con
);
1292 con
->out_msg_done
= false;
1294 /* Sneak an ack in there first? If we can get it into the same
1295 * TCP packet that's a good thing. */
1296 if (con
->in_seq
> con
->in_seq_acked
) {
1297 con
->in_seq_acked
= con
->in_seq
;
1298 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1299 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1300 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1301 &con
->out_temp_ack
);
1304 BUG_ON(list_empty(&con
->out_queue
));
1305 m
= list_first_entry(&con
->out_queue
, struct ceph_msg
, list_head
);
1307 BUG_ON(m
->con
!= con
);
1309 /* put message on sent list */
1311 list_move_tail(&m
->list_head
, &con
->out_sent
);
1314 * only assign outgoing seq # if we haven't sent this message
1315 * yet. if it is requeued, resend with it's original seq.
1317 if (m
->needs_out_seq
) {
1318 m
->hdr
.seq
= cpu_to_le64(++con
->out_seq
);
1319 m
->needs_out_seq
= false;
1321 if (con
->ops
->reencode_message
)
1322 con
->ops
->reencode_message(m
);
1325 dout("prepare_write_message %p seq %lld type %d len %d+%d+%zd\n",
1326 m
, con
->out_seq
, le16_to_cpu(m
->hdr
.type
),
1327 le32_to_cpu(m
->hdr
.front_len
), le32_to_cpu(m
->hdr
.middle_len
),
1329 WARN_ON(m
->front
.iov_len
!= le32_to_cpu(m
->hdr
.front_len
));
1330 WARN_ON(m
->data_length
!= le32_to_cpu(m
->hdr
.data_len
));
1332 /* tag + hdr + front + middle */
1333 con_out_kvec_add(con
, sizeof (tag_msg
), &tag_msg
);
1334 con_out_kvec_add(con
, sizeof(con
->out_hdr
), &con
->out_hdr
);
1335 con_out_kvec_add(con
, m
->front
.iov_len
, m
->front
.iov_base
);
1338 con_out_kvec_add(con
, m
->middle
->vec
.iov_len
,
1339 m
->middle
->vec
.iov_base
);
1341 /* fill in hdr crc and finalize hdr */
1342 crc
= crc32c(0, &m
->hdr
, offsetof(struct ceph_msg_header
, crc
));
1343 con
->out_msg
->hdr
.crc
= cpu_to_le32(crc
);
1344 memcpy(&con
->out_hdr
, &con
->out_msg
->hdr
, sizeof(con
->out_hdr
));
1346 /* fill in front and middle crc, footer */
1347 crc
= crc32c(0, m
->front
.iov_base
, m
->front
.iov_len
);
1348 con
->out_msg
->footer
.front_crc
= cpu_to_le32(crc
);
1350 crc
= crc32c(0, m
->middle
->vec
.iov_base
,
1351 m
->middle
->vec
.iov_len
);
1352 con
->out_msg
->footer
.middle_crc
= cpu_to_le32(crc
);
1354 con
->out_msg
->footer
.middle_crc
= 0;
1355 dout("%s front_crc %u middle_crc %u\n", __func__
,
1356 le32_to_cpu(con
->out_msg
->footer
.front_crc
),
1357 le32_to_cpu(con
->out_msg
->footer
.middle_crc
));
1358 con
->out_msg
->footer
.flags
= 0;
1360 /* is there a data payload? */
1361 con
->out_msg
->footer
.data_crc
= 0;
1362 if (m
->data_length
) {
1363 prepare_message_data(con
->out_msg
, m
->data_length
);
1364 con
->out_more
= 1; /* data + footer will follow */
1366 /* no, queue up footer too and be done */
1367 prepare_write_message_footer(con
);
1370 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1376 static void prepare_write_ack(struct ceph_connection
*con
)
1378 dout("prepare_write_ack %p %llu -> %llu\n", con
,
1379 con
->in_seq_acked
, con
->in_seq
);
1380 con
->in_seq_acked
= con
->in_seq
;
1382 con_out_kvec_reset(con
);
1384 con_out_kvec_add(con
, sizeof (tag_ack
), &tag_ack
);
1386 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1387 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1388 &con
->out_temp_ack
);
1390 con
->out_more
= 1; /* more will follow.. eventually.. */
1391 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1395 * Prepare to share the seq during handshake
1397 static void prepare_write_seq(struct ceph_connection
*con
)
1399 dout("prepare_write_seq %p %llu -> %llu\n", con
,
1400 con
->in_seq_acked
, con
->in_seq
);
1401 con
->in_seq_acked
= con
->in_seq
;
1403 con_out_kvec_reset(con
);
1405 con
->out_temp_ack
= cpu_to_le64(con
->in_seq_acked
);
1406 con_out_kvec_add(con
, sizeof (con
->out_temp_ack
),
1407 &con
->out_temp_ack
);
1409 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1413 * Prepare to write keepalive byte.
1415 static void prepare_write_keepalive(struct ceph_connection
*con
)
1417 dout("prepare_write_keepalive %p\n", con
);
1418 con_out_kvec_reset(con
);
1419 if (con
->peer_features
& CEPH_FEATURE_MSGR_KEEPALIVE2
) {
1420 struct timespec64 now
;
1422 ktime_get_real_ts64(&now
);
1423 con_out_kvec_add(con
, sizeof(tag_keepalive2
), &tag_keepalive2
);
1424 ceph_encode_timespec64(&con
->out_temp_keepalive2
, &now
);
1425 con_out_kvec_add(con
, sizeof(con
->out_temp_keepalive2
),
1426 &con
->out_temp_keepalive2
);
1428 con_out_kvec_add(con
, sizeof(tag_keepalive
), &tag_keepalive
);
1430 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1434 * Connection negotiation.
1437 static int get_connect_authorizer(struct ceph_connection
*con
)
1439 struct ceph_auth_handshake
*auth
;
1442 if (!con
->ops
->get_authorizer
) {
1444 con
->out_connect
.authorizer_protocol
= CEPH_AUTH_UNKNOWN
;
1445 con
->out_connect
.authorizer_len
= 0;
1449 auth
= con
->ops
->get_authorizer(con
, &auth_proto
, con
->auth_retry
);
1451 return PTR_ERR(auth
);
1454 con
->out_connect
.authorizer_protocol
= cpu_to_le32(auth_proto
);
1455 con
->out_connect
.authorizer_len
= cpu_to_le32(auth
->authorizer_buf_len
);
1460 * We connected to a peer and are saying hello.
1462 static void prepare_write_banner(struct ceph_connection
*con
)
1464 con_out_kvec_add(con
, strlen(CEPH_BANNER
), CEPH_BANNER
);
1465 con_out_kvec_add(con
, sizeof (con
->msgr
->my_enc_addr
),
1466 &con
->msgr
->my_enc_addr
);
1469 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1472 static void __prepare_write_connect(struct ceph_connection
*con
)
1474 con_out_kvec_add(con
, sizeof(con
->out_connect
), &con
->out_connect
);
1476 con_out_kvec_add(con
, con
->auth
->authorizer_buf_len
,
1477 con
->auth
->authorizer_buf
);
1480 con_flag_set(con
, CON_FLAG_WRITE_PENDING
);
1483 static int prepare_write_connect(struct ceph_connection
*con
)
1485 unsigned int global_seq
= get_global_seq(con
->msgr
, 0);
1489 switch (con
->peer_name
.type
) {
1490 case CEPH_ENTITY_TYPE_MON
:
1491 proto
= CEPH_MONC_PROTOCOL
;
1493 case CEPH_ENTITY_TYPE_OSD
:
1494 proto
= CEPH_OSDC_PROTOCOL
;
1496 case CEPH_ENTITY_TYPE_MDS
:
1497 proto
= CEPH_MDSC_PROTOCOL
;
1503 dout("prepare_write_connect %p cseq=%d gseq=%d proto=%d\n", con
,
1504 con
->connect_seq
, global_seq
, proto
);
1506 con
->out_connect
.features
=
1507 cpu_to_le64(from_msgr(con
->msgr
)->supported_features
);
1508 con
->out_connect
.host_type
= cpu_to_le32(CEPH_ENTITY_TYPE_CLIENT
);
1509 con
->out_connect
.connect_seq
= cpu_to_le32(con
->connect_seq
);
1510 con
->out_connect
.global_seq
= cpu_to_le32(global_seq
);
1511 con
->out_connect
.protocol_version
= cpu_to_le32(proto
);
1512 con
->out_connect
.flags
= 0;
1514 ret
= get_connect_authorizer(con
);
1518 __prepare_write_connect(con
);
1523 * write as much of pending kvecs to the socket as we can.
1525 * 0 -> socket full, but more to do
1528 static int write_partial_kvec(struct ceph_connection
*con
)
1532 dout("write_partial_kvec %p %d left\n", con
, con
->out_kvec_bytes
);
1533 while (con
->out_kvec_bytes
> 0) {
1534 ret
= ceph_tcp_sendmsg(con
->sock
, con
->out_kvec_cur
,
1535 con
->out_kvec_left
, con
->out_kvec_bytes
,
1539 con
->out_kvec_bytes
-= ret
;
1540 if (con
->out_kvec_bytes
== 0)
1543 /* account for full iov entries consumed */
1544 while (ret
>= con
->out_kvec_cur
->iov_len
) {
1545 BUG_ON(!con
->out_kvec_left
);
1546 ret
-= con
->out_kvec_cur
->iov_len
;
1547 con
->out_kvec_cur
++;
1548 con
->out_kvec_left
--;
1550 /* and for a partially-consumed entry */
1552 con
->out_kvec_cur
->iov_len
-= ret
;
1553 con
->out_kvec_cur
->iov_base
+= ret
;
1556 con
->out_kvec_left
= 0;
1559 dout("write_partial_kvec %p %d left in %d kvecs ret = %d\n", con
,
1560 con
->out_kvec_bytes
, con
->out_kvec_left
, ret
);
1561 return ret
; /* done! */
1564 static u32
ceph_crc32c_page(u32 crc
, struct page
*page
,
1565 unsigned int page_offset
,
1566 unsigned int length
)
1571 BUG_ON(kaddr
== NULL
);
1572 crc
= crc32c(crc
, kaddr
+ page_offset
, length
);
1578 * Write as much message data payload as we can. If we finish, queue
1580 * 1 -> done, footer is now queued in out_kvec[].
1581 * 0 -> socket full, but more to do
1584 static int write_partial_message_data(struct ceph_connection
*con
)
1586 struct ceph_msg
*msg
= con
->out_msg
;
1587 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
1588 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
1591 dout("%s %p msg %p\n", __func__
, con
, msg
);
1593 if (list_empty(&msg
->data
))
1597 * Iterate through each page that contains data to be
1598 * written, and send as much as possible for each.
1600 * If we are calculating the data crc (the default), we will
1601 * need to map the page. If we have no pages, they have
1602 * been revoked, so use the zero page.
1604 crc
= do_datacrc
? le32_to_cpu(msg
->footer
.data_crc
) : 0;
1605 while (cursor
->total_resid
) {
1612 if (!cursor
->resid
) {
1613 ceph_msg_data_advance(cursor
, 0);
1617 page
= ceph_msg_data_next(cursor
, &page_offset
, &length
,
1619 ret
= ceph_tcp_sendpage(con
->sock
, page
, page_offset
,
1620 length
, !last_piece
);
1623 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1627 if (do_datacrc
&& cursor
->need_crc
)
1628 crc
= ceph_crc32c_page(crc
, page
, page_offset
, length
);
1629 ceph_msg_data_advance(cursor
, (size_t)ret
);
1632 dout("%s %p msg %p done\n", __func__
, con
, msg
);
1634 /* prepare and queue up footer, too */
1636 msg
->footer
.data_crc
= cpu_to_le32(crc
);
1638 msg
->footer
.flags
|= CEPH_MSG_FOOTER_NOCRC
;
1639 con_out_kvec_reset(con
);
1640 prepare_write_message_footer(con
);
1642 return 1; /* must return > 0 to indicate success */
1648 static int write_partial_skip(struct ceph_connection
*con
)
1652 dout("%s %p %d left\n", __func__
, con
, con
->out_skip
);
1653 while (con
->out_skip
> 0) {
1654 size_t size
= min(con
->out_skip
, (int) PAGE_SIZE
);
1656 ret
= ceph_tcp_sendpage(con
->sock
, zero_page
, 0, size
, true);
1659 con
->out_skip
-= ret
;
1667 * Prepare to read connection handshake, or an ack.
1669 static void prepare_read_banner(struct ceph_connection
*con
)
1671 dout("prepare_read_banner %p\n", con
);
1672 con
->in_base_pos
= 0;
1675 static void prepare_read_connect(struct ceph_connection
*con
)
1677 dout("prepare_read_connect %p\n", con
);
1678 con
->in_base_pos
= 0;
1681 static void prepare_read_ack(struct ceph_connection
*con
)
1683 dout("prepare_read_ack %p\n", con
);
1684 con
->in_base_pos
= 0;
1687 static void prepare_read_seq(struct ceph_connection
*con
)
1689 dout("prepare_read_seq %p\n", con
);
1690 con
->in_base_pos
= 0;
1691 con
->in_tag
= CEPH_MSGR_TAG_SEQ
;
1694 static void prepare_read_tag(struct ceph_connection
*con
)
1696 dout("prepare_read_tag %p\n", con
);
1697 con
->in_base_pos
= 0;
1698 con
->in_tag
= CEPH_MSGR_TAG_READY
;
1701 static void prepare_read_keepalive_ack(struct ceph_connection
*con
)
1703 dout("prepare_read_keepalive_ack %p\n", con
);
1704 con
->in_base_pos
= 0;
1708 * Prepare to read a message.
1710 static int prepare_read_message(struct ceph_connection
*con
)
1712 dout("prepare_read_message %p\n", con
);
1713 BUG_ON(con
->in_msg
!= NULL
);
1714 con
->in_base_pos
= 0;
1715 con
->in_front_crc
= con
->in_middle_crc
= con
->in_data_crc
= 0;
1720 static int read_partial(struct ceph_connection
*con
,
1721 int end
, int size
, void *object
)
1723 while (con
->in_base_pos
< end
) {
1724 int left
= end
- con
->in_base_pos
;
1725 int have
= size
- left
;
1726 int ret
= ceph_tcp_recvmsg(con
->sock
, object
+ have
, left
);
1729 con
->in_base_pos
+= ret
;
1736 * Read all or part of the connect-side handshake on a new connection
1738 static int read_partial_banner(struct ceph_connection
*con
)
1744 dout("read_partial_banner %p at %d\n", con
, con
->in_base_pos
);
1747 size
= strlen(CEPH_BANNER
);
1749 ret
= read_partial(con
, end
, size
, con
->in_banner
);
1753 size
= sizeof (con
->actual_peer_addr
);
1755 ret
= read_partial(con
, end
, size
, &con
->actual_peer_addr
);
1759 size
= sizeof (con
->peer_addr_for_me
);
1761 ret
= read_partial(con
, end
, size
, &con
->peer_addr_for_me
);
1769 static int read_partial_connect(struct ceph_connection
*con
)
1775 dout("read_partial_connect %p at %d\n", con
, con
->in_base_pos
);
1777 size
= sizeof (con
->in_reply
);
1779 ret
= read_partial(con
, end
, size
, &con
->in_reply
);
1784 size
= le32_to_cpu(con
->in_reply
.authorizer_len
);
1785 if (size
> con
->auth
->authorizer_reply_buf_len
) {
1786 pr_err("authorizer reply too big: %d > %zu\n", size
,
1787 con
->auth
->authorizer_reply_buf_len
);
1793 ret
= read_partial(con
, end
, size
,
1794 con
->auth
->authorizer_reply_buf
);
1799 dout("read_partial_connect %p tag %d, con_seq = %u, g_seq = %u\n",
1800 con
, (int)con
->in_reply
.tag
,
1801 le32_to_cpu(con
->in_reply
.connect_seq
),
1802 le32_to_cpu(con
->in_reply
.global_seq
));
1808 * Verify the hello banner looks okay.
1810 static int verify_hello(struct ceph_connection
*con
)
1812 if (memcmp(con
->in_banner
, CEPH_BANNER
, strlen(CEPH_BANNER
))) {
1813 pr_err("connect to %s got bad banner\n",
1814 ceph_pr_addr(&con
->peer_addr
.in_addr
));
1815 con
->error_msg
= "protocol error, bad banner";
1821 static bool addr_is_blank(struct sockaddr_storage
*ss
)
1823 struct in_addr
*addr
= &((struct sockaddr_in
*)ss
)->sin_addr
;
1824 struct in6_addr
*addr6
= &((struct sockaddr_in6
*)ss
)->sin6_addr
;
1826 switch (ss
->ss_family
) {
1828 return addr
->s_addr
== htonl(INADDR_ANY
);
1830 return ipv6_addr_any(addr6
);
1836 static int addr_port(struct sockaddr_storage
*ss
)
1838 switch (ss
->ss_family
) {
1840 return ntohs(((struct sockaddr_in
*)ss
)->sin_port
);
1842 return ntohs(((struct sockaddr_in6
*)ss
)->sin6_port
);
1847 static void addr_set_port(struct sockaddr_storage
*ss
, int p
)
1849 switch (ss
->ss_family
) {
1851 ((struct sockaddr_in
*)ss
)->sin_port
= htons(p
);
1854 ((struct sockaddr_in6
*)ss
)->sin6_port
= htons(p
);
1860 * Unlike other *_pton function semantics, zero indicates success.
1862 static int ceph_pton(const char *str
, size_t len
, struct sockaddr_storage
*ss
,
1863 char delim
, const char **ipend
)
1865 struct sockaddr_in
*in4
= (struct sockaddr_in
*) ss
;
1866 struct sockaddr_in6
*in6
= (struct sockaddr_in6
*) ss
;
1868 memset(ss
, 0, sizeof(*ss
));
1870 if (in4_pton(str
, len
, (u8
*)&in4
->sin_addr
.s_addr
, delim
, ipend
)) {
1871 ss
->ss_family
= AF_INET
;
1875 if (in6_pton(str
, len
, (u8
*)&in6
->sin6_addr
.s6_addr
, delim
, ipend
)) {
1876 ss
->ss_family
= AF_INET6
;
1884 * Extract hostname string and resolve using kernel DNS facility.
1886 #ifdef CONFIG_CEPH_LIB_USE_DNS_RESOLVER
1887 static int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1888 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1890 const char *end
, *delim_p
;
1891 char *colon_p
, *ip_addr
= NULL
;
1895 * The end of the hostname occurs immediately preceding the delimiter or
1896 * the port marker (':') where the delimiter takes precedence.
1898 delim_p
= memchr(name
, delim
, namelen
);
1899 colon_p
= memchr(name
, ':', namelen
);
1901 if (delim_p
&& colon_p
)
1902 end
= delim_p
< colon_p
? delim_p
: colon_p
;
1903 else if (!delim_p
&& colon_p
)
1907 if (!end
) /* case: hostname:/ */
1908 end
= name
+ namelen
;
1914 /* do dns_resolve upcall */
1915 ip_len
= dns_query(NULL
, name
, end
- name
, NULL
, &ip_addr
, NULL
);
1917 ret
= ceph_pton(ip_addr
, ip_len
, ss
, -1, NULL
);
1925 pr_info("resolve '%.*s' (ret=%d): %s\n", (int)(end
- name
), name
,
1926 ret
, ret
? "failed" : ceph_pr_addr(ss
));
1931 static inline int ceph_dns_resolve_name(const char *name
, size_t namelen
,
1932 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1939 * Parse a server name (IP or hostname). If a valid IP address is not found
1940 * then try to extract a hostname to resolve using userspace DNS upcall.
1942 static int ceph_parse_server_name(const char *name
, size_t namelen
,
1943 struct sockaddr_storage
*ss
, char delim
, const char **ipend
)
1947 ret
= ceph_pton(name
, namelen
, ss
, delim
, ipend
);
1949 ret
= ceph_dns_resolve_name(name
, namelen
, ss
, delim
, ipend
);
1955 * Parse an ip[:port] list into an addr array. Use the default
1956 * monitor port if a port isn't specified.
1958 int ceph_parse_ips(const char *c
, const char *end
,
1959 struct ceph_entity_addr
*addr
,
1960 int max_count
, int *count
)
1962 int i
, ret
= -EINVAL
;
1965 dout("parse_ips on '%.*s'\n", (int)(end
-c
), c
);
1966 for (i
= 0; i
< max_count
; i
++) {
1968 struct sockaddr_storage
*ss
= &addr
[i
].in_addr
;
1977 ret
= ceph_parse_server_name(p
, end
- p
, ss
, delim
, &ipend
);
1986 dout("missing matching ']'\n");
1993 if (p
< end
&& *p
== ':') {
1996 while (p
< end
&& *p
>= '0' && *p
<= '9') {
1997 port
= (port
* 10) + (*p
- '0');
2001 port
= CEPH_MON_PORT
;
2002 else if (port
> 65535)
2005 port
= CEPH_MON_PORT
;
2008 addr_set_port(ss
, port
);
2010 dout("parse_ips got %s\n", ceph_pr_addr(ss
));
2027 pr_err("parse_ips bad ip '%.*s'\n", (int)(end
- c
), c
);
2030 EXPORT_SYMBOL(ceph_parse_ips
);
2032 static int process_banner(struct ceph_connection
*con
)
2034 dout("process_banner on %p\n", con
);
2036 if (verify_hello(con
) < 0)
2039 ceph_decode_addr(&con
->actual_peer_addr
);
2040 ceph_decode_addr(&con
->peer_addr_for_me
);
2043 * Make sure the other end is who we wanted. note that the other
2044 * end may not yet know their ip address, so if it's 0.0.0.0, give
2045 * them the benefit of the doubt.
2047 if (memcmp(&con
->peer_addr
, &con
->actual_peer_addr
,
2048 sizeof(con
->peer_addr
)) != 0 &&
2049 !(addr_is_blank(&con
->actual_peer_addr
.in_addr
) &&
2050 con
->actual_peer_addr
.nonce
== con
->peer_addr
.nonce
)) {
2051 pr_warn("wrong peer, want %s/%d, got %s/%d\n",
2052 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2053 (int)le32_to_cpu(con
->peer_addr
.nonce
),
2054 ceph_pr_addr(&con
->actual_peer_addr
.in_addr
),
2055 (int)le32_to_cpu(con
->actual_peer_addr
.nonce
));
2056 con
->error_msg
= "wrong peer at address";
2061 * did we learn our address?
2063 if (addr_is_blank(&con
->msgr
->inst
.addr
.in_addr
)) {
2064 int port
= addr_port(&con
->msgr
->inst
.addr
.in_addr
);
2066 memcpy(&con
->msgr
->inst
.addr
.in_addr
,
2067 &con
->peer_addr_for_me
.in_addr
,
2068 sizeof(con
->peer_addr_for_me
.in_addr
));
2069 addr_set_port(&con
->msgr
->inst
.addr
.in_addr
, port
);
2070 encode_my_addr(con
->msgr
);
2071 dout("process_banner learned my addr is %s\n",
2072 ceph_pr_addr(&con
->msgr
->inst
.addr
.in_addr
));
2078 static int process_connect(struct ceph_connection
*con
)
2080 u64 sup_feat
= from_msgr(con
->msgr
)->supported_features
;
2081 u64 req_feat
= from_msgr(con
->msgr
)->required_features
;
2082 u64 server_feat
= le64_to_cpu(con
->in_reply
.features
);
2085 dout("process_connect on %p tag %d\n", con
, (int)con
->in_tag
);
2089 * Any connection that defines ->get_authorizer()
2090 * should also define ->add_authorizer_challenge() and
2091 * ->verify_authorizer_reply().
2093 * See get_connect_authorizer().
2095 if (con
->in_reply
.tag
== CEPH_MSGR_TAG_CHALLENGE_AUTHORIZER
) {
2096 ret
= con
->ops
->add_authorizer_challenge(
2097 con
, con
->auth
->authorizer_reply_buf
,
2098 le32_to_cpu(con
->in_reply
.authorizer_len
));
2102 con_out_kvec_reset(con
);
2103 __prepare_write_connect(con
);
2104 prepare_read_connect(con
);
2108 ret
= con
->ops
->verify_authorizer_reply(con
);
2110 con
->error_msg
= "bad authorize reply";
2115 switch (con
->in_reply
.tag
) {
2116 case CEPH_MSGR_TAG_FEATURES
:
2117 pr_err("%s%lld %s feature set mismatch,"
2118 " my %llx < server's %llx, missing %llx\n",
2119 ENTITY_NAME(con
->peer_name
),
2120 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2121 sup_feat
, server_feat
, server_feat
& ~sup_feat
);
2122 con
->error_msg
= "missing required protocol features";
2123 reset_connection(con
);
2126 case CEPH_MSGR_TAG_BADPROTOVER
:
2127 pr_err("%s%lld %s protocol version mismatch,"
2128 " my %d != server's %d\n",
2129 ENTITY_NAME(con
->peer_name
),
2130 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2131 le32_to_cpu(con
->out_connect
.protocol_version
),
2132 le32_to_cpu(con
->in_reply
.protocol_version
));
2133 con
->error_msg
= "protocol version mismatch";
2134 reset_connection(con
);
2137 case CEPH_MSGR_TAG_BADAUTHORIZER
:
2139 dout("process_connect %p got BADAUTHORIZER attempt %d\n", con
,
2141 if (con
->auth_retry
== 2) {
2142 con
->error_msg
= "connect authorization failure";
2145 con_out_kvec_reset(con
);
2146 ret
= prepare_write_connect(con
);
2149 prepare_read_connect(con
);
2152 case CEPH_MSGR_TAG_RESETSESSION
:
2154 * If we connected with a large connect_seq but the peer
2155 * has no record of a session with us (no connection, or
2156 * connect_seq == 0), they will send RESETSESION to indicate
2157 * that they must have reset their session, and may have
2160 dout("process_connect got RESET peer seq %u\n",
2161 le32_to_cpu(con
->in_reply
.connect_seq
));
2162 pr_err("%s%lld %s connection reset\n",
2163 ENTITY_NAME(con
->peer_name
),
2164 ceph_pr_addr(&con
->peer_addr
.in_addr
));
2165 reset_connection(con
);
2166 con_out_kvec_reset(con
);
2167 ret
= prepare_write_connect(con
);
2170 prepare_read_connect(con
);
2172 /* Tell ceph about it. */
2173 mutex_unlock(&con
->mutex
);
2174 pr_info("reset on %s%lld\n", ENTITY_NAME(con
->peer_name
));
2175 if (con
->ops
->peer_reset
)
2176 con
->ops
->peer_reset(con
);
2177 mutex_lock(&con
->mutex
);
2178 if (con
->state
!= CON_STATE_NEGOTIATING
)
2182 case CEPH_MSGR_TAG_RETRY_SESSION
:
2184 * If we sent a smaller connect_seq than the peer has, try
2185 * again with a larger value.
2187 dout("process_connect got RETRY_SESSION my seq %u, peer %u\n",
2188 le32_to_cpu(con
->out_connect
.connect_seq
),
2189 le32_to_cpu(con
->in_reply
.connect_seq
));
2190 con
->connect_seq
= le32_to_cpu(con
->in_reply
.connect_seq
);
2191 con_out_kvec_reset(con
);
2192 ret
= prepare_write_connect(con
);
2195 prepare_read_connect(con
);
2198 case CEPH_MSGR_TAG_RETRY_GLOBAL
:
2200 * If we sent a smaller global_seq than the peer has, try
2201 * again with a larger value.
2203 dout("process_connect got RETRY_GLOBAL my %u peer_gseq %u\n",
2204 con
->peer_global_seq
,
2205 le32_to_cpu(con
->in_reply
.global_seq
));
2206 get_global_seq(con
->msgr
,
2207 le32_to_cpu(con
->in_reply
.global_seq
));
2208 con_out_kvec_reset(con
);
2209 ret
= prepare_write_connect(con
);
2212 prepare_read_connect(con
);
2215 case CEPH_MSGR_TAG_SEQ
:
2216 case CEPH_MSGR_TAG_READY
:
2217 if (req_feat
& ~server_feat
) {
2218 pr_err("%s%lld %s protocol feature mismatch,"
2219 " my required %llx > server's %llx, need %llx\n",
2220 ENTITY_NAME(con
->peer_name
),
2221 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2222 req_feat
, server_feat
, req_feat
& ~server_feat
);
2223 con
->error_msg
= "missing required protocol features";
2224 reset_connection(con
);
2228 WARN_ON(con
->state
!= CON_STATE_NEGOTIATING
);
2229 con
->state
= CON_STATE_OPEN
;
2230 con
->auth_retry
= 0; /* we authenticated; clear flag */
2231 con
->peer_global_seq
= le32_to_cpu(con
->in_reply
.global_seq
);
2233 con
->peer_features
= server_feat
;
2234 dout("process_connect got READY gseq %d cseq %d (%d)\n",
2235 con
->peer_global_seq
,
2236 le32_to_cpu(con
->in_reply
.connect_seq
),
2238 WARN_ON(con
->connect_seq
!=
2239 le32_to_cpu(con
->in_reply
.connect_seq
));
2241 if (con
->in_reply
.flags
& CEPH_MSG_CONNECT_LOSSY
)
2242 con_flag_set(con
, CON_FLAG_LOSSYTX
);
2244 con
->delay
= 0; /* reset backoff memory */
2246 if (con
->in_reply
.tag
== CEPH_MSGR_TAG_SEQ
) {
2247 prepare_write_seq(con
);
2248 prepare_read_seq(con
);
2250 prepare_read_tag(con
);
2254 case CEPH_MSGR_TAG_WAIT
:
2256 * If there is a connection race (we are opening
2257 * connections to each other), one of us may just have
2258 * to WAIT. This shouldn't happen if we are the
2261 con
->error_msg
= "protocol error, got WAIT as client";
2265 con
->error_msg
= "protocol error, garbage tag during connect";
2273 * read (part of) an ack
2275 static int read_partial_ack(struct ceph_connection
*con
)
2277 int size
= sizeof (con
->in_temp_ack
);
2280 return read_partial(con
, end
, size
, &con
->in_temp_ack
);
2284 * We can finally discard anything that's been acked.
2286 static void process_ack(struct ceph_connection
*con
)
2289 u64 ack
= le64_to_cpu(con
->in_temp_ack
);
2291 bool reconnect
= (con
->in_tag
== CEPH_MSGR_TAG_SEQ
);
2292 struct list_head
*list
= reconnect
? &con
->out_queue
: &con
->out_sent
;
2295 * In the reconnect case, con_fault() has requeued messages
2296 * in out_sent. We should cleanup old messages according to
2297 * the reconnect seq.
2299 while (!list_empty(list
)) {
2300 m
= list_first_entry(list
, struct ceph_msg
, list_head
);
2301 if (reconnect
&& m
->needs_out_seq
)
2303 seq
= le64_to_cpu(m
->hdr
.seq
);
2306 dout("got ack for seq %llu type %d at %p\n", seq
,
2307 le16_to_cpu(m
->hdr
.type
), m
);
2308 m
->ack_stamp
= jiffies
;
2312 prepare_read_tag(con
);
2316 static int read_partial_message_section(struct ceph_connection
*con
,
2317 struct kvec
*section
,
2318 unsigned int sec_len
, u32
*crc
)
2324 while (section
->iov_len
< sec_len
) {
2325 BUG_ON(section
->iov_base
== NULL
);
2326 left
= sec_len
- section
->iov_len
;
2327 ret
= ceph_tcp_recvmsg(con
->sock
, (char *)section
->iov_base
+
2328 section
->iov_len
, left
);
2331 section
->iov_len
+= ret
;
2333 if (section
->iov_len
== sec_len
)
2334 *crc
= crc32c(0, section
->iov_base
, section
->iov_len
);
2339 static int read_partial_msg_data(struct ceph_connection
*con
)
2341 struct ceph_msg
*msg
= con
->in_msg
;
2342 struct ceph_msg_data_cursor
*cursor
= &msg
->cursor
;
2343 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
2351 if (list_empty(&msg
->data
))
2355 crc
= con
->in_data_crc
;
2356 while (cursor
->total_resid
) {
2357 if (!cursor
->resid
) {
2358 ceph_msg_data_advance(cursor
, 0);
2362 page
= ceph_msg_data_next(cursor
, &page_offset
, &length
, NULL
);
2363 ret
= ceph_tcp_recvpage(con
->sock
, page
, page_offset
, length
);
2366 con
->in_data_crc
= crc
;
2372 crc
= ceph_crc32c_page(crc
, page
, page_offset
, ret
);
2373 ceph_msg_data_advance(cursor
, (size_t)ret
);
2376 con
->in_data_crc
= crc
;
2378 return 1; /* must return > 0 to indicate success */
2382 * read (part of) a message.
2384 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
);
2386 static int read_partial_message(struct ceph_connection
*con
)
2388 struct ceph_msg
*m
= con
->in_msg
;
2392 unsigned int front_len
, middle_len
, data_len
;
2393 bool do_datacrc
= !ceph_test_opt(from_msgr(con
->msgr
), NOCRC
);
2394 bool need_sign
= (con
->peer_features
& CEPH_FEATURE_MSG_AUTH
);
2398 dout("read_partial_message con %p msg %p\n", con
, m
);
2401 size
= sizeof (con
->in_hdr
);
2403 ret
= read_partial(con
, end
, size
, &con
->in_hdr
);
2407 crc
= crc32c(0, &con
->in_hdr
, offsetof(struct ceph_msg_header
, crc
));
2408 if (cpu_to_le32(crc
) != con
->in_hdr
.crc
) {
2409 pr_err("read_partial_message bad hdr crc %u != expected %u\n",
2410 crc
, con
->in_hdr
.crc
);
2414 front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
2415 if (front_len
> CEPH_MSG_MAX_FRONT_LEN
)
2417 middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
2418 if (middle_len
> CEPH_MSG_MAX_MIDDLE_LEN
)
2420 data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
2421 if (data_len
> CEPH_MSG_MAX_DATA_LEN
)
2425 seq
= le64_to_cpu(con
->in_hdr
.seq
);
2426 if ((s64
)seq
- (s64
)con
->in_seq
< 1) {
2427 pr_info("skipping %s%lld %s seq %lld expected %lld\n",
2428 ENTITY_NAME(con
->peer_name
),
2429 ceph_pr_addr(&con
->peer_addr
.in_addr
),
2430 seq
, con
->in_seq
+ 1);
2431 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2433 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2435 } else if ((s64
)seq
- (s64
)con
->in_seq
> 1) {
2436 pr_err("read_partial_message bad seq %lld expected %lld\n",
2437 seq
, con
->in_seq
+ 1);
2438 con
->error_msg
= "bad message sequence # for incoming message";
2442 /* allocate message? */
2446 dout("got hdr type %d front %d data %d\n", con
->in_hdr
.type
,
2447 front_len
, data_len
);
2448 ret
= ceph_con_in_msg_alloc(con
, &skip
);
2452 BUG_ON(!con
->in_msg
^ skip
);
2454 /* skip this message */
2455 dout("alloc_msg said skip message\n");
2456 con
->in_base_pos
= -front_len
- middle_len
- data_len
-
2458 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2463 BUG_ON(!con
->in_msg
);
2464 BUG_ON(con
->in_msg
->con
!= con
);
2466 m
->front
.iov_len
= 0; /* haven't read it yet */
2468 m
->middle
->vec
.iov_len
= 0;
2470 /* prepare for data payload, if any */
2473 prepare_message_data(con
->in_msg
, data_len
);
2477 ret
= read_partial_message_section(con
, &m
->front
, front_len
,
2478 &con
->in_front_crc
);
2484 ret
= read_partial_message_section(con
, &m
->middle
->vec
,
2486 &con
->in_middle_crc
);
2493 ret
= read_partial_msg_data(con
);
2499 size
= sizeof_footer(con
);
2501 ret
= read_partial(con
, end
, size
, &m
->footer
);
2506 m
->footer
.flags
= m
->old_footer
.flags
;
2510 dout("read_partial_message got msg %p %d (%u) + %d (%u) + %d (%u)\n",
2511 m
, front_len
, m
->footer
.front_crc
, middle_len
,
2512 m
->footer
.middle_crc
, data_len
, m
->footer
.data_crc
);
2515 if (con
->in_front_crc
!= le32_to_cpu(m
->footer
.front_crc
)) {
2516 pr_err("read_partial_message %p front crc %u != exp. %u\n",
2517 m
, con
->in_front_crc
, m
->footer
.front_crc
);
2520 if (con
->in_middle_crc
!= le32_to_cpu(m
->footer
.middle_crc
)) {
2521 pr_err("read_partial_message %p middle crc %u != exp %u\n",
2522 m
, con
->in_middle_crc
, m
->footer
.middle_crc
);
2526 (m
->footer
.flags
& CEPH_MSG_FOOTER_NOCRC
) == 0 &&
2527 con
->in_data_crc
!= le32_to_cpu(m
->footer
.data_crc
)) {
2528 pr_err("read_partial_message %p data crc %u != exp. %u\n", m
,
2529 con
->in_data_crc
, le32_to_cpu(m
->footer
.data_crc
));
2533 if (need_sign
&& con
->ops
->check_message_signature
&&
2534 con
->ops
->check_message_signature(m
)) {
2535 pr_err("read_partial_message %p signature check failed\n", m
);
2539 return 1; /* done! */
2543 * Process message. This happens in the worker thread. The callback should
2544 * be careful not to do anything that waits on other incoming messages or it
2547 static void process_message(struct ceph_connection
*con
)
2549 struct ceph_msg
*msg
= con
->in_msg
;
2551 BUG_ON(con
->in_msg
->con
!= con
);
2554 /* if first message, set peer_name */
2555 if (con
->peer_name
.type
== 0)
2556 con
->peer_name
= msg
->hdr
.src
;
2559 mutex_unlock(&con
->mutex
);
2561 dout("===== %p %llu from %s%lld %d=%s len %d+%d (%u %u %u) =====\n",
2562 msg
, le64_to_cpu(msg
->hdr
.seq
),
2563 ENTITY_NAME(msg
->hdr
.src
),
2564 le16_to_cpu(msg
->hdr
.type
),
2565 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
2566 le32_to_cpu(msg
->hdr
.front_len
),
2567 le32_to_cpu(msg
->hdr
.data_len
),
2568 con
->in_front_crc
, con
->in_middle_crc
, con
->in_data_crc
);
2569 con
->ops
->dispatch(con
, msg
);
2571 mutex_lock(&con
->mutex
);
2574 static int read_keepalive_ack(struct ceph_connection
*con
)
2576 struct ceph_timespec ceph_ts
;
2577 size_t size
= sizeof(ceph_ts
);
2578 int ret
= read_partial(con
, size
, size
, &ceph_ts
);
2581 ceph_decode_timespec64(&con
->last_keepalive_ack
, &ceph_ts
);
2582 prepare_read_tag(con
);
2587 * Write something to the socket. Called in a worker thread when the
2588 * socket appears to be writeable and we have something ready to send.
2590 static int try_write(struct ceph_connection
*con
)
2594 dout("try_write start %p state %lu\n", con
, con
->state
);
2595 if (con
->state
!= CON_STATE_PREOPEN
&&
2596 con
->state
!= CON_STATE_CONNECTING
&&
2597 con
->state
!= CON_STATE_NEGOTIATING
&&
2598 con
->state
!= CON_STATE_OPEN
)
2601 /* open the socket first? */
2602 if (con
->state
== CON_STATE_PREOPEN
) {
2604 con
->state
= CON_STATE_CONNECTING
;
2606 con_out_kvec_reset(con
);
2607 prepare_write_banner(con
);
2608 prepare_read_banner(con
);
2610 BUG_ON(con
->in_msg
);
2611 con
->in_tag
= CEPH_MSGR_TAG_READY
;
2612 dout("try_write initiating connect on %p new state %lu\n",
2614 ret
= ceph_tcp_connect(con
);
2616 con
->error_msg
= "connect error";
2622 dout("try_write out_kvec_bytes %d\n", con
->out_kvec_bytes
);
2625 /* kvec data queued? */
2626 if (con
->out_kvec_left
) {
2627 ret
= write_partial_kvec(con
);
2631 if (con
->out_skip
) {
2632 ret
= write_partial_skip(con
);
2639 if (con
->out_msg_done
) {
2640 ceph_msg_put(con
->out_msg
);
2641 con
->out_msg
= NULL
; /* we're done with this one */
2645 ret
= write_partial_message_data(con
);
2647 goto more
; /* we need to send the footer, too! */
2651 dout("try_write write_partial_message_data err %d\n",
2658 if (con
->state
== CON_STATE_OPEN
) {
2659 if (con_flag_test_and_clear(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
2660 prepare_write_keepalive(con
);
2663 /* is anything else pending? */
2664 if (!list_empty(&con
->out_queue
)) {
2665 prepare_write_message(con
);
2668 if (con
->in_seq
> con
->in_seq_acked
) {
2669 prepare_write_ack(con
);
2674 /* Nothing to do! */
2675 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
2676 dout("try_write nothing else to write.\n");
2679 dout("try_write done on %p ret %d\n", con
, ret
);
2684 * Read what we can from the socket.
2686 static int try_read(struct ceph_connection
*con
)
2691 dout("try_read start on %p state %lu\n", con
, con
->state
);
2692 if (con
->state
!= CON_STATE_CONNECTING
&&
2693 con
->state
!= CON_STATE_NEGOTIATING
&&
2694 con
->state
!= CON_STATE_OPEN
)
2699 dout("try_read tag %d in_base_pos %d\n", (int)con
->in_tag
,
2702 if (con
->state
== CON_STATE_CONNECTING
) {
2703 dout("try_read connecting\n");
2704 ret
= read_partial_banner(con
);
2707 ret
= process_banner(con
);
2711 con
->state
= CON_STATE_NEGOTIATING
;
2714 * Received banner is good, exchange connection info.
2715 * Do not reset out_kvec, as sending our banner raced
2716 * with receiving peer banner after connect completed.
2718 ret
= prepare_write_connect(con
);
2721 prepare_read_connect(con
);
2723 /* Send connection info before awaiting response */
2727 if (con
->state
== CON_STATE_NEGOTIATING
) {
2728 dout("try_read negotiating\n");
2729 ret
= read_partial_connect(con
);
2732 ret
= process_connect(con
);
2738 WARN_ON(con
->state
!= CON_STATE_OPEN
);
2740 if (con
->in_base_pos
< 0) {
2742 * skipping + discarding content.
2744 ret
= ceph_tcp_recvmsg(con
->sock
, NULL
, -con
->in_base_pos
);
2747 dout("skipped %d / %d bytes\n", ret
, -con
->in_base_pos
);
2748 con
->in_base_pos
+= ret
;
2749 if (con
->in_base_pos
)
2752 if (con
->in_tag
== CEPH_MSGR_TAG_READY
) {
2756 ret
= ceph_tcp_recvmsg(con
->sock
, &con
->in_tag
, 1);
2759 dout("try_read got tag %d\n", (int)con
->in_tag
);
2760 switch (con
->in_tag
) {
2761 case CEPH_MSGR_TAG_MSG
:
2762 prepare_read_message(con
);
2764 case CEPH_MSGR_TAG_ACK
:
2765 prepare_read_ack(con
);
2767 case CEPH_MSGR_TAG_KEEPALIVE2_ACK
:
2768 prepare_read_keepalive_ack(con
);
2770 case CEPH_MSGR_TAG_CLOSE
:
2771 con_close_socket(con
);
2772 con
->state
= CON_STATE_CLOSED
;
2778 if (con
->in_tag
== CEPH_MSGR_TAG_MSG
) {
2779 ret
= read_partial_message(con
);
2783 con
->error_msg
= "bad crc/signature";
2789 con
->error_msg
= "io error";
2794 if (con
->in_tag
== CEPH_MSGR_TAG_READY
)
2796 process_message(con
);
2797 if (con
->state
== CON_STATE_OPEN
)
2798 prepare_read_tag(con
);
2801 if (con
->in_tag
== CEPH_MSGR_TAG_ACK
||
2802 con
->in_tag
== CEPH_MSGR_TAG_SEQ
) {
2804 * the final handshake seq exchange is semantically
2805 * equivalent to an ACK
2807 ret
= read_partial_ack(con
);
2813 if (con
->in_tag
== CEPH_MSGR_TAG_KEEPALIVE2_ACK
) {
2814 ret
= read_keepalive_ack(con
);
2821 dout("try_read done on %p ret %d\n", con
, ret
);
2825 pr_err("try_read bad con->in_tag = %d\n", (int)con
->in_tag
);
2826 con
->error_msg
= "protocol error, garbage tag";
2833 * Atomically queue work on a connection after the specified delay.
2834 * Bump @con reference to avoid races with connection teardown.
2835 * Returns 0 if work was queued, or an error code otherwise.
2837 static int queue_con_delay(struct ceph_connection
*con
, unsigned long delay
)
2839 if (!con
->ops
->get(con
)) {
2840 dout("%s %p ref count 0\n", __func__
, con
);
2844 if (!queue_delayed_work(ceph_msgr_wq
, &con
->work
, delay
)) {
2845 dout("%s %p - already queued\n", __func__
, con
);
2850 dout("%s %p %lu\n", __func__
, con
, delay
);
2854 static void queue_con(struct ceph_connection
*con
)
2856 (void) queue_con_delay(con
, 0);
2859 static void cancel_con(struct ceph_connection
*con
)
2861 if (cancel_delayed_work(&con
->work
)) {
2862 dout("%s %p\n", __func__
, con
);
2867 static bool con_sock_closed(struct ceph_connection
*con
)
2869 if (!con_flag_test_and_clear(con
, CON_FLAG_SOCK_CLOSED
))
2873 case CON_STATE_ ## x: \
2874 con->error_msg = "socket closed (con state " #x ")"; \
2877 switch (con
->state
) {
2885 pr_warn("%s con %p unrecognized state %lu\n",
2886 __func__
, con
, con
->state
);
2887 con
->error_msg
= "unrecognized con state";
2896 static bool con_backoff(struct ceph_connection
*con
)
2900 if (!con_flag_test_and_clear(con
, CON_FLAG_BACKOFF
))
2903 ret
= queue_con_delay(con
, round_jiffies_relative(con
->delay
));
2905 dout("%s: con %p FAILED to back off %lu\n", __func__
,
2907 BUG_ON(ret
== -ENOENT
);
2908 con_flag_set(con
, CON_FLAG_BACKOFF
);
2914 /* Finish fault handling; con->mutex must *not* be held here */
2916 static void con_fault_finish(struct ceph_connection
*con
)
2918 dout("%s %p\n", __func__
, con
);
2921 * in case we faulted due to authentication, invalidate our
2922 * current tickets so that we can get new ones.
2924 if (con
->auth_retry
) {
2925 dout("auth_retry %d, invalidating\n", con
->auth_retry
);
2926 if (con
->ops
->invalidate_authorizer
)
2927 con
->ops
->invalidate_authorizer(con
);
2928 con
->auth_retry
= 0;
2931 if (con
->ops
->fault
)
2932 con
->ops
->fault(con
);
2936 * Do some work on a connection. Drop a connection ref when we're done.
2938 static void ceph_con_workfn(struct work_struct
*work
)
2940 struct ceph_connection
*con
= container_of(work
, struct ceph_connection
,
2944 mutex_lock(&con
->mutex
);
2948 if ((fault
= con_sock_closed(con
))) {
2949 dout("%s: con %p SOCK_CLOSED\n", __func__
, con
);
2952 if (con_backoff(con
)) {
2953 dout("%s: con %p BACKOFF\n", __func__
, con
);
2956 if (con
->state
== CON_STATE_STANDBY
) {
2957 dout("%s: con %p STANDBY\n", __func__
, con
);
2960 if (con
->state
== CON_STATE_CLOSED
) {
2961 dout("%s: con %p CLOSED\n", __func__
, con
);
2965 if (con
->state
== CON_STATE_PREOPEN
) {
2966 dout("%s: con %p PREOPEN\n", __func__
, con
);
2970 ret
= try_read(con
);
2974 if (!con
->error_msg
)
2975 con
->error_msg
= "socket error on read";
2980 ret
= try_write(con
);
2984 if (!con
->error_msg
)
2985 con
->error_msg
= "socket error on write";
2989 break; /* If we make it to here, we're done */
2993 mutex_unlock(&con
->mutex
);
2996 con_fault_finish(con
);
3002 * Generic error/fault handler. A retry mechanism is used with
3003 * exponential backoff
3005 static void con_fault(struct ceph_connection
*con
)
3007 dout("fault %p state %lu to peer %s\n",
3008 con
, con
->state
, ceph_pr_addr(&con
->peer_addr
.in_addr
));
3010 pr_warn("%s%lld %s %s\n", ENTITY_NAME(con
->peer_name
),
3011 ceph_pr_addr(&con
->peer_addr
.in_addr
), con
->error_msg
);
3012 con
->error_msg
= NULL
;
3014 WARN_ON(con
->state
!= CON_STATE_CONNECTING
&&
3015 con
->state
!= CON_STATE_NEGOTIATING
&&
3016 con
->state
!= CON_STATE_OPEN
);
3018 con_close_socket(con
);
3020 if (con_flag_test(con
, CON_FLAG_LOSSYTX
)) {
3021 dout("fault on LOSSYTX channel, marking CLOSED\n");
3022 con
->state
= CON_STATE_CLOSED
;
3027 BUG_ON(con
->in_msg
->con
!= con
);
3028 ceph_msg_put(con
->in_msg
);
3032 /* Requeue anything that hasn't been acked */
3033 list_splice_init(&con
->out_sent
, &con
->out_queue
);
3035 /* If there are no messages queued or keepalive pending, place
3036 * the connection in a STANDBY state */
3037 if (list_empty(&con
->out_queue
) &&
3038 !con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
)) {
3039 dout("fault %p setting STANDBY clearing WRITE_PENDING\n", con
);
3040 con_flag_clear(con
, CON_FLAG_WRITE_PENDING
);
3041 con
->state
= CON_STATE_STANDBY
;
3043 /* retry after a delay. */
3044 con
->state
= CON_STATE_PREOPEN
;
3045 if (con
->delay
== 0)
3046 con
->delay
= BASE_DELAY_INTERVAL
;
3047 else if (con
->delay
< MAX_DELAY_INTERVAL
)
3049 con_flag_set(con
, CON_FLAG_BACKOFF
);
3057 * initialize a new messenger instance
3059 void ceph_messenger_init(struct ceph_messenger
*msgr
,
3060 struct ceph_entity_addr
*myaddr
)
3062 spin_lock_init(&msgr
->global_seq_lock
);
3065 msgr
->inst
.addr
= *myaddr
;
3067 /* select a random nonce */
3068 msgr
->inst
.addr
.type
= 0;
3069 get_random_bytes(&msgr
->inst
.addr
.nonce
, sizeof(msgr
->inst
.addr
.nonce
));
3070 encode_my_addr(msgr
);
3072 atomic_set(&msgr
->stopping
, 0);
3073 write_pnet(&msgr
->net
, get_net(current
->nsproxy
->net_ns
));
3075 dout("%s %p\n", __func__
, msgr
);
3077 EXPORT_SYMBOL(ceph_messenger_init
);
3079 void ceph_messenger_fini(struct ceph_messenger
*msgr
)
3081 put_net(read_pnet(&msgr
->net
));
3083 EXPORT_SYMBOL(ceph_messenger_fini
);
3085 static void msg_con_set(struct ceph_msg
*msg
, struct ceph_connection
*con
)
3088 msg
->con
->ops
->put(msg
->con
);
3090 msg
->con
= con
? con
->ops
->get(con
) : NULL
;
3091 BUG_ON(msg
->con
!= con
);
3094 static void clear_standby(struct ceph_connection
*con
)
3096 /* come back from STANDBY? */
3097 if (con
->state
== CON_STATE_STANDBY
) {
3098 dout("clear_standby %p and ++connect_seq\n", con
);
3099 con
->state
= CON_STATE_PREOPEN
;
3101 WARN_ON(con_flag_test(con
, CON_FLAG_WRITE_PENDING
));
3102 WARN_ON(con_flag_test(con
, CON_FLAG_KEEPALIVE_PENDING
));
3107 * Queue up an outgoing message on the given connection.
3109 void ceph_con_send(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3112 msg
->hdr
.src
= con
->msgr
->inst
.name
;
3113 BUG_ON(msg
->front
.iov_len
!= le32_to_cpu(msg
->hdr
.front_len
));
3114 msg
->needs_out_seq
= true;
3116 mutex_lock(&con
->mutex
);
3118 if (con
->state
== CON_STATE_CLOSED
) {
3119 dout("con_send %p closed, dropping %p\n", con
, msg
);
3121 mutex_unlock(&con
->mutex
);
3125 msg_con_set(msg
, con
);
3127 BUG_ON(!list_empty(&msg
->list_head
));
3128 list_add_tail(&msg
->list_head
, &con
->out_queue
);
3129 dout("----- %p to %s%lld %d=%s len %d+%d+%d -----\n", msg
,
3130 ENTITY_NAME(con
->peer_name
), le16_to_cpu(msg
->hdr
.type
),
3131 ceph_msg_type_name(le16_to_cpu(msg
->hdr
.type
)),
3132 le32_to_cpu(msg
->hdr
.front_len
),
3133 le32_to_cpu(msg
->hdr
.middle_len
),
3134 le32_to_cpu(msg
->hdr
.data_len
));
3137 mutex_unlock(&con
->mutex
);
3139 /* if there wasn't anything waiting to send before, queue
3141 if (con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3144 EXPORT_SYMBOL(ceph_con_send
);
3147 * Revoke a message that was previously queued for send
3149 void ceph_msg_revoke(struct ceph_msg
*msg
)
3151 struct ceph_connection
*con
= msg
->con
;
3154 dout("%s msg %p null con\n", __func__
, msg
);
3155 return; /* Message not in our possession */
3158 mutex_lock(&con
->mutex
);
3159 if (!list_empty(&msg
->list_head
)) {
3160 dout("%s %p msg %p - was on queue\n", __func__
, con
, msg
);
3161 list_del_init(&msg
->list_head
);
3166 if (con
->out_msg
== msg
) {
3167 BUG_ON(con
->out_skip
);
3169 if (con
->out_msg_done
) {
3170 con
->out_skip
+= con_out_kvec_skip(con
);
3172 BUG_ON(!msg
->data_length
);
3173 con
->out_skip
+= sizeof_footer(con
);
3175 /* data, middle, front */
3176 if (msg
->data_length
)
3177 con
->out_skip
+= msg
->cursor
.total_resid
;
3179 con
->out_skip
+= con_out_kvec_skip(con
);
3180 con
->out_skip
+= con_out_kvec_skip(con
);
3182 dout("%s %p msg %p - was sending, will write %d skip %d\n",
3183 __func__
, con
, msg
, con
->out_kvec_bytes
, con
->out_skip
);
3185 con
->out_msg
= NULL
;
3189 mutex_unlock(&con
->mutex
);
3193 * Revoke a message that we may be reading data into
3195 void ceph_msg_revoke_incoming(struct ceph_msg
*msg
)
3197 struct ceph_connection
*con
= msg
->con
;
3200 dout("%s msg %p null con\n", __func__
, msg
);
3201 return; /* Message not in our possession */
3204 mutex_lock(&con
->mutex
);
3205 if (con
->in_msg
== msg
) {
3206 unsigned int front_len
= le32_to_cpu(con
->in_hdr
.front_len
);
3207 unsigned int middle_len
= le32_to_cpu(con
->in_hdr
.middle_len
);
3208 unsigned int data_len
= le32_to_cpu(con
->in_hdr
.data_len
);
3210 /* skip rest of message */
3211 dout("%s %p msg %p revoked\n", __func__
, con
, msg
);
3212 con
->in_base_pos
= con
->in_base_pos
-
3213 sizeof(struct ceph_msg_header
) -
3217 sizeof(struct ceph_msg_footer
);
3218 ceph_msg_put(con
->in_msg
);
3220 con
->in_tag
= CEPH_MSGR_TAG_READY
;
3223 dout("%s %p in_msg %p msg %p no-op\n",
3224 __func__
, con
, con
->in_msg
, msg
);
3226 mutex_unlock(&con
->mutex
);
3230 * Queue a keepalive byte to ensure the tcp connection is alive.
3232 void ceph_con_keepalive(struct ceph_connection
*con
)
3234 dout("con_keepalive %p\n", con
);
3235 mutex_lock(&con
->mutex
);
3237 mutex_unlock(&con
->mutex
);
3238 if (con_flag_test_and_set(con
, CON_FLAG_KEEPALIVE_PENDING
) == 0 &&
3239 con_flag_test_and_set(con
, CON_FLAG_WRITE_PENDING
) == 0)
3242 EXPORT_SYMBOL(ceph_con_keepalive
);
3244 bool ceph_con_keepalive_expired(struct ceph_connection
*con
,
3245 unsigned long interval
)
3248 (con
->peer_features
& CEPH_FEATURE_MSGR_KEEPALIVE2
)) {
3249 struct timespec64 now
;
3250 struct timespec64 ts
;
3251 ktime_get_real_ts64(&now
);
3252 jiffies_to_timespec64(interval
, &ts
);
3253 ts
= timespec64_add(con
->last_keepalive_ack
, ts
);
3254 return timespec64_compare(&now
, &ts
) >= 0;
3259 static struct ceph_msg_data
*ceph_msg_data_create(enum ceph_msg_data_type type
)
3261 struct ceph_msg_data
*data
;
3263 if (WARN_ON(!ceph_msg_data_type_valid(type
)))
3266 data
= kmem_cache_zalloc(ceph_msg_data_cache
, GFP_NOFS
);
3271 INIT_LIST_HEAD(&data
->links
);
3276 static void ceph_msg_data_destroy(struct ceph_msg_data
*data
)
3281 WARN_ON(!list_empty(&data
->links
));
3282 if (data
->type
== CEPH_MSG_DATA_PAGELIST
)
3283 ceph_pagelist_release(data
->pagelist
);
3284 kmem_cache_free(ceph_msg_data_cache
, data
);
3287 void ceph_msg_data_add_pages(struct ceph_msg
*msg
, struct page
**pages
,
3288 size_t length
, size_t alignment
)
3290 struct ceph_msg_data
*data
;
3295 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGES
);
3297 data
->pages
= pages
;
3298 data
->length
= length
;
3299 data
->alignment
= alignment
& ~PAGE_MASK
;
3301 list_add_tail(&data
->links
, &msg
->data
);
3302 msg
->data_length
+= length
;
3304 EXPORT_SYMBOL(ceph_msg_data_add_pages
);
3306 void ceph_msg_data_add_pagelist(struct ceph_msg
*msg
,
3307 struct ceph_pagelist
*pagelist
)
3309 struct ceph_msg_data
*data
;
3312 BUG_ON(!pagelist
->length
);
3314 data
= ceph_msg_data_create(CEPH_MSG_DATA_PAGELIST
);
3316 data
->pagelist
= pagelist
;
3318 list_add_tail(&data
->links
, &msg
->data
);
3319 msg
->data_length
+= pagelist
->length
;
3321 EXPORT_SYMBOL(ceph_msg_data_add_pagelist
);
3324 void ceph_msg_data_add_bio(struct ceph_msg
*msg
, struct ceph_bio_iter
*bio_pos
,
3327 struct ceph_msg_data
*data
;
3329 data
= ceph_msg_data_create(CEPH_MSG_DATA_BIO
);
3331 data
->bio_pos
= *bio_pos
;
3332 data
->bio_length
= length
;
3334 list_add_tail(&data
->links
, &msg
->data
);
3335 msg
->data_length
+= length
;
3337 EXPORT_SYMBOL(ceph_msg_data_add_bio
);
3338 #endif /* CONFIG_BLOCK */
3340 void ceph_msg_data_add_bvecs(struct ceph_msg
*msg
,
3341 struct ceph_bvec_iter
*bvec_pos
)
3343 struct ceph_msg_data
*data
;
3345 data
= ceph_msg_data_create(CEPH_MSG_DATA_BVECS
);
3347 data
->bvec_pos
= *bvec_pos
;
3349 list_add_tail(&data
->links
, &msg
->data
);
3350 msg
->data_length
+= bvec_pos
->iter
.bi_size
;
3352 EXPORT_SYMBOL(ceph_msg_data_add_bvecs
);
3355 * construct a new message with given type, size
3356 * the new msg has a ref count of 1.
3358 struct ceph_msg
*ceph_msg_new(int type
, int front_len
, gfp_t flags
,
3363 m
= kmem_cache_zalloc(ceph_msg_cache
, flags
);
3367 m
->hdr
.type
= cpu_to_le16(type
);
3368 m
->hdr
.priority
= cpu_to_le16(CEPH_MSG_PRIO_DEFAULT
);
3369 m
->hdr
.front_len
= cpu_to_le32(front_len
);
3371 INIT_LIST_HEAD(&m
->list_head
);
3372 kref_init(&m
->kref
);
3373 INIT_LIST_HEAD(&m
->data
);
3377 m
->front
.iov_base
= ceph_kvmalloc(front_len
, flags
);
3378 if (m
->front
.iov_base
== NULL
) {
3379 dout("ceph_msg_new can't allocate %d bytes\n",
3384 m
->front
.iov_base
= NULL
;
3386 m
->front_alloc_len
= m
->front
.iov_len
= front_len
;
3388 dout("ceph_msg_new %p front %d\n", m
, front_len
);
3395 pr_err("msg_new can't create type %d front %d\n", type
,
3399 dout("msg_new can't create type %d front %d\n", type
,
3404 EXPORT_SYMBOL(ceph_msg_new
);
3407 * Allocate "middle" portion of a message, if it is needed and wasn't
3408 * allocated by alloc_msg. This allows us to read a small fixed-size
3409 * per-type header in the front and then gracefully fail (i.e.,
3410 * propagate the error to the caller based on info in the front) when
3411 * the middle is too large.
3413 static int ceph_alloc_middle(struct ceph_connection
*con
, struct ceph_msg
*msg
)
3415 int type
= le16_to_cpu(msg
->hdr
.type
);
3416 int middle_len
= le32_to_cpu(msg
->hdr
.middle_len
);
3418 dout("alloc_middle %p type %d %s middle_len %d\n", msg
, type
,
3419 ceph_msg_type_name(type
), middle_len
);
3420 BUG_ON(!middle_len
);
3421 BUG_ON(msg
->middle
);
3423 msg
->middle
= ceph_buffer_new(middle_len
, GFP_NOFS
);
3430 * Allocate a message for receiving an incoming message on a
3431 * connection, and save the result in con->in_msg. Uses the
3432 * connection's private alloc_msg op if available.
3434 * Returns 0 on success, or a negative error code.
3436 * On success, if we set *skip = 1:
3437 * - the next message should be skipped and ignored.
3438 * - con->in_msg == NULL
3439 * or if we set *skip = 0:
3440 * - con->in_msg is non-null.
3441 * On error (ENOMEM, EAGAIN, ...),
3442 * - con->in_msg == NULL
3444 static int ceph_con_in_msg_alloc(struct ceph_connection
*con
, int *skip
)
3446 struct ceph_msg_header
*hdr
= &con
->in_hdr
;
3447 int middle_len
= le32_to_cpu(hdr
->middle_len
);
3448 struct ceph_msg
*msg
;
3451 BUG_ON(con
->in_msg
!= NULL
);
3452 BUG_ON(!con
->ops
->alloc_msg
);
3454 mutex_unlock(&con
->mutex
);
3455 msg
= con
->ops
->alloc_msg(con
, hdr
, skip
);
3456 mutex_lock(&con
->mutex
);
3457 if (con
->state
!= CON_STATE_OPEN
) {
3464 msg_con_set(msg
, con
);
3468 * Null message pointer means either we should skip
3469 * this message or we couldn't allocate memory. The
3470 * former is not an error.
3475 con
->error_msg
= "error allocating memory for incoming message";
3478 memcpy(&con
->in_msg
->hdr
, &con
->in_hdr
, sizeof(con
->in_hdr
));
3480 if (middle_len
&& !con
->in_msg
->middle
) {
3481 ret
= ceph_alloc_middle(con
, con
->in_msg
);
3483 ceph_msg_put(con
->in_msg
);
3493 * Free a generically kmalloc'd message.
3495 static void ceph_msg_free(struct ceph_msg
*m
)
3497 dout("%s %p\n", __func__
, m
);
3498 kvfree(m
->front
.iov_base
);
3499 kmem_cache_free(ceph_msg_cache
, m
);
3502 static void ceph_msg_release(struct kref
*kref
)
3504 struct ceph_msg
*m
= container_of(kref
, struct ceph_msg
, kref
);
3505 struct ceph_msg_data
*data
, *next
;
3507 dout("%s %p\n", __func__
, m
);
3508 WARN_ON(!list_empty(&m
->list_head
));
3510 msg_con_set(m
, NULL
);
3512 /* drop middle, data, if any */
3514 ceph_buffer_put(m
->middle
);
3518 list_for_each_entry_safe(data
, next
, &m
->data
, links
) {
3519 list_del_init(&data
->links
);
3520 ceph_msg_data_destroy(data
);
3525 ceph_msgpool_put(m
->pool
, m
);
3530 struct ceph_msg
*ceph_msg_get(struct ceph_msg
*msg
)
3532 dout("%s %p (was %d)\n", __func__
, msg
,
3533 kref_read(&msg
->kref
));
3534 kref_get(&msg
->kref
);
3537 EXPORT_SYMBOL(ceph_msg_get
);
3539 void ceph_msg_put(struct ceph_msg
*msg
)
3541 dout("%s %p (was %d)\n", __func__
, msg
,
3542 kref_read(&msg
->kref
));
3543 kref_put(&msg
->kref
, ceph_msg_release
);
3545 EXPORT_SYMBOL(ceph_msg_put
);
3547 void ceph_msg_dump(struct ceph_msg
*msg
)
3549 pr_debug("msg_dump %p (front_alloc_len %d length %zd)\n", msg
,
3550 msg
->front_alloc_len
, msg
->data_length
);
3551 print_hex_dump(KERN_DEBUG
, "header: ",
3552 DUMP_PREFIX_OFFSET
, 16, 1,
3553 &msg
->hdr
, sizeof(msg
->hdr
), true);
3554 print_hex_dump(KERN_DEBUG
, " front: ",
3555 DUMP_PREFIX_OFFSET
, 16, 1,
3556 msg
->front
.iov_base
, msg
->front
.iov_len
, true);
3558 print_hex_dump(KERN_DEBUG
, "middle: ",
3559 DUMP_PREFIX_OFFSET
, 16, 1,
3560 msg
->middle
->vec
.iov_base
,
3561 msg
->middle
->vec
.iov_len
, true);
3562 print_hex_dump(KERN_DEBUG
, "footer: ",
3563 DUMP_PREFIX_OFFSET
, 16, 1,
3564 &msg
->footer
, sizeof(msg
->footer
), true);
3566 EXPORT_SYMBOL(ceph_msg_dump
);