3 * Support for Nomadik hardware crypto engine.
5 * Copyright (C) ST-Ericsson SA 2010
6 * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
7 * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
8 * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
9 * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
10 * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
11 * License terms: GNU General Public License (GPL) version 2
14 #define pr_fmt(fmt) "hashX hashX: " fmt
16 #include <linux/clk.h>
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
21 #include <linux/klist.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/platform_device.h>
25 #include <linux/crypto.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/dmaengine.h>
29 #include <linux/bitops.h>
31 #include <crypto/internal/hash.h>
32 #include <crypto/sha.h>
33 #include <crypto/scatterwalk.h>
34 #include <crypto/algapi.h>
36 #include <linux/platform_data/crypto-ux500.h>
41 module_param(hash_mode
, int, 0);
42 MODULE_PARM_DESC(hash_mode
, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
44 /* HMAC-SHA1, no key */
45 static const u8 zero_message_hmac_sha1
[SHA1_DIGEST_SIZE
] = {
46 0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
47 0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
48 0x70, 0x69, 0x0e, 0x1d
51 /* HMAC-SHA256, no key */
52 static const u8 zero_message_hmac_sha256
[SHA256_DIGEST_SIZE
] = {
53 0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
54 0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
55 0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
56 0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
60 * struct hash_driver_data - data specific to the driver.
62 * @device_list: A list of registered devices to choose from.
63 * @device_allocation: A semaphore initialized with number of devices.
65 struct hash_driver_data
{
66 struct klist device_list
;
67 struct semaphore device_allocation
;
70 static struct hash_driver_data driver_data
;
72 /* Declaration of functions */
74 * hash_messagepad - Pads a message and write the nblw bits.
75 * @device_data: Structure for the hash device.
76 * @message: Last word of a message
77 * @index_bytes: The number of bytes in the last message
79 * This function manages the final part of the digest calculation, when less
80 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
83 static void hash_messagepad(struct hash_device_data
*device_data
,
84 const u32
*message
, u8 index_bytes
);
87 * release_hash_device - Releases a previously allocated hash device.
88 * @device_data: Structure for the hash device.
91 static void release_hash_device(struct hash_device_data
*device_data
)
93 spin_lock(&device_data
->ctx_lock
);
94 device_data
->current_ctx
->device
= NULL
;
95 device_data
->current_ctx
= NULL
;
96 spin_unlock(&device_data
->ctx_lock
);
99 * The down_interruptible part for this semaphore is called in
100 * cryp_get_device_data.
102 up(&driver_data
.device_allocation
);
105 static void hash_dma_setup_channel(struct hash_device_data
*device_data
,
108 struct hash_platform_data
*platform_data
= dev
->platform_data
;
109 struct dma_slave_config conf
= {
110 .direction
= DMA_MEM_TO_DEV
,
111 .dst_addr
= device_data
->phybase
+ HASH_DMA_FIFO
,
112 .dst_addr_width
= DMA_SLAVE_BUSWIDTH_2_BYTES
,
116 dma_cap_zero(device_data
->dma
.mask
);
117 dma_cap_set(DMA_SLAVE
, device_data
->dma
.mask
);
119 device_data
->dma
.cfg_mem2hash
= platform_data
->mem_to_engine
;
120 device_data
->dma
.chan_mem2hash
=
121 dma_request_channel(device_data
->dma
.mask
,
122 platform_data
->dma_filter
,
123 device_data
->dma
.cfg_mem2hash
);
125 dmaengine_slave_config(device_data
->dma
.chan_mem2hash
, &conf
);
127 init_completion(&device_data
->dma
.complete
);
130 static void hash_dma_callback(void *data
)
132 struct hash_ctx
*ctx
= data
;
134 complete(&ctx
->device
->dma
.complete
);
137 static int hash_set_dma_transfer(struct hash_ctx
*ctx
, struct scatterlist
*sg
,
138 int len
, enum dma_data_direction direction
)
140 struct dma_async_tx_descriptor
*desc
= NULL
;
141 struct dma_chan
*channel
= NULL
;
144 if (direction
!= DMA_TO_DEVICE
) {
145 dev_err(ctx
->device
->dev
, "%s: Invalid DMA direction\n",
150 sg
->length
= ALIGN(sg
->length
, HASH_DMA_ALIGN_SIZE
);
152 channel
= ctx
->device
->dma
.chan_mem2hash
;
153 ctx
->device
->dma
.sg
= sg
;
154 ctx
->device
->dma
.sg_len
= dma_map_sg(channel
->device
->dev
,
155 ctx
->device
->dma
.sg
, ctx
->device
->dma
.nents
,
158 if (!ctx
->device
->dma
.sg_len
) {
159 dev_err(ctx
->device
->dev
, "%s: Could not map the sg list (TO_DEVICE)\n",
164 dev_dbg(ctx
->device
->dev
, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
166 desc
= dmaengine_prep_slave_sg(channel
,
167 ctx
->device
->dma
.sg
, ctx
->device
->dma
.sg_len
,
168 direction
, DMA_CTRL_ACK
| DMA_PREP_INTERRUPT
);
170 dev_err(ctx
->device
->dev
,
171 "%s: dmaengine_prep_slave_sg() failed!\n", __func__
);
175 desc
->callback
= hash_dma_callback
;
176 desc
->callback_param
= ctx
;
178 cookie
= dmaengine_submit(desc
);
179 dma_async_issue_pending(channel
);
184 static void hash_dma_done(struct hash_ctx
*ctx
)
186 struct dma_chan
*chan
;
188 chan
= ctx
->device
->dma
.chan_mem2hash
;
189 dmaengine_terminate_all(chan
);
190 dma_unmap_sg(chan
->device
->dev
, ctx
->device
->dma
.sg
,
191 ctx
->device
->dma
.sg_len
, DMA_TO_DEVICE
);
194 static int hash_dma_write(struct hash_ctx
*ctx
,
195 struct scatterlist
*sg
, int len
)
197 int error
= hash_set_dma_transfer(ctx
, sg
, len
, DMA_TO_DEVICE
);
199 dev_dbg(ctx
->device
->dev
,
200 "%s: hash_set_dma_transfer() failed\n", __func__
);
208 * get_empty_message_digest - Returns a pre-calculated digest for
210 * @device_data: Structure for the hash device.
211 * @zero_hash: Buffer to return the empty message digest.
212 * @zero_hash_size: Hash size of the empty message digest.
213 * @zero_digest: True if zero_digest returned.
215 static int get_empty_message_digest(
216 struct hash_device_data
*device_data
,
217 u8
*zero_hash
, u32
*zero_hash_size
, bool *zero_digest
)
220 struct hash_ctx
*ctx
= device_data
->current_ctx
;
221 *zero_digest
= false;
224 * Caller responsible for ctx != NULL.
227 if (HASH_OPER_MODE_HASH
== ctx
->config
.oper_mode
) {
228 if (HASH_ALGO_SHA1
== ctx
->config
.algorithm
) {
229 memcpy(zero_hash
, &sha1_zero_message_hash
[0],
231 *zero_hash_size
= SHA1_DIGEST_SIZE
;
233 } else if (HASH_ALGO_SHA256
==
234 ctx
->config
.algorithm
) {
235 memcpy(zero_hash
, &sha256_zero_message_hash
[0],
237 *zero_hash_size
= SHA256_DIGEST_SIZE
;
240 dev_err(device_data
->dev
, "%s: Incorrect algorithm!\n",
245 } else if (HASH_OPER_MODE_HMAC
== ctx
->config
.oper_mode
) {
247 if (HASH_ALGO_SHA1
== ctx
->config
.algorithm
) {
248 memcpy(zero_hash
, &zero_message_hmac_sha1
[0],
250 *zero_hash_size
= SHA1_DIGEST_SIZE
;
252 } else if (HASH_ALGO_SHA256
== ctx
->config
.algorithm
) {
253 memcpy(zero_hash
, &zero_message_hmac_sha256
[0],
255 *zero_hash_size
= SHA256_DIGEST_SIZE
;
258 dev_err(device_data
->dev
, "%s: Incorrect algorithm!\n",
264 dev_dbg(device_data
->dev
,
265 "%s: Continue hash calculation, since hmac key available\n",
275 * hash_disable_power - Request to disable power and clock.
276 * @device_data: Structure for the hash device.
277 * @save_device_state: If true, saves the current hw state.
279 * This function request for disabling power (regulator) and clock,
280 * and could also save current hw state.
282 static int hash_disable_power(struct hash_device_data
*device_data
,
283 bool save_device_state
)
286 struct device
*dev
= device_data
->dev
;
288 spin_lock(&device_data
->power_state_lock
);
289 if (!device_data
->power_state
)
292 if (save_device_state
) {
293 hash_save_state(device_data
,
294 &device_data
->state
);
295 device_data
->restore_dev_state
= true;
298 clk_disable(device_data
->clk
);
299 ret
= regulator_disable(device_data
->regulator
);
301 dev_err(dev
, "%s: regulator_disable() failed!\n", __func__
);
303 device_data
->power_state
= false;
306 spin_unlock(&device_data
->power_state_lock
);
312 * hash_enable_power - Request to enable power and clock.
313 * @device_data: Structure for the hash device.
314 * @restore_device_state: If true, restores a previous saved hw state.
316 * This function request for enabling power (regulator) and clock,
317 * and could also restore a previously saved hw state.
319 static int hash_enable_power(struct hash_device_data
*device_data
,
320 bool restore_device_state
)
323 struct device
*dev
= device_data
->dev
;
325 spin_lock(&device_data
->power_state_lock
);
326 if (!device_data
->power_state
) {
327 ret
= regulator_enable(device_data
->regulator
);
329 dev_err(dev
, "%s: regulator_enable() failed!\n",
333 ret
= clk_enable(device_data
->clk
);
335 dev_err(dev
, "%s: clk_enable() failed!\n", __func__
);
336 ret
= regulator_disable(
337 device_data
->regulator
);
340 device_data
->power_state
= true;
343 if (device_data
->restore_dev_state
) {
344 if (restore_device_state
) {
345 device_data
->restore_dev_state
= false;
346 hash_resume_state(device_data
, &device_data
->state
);
350 spin_unlock(&device_data
->power_state_lock
);
356 * hash_get_device_data - Checks for an available hash device and return it.
357 * @hash_ctx: Structure for the hash context.
358 * @device_data: Structure for the hash device.
360 * This function check for an available hash device and return it to
362 * Note! Caller need to release the device, calling up().
364 static int hash_get_device_data(struct hash_ctx
*ctx
,
365 struct hash_device_data
**device_data
)
368 struct klist_iter device_iterator
;
369 struct klist_node
*device_node
;
370 struct hash_device_data
*local_device_data
= NULL
;
372 /* Wait until a device is available */
373 ret
= down_interruptible(&driver_data
.device_allocation
);
375 return ret
; /* Interrupted */
377 /* Select a device */
378 klist_iter_init(&driver_data
.device_list
, &device_iterator
);
379 device_node
= klist_next(&device_iterator
);
380 while (device_node
) {
381 local_device_data
= container_of(device_node
,
382 struct hash_device_data
, list_node
);
383 spin_lock(&local_device_data
->ctx_lock
);
384 /* current_ctx allocates a device, NULL = unallocated */
385 if (local_device_data
->current_ctx
) {
386 device_node
= klist_next(&device_iterator
);
388 local_device_data
->current_ctx
= ctx
;
389 ctx
->device
= local_device_data
;
390 spin_unlock(&local_device_data
->ctx_lock
);
393 spin_unlock(&local_device_data
->ctx_lock
);
395 klist_iter_exit(&device_iterator
);
399 * No free device found.
400 * Since we allocated a device with down_interruptible, this
401 * should not be able to happen.
402 * Number of available devices, which are contained in
403 * device_allocation, is therefore decremented by not doing
404 * an up(device_allocation).
409 *device_data
= local_device_data
;
415 * hash_hw_write_key - Writes the key to the hardware registries.
417 * @device_data: Structure for the hash device.
418 * @key: Key to be written.
419 * @keylen: The lengt of the key.
421 * Note! This function DOES NOT write to the NBLW registry, even though
422 * specified in the the hw design spec. Either due to incorrect info in the
423 * spec or due to a bug in the hw.
425 static void hash_hw_write_key(struct hash_device_data
*device_data
,
426 const u8
*key
, unsigned int keylen
)
431 HASH_CLEAR_BITS(&device_data
->base
->str
, HASH_STR_NBLW_MASK
);
433 while (keylen
>= 4) {
434 u32
*key_word
= (u32
*)key
;
436 HASH_SET_DIN(key_word
, nwords
);
441 /* Take care of the remaining bytes in the last word */
445 word
|= (key
[keylen
- 1] << (8 * (keylen
- 1)));
449 HASH_SET_DIN(&word
, nwords
);
452 while (readl(&device_data
->base
->str
) & HASH_STR_DCAL_MASK
)
457 while (readl(&device_data
->base
->str
) & HASH_STR_DCAL_MASK
)
462 * init_hash_hw - Initialise the hash hardware for a new calculation.
463 * @device_data: Structure for the hash device.
464 * @ctx: The hash context.
466 * This function will enable the bits needed to clear and start a new
469 static int init_hash_hw(struct hash_device_data
*device_data
,
470 struct hash_ctx
*ctx
)
474 ret
= hash_setconfiguration(device_data
, &ctx
->config
);
476 dev_err(device_data
->dev
, "%s: hash_setconfiguration() failed!\n",
481 hash_begin(device_data
, ctx
);
483 if (ctx
->config
.oper_mode
== HASH_OPER_MODE_HMAC
)
484 hash_hw_write_key(device_data
, ctx
->key
, ctx
->keylen
);
490 * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
493 * @size: Size in bytes.
494 * @aligned: True if sg data aligned to work in DMA mode.
497 static int hash_get_nents(struct scatterlist
*sg
, int size
, bool *aligned
)
500 bool aligned_data
= true;
502 while (size
> 0 && sg
) {
506 /* hash_set_dma_transfer will align last nent */
507 if ((aligned
&& !IS_ALIGNED(sg
->offset
, HASH_DMA_ALIGN_SIZE
)) ||
508 (!IS_ALIGNED(sg
->length
, HASH_DMA_ALIGN_SIZE
) && size
> 0))
509 aligned_data
= false;
515 *aligned
= aligned_data
;
524 * hash_dma_valid_data - checks for dma valid sg data.
526 * @datasize: Datasize in bytes.
528 * NOTE! This function checks for dma valid sg data, since dma
529 * only accept datasizes of even wordsize.
531 static bool hash_dma_valid_data(struct scatterlist
*sg
, int datasize
)
535 /* Need to include at least one nent, else error */
536 if (hash_get_nents(sg
, datasize
, &aligned
) < 1)
543 * hash_init - Common hash init function for SHA1/SHA2 (SHA256).
544 * @req: The hash request for the job.
546 * Initialize structures.
548 static int hash_init(struct ahash_request
*req
)
550 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
551 struct hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
552 struct hash_req_ctx
*req_ctx
= ahash_request_ctx(req
);
557 memset(&req_ctx
->state
, 0, sizeof(struct hash_state
));
558 req_ctx
->updated
= 0;
559 if (hash_mode
== HASH_MODE_DMA
) {
560 if (req
->nbytes
< HASH_DMA_ALIGN_SIZE
) {
561 req_ctx
->dma_mode
= false; /* Don't use DMA */
563 pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
564 __func__
, HASH_DMA_ALIGN_SIZE
);
566 if (req
->nbytes
>= HASH_DMA_PERFORMANCE_MIN_SIZE
&&
567 hash_dma_valid_data(req
->src
, req
->nbytes
)) {
568 req_ctx
->dma_mode
= true;
570 req_ctx
->dma_mode
= false;
571 pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
573 HASH_DMA_PERFORMANCE_MIN_SIZE
);
581 * hash_processblock - This function processes a single block of 512 bits (64
582 * bytes), word aligned, starting at message.
583 * @device_data: Structure for the hash device.
584 * @message: Block (512 bits) of message to be written to
588 static void hash_processblock(struct hash_device_data
*device_data
,
589 const u32
*message
, int length
)
591 int len
= length
/ HASH_BYTES_PER_WORD
;
593 * NBLW bits. Reset the number of bits in last word (NBLW).
595 HASH_CLEAR_BITS(&device_data
->base
->str
, HASH_STR_NBLW_MASK
);
598 * Write message data to the HASH_DIN register.
600 HASH_SET_DIN(message
, len
);
604 * hash_messagepad - Pads a message and write the nblw bits.
605 * @device_data: Structure for the hash device.
606 * @message: Last word of a message.
607 * @index_bytes: The number of bytes in the last message.
609 * This function manages the final part of the digest calculation, when less
610 * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
613 static void hash_messagepad(struct hash_device_data
*device_data
,
614 const u32
*message
, u8 index_bytes
)
619 * Clear hash str register, only clear NBLW
620 * since DCAL will be reset by hardware.
622 HASH_CLEAR_BITS(&device_data
->base
->str
, HASH_STR_NBLW_MASK
);
625 while (index_bytes
>= 4) {
626 HASH_SET_DIN(message
, nwords
);
632 HASH_SET_DIN(message
, nwords
);
634 while (readl(&device_data
->base
->str
) & HASH_STR_DCAL_MASK
)
637 /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
638 HASH_SET_NBLW(index_bytes
* 8);
639 dev_dbg(device_data
->dev
, "%s: DIN=0x%08x NBLW=%lu\n",
640 __func__
, readl_relaxed(&device_data
->base
->din
),
641 readl_relaxed(&device_data
->base
->str
) & HASH_STR_NBLW_MASK
);
643 dev_dbg(device_data
->dev
, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
644 __func__
, readl_relaxed(&device_data
->base
->din
),
645 readl_relaxed(&device_data
->base
->str
) & HASH_STR_NBLW_MASK
);
647 while (readl(&device_data
->base
->str
) & HASH_STR_DCAL_MASK
)
652 * hash_incrementlength - Increments the length of the current message.
654 * @incr: Length of message processed already
656 * Overflow cannot occur, because conditions for overflow are checked in
659 static void hash_incrementlength(struct hash_req_ctx
*ctx
, u32 incr
)
661 ctx
->state
.length
.low_word
+= incr
;
663 /* Check for wrap-around */
664 if (ctx
->state
.length
.low_word
< incr
)
665 ctx
->state
.length
.high_word
++;
669 * hash_setconfiguration - Sets the required configuration for the hash
671 * @device_data: Structure for the hash device.
672 * @config: Pointer to a configuration structure.
674 int hash_setconfiguration(struct hash_device_data
*device_data
,
675 struct hash_config
*config
)
679 if (config
->algorithm
!= HASH_ALGO_SHA1
&&
680 config
->algorithm
!= HASH_ALGO_SHA256
)
684 * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
685 * to be written to HASH_DIN is considered as 32 bits.
687 HASH_SET_DATA_FORMAT(config
->data_format
);
690 * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
692 switch (config
->algorithm
) {
694 HASH_SET_BITS(&device_data
->base
->cr
, HASH_CR_ALGO_MASK
);
697 case HASH_ALGO_SHA256
:
698 HASH_CLEAR_BITS(&device_data
->base
->cr
, HASH_CR_ALGO_MASK
);
702 dev_err(device_data
->dev
, "%s: Incorrect algorithm\n",
708 * MODE bit. This bit selects between HASH or HMAC mode for the
709 * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
711 if (HASH_OPER_MODE_HASH
== config
->oper_mode
)
712 HASH_CLEAR_BITS(&device_data
->base
->cr
,
714 else if (HASH_OPER_MODE_HMAC
== config
->oper_mode
) {
715 HASH_SET_BITS(&device_data
->base
->cr
, HASH_CR_MODE_MASK
);
716 if (device_data
->current_ctx
->keylen
> HASH_BLOCK_SIZE
) {
717 /* Truncate key to blocksize */
718 dev_dbg(device_data
->dev
, "%s: LKEY set\n", __func__
);
719 HASH_SET_BITS(&device_data
->base
->cr
,
722 dev_dbg(device_data
->dev
, "%s: LKEY cleared\n",
724 HASH_CLEAR_BITS(&device_data
->base
->cr
,
727 } else { /* Wrong hash mode */
729 dev_err(device_data
->dev
, "%s: HASH_INVALID_PARAMETER!\n",
736 * hash_begin - This routine resets some globals and initializes the hash
738 * @device_data: Structure for the hash device.
739 * @ctx: Hash context.
741 void hash_begin(struct hash_device_data
*device_data
, struct hash_ctx
*ctx
)
743 /* HW and SW initializations */
744 /* Note: there is no need to initialize buffer and digest members */
746 while (readl(&device_data
->base
->str
) & HASH_STR_DCAL_MASK
)
750 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
751 * prepare the initialize the HASH accelerator to compute the message
752 * digest of a new message.
757 * NBLW bits. Reset the number of bits in last word (NBLW).
759 HASH_CLEAR_BITS(&device_data
->base
->str
, HASH_STR_NBLW_MASK
);
762 static int hash_process_data(struct hash_device_data
*device_data
,
763 struct hash_ctx
*ctx
, struct hash_req_ctx
*req_ctx
,
764 int msg_length
, u8
*data_buffer
, u8
*buffer
,
771 if ((*index
+ msg_length
) < HASH_BLOCK_SIZE
) {
772 for (count
= 0; count
< msg_length
; count
++) {
773 buffer
[*index
+ count
] =
774 *(data_buffer
+ count
);
776 *index
+= msg_length
;
779 if (req_ctx
->updated
) {
780 ret
= hash_resume_state(device_data
,
781 &device_data
->state
);
782 memmove(req_ctx
->state
.buffer
,
783 device_data
->state
.buffer
,
786 dev_err(device_data
->dev
,
787 "%s: hash_resume_state() failed!\n",
792 ret
= init_hash_hw(device_data
, ctx
);
794 dev_err(device_data
->dev
,
795 "%s: init_hash_hw() failed!\n",
799 req_ctx
->updated
= 1;
802 * If 'data_buffer' is four byte aligned and
803 * local buffer does not have any data, we can
804 * write data directly from 'data_buffer' to
805 * HW peripheral, otherwise we first copy data
808 if ((0 == (((u32
)data_buffer
) % 4)) &&
810 hash_processblock(device_data
,
811 (const u32
*)data_buffer
,
815 count
< (u32
)(HASH_BLOCK_SIZE
- *index
);
817 buffer
[*index
+ count
] =
818 *(data_buffer
+ count
);
820 hash_processblock(device_data
,
824 hash_incrementlength(req_ctx
, HASH_BLOCK_SIZE
);
825 data_buffer
+= (HASH_BLOCK_SIZE
- *index
);
827 msg_length
-= (HASH_BLOCK_SIZE
- *index
);
830 ret
= hash_save_state(device_data
,
831 &device_data
->state
);
833 memmove(device_data
->state
.buffer
,
834 req_ctx
->state
.buffer
,
837 dev_err(device_data
->dev
, "%s: hash_save_state() failed!\n",
842 } while (msg_length
!= 0);
849 * hash_dma_final - The hash dma final function for SHA1/SHA256.
850 * @req: The hash request for the job.
852 static int hash_dma_final(struct ahash_request
*req
)
855 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
856 struct hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
857 struct hash_req_ctx
*req_ctx
= ahash_request_ctx(req
);
858 struct hash_device_data
*device_data
;
859 u8 digest
[SHA256_DIGEST_SIZE
];
860 int bytes_written
= 0;
862 ret
= hash_get_device_data(ctx
, &device_data
);
866 dev_dbg(device_data
->dev
, "%s: (ctx=0x%x)!\n", __func__
, (u32
) ctx
);
868 if (req_ctx
->updated
) {
869 ret
= hash_resume_state(device_data
, &device_data
->state
);
872 dev_err(device_data
->dev
, "%s: hash_resume_state() failed!\n",
878 if (!req_ctx
->updated
) {
879 ret
= hash_setconfiguration(device_data
, &ctx
->config
);
881 dev_err(device_data
->dev
,
882 "%s: hash_setconfiguration() failed!\n",
887 /* Enable DMA input */
888 if (hash_mode
!= HASH_MODE_DMA
|| !req_ctx
->dma_mode
) {
889 HASH_CLEAR_BITS(&device_data
->base
->cr
,
892 HASH_SET_BITS(&device_data
->base
->cr
,
894 HASH_SET_BITS(&device_data
->base
->cr
,
900 if (ctx
->config
.oper_mode
== HASH_OPER_MODE_HMAC
)
901 hash_hw_write_key(device_data
, ctx
->key
, ctx
->keylen
);
903 /* Number of bits in last word = (nbytes * 8) % 32 */
904 HASH_SET_NBLW((req
->nbytes
* 8) % 32);
905 req_ctx
->updated
= 1;
908 /* Store the nents in the dma struct. */
909 ctx
->device
->dma
.nents
= hash_get_nents(req
->src
, req
->nbytes
, NULL
);
910 if (!ctx
->device
->dma
.nents
) {
911 dev_err(device_data
->dev
, "%s: ctx->device->dma.nents = 0\n",
913 ret
= ctx
->device
->dma
.nents
;
917 bytes_written
= hash_dma_write(ctx
, req
->src
, req
->nbytes
);
918 if (bytes_written
!= req
->nbytes
) {
919 dev_err(device_data
->dev
, "%s: hash_dma_write() failed!\n",
925 wait_for_completion(&ctx
->device
->dma
.complete
);
928 while (readl(&device_data
->base
->str
) & HASH_STR_DCAL_MASK
)
931 if (ctx
->config
.oper_mode
== HASH_OPER_MODE_HMAC
&& ctx
->key
) {
932 unsigned int keylen
= ctx
->keylen
;
935 dev_dbg(device_data
->dev
, "%s: keylen: %d\n",
936 __func__
, ctx
->keylen
);
937 hash_hw_write_key(device_data
, key
, keylen
);
940 hash_get_digest(device_data
, digest
, ctx
->config
.algorithm
);
941 memcpy(req
->result
, digest
, ctx
->digestsize
);
944 release_hash_device(device_data
);
947 * Allocated in setkey, and only used in HMAC.
955 * hash_hw_final - The final hash calculation function
956 * @req: The hash request for the job.
958 static int hash_hw_final(struct ahash_request
*req
)
961 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
962 struct hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
963 struct hash_req_ctx
*req_ctx
= ahash_request_ctx(req
);
964 struct hash_device_data
*device_data
;
965 u8 digest
[SHA256_DIGEST_SIZE
];
967 ret
= hash_get_device_data(ctx
, &device_data
);
971 dev_dbg(device_data
->dev
, "%s: (ctx=0x%x)!\n", __func__
, (u32
) ctx
);
973 if (req_ctx
->updated
) {
974 ret
= hash_resume_state(device_data
, &device_data
->state
);
977 dev_err(device_data
->dev
,
978 "%s: hash_resume_state() failed!\n", __func__
);
981 } else if (req
->nbytes
== 0 && ctx
->keylen
== 0) {
982 u8 zero_hash
[SHA256_DIGEST_SIZE
];
983 u32 zero_hash_size
= 0;
984 bool zero_digest
= false;
986 * Use a pre-calculated empty message digest
987 * (workaround since hw return zeroes, hw bug!?)
989 ret
= get_empty_message_digest(device_data
, &zero_hash
[0],
990 &zero_hash_size
, &zero_digest
);
991 if (!ret
&& likely(zero_hash_size
== ctx
->digestsize
) &&
993 memcpy(req
->result
, &zero_hash
[0], ctx
->digestsize
);
995 } else if (!ret
&& !zero_digest
) {
996 dev_dbg(device_data
->dev
,
997 "%s: HMAC zero msg with key, continue...\n",
1000 dev_err(device_data
->dev
,
1001 "%s: ret=%d, or wrong digest size? %s\n",
1003 zero_hash_size
== ctx
->digestsize
?
1008 } else if (req
->nbytes
== 0 && ctx
->keylen
> 0) {
1009 dev_err(device_data
->dev
, "%s: Empty message with keylength > 0, NOT supported\n",
1014 if (!req_ctx
->updated
) {
1015 ret
= init_hash_hw(device_data
, ctx
);
1017 dev_err(device_data
->dev
,
1018 "%s: init_hash_hw() failed!\n", __func__
);
1023 if (req_ctx
->state
.index
) {
1024 hash_messagepad(device_data
, req_ctx
->state
.buffer
,
1025 req_ctx
->state
.index
);
1028 while (readl(&device_data
->base
->str
) & HASH_STR_DCAL_MASK
)
1032 if (ctx
->config
.oper_mode
== HASH_OPER_MODE_HMAC
&& ctx
->key
) {
1033 unsigned int keylen
= ctx
->keylen
;
1036 dev_dbg(device_data
->dev
, "%s: keylen: %d\n",
1037 __func__
, ctx
->keylen
);
1038 hash_hw_write_key(device_data
, key
, keylen
);
1041 hash_get_digest(device_data
, digest
, ctx
->config
.algorithm
);
1042 memcpy(req
->result
, digest
, ctx
->digestsize
);
1045 release_hash_device(device_data
);
1048 * Allocated in setkey, and only used in HMAC.
1056 * hash_hw_update - Updates current HASH computation hashing another part of
1058 * @req: Byte array containing the message to be hashed (caller
1061 int hash_hw_update(struct ahash_request
*req
)
1066 struct hash_device_data
*device_data
;
1068 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1069 struct hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
1070 struct hash_req_ctx
*req_ctx
= ahash_request_ctx(req
);
1071 struct crypto_hash_walk walk
;
1072 int msg_length
= crypto_hash_walk_first(req
, &walk
);
1074 /* Empty message ("") is correct indata */
1075 if (msg_length
== 0)
1078 index
= req_ctx
->state
.index
;
1079 buffer
= (u8
*)req_ctx
->state
.buffer
;
1081 /* Check if ctx->state.length + msg_length
1083 if (msg_length
> (req_ctx
->state
.length
.low_word
+ msg_length
) &&
1084 HASH_HIGH_WORD_MAX_VAL
== req_ctx
->state
.length
.high_word
) {
1085 pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__
);
1089 ret
= hash_get_device_data(ctx
, &device_data
);
1094 while (0 != msg_length
) {
1095 data_buffer
= walk
.data
;
1096 ret
= hash_process_data(device_data
, ctx
, req_ctx
, msg_length
,
1097 data_buffer
, buffer
, &index
);
1100 dev_err(device_data
->dev
, "%s: hash_internal_hw_update() failed!\n",
1105 msg_length
= crypto_hash_walk_done(&walk
, 0);
1108 req_ctx
->state
.index
= index
;
1109 dev_dbg(device_data
->dev
, "%s: indata length=%d, bin=%d\n",
1110 __func__
, req_ctx
->state
.index
, req_ctx
->state
.bit_index
);
1113 release_hash_device(device_data
);
1119 * hash_resume_state - Function that resumes the state of an calculation.
1120 * @device_data: Pointer to the device structure.
1121 * @device_state: The state to be restored in the hash hardware
1123 int hash_resume_state(struct hash_device_data
*device_data
,
1124 const struct hash_state
*device_state
)
1128 int hash_mode
= HASH_OPER_MODE_HASH
;
1130 if (NULL
== device_state
) {
1131 dev_err(device_data
->dev
, "%s: HASH_INVALID_PARAMETER!\n",
1136 /* Check correctness of index and length members */
1137 if (device_state
->index
> HASH_BLOCK_SIZE
||
1138 (device_state
->length
.low_word
% HASH_BLOCK_SIZE
) != 0) {
1139 dev_err(device_data
->dev
, "%s: HASH_INVALID_PARAMETER!\n",
1145 * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1146 * prepare the initialize the HASH accelerator to compute the message
1147 * digest of a new message.
1151 temp_cr
= device_state
->temp_cr
;
1152 writel_relaxed(temp_cr
& HASH_CR_RESUME_MASK
, &device_data
->base
->cr
);
1154 if (readl(&device_data
->base
->cr
) & HASH_CR_MODE_MASK
)
1155 hash_mode
= HASH_OPER_MODE_HMAC
;
1157 hash_mode
= HASH_OPER_MODE_HASH
;
1159 for (count
= 0; count
< HASH_CSR_COUNT
; count
++) {
1160 if ((count
>= 36) && (hash_mode
== HASH_OPER_MODE_HASH
))
1163 writel_relaxed(device_state
->csr
[count
],
1164 &device_data
->base
->csrx
[count
]);
1167 writel_relaxed(device_state
->csfull
, &device_data
->base
->csfull
);
1168 writel_relaxed(device_state
->csdatain
, &device_data
->base
->csdatain
);
1170 writel_relaxed(device_state
->str_reg
, &device_data
->base
->str
);
1171 writel_relaxed(temp_cr
, &device_data
->base
->cr
);
1177 * hash_save_state - Function that saves the state of hardware.
1178 * @device_data: Pointer to the device structure.
1179 * @device_state: The strucure where the hardware state should be saved.
1181 int hash_save_state(struct hash_device_data
*device_data
,
1182 struct hash_state
*device_state
)
1186 int hash_mode
= HASH_OPER_MODE_HASH
;
1188 if (NULL
== device_state
) {
1189 dev_err(device_data
->dev
, "%s: HASH_INVALID_PARAMETER!\n",
1194 /* Write dummy value to force digest intermediate calculation. This
1195 * actually makes sure that there isn't any ongoing calculation in the
1198 while (readl(&device_data
->base
->str
) & HASH_STR_DCAL_MASK
)
1201 temp_cr
= readl_relaxed(&device_data
->base
->cr
);
1203 device_state
->str_reg
= readl_relaxed(&device_data
->base
->str
);
1205 device_state
->din_reg
= readl_relaxed(&device_data
->base
->din
);
1207 if (readl(&device_data
->base
->cr
) & HASH_CR_MODE_MASK
)
1208 hash_mode
= HASH_OPER_MODE_HMAC
;
1210 hash_mode
= HASH_OPER_MODE_HASH
;
1212 for (count
= 0; count
< HASH_CSR_COUNT
; count
++) {
1213 if ((count
>= 36) && (hash_mode
== HASH_OPER_MODE_HASH
))
1216 device_state
->csr
[count
] =
1217 readl_relaxed(&device_data
->base
->csrx
[count
]);
1220 device_state
->csfull
= readl_relaxed(&device_data
->base
->csfull
);
1221 device_state
->csdatain
= readl_relaxed(&device_data
->base
->csdatain
);
1223 device_state
->temp_cr
= temp_cr
;
1229 * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1233 int hash_check_hw(struct hash_device_data
*device_data
)
1235 /* Checking Peripheral Ids */
1236 if (HASH_P_ID0
== readl_relaxed(&device_data
->base
->periphid0
) &&
1237 HASH_P_ID1
== readl_relaxed(&device_data
->base
->periphid1
) &&
1238 HASH_P_ID2
== readl_relaxed(&device_data
->base
->periphid2
) &&
1239 HASH_P_ID3
== readl_relaxed(&device_data
->base
->periphid3
) &&
1240 HASH_CELL_ID0
== readl_relaxed(&device_data
->base
->cellid0
) &&
1241 HASH_CELL_ID1
== readl_relaxed(&device_data
->base
->cellid1
) &&
1242 HASH_CELL_ID2
== readl_relaxed(&device_data
->base
->cellid2
) &&
1243 HASH_CELL_ID3
== readl_relaxed(&device_data
->base
->cellid3
)) {
1247 dev_err(device_data
->dev
, "%s: HASH_UNSUPPORTED_HW!\n", __func__
);
1252 * hash_get_digest - Gets the digest.
1253 * @device_data: Pointer to the device structure.
1254 * @digest: User allocated byte array for the calculated digest.
1255 * @algorithm: The algorithm in use.
1257 void hash_get_digest(struct hash_device_data
*device_data
,
1258 u8
*digest
, int algorithm
)
1260 u32 temp_hx_val
, count
;
1263 if (algorithm
!= HASH_ALGO_SHA1
&& algorithm
!= HASH_ALGO_SHA256
) {
1264 dev_err(device_data
->dev
, "%s: Incorrect algorithm %d\n",
1265 __func__
, algorithm
);
1269 if (algorithm
== HASH_ALGO_SHA1
)
1270 loop_ctr
= SHA1_DIGEST_SIZE
/ sizeof(u32
);
1272 loop_ctr
= SHA256_DIGEST_SIZE
/ sizeof(u32
);
1274 dev_dbg(device_data
->dev
, "%s: digest array:(0x%x)\n",
1275 __func__
, (u32
) digest
);
1277 /* Copy result into digest array */
1278 for (count
= 0; count
< loop_ctr
; count
++) {
1279 temp_hx_val
= readl_relaxed(&device_data
->base
->hx
[count
]);
1280 digest
[count
* 4] = (u8
) ((temp_hx_val
>> 24) & 0xFF);
1281 digest
[count
* 4 + 1] = (u8
) ((temp_hx_val
>> 16) & 0xFF);
1282 digest
[count
* 4 + 2] = (u8
) ((temp_hx_val
>> 8) & 0xFF);
1283 digest
[count
* 4 + 3] = (u8
) ((temp_hx_val
>> 0) & 0xFF);
1288 * hash_update - The hash update function for SHA1/SHA2 (SHA256).
1289 * @req: The hash request for the job.
1291 static int ahash_update(struct ahash_request
*req
)
1294 struct hash_req_ctx
*req_ctx
= ahash_request_ctx(req
);
1296 if (hash_mode
!= HASH_MODE_DMA
|| !req_ctx
->dma_mode
)
1297 ret
= hash_hw_update(req
);
1298 /* Skip update for DMA, all data will be passed to DMA in final */
1301 pr_err("%s: hash_hw_update() failed!\n", __func__
);
1308 * hash_final - The hash final function for SHA1/SHA2 (SHA256).
1309 * @req: The hash request for the job.
1311 static int ahash_final(struct ahash_request
*req
)
1314 struct hash_req_ctx
*req_ctx
= ahash_request_ctx(req
);
1316 pr_debug("%s: data size: %d\n", __func__
, req
->nbytes
);
1318 if ((hash_mode
== HASH_MODE_DMA
) && req_ctx
->dma_mode
)
1319 ret
= hash_dma_final(req
);
1321 ret
= hash_hw_final(req
);
1324 pr_err("%s: hash_hw/dma_final() failed\n", __func__
);
1330 static int hash_setkey(struct crypto_ahash
*tfm
,
1331 const u8
*key
, unsigned int keylen
, int alg
)
1334 struct hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
1339 ctx
->key
= kmemdup(key
, keylen
, GFP_KERNEL
);
1341 pr_err("%s: Failed to allocate ctx->key for %d\n",
1345 ctx
->keylen
= keylen
;
1350 static int ahash_sha1_init(struct ahash_request
*req
)
1352 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1353 struct hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
1355 ctx
->config
.data_format
= HASH_DATA_8_BITS
;
1356 ctx
->config
.algorithm
= HASH_ALGO_SHA1
;
1357 ctx
->config
.oper_mode
= HASH_OPER_MODE_HASH
;
1358 ctx
->digestsize
= SHA1_DIGEST_SIZE
;
1360 return hash_init(req
);
1363 static int ahash_sha256_init(struct ahash_request
*req
)
1365 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1366 struct hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
1368 ctx
->config
.data_format
= HASH_DATA_8_BITS
;
1369 ctx
->config
.algorithm
= HASH_ALGO_SHA256
;
1370 ctx
->config
.oper_mode
= HASH_OPER_MODE_HASH
;
1371 ctx
->digestsize
= SHA256_DIGEST_SIZE
;
1373 return hash_init(req
);
1376 static int ahash_sha1_digest(struct ahash_request
*req
)
1380 ret1
= ahash_sha1_init(req
);
1384 ret1
= ahash_update(req
);
1385 ret2
= ahash_final(req
);
1388 return ret1
? ret1
: ret2
;
1391 static int ahash_sha256_digest(struct ahash_request
*req
)
1395 ret1
= ahash_sha256_init(req
);
1399 ret1
= ahash_update(req
);
1400 ret2
= ahash_final(req
);
1403 return ret1
? ret1
: ret2
;
1406 static int hmac_sha1_init(struct ahash_request
*req
)
1408 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1409 struct hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
1411 ctx
->config
.data_format
= HASH_DATA_8_BITS
;
1412 ctx
->config
.algorithm
= HASH_ALGO_SHA1
;
1413 ctx
->config
.oper_mode
= HASH_OPER_MODE_HMAC
;
1414 ctx
->digestsize
= SHA1_DIGEST_SIZE
;
1416 return hash_init(req
);
1419 static int hmac_sha256_init(struct ahash_request
*req
)
1421 struct crypto_ahash
*tfm
= crypto_ahash_reqtfm(req
);
1422 struct hash_ctx
*ctx
= crypto_ahash_ctx(tfm
);
1424 ctx
->config
.data_format
= HASH_DATA_8_BITS
;
1425 ctx
->config
.algorithm
= HASH_ALGO_SHA256
;
1426 ctx
->config
.oper_mode
= HASH_OPER_MODE_HMAC
;
1427 ctx
->digestsize
= SHA256_DIGEST_SIZE
;
1429 return hash_init(req
);
1432 static int hmac_sha1_digest(struct ahash_request
*req
)
1436 ret1
= hmac_sha1_init(req
);
1440 ret1
= ahash_update(req
);
1441 ret2
= ahash_final(req
);
1444 return ret1
? ret1
: ret2
;
1447 static int hmac_sha256_digest(struct ahash_request
*req
)
1451 ret1
= hmac_sha256_init(req
);
1455 ret1
= ahash_update(req
);
1456 ret2
= ahash_final(req
);
1459 return ret1
? ret1
: ret2
;
1462 static int hmac_sha1_setkey(struct crypto_ahash
*tfm
,
1463 const u8
*key
, unsigned int keylen
)
1465 return hash_setkey(tfm
, key
, keylen
, HASH_ALGO_SHA1
);
1468 static int hmac_sha256_setkey(struct crypto_ahash
*tfm
,
1469 const u8
*key
, unsigned int keylen
)
1471 return hash_setkey(tfm
, key
, keylen
, HASH_ALGO_SHA256
);
1474 struct hash_algo_template
{
1475 struct hash_config conf
;
1476 struct ahash_alg hash
;
1479 static int hash_cra_init(struct crypto_tfm
*tfm
)
1481 struct hash_ctx
*ctx
= crypto_tfm_ctx(tfm
);
1482 struct crypto_alg
*alg
= tfm
->__crt_alg
;
1483 struct hash_algo_template
*hash_alg
;
1485 hash_alg
= container_of(__crypto_ahash_alg(alg
),
1486 struct hash_algo_template
,
1489 crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm
),
1490 sizeof(struct hash_req_ctx
));
1492 ctx
->config
.data_format
= HASH_DATA_8_BITS
;
1493 ctx
->config
.algorithm
= hash_alg
->conf
.algorithm
;
1494 ctx
->config
.oper_mode
= hash_alg
->conf
.oper_mode
;
1496 ctx
->digestsize
= hash_alg
->hash
.halg
.digestsize
;
1501 static struct hash_algo_template hash_algs
[] = {
1503 .conf
.algorithm
= HASH_ALGO_SHA1
,
1504 .conf
.oper_mode
= HASH_OPER_MODE_HASH
,
1507 .update
= ahash_update
,
1508 .final
= ahash_final
,
1509 .digest
= ahash_sha1_digest
,
1510 .halg
.digestsize
= SHA1_DIGEST_SIZE
,
1511 .halg
.statesize
= sizeof(struct hash_ctx
),
1514 .cra_driver_name
= "sha1-ux500",
1515 .cra_flags
= (CRYPTO_ALG_TYPE_AHASH
|
1517 .cra_blocksize
= SHA1_BLOCK_SIZE
,
1518 .cra_ctxsize
= sizeof(struct hash_ctx
),
1519 .cra_init
= hash_cra_init
,
1520 .cra_module
= THIS_MODULE
,
1525 .conf
.algorithm
= HASH_ALGO_SHA256
,
1526 .conf
.oper_mode
= HASH_OPER_MODE_HASH
,
1529 .update
= ahash_update
,
1530 .final
= ahash_final
,
1531 .digest
= ahash_sha256_digest
,
1532 .halg
.digestsize
= SHA256_DIGEST_SIZE
,
1533 .halg
.statesize
= sizeof(struct hash_ctx
),
1535 .cra_name
= "sha256",
1536 .cra_driver_name
= "sha256-ux500",
1537 .cra_flags
= (CRYPTO_ALG_TYPE_AHASH
|
1539 .cra_blocksize
= SHA256_BLOCK_SIZE
,
1540 .cra_ctxsize
= sizeof(struct hash_ctx
),
1541 .cra_type
= &crypto_ahash_type
,
1542 .cra_init
= hash_cra_init
,
1543 .cra_module
= THIS_MODULE
,
1548 .conf
.algorithm
= HASH_ALGO_SHA1
,
1549 .conf
.oper_mode
= HASH_OPER_MODE_HMAC
,
1552 .update
= ahash_update
,
1553 .final
= ahash_final
,
1554 .digest
= hmac_sha1_digest
,
1555 .setkey
= hmac_sha1_setkey
,
1556 .halg
.digestsize
= SHA1_DIGEST_SIZE
,
1557 .halg
.statesize
= sizeof(struct hash_ctx
),
1559 .cra_name
= "hmac(sha1)",
1560 .cra_driver_name
= "hmac-sha1-ux500",
1561 .cra_flags
= (CRYPTO_ALG_TYPE_AHASH
|
1563 .cra_blocksize
= SHA1_BLOCK_SIZE
,
1564 .cra_ctxsize
= sizeof(struct hash_ctx
),
1565 .cra_type
= &crypto_ahash_type
,
1566 .cra_init
= hash_cra_init
,
1567 .cra_module
= THIS_MODULE
,
1572 .conf
.algorithm
= HASH_ALGO_SHA256
,
1573 .conf
.oper_mode
= HASH_OPER_MODE_HMAC
,
1576 .update
= ahash_update
,
1577 .final
= ahash_final
,
1578 .digest
= hmac_sha256_digest
,
1579 .setkey
= hmac_sha256_setkey
,
1580 .halg
.digestsize
= SHA256_DIGEST_SIZE
,
1581 .halg
.statesize
= sizeof(struct hash_ctx
),
1583 .cra_name
= "hmac(sha256)",
1584 .cra_driver_name
= "hmac-sha256-ux500",
1585 .cra_flags
= (CRYPTO_ALG_TYPE_AHASH
|
1587 .cra_blocksize
= SHA256_BLOCK_SIZE
,
1588 .cra_ctxsize
= sizeof(struct hash_ctx
),
1589 .cra_type
= &crypto_ahash_type
,
1590 .cra_init
= hash_cra_init
,
1591 .cra_module
= THIS_MODULE
,
1598 * hash_algs_register_all -
1600 static int ahash_algs_register_all(struct hash_device_data
*device_data
)
1606 for (i
= 0; i
< ARRAY_SIZE(hash_algs
); i
++) {
1607 ret
= crypto_register_ahash(&hash_algs
[i
].hash
);
1610 dev_err(device_data
->dev
, "%s: alg registration failed\n",
1611 hash_algs
[i
].hash
.halg
.base
.cra_driver_name
);
1617 for (i
= 0; i
< count
; i
++)
1618 crypto_unregister_ahash(&hash_algs
[i
].hash
);
1623 * hash_algs_unregister_all -
1625 static void ahash_algs_unregister_all(struct hash_device_data
*device_data
)
1629 for (i
= 0; i
< ARRAY_SIZE(hash_algs
); i
++)
1630 crypto_unregister_ahash(&hash_algs
[i
].hash
);
1634 * ux500_hash_probe - Function that probes the hash hardware.
1635 * @pdev: The platform device.
1637 static int ux500_hash_probe(struct platform_device
*pdev
)
1640 struct resource
*res
= NULL
;
1641 struct hash_device_data
*device_data
;
1642 struct device
*dev
= &pdev
->dev
;
1644 device_data
= devm_kzalloc(dev
, sizeof(*device_data
), GFP_ATOMIC
);
1650 device_data
->dev
= dev
;
1651 device_data
->current_ctx
= NULL
;
1653 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1655 dev_dbg(dev
, "%s: platform_get_resource() failed!\n", __func__
);
1660 device_data
->phybase
= res
->start
;
1661 device_data
->base
= devm_ioremap_resource(dev
, res
);
1662 if (IS_ERR(device_data
->base
)) {
1663 dev_err(dev
, "%s: ioremap() failed!\n", __func__
);
1664 ret
= PTR_ERR(device_data
->base
);
1667 spin_lock_init(&device_data
->ctx_lock
);
1668 spin_lock_init(&device_data
->power_state_lock
);
1670 /* Enable power for HASH1 hardware block */
1671 device_data
->regulator
= regulator_get(dev
, "v-ape");
1672 if (IS_ERR(device_data
->regulator
)) {
1673 dev_err(dev
, "%s: regulator_get() failed!\n", __func__
);
1674 ret
= PTR_ERR(device_data
->regulator
);
1675 device_data
->regulator
= NULL
;
1679 /* Enable the clock for HASH1 hardware block */
1680 device_data
->clk
= devm_clk_get(dev
, NULL
);
1681 if (IS_ERR(device_data
->clk
)) {
1682 dev_err(dev
, "%s: clk_get() failed!\n", __func__
);
1683 ret
= PTR_ERR(device_data
->clk
);
1687 ret
= clk_prepare(device_data
->clk
);
1689 dev_err(dev
, "%s: clk_prepare() failed!\n", __func__
);
1693 /* Enable device power (and clock) */
1694 ret
= hash_enable_power(device_data
, false);
1696 dev_err(dev
, "%s: hash_enable_power() failed!\n", __func__
);
1697 goto out_clk_unprepare
;
1700 ret
= hash_check_hw(device_data
);
1702 dev_err(dev
, "%s: hash_check_hw() failed!\n", __func__
);
1706 if (hash_mode
== HASH_MODE_DMA
)
1707 hash_dma_setup_channel(device_data
, dev
);
1709 platform_set_drvdata(pdev
, device_data
);
1711 /* Put the new device into the device list... */
1712 klist_add_tail(&device_data
->list_node
, &driver_data
.device_list
);
1713 /* ... and signal that a new device is available. */
1714 up(&driver_data
.device_allocation
);
1716 ret
= ahash_algs_register_all(device_data
);
1718 dev_err(dev
, "%s: ahash_algs_register_all() failed!\n",
1723 dev_info(dev
, "successfully registered\n");
1727 hash_disable_power(device_data
, false);
1730 clk_unprepare(device_data
->clk
);
1733 regulator_put(device_data
->regulator
);
1740 * ux500_hash_remove - Function that removes the hash device from the platform.
1741 * @pdev: The platform device.
1743 static int ux500_hash_remove(struct platform_device
*pdev
)
1745 struct hash_device_data
*device_data
;
1746 struct device
*dev
= &pdev
->dev
;
1748 device_data
= platform_get_drvdata(pdev
);
1750 dev_err(dev
, "%s: platform_get_drvdata() failed!\n", __func__
);
1754 /* Try to decrease the number of available devices. */
1755 if (down_trylock(&driver_data
.device_allocation
))
1758 /* Check that the device is free */
1759 spin_lock(&device_data
->ctx_lock
);
1760 /* current_ctx allocates a device, NULL = unallocated */
1761 if (device_data
->current_ctx
) {
1762 /* The device is busy */
1763 spin_unlock(&device_data
->ctx_lock
);
1764 /* Return the device to the pool. */
1765 up(&driver_data
.device_allocation
);
1769 spin_unlock(&device_data
->ctx_lock
);
1771 /* Remove the device from the list */
1772 if (klist_node_attached(&device_data
->list_node
))
1773 klist_remove(&device_data
->list_node
);
1775 /* If this was the last device, remove the services */
1776 if (list_empty(&driver_data
.device_list
.k_list
))
1777 ahash_algs_unregister_all(device_data
);
1779 if (hash_disable_power(device_data
, false))
1780 dev_err(dev
, "%s: hash_disable_power() failed\n",
1783 clk_unprepare(device_data
->clk
);
1784 regulator_put(device_data
->regulator
);
1790 * ux500_hash_shutdown - Function that shutdown the hash device.
1791 * @pdev: The platform device
1793 static void ux500_hash_shutdown(struct platform_device
*pdev
)
1795 struct hash_device_data
*device_data
;
1797 device_data
= platform_get_drvdata(pdev
);
1799 dev_err(&pdev
->dev
, "%s: platform_get_drvdata() failed!\n",
1804 /* Check that the device is free */
1805 spin_lock(&device_data
->ctx_lock
);
1806 /* current_ctx allocates a device, NULL = unallocated */
1807 if (!device_data
->current_ctx
) {
1808 if (down_trylock(&driver_data
.device_allocation
))
1809 dev_dbg(&pdev
->dev
, "%s: Cryp still in use! Shutting down anyway...\n",
1812 * (Allocate the device)
1813 * Need to set this to non-null (dummy) value,
1814 * to avoid usage if context switching.
1816 device_data
->current_ctx
++;
1818 spin_unlock(&device_data
->ctx_lock
);
1820 /* Remove the device from the list */
1821 if (klist_node_attached(&device_data
->list_node
))
1822 klist_remove(&device_data
->list_node
);
1824 /* If this was the last device, remove the services */
1825 if (list_empty(&driver_data
.device_list
.k_list
))
1826 ahash_algs_unregister_all(device_data
);
1828 if (hash_disable_power(device_data
, false))
1829 dev_err(&pdev
->dev
, "%s: hash_disable_power() failed\n",
1833 #ifdef CONFIG_PM_SLEEP
1835 * ux500_hash_suspend - Function that suspends the hash device.
1836 * @dev: Device to suspend.
1838 static int ux500_hash_suspend(struct device
*dev
)
1841 struct hash_device_data
*device_data
;
1842 struct hash_ctx
*temp_ctx
= NULL
;
1844 device_data
= dev_get_drvdata(dev
);
1846 dev_err(dev
, "%s: platform_get_drvdata() failed!\n", __func__
);
1850 spin_lock(&device_data
->ctx_lock
);
1851 if (!device_data
->current_ctx
)
1852 device_data
->current_ctx
++;
1853 spin_unlock(&device_data
->ctx_lock
);
1855 if (device_data
->current_ctx
== ++temp_ctx
) {
1856 if (down_interruptible(&driver_data
.device_allocation
))
1857 dev_dbg(dev
, "%s: down_interruptible() failed\n",
1859 ret
= hash_disable_power(device_data
, false);
1862 ret
= hash_disable_power(device_data
, true);
1866 dev_err(dev
, "%s: hash_disable_power()\n", __func__
);
1872 * ux500_hash_resume - Function that resume the hash device.
1873 * @dev: Device to resume.
1875 static int ux500_hash_resume(struct device
*dev
)
1878 struct hash_device_data
*device_data
;
1879 struct hash_ctx
*temp_ctx
= NULL
;
1881 device_data
= dev_get_drvdata(dev
);
1883 dev_err(dev
, "%s: platform_get_drvdata() failed!\n", __func__
);
1887 spin_lock(&device_data
->ctx_lock
);
1888 if (device_data
->current_ctx
== ++temp_ctx
)
1889 device_data
->current_ctx
= NULL
;
1890 spin_unlock(&device_data
->ctx_lock
);
1892 if (!device_data
->current_ctx
)
1893 up(&driver_data
.device_allocation
);
1895 ret
= hash_enable_power(device_data
, true);
1898 dev_err(dev
, "%s: hash_enable_power() failed!\n", __func__
);
1904 static SIMPLE_DEV_PM_OPS(ux500_hash_pm
, ux500_hash_suspend
, ux500_hash_resume
);
1906 static const struct of_device_id ux500_hash_match
[] = {
1907 { .compatible
= "stericsson,ux500-hash" },
1910 MODULE_DEVICE_TABLE(of
, ux500_hash_match
);
1912 static struct platform_driver hash_driver
= {
1913 .probe
= ux500_hash_probe
,
1914 .remove
= ux500_hash_remove
,
1915 .shutdown
= ux500_hash_shutdown
,
1918 .of_match_table
= ux500_hash_match
,
1919 .pm
= &ux500_hash_pm
,
1924 * ux500_hash_mod_init - The kernel module init function.
1926 static int __init
ux500_hash_mod_init(void)
1928 klist_init(&driver_data
.device_list
, NULL
, NULL
);
1929 /* Initialize the semaphore to 0 devices (locked state) */
1930 sema_init(&driver_data
.device_allocation
, 0);
1932 return platform_driver_register(&hash_driver
);
1936 * ux500_hash_mod_fini - The kernel module exit function.
1938 static void __exit
ux500_hash_mod_fini(void)
1940 platform_driver_unregister(&hash_driver
);
1943 module_init(ux500_hash_mod_init
);
1944 module_exit(ux500_hash_mod_fini
);
1946 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
1947 MODULE_LICENSE("GPL");
1949 MODULE_ALIAS_CRYPTO("sha1-all");
1950 MODULE_ALIAS_CRYPTO("sha256-all");
1951 MODULE_ALIAS_CRYPTO("hmac-sha1-all");
1952 MODULE_ALIAS_CRYPTO("hmac-sha256-all");