2 * cp1emu.c: a MIPS coprocessor 1 (FPU) instruction emulator
4 * MIPS floating point support
5 * Copyright (C) 1994-2000 Algorithmics Ltd.
7 * Kevin D. Kissell, kevink@mips.com and Carsten Langgaard, carstenl@mips.com
8 * Copyright (C) 2000 MIPS Technologies, Inc.
10 * This program is free software; you can distribute it and/or modify it
11 * under the terms of the GNU General Public License (Version 2) as
12 * published by the Free Software Foundation.
14 * This program is distributed in the hope it will be useful, but WITHOUT
15 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
19 * You should have received a copy of the GNU General Public License along
20 * with this program; if not, write to the Free Software Foundation, Inc.,
21 * 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
23 * A complete emulator for MIPS coprocessor 1 instructions. This is
24 * required for #float(switch) or #float(trap), where it catches all
25 * COP1 instructions via the "CoProcessor Unusable" exception.
27 * More surprisingly it is also required for #float(ieee), to help out
28 * the hardware FPU at the boundaries of the IEEE-754 representation
29 * (denormalised values, infinities, underflow, etc). It is made
30 * quite nasty because emulation of some non-COP1 instructions is
31 * required, e.g. in branch delay slots.
33 * Note if you know that you won't have an FPU, then you'll get much
34 * better performance by compiling with -msoft-float!
36 #include <linux/sched.h>
37 #include <linux/debugfs.h>
38 #include <linux/kconfig.h>
39 #include <linux/percpu-defs.h>
40 #include <linux/perf_event.h>
42 #include <asm/branch.h>
44 #include <asm/ptrace.h>
45 #include <asm/signal.h>
46 #include <asm/uaccess.h>
48 #include <asm/cpu-info.h>
49 #include <asm/processor.h>
50 #include <asm/fpu_emulator.h>
52 #include <asm/mips-r2-to-r6-emul.h>
56 /* Function which emulates a floating point instruction. */
58 static int fpu_emu(struct pt_regs
*, struct mips_fpu_struct
*,
61 static int fpux_emu(struct pt_regs
*,
62 struct mips_fpu_struct
*, mips_instruction
, void *__user
*);
64 /* Control registers */
66 #define FPCREG_RID 0 /* $0 = revision id */
67 #define FPCREG_FCCR 25 /* $25 = fccr */
68 #define FPCREG_FEXR 26 /* $26 = fexr */
69 #define FPCREG_FENR 28 /* $28 = fenr */
70 #define FPCREG_CSR 31 /* $31 = csr */
72 /* convert condition code register number to csr bit */
73 const unsigned int fpucondbit
[8] = {
84 /* (microMIPS) Convert certain microMIPS instructions to MIPS32 format. */
85 static const int sd_format
[] = {16, 17, 0, 0, 0, 0, 0, 0};
86 static const int sdps_format
[] = {16, 17, 22, 0, 0, 0, 0, 0};
87 static const int dwl_format
[] = {17, 20, 21, 0, 0, 0, 0, 0};
88 static const int swl_format
[] = {16, 20, 21, 0, 0, 0, 0, 0};
91 * This functions translates a 32-bit microMIPS instruction
92 * into a 32-bit MIPS32 instruction. Returns 0 on success
93 * and SIGILL otherwise.
95 static int microMIPS32_to_MIPS32(union mips_instruction
*insn_ptr
)
97 union mips_instruction insn
= *insn_ptr
;
98 union mips_instruction mips32_insn
= insn
;
101 switch (insn
.mm_i_format
.opcode
) {
103 mips32_insn
.mm_i_format
.opcode
= ldc1_op
;
104 mips32_insn
.mm_i_format
.rt
= insn
.mm_i_format
.rs
;
105 mips32_insn
.mm_i_format
.rs
= insn
.mm_i_format
.rt
;
108 mips32_insn
.mm_i_format
.opcode
= lwc1_op
;
109 mips32_insn
.mm_i_format
.rt
= insn
.mm_i_format
.rs
;
110 mips32_insn
.mm_i_format
.rs
= insn
.mm_i_format
.rt
;
113 mips32_insn
.mm_i_format
.opcode
= sdc1_op
;
114 mips32_insn
.mm_i_format
.rt
= insn
.mm_i_format
.rs
;
115 mips32_insn
.mm_i_format
.rs
= insn
.mm_i_format
.rt
;
118 mips32_insn
.mm_i_format
.opcode
= swc1_op
;
119 mips32_insn
.mm_i_format
.rt
= insn
.mm_i_format
.rs
;
120 mips32_insn
.mm_i_format
.rs
= insn
.mm_i_format
.rt
;
123 /* NOTE: offset is << by 1 if in microMIPS mode. */
124 if ((insn
.mm_i_format
.rt
== mm_bc1f_op
) ||
125 (insn
.mm_i_format
.rt
== mm_bc1t_op
)) {
126 mips32_insn
.fb_format
.opcode
= cop1_op
;
127 mips32_insn
.fb_format
.bc
= bc_op
;
128 mips32_insn
.fb_format
.flag
=
129 (insn
.mm_i_format
.rt
== mm_bc1t_op
) ? 1 : 0;
134 switch (insn
.mm_fp0_format
.func
) {
143 op
= insn
.mm_fp0_format
.func
;
144 if (op
== mm_32f_01_op
)
146 else if (op
== mm_32f_11_op
)
148 else if (op
== mm_32f_02_op
)
150 else if (op
== mm_32f_12_op
)
152 else if (op
== mm_32f_41_op
)
154 else if (op
== mm_32f_51_op
)
156 else if (op
== mm_32f_42_op
)
160 mips32_insn
.fp6_format
.opcode
= cop1x_op
;
161 mips32_insn
.fp6_format
.fr
= insn
.mm_fp6_format
.fr
;
162 mips32_insn
.fp6_format
.ft
= insn
.mm_fp6_format
.ft
;
163 mips32_insn
.fp6_format
.fs
= insn
.mm_fp6_format
.fs
;
164 mips32_insn
.fp6_format
.fd
= insn
.mm_fp6_format
.fd
;
165 mips32_insn
.fp6_format
.func
= func
;
168 func
= -1; /* Invalid */
169 op
= insn
.mm_fp5_format
.op
& 0x7;
170 if (op
== mm_ldxc1_op
)
172 else if (op
== mm_sdxc1_op
)
174 else if (op
== mm_lwxc1_op
)
176 else if (op
== mm_swxc1_op
)
180 mips32_insn
.r_format
.opcode
= cop1x_op
;
181 mips32_insn
.r_format
.rs
=
182 insn
.mm_fp5_format
.base
;
183 mips32_insn
.r_format
.rt
=
184 insn
.mm_fp5_format
.index
;
185 mips32_insn
.r_format
.rd
= 0;
186 mips32_insn
.r_format
.re
= insn
.mm_fp5_format
.fd
;
187 mips32_insn
.r_format
.func
= func
;
192 op
= -1; /* Invalid */
193 if (insn
.mm_fp2_format
.op
== mm_fmovt_op
)
195 else if (insn
.mm_fp2_format
.op
== mm_fmovf_op
)
198 mips32_insn
.fp0_format
.opcode
= cop1_op
;
199 mips32_insn
.fp0_format
.fmt
=
200 sdps_format
[insn
.mm_fp2_format
.fmt
];
201 mips32_insn
.fp0_format
.ft
=
202 (insn
.mm_fp2_format
.cc
<<2) + op
;
203 mips32_insn
.fp0_format
.fs
=
204 insn
.mm_fp2_format
.fs
;
205 mips32_insn
.fp0_format
.fd
=
206 insn
.mm_fp2_format
.fd
;
207 mips32_insn
.fp0_format
.func
= fmovc_op
;
212 func
= -1; /* Invalid */
213 if (insn
.mm_fp0_format
.op
== mm_fadd_op
)
215 else if (insn
.mm_fp0_format
.op
== mm_fsub_op
)
217 else if (insn
.mm_fp0_format
.op
== mm_fmul_op
)
219 else if (insn
.mm_fp0_format
.op
== mm_fdiv_op
)
222 mips32_insn
.fp0_format
.opcode
= cop1_op
;
223 mips32_insn
.fp0_format
.fmt
=
224 sdps_format
[insn
.mm_fp0_format
.fmt
];
225 mips32_insn
.fp0_format
.ft
=
226 insn
.mm_fp0_format
.ft
;
227 mips32_insn
.fp0_format
.fs
=
228 insn
.mm_fp0_format
.fs
;
229 mips32_insn
.fp0_format
.fd
=
230 insn
.mm_fp0_format
.fd
;
231 mips32_insn
.fp0_format
.func
= func
;
236 func
= -1; /* Invalid */
237 if (insn
.mm_fp0_format
.op
== mm_fmovn_op
)
239 else if (insn
.mm_fp0_format
.op
== mm_fmovz_op
)
242 mips32_insn
.fp0_format
.opcode
= cop1_op
;
243 mips32_insn
.fp0_format
.fmt
=
244 sdps_format
[insn
.mm_fp0_format
.fmt
];
245 mips32_insn
.fp0_format
.ft
=
246 insn
.mm_fp0_format
.ft
;
247 mips32_insn
.fp0_format
.fs
=
248 insn
.mm_fp0_format
.fs
;
249 mips32_insn
.fp0_format
.fd
=
250 insn
.mm_fp0_format
.fd
;
251 mips32_insn
.fp0_format
.func
= func
;
255 case mm_32f_73_op
: /* POOL32FXF */
256 switch (insn
.mm_fp1_format
.op
) {
261 if ((insn
.mm_fp1_format
.op
& 0x7f) ==
266 mips32_insn
.r_format
.opcode
= spec_op
;
267 mips32_insn
.r_format
.rs
= insn
.mm_fp4_format
.fs
;
268 mips32_insn
.r_format
.rt
=
269 (insn
.mm_fp4_format
.cc
<< 2) + op
;
270 mips32_insn
.r_format
.rd
= insn
.mm_fp4_format
.rt
;
271 mips32_insn
.r_format
.re
= 0;
272 mips32_insn
.r_format
.func
= movc_op
;
278 if ((insn
.mm_fp1_format
.op
& 0x7f) ==
281 fmt
= swl_format
[insn
.mm_fp3_format
.fmt
];
284 fmt
= dwl_format
[insn
.mm_fp3_format
.fmt
];
286 mips32_insn
.fp0_format
.opcode
= cop1_op
;
287 mips32_insn
.fp0_format
.fmt
= fmt
;
288 mips32_insn
.fp0_format
.ft
= 0;
289 mips32_insn
.fp0_format
.fs
=
290 insn
.mm_fp3_format
.fs
;
291 mips32_insn
.fp0_format
.fd
=
292 insn
.mm_fp3_format
.rt
;
293 mips32_insn
.fp0_format
.func
= func
;
301 if ((insn
.mm_fp1_format
.op
& 0x7f) ==
304 else if ((insn
.mm_fp1_format
.op
& 0x7f) ==
309 mips32_insn
.fp0_format
.opcode
= cop1_op
;
310 mips32_insn
.fp0_format
.fmt
=
311 sdps_format
[insn
.mm_fp3_format
.fmt
];
312 mips32_insn
.fp0_format
.ft
= 0;
313 mips32_insn
.fp0_format
.fs
=
314 insn
.mm_fp3_format
.fs
;
315 mips32_insn
.fp0_format
.fd
=
316 insn
.mm_fp3_format
.rt
;
317 mips32_insn
.fp0_format
.func
= func
;
329 if (insn
.mm_fp1_format
.op
== mm_ffloorl_op
)
331 else if (insn
.mm_fp1_format
.op
== mm_ffloorw_op
)
333 else if (insn
.mm_fp1_format
.op
== mm_fceill_op
)
335 else if (insn
.mm_fp1_format
.op
== mm_fceilw_op
)
337 else if (insn
.mm_fp1_format
.op
== mm_ftruncl_op
)
339 else if (insn
.mm_fp1_format
.op
== mm_ftruncw_op
)
341 else if (insn
.mm_fp1_format
.op
== mm_froundl_op
)
343 else if (insn
.mm_fp1_format
.op
== mm_froundw_op
)
345 else if (insn
.mm_fp1_format
.op
== mm_fcvtl_op
)
349 mips32_insn
.fp0_format
.opcode
= cop1_op
;
350 mips32_insn
.fp0_format
.fmt
=
351 sd_format
[insn
.mm_fp1_format
.fmt
];
352 mips32_insn
.fp0_format
.ft
= 0;
353 mips32_insn
.fp0_format
.fs
=
354 insn
.mm_fp1_format
.fs
;
355 mips32_insn
.fp0_format
.fd
=
356 insn
.mm_fp1_format
.rt
;
357 mips32_insn
.fp0_format
.func
= func
;
362 if (insn
.mm_fp1_format
.op
== mm_frsqrt_op
)
364 else if (insn
.mm_fp1_format
.op
== mm_fsqrt_op
)
368 mips32_insn
.fp0_format
.opcode
= cop1_op
;
369 mips32_insn
.fp0_format
.fmt
=
370 sdps_format
[insn
.mm_fp1_format
.fmt
];
371 mips32_insn
.fp0_format
.ft
= 0;
372 mips32_insn
.fp0_format
.fs
=
373 insn
.mm_fp1_format
.fs
;
374 mips32_insn
.fp0_format
.fd
=
375 insn
.mm_fp1_format
.rt
;
376 mips32_insn
.fp0_format
.func
= func
;
384 if (insn
.mm_fp1_format
.op
== mm_mfc1_op
)
386 else if (insn
.mm_fp1_format
.op
== mm_mtc1_op
)
388 else if (insn
.mm_fp1_format
.op
== mm_cfc1_op
)
390 else if (insn
.mm_fp1_format
.op
== mm_ctc1_op
)
392 else if (insn
.mm_fp1_format
.op
== mm_mfhc1_op
)
396 mips32_insn
.fp1_format
.opcode
= cop1_op
;
397 mips32_insn
.fp1_format
.op
= op
;
398 mips32_insn
.fp1_format
.rt
=
399 insn
.mm_fp1_format
.rt
;
400 mips32_insn
.fp1_format
.fs
=
401 insn
.mm_fp1_format
.fs
;
402 mips32_insn
.fp1_format
.fd
= 0;
403 mips32_insn
.fp1_format
.func
= 0;
409 case mm_32f_74_op
: /* c.cond.fmt */
410 mips32_insn
.fp0_format
.opcode
= cop1_op
;
411 mips32_insn
.fp0_format
.fmt
=
412 sdps_format
[insn
.mm_fp4_format
.fmt
];
413 mips32_insn
.fp0_format
.ft
= insn
.mm_fp4_format
.rt
;
414 mips32_insn
.fp0_format
.fs
= insn
.mm_fp4_format
.fs
;
415 mips32_insn
.fp0_format
.fd
= insn
.mm_fp4_format
.cc
<< 2;
416 mips32_insn
.fp0_format
.func
=
417 insn
.mm_fp4_format
.cond
| MM_MIPS32_COND_FC
;
427 *insn_ptr
= mips32_insn
;
432 * Redundant with logic already in kernel/branch.c,
433 * embedded in compute_return_epc. At some point,
434 * a single subroutine should be used across both
437 static int isBranchInstr(struct pt_regs
*regs
, struct mm_decoded_insn dec_insn
,
438 unsigned long *contpc
)
440 union mips_instruction insn
= (union mips_instruction
)dec_insn
.insn
;
442 unsigned int bit
= 0;
444 switch (insn
.i_format
.opcode
) {
446 switch (insn
.r_format
.func
) {
448 if (insn
.r_format
.rd
!= 0) {
449 regs
->regs
[insn
.r_format
.rd
] =
450 regs
->cp0_epc
+ dec_insn
.pc_inc
+
451 dec_insn
.next_pc_inc
;
455 /* For R6, JR already emulated in jalr_op */
456 if (NO_R6EMU
&& insn
.r_format
.func
== jr_op
)
458 *contpc
= regs
->regs
[insn
.r_format
.rs
];
463 switch (insn
.i_format
.rt
) {
466 if (NO_R6EMU
&& (insn
.i_format
.rs
||
467 insn
.i_format
.rt
== bltzall_op
))
470 regs
->regs
[31] = regs
->cp0_epc
+
472 dec_insn
.next_pc_inc
;
478 if ((long)regs
->regs
[insn
.i_format
.rs
] < 0)
479 *contpc
= regs
->cp0_epc
+
481 (insn
.i_format
.simmediate
<< 2);
483 *contpc
= regs
->cp0_epc
+
485 dec_insn
.next_pc_inc
;
489 if (NO_R6EMU
&& (insn
.i_format
.rs
||
490 insn
.i_format
.rt
== bgezall_op
))
493 regs
->regs
[31] = regs
->cp0_epc
+
495 dec_insn
.next_pc_inc
;
501 if ((long)regs
->regs
[insn
.i_format
.rs
] >= 0)
502 *contpc
= regs
->cp0_epc
+
504 (insn
.i_format
.simmediate
<< 2);
506 *contpc
= regs
->cp0_epc
+
508 dec_insn
.next_pc_inc
;
515 regs
->regs
[31] = regs
->cp0_epc
+
517 dec_insn
.next_pc_inc
;
520 *contpc
= regs
->cp0_epc
+ dec_insn
.pc_inc
;
523 *contpc
|= (insn
.j_format
.target
<< 2);
524 /* Set microMIPS mode bit: XOR for jalx. */
531 if (regs
->regs
[insn
.i_format
.rs
] ==
532 regs
->regs
[insn
.i_format
.rt
])
533 *contpc
= regs
->cp0_epc
+
535 (insn
.i_format
.simmediate
<< 2);
537 *contpc
= regs
->cp0_epc
+
539 dec_insn
.next_pc_inc
;
545 if (regs
->regs
[insn
.i_format
.rs
] !=
546 regs
->regs
[insn
.i_format
.rt
])
547 *contpc
= regs
->cp0_epc
+
549 (insn
.i_format
.simmediate
<< 2);
551 *contpc
= regs
->cp0_epc
+
553 dec_insn
.next_pc_inc
;
556 if (!insn
.i_format
.rt
&& NO_R6EMU
)
561 * Compact branches for R6 for the
562 * blez and blezl opcodes.
563 * BLEZ | rs = 0 | rt != 0 == BLEZALC
564 * BLEZ | rs = rt != 0 == BGEZALC
565 * BLEZ | rs != 0 | rt != 0 == BGEUC
566 * BLEZL | rs = 0 | rt != 0 == BLEZC
567 * BLEZL | rs = rt != 0 == BGEZC
568 * BLEZL | rs != 0 | rt != 0 == BGEC
570 * For real BLEZ{,L}, rt is always 0.
572 if (cpu_has_mips_r6
&& insn
.i_format
.rt
) {
573 if ((insn
.i_format
.opcode
== blez_op
) &&
574 ((!insn
.i_format
.rs
&& insn
.i_format
.rt
) ||
575 (insn
.i_format
.rs
== insn
.i_format
.rt
)))
576 regs
->regs
[31] = regs
->cp0_epc
+
578 *contpc
= regs
->cp0_epc
+ dec_insn
.pc_inc
+
579 dec_insn
.next_pc_inc
;
583 if ((long)regs
->regs
[insn
.i_format
.rs
] <= 0)
584 *contpc
= regs
->cp0_epc
+
586 (insn
.i_format
.simmediate
<< 2);
588 *contpc
= regs
->cp0_epc
+
590 dec_insn
.next_pc_inc
;
593 if (!insn
.i_format
.rt
&& NO_R6EMU
)
597 * Compact branches for R6 for the
598 * bgtz and bgtzl opcodes.
599 * BGTZ | rs = 0 | rt != 0 == BGTZALC
600 * BGTZ | rs = rt != 0 == BLTZALC
601 * BGTZ | rs != 0 | rt != 0 == BLTUC
602 * BGTZL | rs = 0 | rt != 0 == BGTZC
603 * BGTZL | rs = rt != 0 == BLTZC
604 * BGTZL | rs != 0 | rt != 0 == BLTC
606 * *ZALC varint for BGTZ &&& rt != 0
607 * For real GTZ{,L}, rt is always 0.
609 if (cpu_has_mips_r6
&& insn
.i_format
.rt
) {
610 if ((insn
.i_format
.opcode
== blez_op
) &&
611 ((!insn
.i_format
.rs
&& insn
.i_format
.rt
) ||
612 (insn
.i_format
.rs
== insn
.i_format
.rt
)))
613 regs
->regs
[31] = regs
->cp0_epc
+
615 *contpc
= regs
->cp0_epc
+ dec_insn
.pc_inc
+
616 dec_insn
.next_pc_inc
;
621 if ((long)regs
->regs
[insn
.i_format
.rs
] > 0)
622 *contpc
= regs
->cp0_epc
+
624 (insn
.i_format
.simmediate
<< 2);
626 *contpc
= regs
->cp0_epc
+
628 dec_insn
.next_pc_inc
;
632 if (!cpu_has_mips_r6
)
634 if (insn
.i_format
.rt
&& !insn
.i_format
.rs
)
635 regs
->regs
[31] = regs
->cp0_epc
+ 4;
636 *contpc
= regs
->cp0_epc
+ dec_insn
.pc_inc
+
637 dec_insn
.next_pc_inc
;
640 #ifdef CONFIG_CPU_CAVIUM_OCTEON
641 case lwc2_op
: /* This is bbit0 on Octeon */
642 if ((regs
->regs
[insn
.i_format
.rs
] & (1ull<<insn
.i_format
.rt
)) == 0)
643 *contpc
= regs
->cp0_epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
645 *contpc
= regs
->cp0_epc
+ 8;
647 case ldc2_op
: /* This is bbit032 on Octeon */
648 if ((regs
->regs
[insn
.i_format
.rs
] & (1ull<<(insn
.i_format
.rt
+ 32))) == 0)
649 *contpc
= regs
->cp0_epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
651 *contpc
= regs
->cp0_epc
+ 8;
653 case swc2_op
: /* This is bbit1 on Octeon */
654 if (regs
->regs
[insn
.i_format
.rs
] & (1ull<<insn
.i_format
.rt
))
655 *contpc
= regs
->cp0_epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
657 *contpc
= regs
->cp0_epc
+ 8;
659 case sdc2_op
: /* This is bbit132 on Octeon */
660 if (regs
->regs
[insn
.i_format
.rs
] & (1ull<<(insn
.i_format
.rt
+ 32)))
661 *contpc
= regs
->cp0_epc
+ 4 + (insn
.i_format
.simmediate
<< 2);
663 *contpc
= regs
->cp0_epc
+ 8;
668 * Only valid for MIPS R6 but we can still end up
669 * here from a broken userland so just tell emulator
670 * this is not a branch and let it break later on.
672 if (!cpu_has_mips_r6
)
674 *contpc
= regs
->cp0_epc
+ dec_insn
.pc_inc
+
675 dec_insn
.next_pc_inc
;
679 if (!cpu_has_mips_r6
)
681 regs
->regs
[31] = regs
->cp0_epc
+ 4;
682 *contpc
= regs
->cp0_epc
+ dec_insn
.pc_inc
+
683 dec_insn
.next_pc_inc
;
687 if (!cpu_has_mips_r6
)
689 *contpc
= regs
->cp0_epc
+ dec_insn
.pc_inc
+
690 dec_insn
.next_pc_inc
;
694 if (!cpu_has_mips_r6
)
696 if (!insn
.i_format
.rs
)
697 regs
->regs
[31] = regs
->cp0_epc
+ 4;
698 *contpc
= regs
->cp0_epc
+ dec_insn
.pc_inc
+
699 dec_insn
.next_pc_inc
;
705 /* Need to check for R6 bc1nez and bc1eqz branches */
706 if (cpu_has_mips_r6
&&
707 ((insn
.i_format
.rs
== bc1eqz_op
) ||
708 (insn
.i_format
.rs
== bc1nez_op
))) {
710 switch (insn
.i_format
.rs
) {
712 if (get_fpr32(¤t
->thread
.fpu
.fpr
[insn
.i_format
.rt
], 0) & 0x1)
716 if (!(get_fpr32(¤t
->thread
.fpu
.fpr
[insn
.i_format
.rt
], 0) & 0x1))
721 *contpc
= regs
->cp0_epc
+
723 (insn
.i_format
.simmediate
<< 2);
725 *contpc
= regs
->cp0_epc
+
727 dec_insn
.next_pc_inc
;
731 /* R2/R6 compatible cop1 instruction. Fall through */
734 if (insn
.i_format
.rs
== bc_op
) {
737 fcr31
= read_32bit_cp1_register(CP1_STATUS
);
739 fcr31
= current
->thread
.fpu
.fcr31
;
742 bit
= (insn
.i_format
.rt
>> 2);
745 switch (insn
.i_format
.rt
& 3) {
748 if (~fcr31
& (1 << bit
))
749 *contpc
= regs
->cp0_epc
+
751 (insn
.i_format
.simmediate
<< 2);
753 *contpc
= regs
->cp0_epc
+
755 dec_insn
.next_pc_inc
;
759 if (fcr31
& (1 << bit
))
760 *contpc
= regs
->cp0_epc
+
762 (insn
.i_format
.simmediate
<< 2);
764 *contpc
= regs
->cp0_epc
+
766 dec_insn
.next_pc_inc
;
776 * In the Linux kernel, we support selection of FPR format on the
777 * basis of the Status.FR bit. If an FPU is not present, the FR bit
778 * is hardwired to zero, which would imply a 32-bit FPU even for
779 * 64-bit CPUs so we rather look at TIF_32BIT_FPREGS.
780 * FPU emu is slow and bulky and optimizing this function offers fairly
781 * sizeable benefits so we try to be clever and make this function return
782 * a constant whenever possible, that is on 64-bit kernels without O32
783 * compatibility enabled and on 32-bit without 64-bit FPU support.
785 static inline int cop1_64bit(struct pt_regs
*xcp
)
787 if (config_enabled(CONFIG_64BIT
) && !config_enabled(CONFIG_MIPS32_O32
))
789 else if (config_enabled(CONFIG_32BIT
) &&
790 !config_enabled(CONFIG_MIPS_O32_FP64_SUPPORT
))
793 return !test_thread_flag(TIF_32BIT_FPREGS
);
796 static inline bool hybrid_fprs(void)
798 return test_thread_flag(TIF_HYBRID_FPREGS
);
801 #define SIFROMREG(si, x) \
803 if (cop1_64bit(xcp) && !hybrid_fprs()) \
804 (si) = (int)get_fpr32(&ctx->fpr[x], 0); \
806 (si) = (int)get_fpr32(&ctx->fpr[(x) & ~1], (x) & 1); \
809 #define SITOREG(si, x) \
811 if (cop1_64bit(xcp) && !hybrid_fprs()) { \
813 set_fpr32(&ctx->fpr[x], 0, si); \
814 for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val32); i++) \
815 set_fpr32(&ctx->fpr[x], i, 0); \
817 set_fpr32(&ctx->fpr[(x) & ~1], (x) & 1, si); \
821 #define SIFROMHREG(si, x) ((si) = (int)get_fpr32(&ctx->fpr[x], 1))
823 #define SITOHREG(si, x) \
826 set_fpr32(&ctx->fpr[x], 1, si); \
827 for (i = 2; i < ARRAY_SIZE(ctx->fpr[x].val32); i++) \
828 set_fpr32(&ctx->fpr[x], i, 0); \
831 #define DIFROMREG(di, x) \
832 ((di) = get_fpr64(&ctx->fpr[(x) & ~(cop1_64bit(xcp) == 0)], 0))
834 #define DITOREG(di, x) \
837 fpr = (x) & ~(cop1_64bit(xcp) == 0); \
838 set_fpr64(&ctx->fpr[fpr], 0, di); \
839 for (i = 1; i < ARRAY_SIZE(ctx->fpr[x].val64); i++) \
840 set_fpr64(&ctx->fpr[fpr], i, 0); \
843 #define SPFROMREG(sp, x) SIFROMREG((sp).bits, x)
844 #define SPTOREG(sp, x) SITOREG((sp).bits, x)
845 #define DPFROMREG(dp, x) DIFROMREG((dp).bits, x)
846 #define DPTOREG(dp, x) DITOREG((dp).bits, x)
849 * Emulate a CFC1 instruction.
851 static inline void cop1_cfc(struct pt_regs
*xcp
, struct mips_fpu_struct
*ctx
,
854 u32 fcr31
= ctx
->fcr31
;
857 switch (MIPSInst_RD(ir
)) {
860 pr_debug("%p gpr[%d]<-csr=%08x\n",
861 (void *)xcp
->cp0_epc
, MIPSInst_RT(ir
), value
);
867 value
= (fcr31
>> (FPU_CSR_FS_S
- MIPS_FENR_FS_S
)) &
869 value
|= fcr31
& (FPU_CSR_ALL_E
| FPU_CSR_RM
);
870 pr_debug("%p gpr[%d]<-enr=%08x\n",
871 (void *)xcp
->cp0_epc
, MIPSInst_RT(ir
), value
);
877 value
= fcr31
& (FPU_CSR_ALL_X
| FPU_CSR_ALL_S
);
878 pr_debug("%p gpr[%d]<-exr=%08x\n",
879 (void *)xcp
->cp0_epc
, MIPSInst_RT(ir
), value
);
885 value
= (fcr31
>> (FPU_CSR_COND_S
- MIPS_FCCR_COND0_S
)) &
887 value
|= (fcr31
>> (FPU_CSR_COND1_S
- MIPS_FCCR_COND1_S
)) &
888 (MIPS_FCCR_CONDX
& ~MIPS_FCCR_COND0
);
889 pr_debug("%p gpr[%d]<-ccr=%08x\n",
890 (void *)xcp
->cp0_epc
, MIPSInst_RT(ir
), value
);
894 value
= boot_cpu_data
.fpu_id
;
902 xcp
->regs
[MIPSInst_RT(ir
)] = value
;
906 * Emulate a CTC1 instruction.
908 static inline void cop1_ctc(struct pt_regs
*xcp
, struct mips_fpu_struct
*ctx
,
911 u32 fcr31
= ctx
->fcr31
;
915 if (MIPSInst_RT(ir
) == 0)
918 value
= xcp
->regs
[MIPSInst_RT(ir
)];
920 switch (MIPSInst_RD(ir
)) {
922 pr_debug("%p gpr[%d]->csr=%08x\n",
923 (void *)xcp
->cp0_epc
, MIPSInst_RT(ir
), value
);
925 /* Preserve read-only bits. */
926 mask
= boot_cpu_data
.fpu_msk31
;
927 fcr31
= (value
& ~mask
) | (fcr31
& mask
);
933 pr_debug("%p gpr[%d]->enr=%08x\n",
934 (void *)xcp
->cp0_epc
, MIPSInst_RT(ir
), value
);
935 fcr31
&= ~(FPU_CSR_FS
| FPU_CSR_ALL_E
| FPU_CSR_RM
);
936 fcr31
|= (value
<< (FPU_CSR_FS_S
- MIPS_FENR_FS_S
)) &
938 fcr31
|= value
& (FPU_CSR_ALL_E
| FPU_CSR_RM
);
944 pr_debug("%p gpr[%d]->exr=%08x\n",
945 (void *)xcp
->cp0_epc
, MIPSInst_RT(ir
), value
);
946 fcr31
&= ~(FPU_CSR_ALL_X
| FPU_CSR_ALL_S
);
947 fcr31
|= value
& (FPU_CSR_ALL_X
| FPU_CSR_ALL_S
);
953 pr_debug("%p gpr[%d]->ccr=%08x\n",
954 (void *)xcp
->cp0_epc
, MIPSInst_RT(ir
), value
);
955 fcr31
&= ~(FPU_CSR_CONDX
| FPU_CSR_COND
);
956 fcr31
|= (value
<< (FPU_CSR_COND_S
- MIPS_FCCR_COND0_S
)) &
958 fcr31
|= (value
<< (FPU_CSR_COND1_S
- MIPS_FCCR_COND1_S
)) &
970 * Emulate the single floating point instruction pointed at by EPC.
971 * Two instructions if the instruction is in a branch delay slot.
974 static int cop1Emulate(struct pt_regs
*xcp
, struct mips_fpu_struct
*ctx
,
975 struct mm_decoded_insn dec_insn
, void *__user
*fault_addr
)
977 unsigned long contpc
= xcp
->cp0_epc
+ dec_insn
.pc_inc
;
978 unsigned int cond
, cbit
;
988 * These are giving gcc a gentle hint about what to expect in
989 * dec_inst in order to do better optimization.
991 if (!cpu_has_mmips
&& dec_insn
.micro_mips_mode
)
994 /* XXX NEC Vr54xx bug workaround */
995 if (delay_slot(xcp
)) {
996 if (dec_insn
.micro_mips_mode
) {
997 if (!mm_isBranchInstr(xcp
, dec_insn
, &contpc
))
998 clear_delay_slot(xcp
);
1000 if (!isBranchInstr(xcp
, dec_insn
, &contpc
))
1001 clear_delay_slot(xcp
);
1005 if (delay_slot(xcp
)) {
1007 * The instruction to be emulated is in a branch delay slot
1008 * which means that we have to emulate the branch instruction
1009 * BEFORE we do the cop1 instruction.
1011 * This branch could be a COP1 branch, but in that case we
1012 * would have had a trap for that instruction, and would not
1013 * come through this route.
1015 * Linux MIPS branch emulator operates on context, updating the
1018 ir
= dec_insn
.next_insn
; /* process delay slot instr */
1019 pc_inc
= dec_insn
.next_pc_inc
;
1021 ir
= dec_insn
.insn
; /* process current instr */
1022 pc_inc
= dec_insn
.pc_inc
;
1026 * Since microMIPS FPU instructios are a subset of MIPS32 FPU
1027 * instructions, we want to convert microMIPS FPU instructions
1028 * into MIPS32 instructions so that we could reuse all of the
1029 * FPU emulation code.
1031 * NOTE: We cannot do this for branch instructions since they
1032 * are not a subset. Example: Cannot emulate a 16-bit
1033 * aligned target address with a MIPS32 instruction.
1035 if (dec_insn
.micro_mips_mode
) {
1037 * If next instruction is a 16-bit instruction, then it
1038 * it cannot be a FPU instruction. This could happen
1039 * since we can be called for non-FPU instructions.
1041 if ((pc_inc
== 2) ||
1042 (microMIPS32_to_MIPS32((union mips_instruction
*)&ir
)
1048 perf_sw_event(PERF_COUNT_SW_EMULATION_FAULTS
, 1, xcp
, 0);
1049 MIPS_FPU_EMU_INC_STATS(emulated
);
1050 switch (MIPSInst_OPCODE(ir
)) {
1052 dva
= (u64 __user
*) (xcp
->regs
[MIPSInst_RS(ir
)] +
1054 MIPS_FPU_EMU_INC_STATS(loads
);
1056 if (!access_ok(VERIFY_READ
, dva
, sizeof(u64
))) {
1057 MIPS_FPU_EMU_INC_STATS(errors
);
1061 if (__get_user(dval
, dva
)) {
1062 MIPS_FPU_EMU_INC_STATS(errors
);
1066 DITOREG(dval
, MIPSInst_RT(ir
));
1070 dva
= (u64 __user
*) (xcp
->regs
[MIPSInst_RS(ir
)] +
1072 MIPS_FPU_EMU_INC_STATS(stores
);
1073 DIFROMREG(dval
, MIPSInst_RT(ir
));
1074 if (!access_ok(VERIFY_WRITE
, dva
, sizeof(u64
))) {
1075 MIPS_FPU_EMU_INC_STATS(errors
);
1079 if (__put_user(dval
, dva
)) {
1080 MIPS_FPU_EMU_INC_STATS(errors
);
1087 wva
= (u32 __user
*) (xcp
->regs
[MIPSInst_RS(ir
)] +
1089 MIPS_FPU_EMU_INC_STATS(loads
);
1090 if (!access_ok(VERIFY_READ
, wva
, sizeof(u32
))) {
1091 MIPS_FPU_EMU_INC_STATS(errors
);
1095 if (__get_user(wval
, wva
)) {
1096 MIPS_FPU_EMU_INC_STATS(errors
);
1100 SITOREG(wval
, MIPSInst_RT(ir
));
1104 wva
= (u32 __user
*) (xcp
->regs
[MIPSInst_RS(ir
)] +
1106 MIPS_FPU_EMU_INC_STATS(stores
);
1107 SIFROMREG(wval
, MIPSInst_RT(ir
));
1108 if (!access_ok(VERIFY_WRITE
, wva
, sizeof(u32
))) {
1109 MIPS_FPU_EMU_INC_STATS(errors
);
1113 if (__put_user(wval
, wva
)) {
1114 MIPS_FPU_EMU_INC_STATS(errors
);
1121 switch (MIPSInst_RS(ir
)) {
1123 if (!cpu_has_mips_3_4_5
&& !cpu_has_mips64
)
1126 /* copregister fs -> gpr[rt] */
1127 if (MIPSInst_RT(ir
) != 0) {
1128 DIFROMREG(xcp
->regs
[MIPSInst_RT(ir
)],
1134 if (!cpu_has_mips_3_4_5
&& !cpu_has_mips64
)
1137 /* copregister fs <- rt */
1138 DITOREG(xcp
->regs
[MIPSInst_RT(ir
)], MIPSInst_RD(ir
));
1142 if (!cpu_has_mips_r2_r6
)
1145 /* copregister rd -> gpr[rt] */
1146 if (MIPSInst_RT(ir
) != 0) {
1147 SIFROMHREG(xcp
->regs
[MIPSInst_RT(ir
)],
1153 if (!cpu_has_mips_r2_r6
)
1156 /* copregister rd <- gpr[rt] */
1157 SITOHREG(xcp
->regs
[MIPSInst_RT(ir
)], MIPSInst_RD(ir
));
1161 /* copregister rd -> gpr[rt] */
1162 if (MIPSInst_RT(ir
) != 0) {
1163 SIFROMREG(xcp
->regs
[MIPSInst_RT(ir
)],
1169 /* copregister rd <- rt */
1170 SITOREG(xcp
->regs
[MIPSInst_RT(ir
)], MIPSInst_RD(ir
));
1174 /* cop control register rd -> gpr[rt] */
1175 cop1_cfc(xcp
, ctx
, ir
);
1179 /* copregister rd <- rt */
1180 cop1_ctc(xcp
, ctx
, ir
);
1181 if ((ctx
->fcr31
>> 5) & ctx
->fcr31
& FPU_CSR_ALL_E
) {
1188 if (!cpu_has_mips_r6
|| delay_slot(xcp
))
1192 switch (MIPSInst_RS(ir
)) {
1194 if (get_fpr32(¤t
->thread
.fpu
.fpr
[MIPSInst_RT(ir
)], 0) & 0x1)
1198 if (!(get_fpr32(¤t
->thread
.fpu
.fpr
[MIPSInst_RT(ir
)], 0) & 0x1))
1205 if (delay_slot(xcp
))
1208 if (cpu_has_mips_4_5_r
)
1209 cbit
= fpucondbit
[MIPSInst_RT(ir
) >> 2];
1211 cbit
= FPU_CSR_COND
;
1212 cond
= ctx
->fcr31
& cbit
;
1215 switch (MIPSInst_RT(ir
) & 3) {
1217 if (cpu_has_mips_2_3_4_5_r
)
1224 if (cpu_has_mips_2_3_4_5_r
)
1231 set_delay_slot(xcp
);
1234 * Branch taken: emulate dslot instruction
1239 * Remember EPC at the branch to point back
1240 * at so that any delay-slot instruction
1241 * signal is not silently ignored.
1243 bcpc
= xcp
->cp0_epc
;
1244 xcp
->cp0_epc
+= dec_insn
.pc_inc
;
1246 contpc
= MIPSInst_SIMM(ir
);
1247 ir
= dec_insn
.next_insn
;
1248 if (dec_insn
.micro_mips_mode
) {
1249 contpc
= (xcp
->cp0_epc
+ (contpc
<< 1));
1251 /* If 16-bit instruction, not FPU. */
1252 if ((dec_insn
.next_pc_inc
== 2) ||
1253 (microMIPS32_to_MIPS32((union mips_instruction
*)&ir
) == SIGILL
)) {
1256 * Since this instruction will
1257 * be put on the stack with
1258 * 32-bit words, get around
1259 * this problem by putting a
1260 * NOP16 as the second one.
1262 if (dec_insn
.next_pc_inc
== 2)
1263 ir
= (ir
& (~0xffff)) | MM_NOP16
;
1266 * Single step the non-CP1
1267 * instruction in the dslot.
1269 sig
= mips_dsemul(xcp
, ir
,
1274 xcp
->cp0_epc
= bcpc
;
1276 * SIGILL forces out of
1277 * the emulation loop.
1279 return sig
? sig
: SIGILL
;
1282 contpc
= (xcp
->cp0_epc
+ (contpc
<< 2));
1284 switch (MIPSInst_OPCODE(ir
)) {
1291 if (cpu_has_mips_2_3_4_5_r
)
1300 if (cpu_has_mips_4_5_64_r2_r6
)
1301 /* its one of ours */
1307 switch (MIPSInst_FUNC(ir
)) {
1309 if (cpu_has_mips_4_5_r
)
1317 xcp
->cp0_epc
= bcpc
;
1322 * Single step the non-cp1
1323 * instruction in the dslot
1325 sig
= mips_dsemul(xcp
, ir
, contpc
);
1329 xcp
->cp0_epc
= bcpc
;
1330 /* SIGILL forces out of the emulation loop. */
1331 return sig
? sig
: SIGILL
;
1332 } else if (likely
) { /* branch not taken */
1334 * branch likely nullifies
1335 * dslot if not taken
1337 xcp
->cp0_epc
+= dec_insn
.pc_inc
;
1338 contpc
+= dec_insn
.pc_inc
;
1340 * else continue & execute
1341 * dslot as normal insn
1347 if (!(MIPSInst_RS(ir
) & 0x10))
1350 /* a real fpu computation instruction */
1351 if ((sig
= fpu_emu(xcp
, ctx
, ir
)))
1357 if (!cpu_has_mips_4_5_64_r2_r6
)
1360 sig
= fpux_emu(xcp
, ctx
, ir
, fault_addr
);
1366 if (!cpu_has_mips_4_5_r
)
1369 if (MIPSInst_FUNC(ir
) != movc_op
)
1371 cond
= fpucondbit
[MIPSInst_RT(ir
) >> 2];
1372 if (((ctx
->fcr31
& cond
) != 0) == ((MIPSInst_RT(ir
) & 1) != 0))
1373 xcp
->regs
[MIPSInst_RD(ir
)] =
1374 xcp
->regs
[MIPSInst_RS(ir
)];
1382 xcp
->cp0_epc
= contpc
;
1383 clear_delay_slot(xcp
);
1389 * Conversion table from MIPS compare ops 48-63
1390 * cond = ieee754dp_cmp(x,y,IEEE754_UN,sig);
1392 static const unsigned char cmptab
[8] = {
1393 0, /* cmp_0 (sig) cmp_sf */
1394 IEEE754_CUN
, /* cmp_un (sig) cmp_ngle */
1395 IEEE754_CEQ
, /* cmp_eq (sig) cmp_seq */
1396 IEEE754_CEQ
| IEEE754_CUN
, /* cmp_ueq (sig) cmp_ngl */
1397 IEEE754_CLT
, /* cmp_olt (sig) cmp_lt */
1398 IEEE754_CLT
| IEEE754_CUN
, /* cmp_ult (sig) cmp_nge */
1399 IEEE754_CLT
| IEEE754_CEQ
, /* cmp_ole (sig) cmp_le */
1400 IEEE754_CLT
| IEEE754_CEQ
| IEEE754_CUN
, /* cmp_ule (sig) cmp_ngt */
1403 static const unsigned char negative_cmptab
[8] = {
1405 IEEE754_CLT
| IEEE754_CGT
| IEEE754_CEQ
,
1406 IEEE754_CLT
| IEEE754_CGT
| IEEE754_CUN
,
1407 IEEE754_CLT
| IEEE754_CGT
,
1413 * Additional MIPS4 instructions
1416 #define DEF3OP(name, p, f1, f2, f3) \
1417 static union ieee754##p fpemu_##p##_##name(union ieee754##p r, \
1418 union ieee754##p s, union ieee754##p t) \
1420 struct _ieee754_csr ieee754_csr_save; \
1422 ieee754_csr_save = ieee754_csr; \
1424 ieee754_csr_save.cx |= ieee754_csr.cx; \
1425 ieee754_csr_save.sx |= ieee754_csr.sx; \
1427 ieee754_csr.cx |= ieee754_csr_save.cx; \
1428 ieee754_csr.sx |= ieee754_csr_save.sx; \
1432 static union ieee754dp
fpemu_dp_recip(union ieee754dp d
)
1434 return ieee754dp_div(ieee754dp_one(0), d
);
1437 static union ieee754dp
fpemu_dp_rsqrt(union ieee754dp d
)
1439 return ieee754dp_div(ieee754dp_one(0), ieee754dp_sqrt(d
));
1442 static union ieee754sp
fpemu_sp_recip(union ieee754sp s
)
1444 return ieee754sp_div(ieee754sp_one(0), s
);
1447 static union ieee754sp
fpemu_sp_rsqrt(union ieee754sp s
)
1449 return ieee754sp_div(ieee754sp_one(0), ieee754sp_sqrt(s
));
1452 DEF3OP(madd
, sp
, ieee754sp_mul
, ieee754sp_add
, );
1453 DEF3OP(msub
, sp
, ieee754sp_mul
, ieee754sp_sub
, );
1454 DEF3OP(nmadd
, sp
, ieee754sp_mul
, ieee754sp_add
, ieee754sp_neg
);
1455 DEF3OP(nmsub
, sp
, ieee754sp_mul
, ieee754sp_sub
, ieee754sp_neg
);
1456 DEF3OP(madd
, dp
, ieee754dp_mul
, ieee754dp_add
, );
1457 DEF3OP(msub
, dp
, ieee754dp_mul
, ieee754dp_sub
, );
1458 DEF3OP(nmadd
, dp
, ieee754dp_mul
, ieee754dp_add
, ieee754dp_neg
);
1459 DEF3OP(nmsub
, dp
, ieee754dp_mul
, ieee754dp_sub
, ieee754dp_neg
);
1461 static int fpux_emu(struct pt_regs
*xcp
, struct mips_fpu_struct
*ctx
,
1462 mips_instruction ir
, void *__user
*fault_addr
)
1464 unsigned rcsr
= 0; /* resulting csr */
1466 MIPS_FPU_EMU_INC_STATS(cp1xops
);
1468 switch (MIPSInst_FMA_FFMT(ir
)) {
1469 case s_fmt
:{ /* 0 */
1471 union ieee754sp(*handler
) (union ieee754sp
, union ieee754sp
, union ieee754sp
);
1472 union ieee754sp fd
, fr
, fs
, ft
;
1476 switch (MIPSInst_FUNC(ir
)) {
1478 va
= (void __user
*) (xcp
->regs
[MIPSInst_FR(ir
)] +
1479 xcp
->regs
[MIPSInst_FT(ir
)]);
1481 MIPS_FPU_EMU_INC_STATS(loads
);
1482 if (!access_ok(VERIFY_READ
, va
, sizeof(u32
))) {
1483 MIPS_FPU_EMU_INC_STATS(errors
);
1487 if (__get_user(val
, va
)) {
1488 MIPS_FPU_EMU_INC_STATS(errors
);
1492 SITOREG(val
, MIPSInst_FD(ir
));
1496 va
= (void __user
*) (xcp
->regs
[MIPSInst_FR(ir
)] +
1497 xcp
->regs
[MIPSInst_FT(ir
)]);
1499 MIPS_FPU_EMU_INC_STATS(stores
);
1501 SIFROMREG(val
, MIPSInst_FS(ir
));
1502 if (!access_ok(VERIFY_WRITE
, va
, sizeof(u32
))) {
1503 MIPS_FPU_EMU_INC_STATS(errors
);
1507 if (put_user(val
, va
)) {
1508 MIPS_FPU_EMU_INC_STATS(errors
);
1515 handler
= fpemu_sp_madd
;
1518 handler
= fpemu_sp_msub
;
1521 handler
= fpemu_sp_nmadd
;
1524 handler
= fpemu_sp_nmsub
;
1528 SPFROMREG(fr
, MIPSInst_FR(ir
));
1529 SPFROMREG(fs
, MIPSInst_FS(ir
));
1530 SPFROMREG(ft
, MIPSInst_FT(ir
));
1531 fd
= (*handler
) (fr
, fs
, ft
);
1532 SPTOREG(fd
, MIPSInst_FD(ir
));
1535 if (ieee754_cxtest(IEEE754_INEXACT
)) {
1536 MIPS_FPU_EMU_INC_STATS(ieee754_inexact
);
1537 rcsr
|= FPU_CSR_INE_X
| FPU_CSR_INE_S
;
1539 if (ieee754_cxtest(IEEE754_UNDERFLOW
)) {
1540 MIPS_FPU_EMU_INC_STATS(ieee754_underflow
);
1541 rcsr
|= FPU_CSR_UDF_X
| FPU_CSR_UDF_S
;
1543 if (ieee754_cxtest(IEEE754_OVERFLOW
)) {
1544 MIPS_FPU_EMU_INC_STATS(ieee754_overflow
);
1545 rcsr
|= FPU_CSR_OVF_X
| FPU_CSR_OVF_S
;
1547 if (ieee754_cxtest(IEEE754_INVALID_OPERATION
)) {
1548 MIPS_FPU_EMU_INC_STATS(ieee754_invalidop
);
1549 rcsr
|= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
1552 ctx
->fcr31
= (ctx
->fcr31
& ~FPU_CSR_ALL_X
) | rcsr
;
1553 if ((ctx
->fcr31
>> 5) & ctx
->fcr31
& FPU_CSR_ALL_E
) {
1554 /*printk ("SIGFPE: FPU csr = %08x\n",
1567 case d_fmt
:{ /* 1 */
1568 union ieee754dp(*handler
) (union ieee754dp
, union ieee754dp
, union ieee754dp
);
1569 union ieee754dp fd
, fr
, fs
, ft
;
1573 switch (MIPSInst_FUNC(ir
)) {
1575 va
= (void __user
*) (xcp
->regs
[MIPSInst_FR(ir
)] +
1576 xcp
->regs
[MIPSInst_FT(ir
)]);
1578 MIPS_FPU_EMU_INC_STATS(loads
);
1579 if (!access_ok(VERIFY_READ
, va
, sizeof(u64
))) {
1580 MIPS_FPU_EMU_INC_STATS(errors
);
1584 if (__get_user(val
, va
)) {
1585 MIPS_FPU_EMU_INC_STATS(errors
);
1589 DITOREG(val
, MIPSInst_FD(ir
));
1593 va
= (void __user
*) (xcp
->regs
[MIPSInst_FR(ir
)] +
1594 xcp
->regs
[MIPSInst_FT(ir
)]);
1596 MIPS_FPU_EMU_INC_STATS(stores
);
1597 DIFROMREG(val
, MIPSInst_FS(ir
));
1598 if (!access_ok(VERIFY_WRITE
, va
, sizeof(u64
))) {
1599 MIPS_FPU_EMU_INC_STATS(errors
);
1603 if (__put_user(val
, va
)) {
1604 MIPS_FPU_EMU_INC_STATS(errors
);
1611 handler
= fpemu_dp_madd
;
1614 handler
= fpemu_dp_msub
;
1617 handler
= fpemu_dp_nmadd
;
1620 handler
= fpemu_dp_nmsub
;
1624 DPFROMREG(fr
, MIPSInst_FR(ir
));
1625 DPFROMREG(fs
, MIPSInst_FS(ir
));
1626 DPFROMREG(ft
, MIPSInst_FT(ir
));
1627 fd
= (*handler
) (fr
, fs
, ft
);
1628 DPTOREG(fd
, MIPSInst_FD(ir
));
1638 if (MIPSInst_FUNC(ir
) != pfetch_op
)
1641 /* ignore prefx operation */
1654 * Emulate a single COP1 arithmetic instruction.
1656 static int fpu_emu(struct pt_regs
*xcp
, struct mips_fpu_struct
*ctx
,
1657 mips_instruction ir
)
1659 int rfmt
; /* resulting format */
1660 unsigned rcsr
= 0; /* resulting csr */
1669 } rv
; /* resulting value */
1672 MIPS_FPU_EMU_INC_STATS(cp1ops
);
1673 switch (rfmt
= (MIPSInst_FFMT(ir
) & 0xf)) {
1674 case s_fmt
: { /* 0 */
1676 union ieee754sp(*b
) (union ieee754sp
, union ieee754sp
);
1677 union ieee754sp(*u
) (union ieee754sp
);
1679 union ieee754sp fs
, ft
;
1681 switch (MIPSInst_FUNC(ir
)) {
1684 handler
.b
= ieee754sp_add
;
1687 handler
.b
= ieee754sp_sub
;
1690 handler
.b
= ieee754sp_mul
;
1693 handler
.b
= ieee754sp_div
;
1698 if (!cpu_has_mips_2_3_4_5_r
)
1701 handler
.u
= ieee754sp_sqrt
;
1705 * Note that on some MIPS IV implementations such as the
1706 * R5000 and R8000 the FSQRT and FRECIP instructions do not
1707 * achieve full IEEE-754 accuracy - however this emulator does.
1710 if (!cpu_has_mips_4_5_64_r2_r6
)
1713 handler
.u
= fpemu_sp_rsqrt
;
1717 if (!cpu_has_mips_4_5_64_r2_r6
)
1720 handler
.u
= fpemu_sp_recip
;
1724 if (!cpu_has_mips_4_5_r
)
1727 cond
= fpucondbit
[MIPSInst_FT(ir
) >> 2];
1728 if (((ctx
->fcr31
& cond
) != 0) !=
1729 ((MIPSInst_FT(ir
) & 1) != 0))
1731 SPFROMREG(rv
.s
, MIPSInst_FS(ir
));
1735 if (!cpu_has_mips_4_5_r
)
1738 if (xcp
->regs
[MIPSInst_FT(ir
)] != 0)
1740 SPFROMREG(rv
.s
, MIPSInst_FS(ir
));
1744 if (!cpu_has_mips_4_5_r
)
1747 if (xcp
->regs
[MIPSInst_FT(ir
)] == 0)
1749 SPFROMREG(rv
.s
, MIPSInst_FS(ir
));
1753 if (!cpu_has_mips_r6
)
1756 SPFROMREG(rv
.s
, MIPSInst_FT(ir
));
1760 SPFROMREG(rv
.s
, MIPSInst_FS(ir
));
1764 if (!cpu_has_mips_r6
)
1767 SPFROMREG(rv
.s
, MIPSInst_FT(ir
));
1769 SPFROMREG(rv
.s
, MIPSInst_FS(ir
));
1775 union ieee754sp ft
, fs
, fd
;
1777 if (!cpu_has_mips_r6
)
1780 SPFROMREG(ft
, MIPSInst_FT(ir
));
1781 SPFROMREG(fs
, MIPSInst_FS(ir
));
1782 SPFROMREG(fd
, MIPSInst_FD(ir
));
1783 rv
.s
= ieee754sp_maddf(fd
, fs
, ft
);
1788 union ieee754sp ft
, fs
, fd
;
1790 if (!cpu_has_mips_r6
)
1793 SPFROMREG(ft
, MIPSInst_FT(ir
));
1794 SPFROMREG(fs
, MIPSInst_FS(ir
));
1795 SPFROMREG(fd
, MIPSInst_FD(ir
));
1796 rv
.s
= ieee754sp_msubf(fd
, fs
, ft
);
1803 if (!cpu_has_mips_r6
)
1806 SPFROMREG(fs
, MIPSInst_FS(ir
));
1807 rv
.l
= ieee754sp_tlong(fs
);
1808 rv
.s
= ieee754sp_flong(rv
.l
);
1815 if (!cpu_has_mips_r6
)
1818 SPFROMREG(fs
, MIPSInst_FS(ir
));
1819 rv
.w
= ieee754sp_2008class(fs
);
1825 union ieee754sp fs
, ft
;
1827 if (!cpu_has_mips_r6
)
1830 SPFROMREG(ft
, MIPSInst_FT(ir
));
1831 SPFROMREG(fs
, MIPSInst_FS(ir
));
1832 rv
.s
= ieee754sp_fmin(fs
, ft
);
1837 union ieee754sp fs
, ft
;
1839 if (!cpu_has_mips_r6
)
1842 SPFROMREG(ft
, MIPSInst_FT(ir
));
1843 SPFROMREG(fs
, MIPSInst_FS(ir
));
1844 rv
.s
= ieee754sp_fmina(fs
, ft
);
1849 union ieee754sp fs
, ft
;
1851 if (!cpu_has_mips_r6
)
1854 SPFROMREG(ft
, MIPSInst_FT(ir
));
1855 SPFROMREG(fs
, MIPSInst_FS(ir
));
1856 rv
.s
= ieee754sp_fmax(fs
, ft
);
1861 union ieee754sp fs
, ft
;
1863 if (!cpu_has_mips_r6
)
1866 SPFROMREG(ft
, MIPSInst_FT(ir
));
1867 SPFROMREG(fs
, MIPSInst_FS(ir
));
1868 rv
.s
= ieee754sp_fmaxa(fs
, ft
);
1873 handler
.u
= ieee754sp_abs
;
1877 handler
.u
= ieee754sp_neg
;
1882 SPFROMREG(rv
.s
, MIPSInst_FS(ir
));
1885 /* binary op on handler */
1887 SPFROMREG(fs
, MIPSInst_FS(ir
));
1888 SPFROMREG(ft
, MIPSInst_FT(ir
));
1890 rv
.s
= (*handler
.b
) (fs
, ft
);
1893 SPFROMREG(fs
, MIPSInst_FS(ir
));
1894 rv
.s
= (*handler
.u
) (fs
);
1897 if (ieee754_cxtest(IEEE754_INEXACT
)) {
1898 MIPS_FPU_EMU_INC_STATS(ieee754_inexact
);
1899 rcsr
|= FPU_CSR_INE_X
| FPU_CSR_INE_S
;
1901 if (ieee754_cxtest(IEEE754_UNDERFLOW
)) {
1902 MIPS_FPU_EMU_INC_STATS(ieee754_underflow
);
1903 rcsr
|= FPU_CSR_UDF_X
| FPU_CSR_UDF_S
;
1905 if (ieee754_cxtest(IEEE754_OVERFLOW
)) {
1906 MIPS_FPU_EMU_INC_STATS(ieee754_overflow
);
1907 rcsr
|= FPU_CSR_OVF_X
| FPU_CSR_OVF_S
;
1909 if (ieee754_cxtest(IEEE754_ZERO_DIVIDE
)) {
1910 MIPS_FPU_EMU_INC_STATS(ieee754_zerodiv
);
1911 rcsr
|= FPU_CSR_DIV_X
| FPU_CSR_DIV_S
;
1913 if (ieee754_cxtest(IEEE754_INVALID_OPERATION
)) {
1914 MIPS_FPU_EMU_INC_STATS(ieee754_invalidop
);
1915 rcsr
|= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
1919 /* unary conv ops */
1921 return SIGILL
; /* not defined */
1924 SPFROMREG(fs
, MIPSInst_FS(ir
));
1925 rv
.d
= ieee754dp_fsp(fs
);
1930 SPFROMREG(fs
, MIPSInst_FS(ir
));
1931 rv
.w
= ieee754sp_tint(fs
);
1939 if (!cpu_has_mips_2_3_4_5_r
)
1942 oldrm
= ieee754_csr
.rm
;
1943 SPFROMREG(fs
, MIPSInst_FS(ir
));
1944 ieee754_csr
.rm
= MIPSInst_FUNC(ir
);
1945 rv
.w
= ieee754sp_tint(fs
);
1946 ieee754_csr
.rm
= oldrm
;
1951 if (!cpu_has_mips_3_4_5_64_r2_r6
)
1954 SPFROMREG(fs
, MIPSInst_FS(ir
));
1955 rv
.l
= ieee754sp_tlong(fs
);
1963 if (!cpu_has_mips_3_4_5_64_r2_r6
)
1966 oldrm
= ieee754_csr
.rm
;
1967 SPFROMREG(fs
, MIPSInst_FS(ir
));
1968 ieee754_csr
.rm
= MIPSInst_FUNC(ir
);
1969 rv
.l
= ieee754sp_tlong(fs
);
1970 ieee754_csr
.rm
= oldrm
;
1975 if (!NO_R6EMU
&& MIPSInst_FUNC(ir
) >= fcmp_op
) {
1976 unsigned cmpop
= MIPSInst_FUNC(ir
) - fcmp_op
;
1977 union ieee754sp fs
, ft
;
1979 SPFROMREG(fs
, MIPSInst_FS(ir
));
1980 SPFROMREG(ft
, MIPSInst_FT(ir
));
1981 rv
.w
= ieee754sp_cmp(fs
, ft
,
1982 cmptab
[cmpop
& 0x7], cmpop
& 0x8);
1984 if ((cmpop
& 0x8) && ieee754_cxtest
1985 (IEEE754_INVALID_OPERATION
))
1986 rcsr
= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
1998 union ieee754dp fs
, ft
;
2000 union ieee754dp(*b
) (union ieee754dp
, union ieee754dp
);
2001 union ieee754dp(*u
) (union ieee754dp
);
2004 switch (MIPSInst_FUNC(ir
)) {
2007 handler
.b
= ieee754dp_add
;
2010 handler
.b
= ieee754dp_sub
;
2013 handler
.b
= ieee754dp_mul
;
2016 handler
.b
= ieee754dp_div
;
2021 if (!cpu_has_mips_2_3_4_5_r
)
2024 handler
.u
= ieee754dp_sqrt
;
2027 * Note that on some MIPS IV implementations such as the
2028 * R5000 and R8000 the FSQRT and FRECIP instructions do not
2029 * achieve full IEEE-754 accuracy - however this emulator does.
2032 if (!cpu_has_mips_4_5_64_r2_r6
)
2035 handler
.u
= fpemu_dp_rsqrt
;
2038 if (!cpu_has_mips_4_5_64_r2_r6
)
2041 handler
.u
= fpemu_dp_recip
;
2044 if (!cpu_has_mips_4_5_r
)
2047 cond
= fpucondbit
[MIPSInst_FT(ir
) >> 2];
2048 if (((ctx
->fcr31
& cond
) != 0) !=
2049 ((MIPSInst_FT(ir
) & 1) != 0))
2051 DPFROMREG(rv
.d
, MIPSInst_FS(ir
));
2054 if (!cpu_has_mips_4_5_r
)
2057 if (xcp
->regs
[MIPSInst_FT(ir
)] != 0)
2059 DPFROMREG(rv
.d
, MIPSInst_FS(ir
));
2062 if (!cpu_has_mips_4_5_r
)
2065 if (xcp
->regs
[MIPSInst_FT(ir
)] == 0)
2067 DPFROMREG(rv
.d
, MIPSInst_FS(ir
));
2071 if (!cpu_has_mips_r6
)
2074 DPFROMREG(rv
.d
, MIPSInst_FT(ir
));
2078 DPFROMREG(rv
.d
, MIPSInst_FS(ir
));
2082 if (!cpu_has_mips_r6
)
2085 DPFROMREG(rv
.d
, MIPSInst_FT(ir
));
2087 DPFROMREG(rv
.d
, MIPSInst_FS(ir
));
2093 union ieee754dp ft
, fs
, fd
;
2095 if (!cpu_has_mips_r6
)
2098 DPFROMREG(ft
, MIPSInst_FT(ir
));
2099 DPFROMREG(fs
, MIPSInst_FS(ir
));
2100 DPFROMREG(fd
, MIPSInst_FD(ir
));
2101 rv
.d
= ieee754dp_maddf(fd
, fs
, ft
);
2106 union ieee754dp ft
, fs
, fd
;
2108 if (!cpu_has_mips_r6
)
2111 DPFROMREG(ft
, MIPSInst_FT(ir
));
2112 DPFROMREG(fs
, MIPSInst_FS(ir
));
2113 DPFROMREG(fd
, MIPSInst_FD(ir
));
2114 rv
.d
= ieee754dp_msubf(fd
, fs
, ft
);
2121 if (!cpu_has_mips_r6
)
2124 DPFROMREG(fs
, MIPSInst_FS(ir
));
2125 rv
.l
= ieee754dp_tlong(fs
);
2126 rv
.d
= ieee754dp_flong(rv
.l
);
2133 if (!cpu_has_mips_r6
)
2136 DPFROMREG(fs
, MIPSInst_FS(ir
));
2137 rv
.w
= ieee754dp_2008class(fs
);
2143 union ieee754dp fs
, ft
;
2145 if (!cpu_has_mips_r6
)
2148 DPFROMREG(ft
, MIPSInst_FT(ir
));
2149 DPFROMREG(fs
, MIPSInst_FS(ir
));
2150 rv
.d
= ieee754dp_fmin(fs
, ft
);
2155 union ieee754dp fs
, ft
;
2157 if (!cpu_has_mips_r6
)
2160 DPFROMREG(ft
, MIPSInst_FT(ir
));
2161 DPFROMREG(fs
, MIPSInst_FS(ir
));
2162 rv
.d
= ieee754dp_fmina(fs
, ft
);
2167 union ieee754dp fs
, ft
;
2169 if (!cpu_has_mips_r6
)
2172 DPFROMREG(ft
, MIPSInst_FT(ir
));
2173 DPFROMREG(fs
, MIPSInst_FS(ir
));
2174 rv
.d
= ieee754dp_fmax(fs
, ft
);
2179 union ieee754dp fs
, ft
;
2181 if (!cpu_has_mips_r6
)
2184 DPFROMREG(ft
, MIPSInst_FT(ir
));
2185 DPFROMREG(fs
, MIPSInst_FS(ir
));
2186 rv
.d
= ieee754dp_fmaxa(fs
, ft
);
2191 handler
.u
= ieee754dp_abs
;
2195 handler
.u
= ieee754dp_neg
;
2200 DPFROMREG(rv
.d
, MIPSInst_FS(ir
));
2203 /* binary op on handler */
2205 DPFROMREG(fs
, MIPSInst_FS(ir
));
2206 DPFROMREG(ft
, MIPSInst_FT(ir
));
2208 rv
.d
= (*handler
.b
) (fs
, ft
);
2211 DPFROMREG(fs
, MIPSInst_FS(ir
));
2212 rv
.d
= (*handler
.u
) (fs
);
2219 DPFROMREG(fs
, MIPSInst_FS(ir
));
2220 rv
.s
= ieee754sp_fdp(fs
);
2225 return SIGILL
; /* not defined */
2228 DPFROMREG(fs
, MIPSInst_FS(ir
));
2229 rv
.w
= ieee754dp_tint(fs
); /* wrong */
2237 if (!cpu_has_mips_2_3_4_5_r
)
2240 oldrm
= ieee754_csr
.rm
;
2241 DPFROMREG(fs
, MIPSInst_FS(ir
));
2242 ieee754_csr
.rm
= MIPSInst_FUNC(ir
);
2243 rv
.w
= ieee754dp_tint(fs
);
2244 ieee754_csr
.rm
= oldrm
;
2249 if (!cpu_has_mips_3_4_5_64_r2_r6
)
2252 DPFROMREG(fs
, MIPSInst_FS(ir
));
2253 rv
.l
= ieee754dp_tlong(fs
);
2261 if (!cpu_has_mips_3_4_5_64_r2_r6
)
2264 oldrm
= ieee754_csr
.rm
;
2265 DPFROMREG(fs
, MIPSInst_FS(ir
));
2266 ieee754_csr
.rm
= MIPSInst_FUNC(ir
);
2267 rv
.l
= ieee754dp_tlong(fs
);
2268 ieee754_csr
.rm
= oldrm
;
2273 if (!NO_R6EMU
&& MIPSInst_FUNC(ir
) >= fcmp_op
) {
2274 unsigned cmpop
= MIPSInst_FUNC(ir
) - fcmp_op
;
2275 union ieee754dp fs
, ft
;
2277 DPFROMREG(fs
, MIPSInst_FS(ir
));
2278 DPFROMREG(ft
, MIPSInst_FT(ir
));
2279 rv
.w
= ieee754dp_cmp(fs
, ft
,
2280 cmptab
[cmpop
& 0x7], cmpop
& 0x8);
2285 (IEEE754_INVALID_OPERATION
))
2286 rcsr
= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
2302 switch (MIPSInst_FUNC(ir
)) {
2304 /* convert word to single precision real */
2305 SPFROMREG(fs
, MIPSInst_FS(ir
));
2306 rv
.s
= ieee754sp_fint(fs
.bits
);
2310 /* convert word to double precision real */
2311 SPFROMREG(fs
, MIPSInst_FS(ir
));
2312 rv
.d
= ieee754dp_fint(fs
.bits
);
2316 /* Emulating the new CMP.condn.fmt R6 instruction */
2317 #define CMPOP_MASK 0x7
2318 #define SIGN_BIT (0x1 << 3)
2319 #define PREDICATE_BIT (0x1 << 4)
2321 int cmpop
= MIPSInst_FUNC(ir
) & CMPOP_MASK
;
2322 int sig
= MIPSInst_FUNC(ir
) & SIGN_BIT
;
2323 union ieee754sp fs
, ft
;
2325 /* This is an R6 only instruction */
2326 if (!cpu_has_mips_r6
||
2327 (MIPSInst_FUNC(ir
) & 0x20))
2330 /* fmt is w_fmt for single precision so fix it */
2332 /* default to false */
2336 SPFROMREG(fs
, MIPSInst_FS(ir
));
2337 SPFROMREG(ft
, MIPSInst_FT(ir
));
2339 /* positive predicates */
2340 if (!(MIPSInst_FUNC(ir
) & PREDICATE_BIT
)) {
2341 if (ieee754sp_cmp(fs
, ft
, cmptab
[cmpop
],
2343 rv
.w
= -1; /* true, all 1s */
2345 ieee754_cxtest(IEEE754_INVALID_OPERATION
))
2346 rcsr
= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
2350 /* negative predicates */
2355 if (ieee754sp_cmp(fs
, ft
,
2356 negative_cmptab
[cmpop
],
2358 rv
.w
= -1; /* true, all 1s */
2360 ieee754_cxtest(IEEE754_INVALID_OPERATION
))
2361 rcsr
= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
2366 /* Reserved R6 ops */
2367 pr_err("Reserved MIPS R6 CMP.condn.S operation\n");
2378 if (!cpu_has_mips_3_4_5_64_r2_r6
)
2381 DIFROMREG(bits
, MIPSInst_FS(ir
));
2383 switch (MIPSInst_FUNC(ir
)) {
2385 /* convert long to single precision real */
2386 rv
.s
= ieee754sp_flong(bits
);
2390 /* convert long to double precision real */
2391 rv
.d
= ieee754dp_flong(bits
);
2395 /* Emulating the new CMP.condn.fmt R6 instruction */
2396 int cmpop
= MIPSInst_FUNC(ir
) & CMPOP_MASK
;
2397 int sig
= MIPSInst_FUNC(ir
) & SIGN_BIT
;
2398 union ieee754dp fs
, ft
;
2400 if (!cpu_has_mips_r6
||
2401 (MIPSInst_FUNC(ir
) & 0x20))
2404 /* fmt is l_fmt for double precision so fix it */
2406 /* default to false */
2410 DPFROMREG(fs
, MIPSInst_FS(ir
));
2411 DPFROMREG(ft
, MIPSInst_FT(ir
));
2413 /* positive predicates */
2414 if (!(MIPSInst_FUNC(ir
) & PREDICATE_BIT
)) {
2415 if (ieee754dp_cmp(fs
, ft
,
2416 cmptab
[cmpop
], sig
))
2417 rv
.l
= -1LL; /* true, all 1s */
2419 ieee754_cxtest(IEEE754_INVALID_OPERATION
))
2420 rcsr
= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
2424 /* negative predicates */
2429 if (ieee754dp_cmp(fs
, ft
,
2430 negative_cmptab
[cmpop
],
2432 rv
.l
= -1LL; /* true, all 1s */
2434 ieee754_cxtest(IEEE754_INVALID_OPERATION
))
2435 rcsr
= FPU_CSR_INV_X
| FPU_CSR_INV_S
;
2440 /* Reserved R6 ops */
2441 pr_err("Reserved MIPS R6 CMP.condn.D operation\n");
2453 * Update the fpu CSR register for this operation.
2454 * If an exception is required, generate a tidy SIGFPE exception,
2455 * without updating the result register.
2456 * Note: cause exception bits do not accumulate, they are rewritten
2457 * for each op; only the flag/sticky bits accumulate.
2459 ctx
->fcr31
= (ctx
->fcr31
& ~FPU_CSR_ALL_X
) | rcsr
;
2460 if ((ctx
->fcr31
>> 5) & ctx
->fcr31
& FPU_CSR_ALL_E
) {
2461 /*printk ("SIGFPE: FPU csr = %08x\n",ctx->fcr31); */
2466 * Now we can safely write the result back to the register file.
2471 if (cpu_has_mips_4_5_r
)
2472 cbit
= fpucondbit
[MIPSInst_FD(ir
) >> 2];
2474 cbit
= FPU_CSR_COND
;
2478 ctx
->fcr31
&= ~cbit
;
2482 DPTOREG(rv
.d
, MIPSInst_FD(ir
));
2485 SPTOREG(rv
.s
, MIPSInst_FD(ir
));
2488 SITOREG(rv
.w
, MIPSInst_FD(ir
));
2491 if (!cpu_has_mips_3_4_5_64_r2_r6
)
2494 DITOREG(rv
.l
, MIPSInst_FD(ir
));
2503 int fpu_emulator_cop1Handler(struct pt_regs
*xcp
, struct mips_fpu_struct
*ctx
,
2504 int has_fpu
, void *__user
*fault_addr
)
2506 unsigned long oldepc
, prevepc
;
2507 struct mm_decoded_insn dec_insn
;
2512 oldepc
= xcp
->cp0_epc
;
2514 prevepc
= xcp
->cp0_epc
;
2516 if (get_isa16_mode(prevepc
) && cpu_has_mmips
) {
2518 * Get next 2 microMIPS instructions and convert them
2519 * into 32-bit instructions.
2521 if ((get_user(instr
[0], (u16 __user
*)msk_isa16_mode(xcp
->cp0_epc
))) ||
2522 (get_user(instr
[1], (u16 __user
*)msk_isa16_mode(xcp
->cp0_epc
+ 2))) ||
2523 (get_user(instr
[2], (u16 __user
*)msk_isa16_mode(xcp
->cp0_epc
+ 4))) ||
2524 (get_user(instr
[3], (u16 __user
*)msk_isa16_mode(xcp
->cp0_epc
+ 6)))) {
2525 MIPS_FPU_EMU_INC_STATS(errors
);
2530 /* Get first instruction. */
2531 if (mm_insn_16bit(*instr_ptr
)) {
2532 /* Duplicate the half-word. */
2533 dec_insn
.insn
= (*instr_ptr
<< 16) |
2535 /* 16-bit instruction. */
2536 dec_insn
.pc_inc
= 2;
2539 dec_insn
.insn
= (*instr_ptr
<< 16) |
2541 /* 32-bit instruction. */
2542 dec_insn
.pc_inc
= 4;
2545 /* Get second instruction. */
2546 if (mm_insn_16bit(*instr_ptr
)) {
2547 /* Duplicate the half-word. */
2548 dec_insn
.next_insn
= (*instr_ptr
<< 16) |
2550 /* 16-bit instruction. */
2551 dec_insn
.next_pc_inc
= 2;
2553 dec_insn
.next_insn
= (*instr_ptr
<< 16) |
2555 /* 32-bit instruction. */
2556 dec_insn
.next_pc_inc
= 4;
2558 dec_insn
.micro_mips_mode
= 1;
2560 if ((get_user(dec_insn
.insn
,
2561 (mips_instruction __user
*) xcp
->cp0_epc
)) ||
2562 (get_user(dec_insn
.next_insn
,
2563 (mips_instruction __user
*)(xcp
->cp0_epc
+4)))) {
2564 MIPS_FPU_EMU_INC_STATS(errors
);
2567 dec_insn
.pc_inc
= 4;
2568 dec_insn
.next_pc_inc
= 4;
2569 dec_insn
.micro_mips_mode
= 0;
2572 if ((dec_insn
.insn
== 0) ||
2573 ((dec_insn
.pc_inc
== 2) &&
2574 ((dec_insn
.insn
& 0xffff) == MM_NOP16
)))
2575 xcp
->cp0_epc
+= dec_insn
.pc_inc
; /* Skip NOPs */
2578 * The 'ieee754_csr' is an alias of ctx->fcr31.
2579 * No need to copy ctx->fcr31 to ieee754_csr.
2581 sig
= cop1Emulate(xcp
, ctx
, dec_insn
, fault_addr
);
2590 } while (xcp
->cp0_epc
> prevepc
);
2592 /* SIGILL indicates a non-fpu instruction */
2593 if (sig
== SIGILL
&& xcp
->cp0_epc
!= oldepc
)
2594 /* but if EPC has advanced, then ignore it */