1 /* Intel Sandy Bridge -EN/-EP/-EX Memory Controller kernel module
3 * This driver supports the memory controllers found on the Intel
4 * processor family Sandy Bridge.
6 * This file may be distributed under the terms of the
7 * GNU General Public License version 2 only.
9 * Copyright (c) 2011 by:
10 * Mauro Carvalho Chehab
13 #include <linux/module.h>
14 #include <linux/init.h>
15 #include <linux/pci.h>
16 #include <linux/pci_ids.h>
17 #include <linux/slab.h>
18 #include <linux/delay.h>
19 #include <linux/edac.h>
20 #include <linux/mmzone.h>
21 #include <linux/smp.h>
22 #include <linux/bitmap.h>
23 #include <linux/math64.h>
24 #include <asm/processor.h>
27 #include "edac_core.h"
30 static LIST_HEAD(sbridge_edac_list
);
31 static DEFINE_MUTEX(sbridge_edac_lock
);
35 * Alter this version for the module when modifications are made
37 #define SBRIDGE_REVISION " Ver: 1.1.1 "
38 #define EDAC_MOD_STR "sbridge_edac"
43 #define sbridge_printk(level, fmt, arg...) \
44 edac_printk(level, "sbridge", fmt, ##arg)
46 #define sbridge_mc_printk(mci, level, fmt, arg...) \
47 edac_mc_chipset_printk(mci, level, "sbridge", fmt, ##arg)
50 * Get a bit field at register value <v>, from bit <lo> to bit <hi>
52 #define GET_BITFIELD(v, lo, hi) \
53 (((v) & GENMASK_ULL(hi, lo)) >> (lo))
55 /* Devices 12 Function 6, Offsets 0x80 to 0xcc */
56 static const u32 sbridge_dram_rule
[] = {
57 0x80, 0x88, 0x90, 0x98, 0xa0,
58 0xa8, 0xb0, 0xb8, 0xc0, 0xc8,
61 static const u32 ibridge_dram_rule
[] = {
62 0x60, 0x68, 0x70, 0x78, 0x80,
63 0x88, 0x90, 0x98, 0xa0, 0xa8,
64 0xb0, 0xb8, 0xc0, 0xc8, 0xd0,
65 0xd8, 0xe0, 0xe8, 0xf0, 0xf8,
68 static const u32 knl_dram_rule
[] = {
69 0x60, 0x68, 0x70, 0x78, 0x80, /* 0-4 */
70 0x88, 0x90, 0x98, 0xa0, 0xa8, /* 5-9 */
71 0xb0, 0xb8, 0xc0, 0xc8, 0xd0, /* 10-14 */
72 0xd8, 0xe0, 0xe8, 0xf0, 0xf8, /* 15-19 */
73 0x100, 0x108, 0x110, 0x118, /* 20-23 */
76 #define DRAM_RULE_ENABLE(reg) GET_BITFIELD(reg, 0, 0)
77 #define A7MODE(reg) GET_BITFIELD(reg, 26, 26)
79 static char *show_dram_attr(u32 attr
)
93 static const u32 sbridge_interleave_list
[] = {
94 0x84, 0x8c, 0x94, 0x9c, 0xa4,
95 0xac, 0xb4, 0xbc, 0xc4, 0xcc,
98 static const u32 ibridge_interleave_list
[] = {
99 0x64, 0x6c, 0x74, 0x7c, 0x84,
100 0x8c, 0x94, 0x9c, 0xa4, 0xac,
101 0xb4, 0xbc, 0xc4, 0xcc, 0xd4,
102 0xdc, 0xe4, 0xec, 0xf4, 0xfc,
105 static const u32 knl_interleave_list
[] = {
106 0x64, 0x6c, 0x74, 0x7c, 0x84, /* 0-4 */
107 0x8c, 0x94, 0x9c, 0xa4, 0xac, /* 5-9 */
108 0xb4, 0xbc, 0xc4, 0xcc, 0xd4, /* 10-14 */
109 0xdc, 0xe4, 0xec, 0xf4, 0xfc, /* 15-19 */
110 0x104, 0x10c, 0x114, 0x11c, /* 20-23 */
113 struct interleave_pkg
{
118 static const struct interleave_pkg sbridge_interleave_pkg
[] = {
129 static const struct interleave_pkg ibridge_interleave_pkg
[] = {
140 static inline int sad_pkg(const struct interleave_pkg
*table
, u32 reg
,
143 return GET_BITFIELD(reg
, table
[interleave
].start
,
144 table
[interleave
].end
);
147 /* Devices 12 Function 7 */
151 #define HASWELL_TOLM 0xd0
152 #define HASWELL_TOHM_0 0xd4
153 #define HASWELL_TOHM_1 0xd8
154 #define KNL_TOLM 0xd0
155 #define KNL_TOHM_0 0xd4
156 #define KNL_TOHM_1 0xd8
158 #define GET_TOLM(reg) ((GET_BITFIELD(reg, 0, 3) << 28) | 0x3ffffff)
159 #define GET_TOHM(reg) ((GET_BITFIELD(reg, 0, 20) << 25) | 0x3ffffff)
161 /* Device 13 Function 6 */
163 #define SAD_TARGET 0xf0
165 #define SOURCE_ID(reg) GET_BITFIELD(reg, 9, 11)
167 #define SOURCE_ID_KNL(reg) GET_BITFIELD(reg, 12, 14)
169 #define SAD_CONTROL 0xf4
171 /* Device 14 function 0 */
173 static const u32 tad_dram_rule
[] = {
174 0x40, 0x44, 0x48, 0x4c,
175 0x50, 0x54, 0x58, 0x5c,
176 0x60, 0x64, 0x68, 0x6c,
178 #define MAX_TAD ARRAY_SIZE(tad_dram_rule)
180 #define TAD_LIMIT(reg) ((GET_BITFIELD(reg, 12, 31) << 26) | 0x3ffffff)
181 #define TAD_SOCK(reg) GET_BITFIELD(reg, 10, 11)
182 #define TAD_CH(reg) GET_BITFIELD(reg, 8, 9)
183 #define TAD_TGT3(reg) GET_BITFIELD(reg, 6, 7)
184 #define TAD_TGT2(reg) GET_BITFIELD(reg, 4, 5)
185 #define TAD_TGT1(reg) GET_BITFIELD(reg, 2, 3)
186 #define TAD_TGT0(reg) GET_BITFIELD(reg, 0, 1)
188 /* Device 15, function 0 */
191 #define KNL_MCMTR 0x624
193 #define IS_ECC_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 2, 2)
194 #define IS_LOCKSTEP_ENABLED(mcmtr) GET_BITFIELD(mcmtr, 1, 1)
195 #define IS_CLOSE_PG(mcmtr) GET_BITFIELD(mcmtr, 0, 0)
197 /* Device 15, function 1 */
199 #define RASENABLES 0xac
200 #define IS_MIRROR_ENABLED(reg) GET_BITFIELD(reg, 0, 0)
202 /* Device 15, functions 2-5 */
204 static const int mtr_regs
[] = {
208 static const int knl_mtr_reg
= 0xb60;
210 #define RANK_DISABLE(mtr) GET_BITFIELD(mtr, 16, 19)
211 #define IS_DIMM_PRESENT(mtr) GET_BITFIELD(mtr, 14, 14)
212 #define RANK_CNT_BITS(mtr) GET_BITFIELD(mtr, 12, 13)
213 #define RANK_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 2, 4)
214 #define COL_WIDTH_BITS(mtr) GET_BITFIELD(mtr, 0, 1)
216 static const u32 tad_ch_nilv_offset
[] = {
217 0x90, 0x94, 0x98, 0x9c,
218 0xa0, 0xa4, 0xa8, 0xac,
219 0xb0, 0xb4, 0xb8, 0xbc,
221 #define CHN_IDX_OFFSET(reg) GET_BITFIELD(reg, 28, 29)
222 #define TAD_OFFSET(reg) (GET_BITFIELD(reg, 6, 25) << 26)
224 static const u32 rir_way_limit
[] = {
225 0x108, 0x10c, 0x110, 0x114, 0x118,
227 #define MAX_RIR_RANGES ARRAY_SIZE(rir_way_limit)
229 #define IS_RIR_VALID(reg) GET_BITFIELD(reg, 31, 31)
230 #define RIR_WAY(reg) GET_BITFIELD(reg, 28, 29)
232 #define MAX_RIR_WAY 8
234 static const u32 rir_offset
[MAX_RIR_RANGES
][MAX_RIR_WAY
] = {
235 { 0x120, 0x124, 0x128, 0x12c, 0x130, 0x134, 0x138, 0x13c },
236 { 0x140, 0x144, 0x148, 0x14c, 0x150, 0x154, 0x158, 0x15c },
237 { 0x160, 0x164, 0x168, 0x16c, 0x170, 0x174, 0x178, 0x17c },
238 { 0x180, 0x184, 0x188, 0x18c, 0x190, 0x194, 0x198, 0x19c },
239 { 0x1a0, 0x1a4, 0x1a8, 0x1ac, 0x1b0, 0x1b4, 0x1b8, 0x1bc },
242 #define RIR_RNK_TGT(reg) GET_BITFIELD(reg, 16, 19)
243 #define RIR_OFFSET(reg) GET_BITFIELD(reg, 2, 14)
245 /* Device 16, functions 2-7 */
248 * FIXME: Implement the error count reads directly
251 static const u32 correrrcnt
[] = {
252 0x104, 0x108, 0x10c, 0x110,
255 #define RANK_ODD_OV(reg) GET_BITFIELD(reg, 31, 31)
256 #define RANK_ODD_ERR_CNT(reg) GET_BITFIELD(reg, 16, 30)
257 #define RANK_EVEN_OV(reg) GET_BITFIELD(reg, 15, 15)
258 #define RANK_EVEN_ERR_CNT(reg) GET_BITFIELD(reg, 0, 14)
260 static const u32 correrrthrsld
[] = {
261 0x11c, 0x120, 0x124, 0x128,
264 #define RANK_ODD_ERR_THRSLD(reg) GET_BITFIELD(reg, 16, 30)
265 #define RANK_EVEN_ERR_THRSLD(reg) GET_BITFIELD(reg, 0, 14)
268 /* Device 17, function 0 */
270 #define SB_RANK_CFG_A 0x0328
272 #define IB_RANK_CFG_A 0x0320
278 #define NUM_CHANNELS 8 /* 2MC per socket, four chan per MC */
279 #define MAX_DIMMS 3 /* Max DIMMS per channel */
280 #define KNL_MAX_CHAS 38 /* KNL max num. of Cache Home Agents */
281 #define KNL_MAX_CHANNELS 6 /* KNL max num. of PCI channels */
282 #define KNL_MAX_EDCS 8 /* Embedded DRAM controllers */
283 #define CHANNEL_UNSPECIFIED 0xf /* Intel IA32 SDM 15-14 */
294 struct sbridge_info
{
298 u64 (*get_tolm
)(struct sbridge_pvt
*pvt
);
299 u64 (*get_tohm
)(struct sbridge_pvt
*pvt
);
300 u64 (*rir_limit
)(u32 reg
);
301 u64 (*sad_limit
)(u32 reg
);
302 u32 (*interleave_mode
)(u32 reg
);
303 char* (*show_interleave_mode
)(u32 reg
);
304 u32 (*dram_attr
)(u32 reg
);
305 const u32
*dram_rule
;
306 const u32
*interleave_list
;
307 const struct interleave_pkg
*interleave_pkg
;
310 u8 (*get_node_id
)(struct sbridge_pvt
*pvt
);
311 enum mem_type (*get_memory_type
)(struct sbridge_pvt
*pvt
);
312 enum dev_type (*get_width
)(struct sbridge_pvt
*pvt
, u32 mtr
);
313 struct pci_dev
*pci_vtd
;
316 struct sbridge_channel
{
321 struct pci_id_descr
{
326 struct pci_id_table
{
327 const struct pci_id_descr
*descr
;
332 struct list_head list
;
334 u8 node_id
, source_id
;
335 struct pci_dev
**pdev
;
337 struct mem_ctl_info
*mci
;
341 struct pci_dev
*pci_cha
[KNL_MAX_CHAS
];
342 struct pci_dev
*pci_channel
[KNL_MAX_CHANNELS
];
343 struct pci_dev
*pci_mc0
;
344 struct pci_dev
*pci_mc1
;
345 struct pci_dev
*pci_mc0_misc
;
346 struct pci_dev
*pci_mc1_misc
;
347 struct pci_dev
*pci_mc_info
; /* tolm, tohm */
351 struct pci_dev
*pci_ta
, *pci_ddrio
, *pci_ras
;
352 struct pci_dev
*pci_sad0
, *pci_sad1
;
353 struct pci_dev
*pci_ha0
, *pci_ha1
;
354 struct pci_dev
*pci_br0
, *pci_br1
;
355 struct pci_dev
*pci_ha1_ta
;
356 struct pci_dev
*pci_tad
[NUM_CHANNELS
];
358 struct sbridge_dev
*sbridge_dev
;
360 struct sbridge_info info
;
361 struct sbridge_channel channel
[NUM_CHANNELS
];
363 /* Memory type detection */
364 bool is_mirrored
, is_lockstep
, is_close_pg
;
367 /* Fifo double buffers */
368 struct mce mce_entry
[MCE_LOG_LEN
];
369 struct mce mce_outentry
[MCE_LOG_LEN
];
371 /* Fifo in/out counters */
372 unsigned mce_in
, mce_out
;
374 /* Count indicator to show errors not got */
375 unsigned mce_overrun
;
377 /* Memory description */
382 #define PCI_DESCR(device_id, opt) \
383 .dev_id = (device_id), \
386 static const struct pci_id_descr pci_dev_descr_sbridge
[] = {
387 /* Processor Home Agent */
388 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
, 0) },
390 /* Memory controller */
391 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
, 0) },
392 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
, 0) },
393 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
, 0) },
394 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
, 0) },
395 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
, 0) },
396 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
, 0) },
397 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
, 1) },
399 /* System Address Decoder */
400 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
, 0) },
401 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
, 0) },
403 /* Broadcast Registers */
404 { PCI_DESCR(PCI_DEVICE_ID_INTEL_SBRIDGE_BR
, 0) },
407 #define PCI_ID_TABLE_ENTRY(A) { .descr=A, .n_devs = ARRAY_SIZE(A) }
408 static const struct pci_id_table pci_dev_descr_sbridge_table
[] = {
409 PCI_ID_TABLE_ENTRY(pci_dev_descr_sbridge
),
410 {0,} /* 0 terminated list. */
413 /* This changes depending if 1HA or 2HA:
415 * 0x0eb8 (17.0) is DDRIO0
417 * 0x0ebc (17.4) is DDRIO0
419 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0 0x0eb8
420 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0 0x0ebc
423 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0 0x0ea0
424 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA 0x0ea8
425 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS 0x0e71
426 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0 0x0eaa
427 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1 0x0eab
428 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2 0x0eac
429 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3 0x0ead
430 #define PCI_DEVICE_ID_INTEL_IBRIDGE_SAD 0x0ec8
431 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR0 0x0ec9
432 #define PCI_DEVICE_ID_INTEL_IBRIDGE_BR1 0x0eca
433 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1 0x0e60
434 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA 0x0e68
435 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS 0x0e79
436 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0 0x0e6a
437 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1 0x0e6b
438 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2 0x0e6c
439 #define PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3 0x0e6d
441 static const struct pci_id_descr pci_dev_descr_ibridge
[] = {
442 /* Processor Home Agent */
443 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
, 0) },
445 /* Memory controller */
446 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
, 0) },
447 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
, 0) },
448 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
, 0) },
449 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
, 0) },
450 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
, 0) },
451 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
, 0) },
453 /* System Address Decoder */
454 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
, 0) },
456 /* Broadcast Registers */
457 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
, 1) },
458 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
, 0) },
460 /* Optional, mode 2HA */
461 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
, 1) },
463 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TA
, 1) },
464 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_RAS
, 1) },
466 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
, 1) },
467 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
, 1) },
468 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
, 1) },
469 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
, 1) },
471 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
, 1) },
472 { PCI_DESCR(PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
, 1) },
475 static const struct pci_id_table pci_dev_descr_ibridge_table
[] = {
476 PCI_ID_TABLE_ENTRY(pci_dev_descr_ibridge
),
477 {0,} /* 0 terminated list. */
480 /* Haswell support */
483 * - 3 DDR3 channels, 2 DPC per channel
486 * - 4 DDR4 channels, 3 DPC per channel
489 * - 4 DDR4 channels, 3 DPC per channel
492 * - each IMC interfaces with a SMI 2 channel
493 * - each SMI channel interfaces with a scalable memory buffer
494 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
496 #define HASWELL_DDRCRCLKCONTROLS 0xa10 /* Ditto on Broadwell */
497 #define HASWELL_HASYSDEFEATURE2 0x84
498 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC 0x2f28
499 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0 0x2fa0
500 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1 0x2f60
501 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA 0x2fa8
502 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL 0x2f71
503 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA 0x2f68
504 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL 0x2f79
505 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0 0x2ffc
506 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1 0x2ffd
507 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0 0x2faa
508 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1 0x2fab
509 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2 0x2fac
510 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3 0x2fad
511 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0 0x2f6a
512 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1 0x2f6b
513 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2 0x2f6c
514 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3 0x2f6d
515 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0 0x2fbd
516 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1 0x2fbf
517 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2 0x2fb9
518 #define PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3 0x2fbb
519 static const struct pci_id_descr pci_dev_descr_haswell
[] = {
520 /* first item must be the HA */
521 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
, 0) },
523 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
, 0) },
524 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
, 0) },
526 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
, 1) },
528 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
, 0) },
529 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL
, 0) },
530 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
, 0) },
531 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
, 0) },
532 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
, 1) },
533 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
, 1) },
535 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
, 1) },
536 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
, 1) },
537 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
, 1) },
538 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
, 1) },
540 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
, 1) },
541 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_THERMAL
, 1) },
542 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
, 1) },
543 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
, 1) },
544 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
, 1) },
545 { PCI_DESCR(PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
, 1) },
548 static const struct pci_id_table pci_dev_descr_haswell_table
[] = {
549 PCI_ID_TABLE_ENTRY(pci_dev_descr_haswell
),
550 {0,} /* 0 terminated list. */
553 /* Knight's Landing Support */
555 * KNL's memory channels are swizzled between memory controllers.
556 * MC0 is mapped to CH3,5,6 and MC1 is mapped to CH0,1,2
558 #define knl_channel_remap(channel) ((channel + 3) % 6)
560 /* Memory controller, TAD tables, error injection - 2-8-0, 2-9-0 (2 of these) */
561 #define PCI_DEVICE_ID_INTEL_KNL_IMC_MC 0x7840
562 /* DRAM channel stuff; bank addrs, dimmmtr, etc.. 2-8-2 - 2-9-4 (6 of these) */
563 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL 0x7843
564 /* kdrwdbu TAD limits/offsets, MCMTR - 2-10-1, 2-11-1 (2 of these) */
565 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TA 0x7844
566 /* CHA broadcast registers, dram rules - 1-29-0 (1 of these) */
567 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0 0x782a
568 /* SAD target - 1-29-1 (1 of these) */
569 #define PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1 0x782b
570 /* Caching / Home Agent */
571 #define PCI_DEVICE_ID_INTEL_KNL_IMC_CHA 0x782c
572 /* Device with TOLM and TOHM, 0-5-0 (1 of these) */
573 #define PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM 0x7810
576 * KNL differs from SB, IB, and Haswell in that it has multiple
577 * instances of the same device with the same device ID, so we handle that
578 * by creating as many copies in the table as we expect to find.
579 * (Like device ID must be grouped together.)
582 static const struct pci_id_descr pci_dev_descr_knl
[] = {
583 [0] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
, 0) },
584 [1] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1
, 0) },
585 [2 ... 3] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_MC
, 0)},
586 [4 ... 41] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHA
, 0) },
587 [42 ... 47] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL
, 0) },
588 [48] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TA
, 0) },
589 [49] = { PCI_DESCR(PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM
, 0) },
592 static const struct pci_id_table pci_dev_descr_knl_table
[] = {
593 PCI_ID_TABLE_ENTRY(pci_dev_descr_knl
),
602 * - 2 DDR3 channels, 2 DPC per channel
605 * - 4 DDR4 channels, 3 DPC per channel
608 * - 4 DDR4 channels, 3 DPC per channel
611 * - each IMC interfaces with a SMI 2 channel
612 * - each SMI channel interfaces with a scalable memory buffer
613 * - each scalable memory buffer supports 4 DDR3/DDR4 channels, 3 DPC
615 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC 0x6f28
616 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0 0x6fa0
617 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1 0x6f60
618 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA 0x6fa8
619 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL 0x6f71
620 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA 0x6f68
621 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL 0x6f79
622 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0 0x6ffc
623 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1 0x6ffd
624 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0 0x6faa
625 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1 0x6fab
626 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2 0x6fac
627 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3 0x6fad
628 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0 0x6f6a
629 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1 0x6f6b
630 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2 0x6f6c
631 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3 0x6f6d
632 #define PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0 0x6faf
634 static const struct pci_id_descr pci_dev_descr_broadwell
[] = {
635 /* first item must be the HA */
636 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
, 0) },
638 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
, 0) },
639 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
, 0) },
641 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
, 1) },
643 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
, 0) },
644 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL
, 0) },
645 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
, 0) },
646 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
, 0) },
647 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
, 1) },
648 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
, 1) },
650 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
, 1) },
652 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
, 1) },
653 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_THERMAL
, 1) },
654 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
, 1) },
655 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
, 1) },
656 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
, 1) },
657 { PCI_DESCR(PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
, 1) },
660 static const struct pci_id_table pci_dev_descr_broadwell_table
[] = {
661 PCI_ID_TABLE_ENTRY(pci_dev_descr_broadwell
),
662 {0,} /* 0 terminated list. */
666 * pci_device_id table for which devices we are looking for
668 static const struct pci_device_id sbridge_pci_tbl
[] = {
669 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
)},
670 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
)},
671 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
)},
672 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
)},
673 {PCI_DEVICE(PCI_VENDOR_ID_INTEL
, PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
)},
674 {0,} /* 0 terminated list. */
678 /****************************************************************************
679 Ancillary status routines
680 ****************************************************************************/
682 static inline int numrank(enum type type
, u32 mtr
)
684 int ranks
= (1 << RANK_CNT_BITS(mtr
));
687 if (type
== HASWELL
|| type
== BROADWELL
|| type
== KNIGHTS_LANDING
)
691 edac_dbg(0, "Invalid number of ranks: %d (max = %i) raw value = %x (%04x)\n",
692 ranks
, max
, (unsigned int)RANK_CNT_BITS(mtr
), mtr
);
699 static inline int numrow(u32 mtr
)
701 int rows
= (RANK_WIDTH_BITS(mtr
) + 12);
703 if (rows
< 13 || rows
> 18) {
704 edac_dbg(0, "Invalid number of rows: %d (should be between 14 and 17) raw value = %x (%04x)\n",
705 rows
, (unsigned int)RANK_WIDTH_BITS(mtr
), mtr
);
712 static inline int numcol(u32 mtr
)
714 int cols
= (COL_WIDTH_BITS(mtr
) + 10);
717 edac_dbg(0, "Invalid number of cols: %d (max = 4) raw value = %x (%04x)\n",
718 cols
, (unsigned int)COL_WIDTH_BITS(mtr
), mtr
);
725 static struct sbridge_dev
*get_sbridge_dev(u8 bus
, int multi_bus
)
727 struct sbridge_dev
*sbridge_dev
;
730 * If we have devices scattered across several busses that pertain
731 * to the same memory controller, we'll lump them all together.
734 return list_first_entry_or_null(&sbridge_edac_list
,
735 struct sbridge_dev
, list
);
738 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
739 if (sbridge_dev
->bus
== bus
)
746 static struct sbridge_dev
*alloc_sbridge_dev(u8 bus
,
747 const struct pci_id_table
*table
)
749 struct sbridge_dev
*sbridge_dev
;
751 sbridge_dev
= kzalloc(sizeof(*sbridge_dev
), GFP_KERNEL
);
755 sbridge_dev
->pdev
= kzalloc(sizeof(*sbridge_dev
->pdev
) * table
->n_devs
,
757 if (!sbridge_dev
->pdev
) {
762 sbridge_dev
->bus
= bus
;
763 sbridge_dev
->n_devs
= table
->n_devs
;
764 list_add_tail(&sbridge_dev
->list
, &sbridge_edac_list
);
769 static void free_sbridge_dev(struct sbridge_dev
*sbridge_dev
)
771 list_del(&sbridge_dev
->list
);
772 kfree(sbridge_dev
->pdev
);
776 static u64
sbridge_get_tolm(struct sbridge_pvt
*pvt
)
780 /* Address range is 32:28 */
781 pci_read_config_dword(pvt
->pci_sad1
, TOLM
, ®
);
782 return GET_TOLM(reg
);
785 static u64
sbridge_get_tohm(struct sbridge_pvt
*pvt
)
789 pci_read_config_dword(pvt
->pci_sad1
, TOHM
, ®
);
790 return GET_TOHM(reg
);
793 static u64
ibridge_get_tolm(struct sbridge_pvt
*pvt
)
797 pci_read_config_dword(pvt
->pci_br1
, TOLM
, ®
);
799 return GET_TOLM(reg
);
802 static u64
ibridge_get_tohm(struct sbridge_pvt
*pvt
)
806 pci_read_config_dword(pvt
->pci_br1
, TOHM
, ®
);
808 return GET_TOHM(reg
);
811 static u64
rir_limit(u32 reg
)
813 return ((u64
)GET_BITFIELD(reg
, 1, 10) << 29) | 0x1fffffff;
816 static u64
sad_limit(u32 reg
)
818 return (GET_BITFIELD(reg
, 6, 25) << 26) | 0x3ffffff;
821 static u32
interleave_mode(u32 reg
)
823 return GET_BITFIELD(reg
, 1, 1);
826 char *show_interleave_mode(u32 reg
)
828 return interleave_mode(reg
) ? "8:6" : "[8:6]XOR[18:16]";
831 static u32
dram_attr(u32 reg
)
833 return GET_BITFIELD(reg
, 2, 3);
836 static u64
knl_sad_limit(u32 reg
)
838 return (GET_BITFIELD(reg
, 7, 26) << 26) | 0x3ffffff;
841 static u32
knl_interleave_mode(u32 reg
)
843 return GET_BITFIELD(reg
, 1, 2);
846 static char *knl_show_interleave_mode(u32 reg
)
850 switch (knl_interleave_mode(reg
)) {
852 s
= "use address bits [8:6]";
855 s
= "use address bits [10:8]";
858 s
= "use address bits [14:12]";
861 s
= "use address bits [32:30]";
871 static u32
dram_attr_knl(u32 reg
)
873 return GET_BITFIELD(reg
, 3, 4);
877 static enum mem_type
get_memory_type(struct sbridge_pvt
*pvt
)
882 if (pvt
->pci_ddrio
) {
883 pci_read_config_dword(pvt
->pci_ddrio
, pvt
->info
.rankcfgr
,
885 if (GET_BITFIELD(reg
, 11, 11))
886 /* FIXME: Can also be LRDIMM */
896 static enum mem_type
haswell_get_memory_type(struct sbridge_pvt
*pvt
)
899 bool registered
= false;
900 enum mem_type mtype
= MEM_UNKNOWN
;
905 pci_read_config_dword(pvt
->pci_ddrio
,
906 HASWELL_DDRCRCLKCONTROLS
, ®
);
908 if (GET_BITFIELD(reg
, 16, 16))
911 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, ®
);
912 if (GET_BITFIELD(reg
, 14, 14)) {
928 static enum dev_type
knl_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
930 /* for KNL value is fixed */
934 static enum dev_type
sbridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
936 /* there's no way to figure out */
940 static enum dev_type
__ibridge_get_width(u32 mtr
)
962 static enum dev_type
ibridge_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
965 * ddr3_width on the documentation but also valid for DDR4 on
968 return __ibridge_get_width(GET_BITFIELD(mtr
, 7, 8));
971 static enum dev_type
broadwell_get_width(struct sbridge_pvt
*pvt
, u32 mtr
)
973 /* ddr3_width on the documentation but also valid for DDR4 */
974 return __ibridge_get_width(GET_BITFIELD(mtr
, 8, 9));
977 static enum mem_type
knl_get_memory_type(struct sbridge_pvt
*pvt
)
979 /* DDR4 RDIMMS and LRDIMMS are supported */
983 static u8
get_node_id(struct sbridge_pvt
*pvt
)
986 pci_read_config_dword(pvt
->pci_br0
, SAD_CONTROL
, ®
);
987 return GET_BITFIELD(reg
, 0, 2);
990 static u8
haswell_get_node_id(struct sbridge_pvt
*pvt
)
994 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
995 return GET_BITFIELD(reg
, 0, 3);
998 static u8
knl_get_node_id(struct sbridge_pvt
*pvt
)
1002 pci_read_config_dword(pvt
->pci_sad1
, SAD_CONTROL
, ®
);
1003 return GET_BITFIELD(reg
, 0, 2);
1007 static u64
haswell_get_tolm(struct sbridge_pvt
*pvt
)
1011 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOLM
, ®
);
1012 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
1015 static u64
haswell_get_tohm(struct sbridge_pvt
*pvt
)
1020 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_0
, ®
);
1021 rc
= GET_BITFIELD(reg
, 26, 31);
1022 pci_read_config_dword(pvt
->info
.pci_vtd
, HASWELL_TOHM_1
, ®
);
1023 rc
= ((reg
<< 6) | rc
) << 26;
1025 return rc
| 0x1ffffff;
1028 static u64
knl_get_tolm(struct sbridge_pvt
*pvt
)
1032 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOLM
, ®
);
1033 return (GET_BITFIELD(reg
, 26, 31) << 26) | 0x3ffffff;
1036 static u64
knl_get_tohm(struct sbridge_pvt
*pvt
)
1041 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOHM_0
, ®_lo
);
1042 pci_read_config_dword(pvt
->knl
.pci_mc_info
, KNL_TOHM_1
, ®_hi
);
1043 rc
= ((u64
)reg_hi
<< 32) | reg_lo
;
1044 return rc
| 0x3ffffff;
1048 static u64
haswell_rir_limit(u32 reg
)
1050 return (((u64
)GET_BITFIELD(reg
, 1, 11) + 1) << 29) - 1;
1053 static inline u8
sad_pkg_socket(u8 pkg
)
1055 /* on Ivy Bridge, nodeID is SASS, where A is HA and S is node id */
1056 return ((pkg
>> 3) << 2) | (pkg
& 0x3);
1059 static inline u8
sad_pkg_ha(u8 pkg
)
1061 return (pkg
>> 2) & 0x1;
1064 static int haswell_chan_hash(int idx
, u64 addr
)
1069 * XOR even bits from 12:26 to bit0 of idx,
1070 * odd bits from 13:27 to bit1
1072 for (i
= 12; i
< 28; i
+= 2)
1073 idx
^= (addr
>> i
) & 3;
1078 /****************************************************************************
1079 Memory check routines
1080 ****************************************************************************/
1081 static struct pci_dev
*get_pdev_same_bus(u8 bus
, u32 id
)
1083 struct pci_dev
*pdev
= NULL
;
1086 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, id
, pdev
);
1087 if (pdev
&& pdev
->bus
->number
== bus
)
1095 * check_if_ecc_is_active() - Checks if ECC is active
1097 * @type: Memory controller type
1098 * returns: 0 in case ECC is active, -ENODEV if it can't be determined or
1101 static int check_if_ecc_is_active(const u8 bus
, enum type type
)
1103 struct pci_dev
*pdev
= NULL
;
1108 id
= PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
;
1111 id
= PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
;
1114 id
= PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
;
1117 id
= PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
;
1119 case KNIGHTS_LANDING
:
1121 * KNL doesn't group things by bus the same way
1122 * SB/IB/Haswell does.
1124 id
= PCI_DEVICE_ID_INTEL_KNL_IMC_TA
;
1130 if (type
!= KNIGHTS_LANDING
)
1131 pdev
= get_pdev_same_bus(bus
, id
);
1133 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
, id
, 0);
1136 sbridge_printk(KERN_ERR
, "Couldn't find PCI device "
1137 "%04x:%04x! on bus %02d\n",
1138 PCI_VENDOR_ID_INTEL
, id
, bus
);
1142 pci_read_config_dword(pdev
,
1143 type
== KNIGHTS_LANDING
? KNL_MCMTR
: MCMTR
, &mcmtr
);
1144 if (!IS_ECC_ENABLED(mcmtr
)) {
1145 sbridge_printk(KERN_ERR
, "ECC is disabled. Aborting\n");
1151 /* Low bits of TAD limit, and some metadata. */
1152 static const u32 knl_tad_dram_limit_lo
[] = {
1153 0x400, 0x500, 0x600, 0x700,
1154 0x800, 0x900, 0xa00, 0xb00,
1157 /* Low bits of TAD offset. */
1158 static const u32 knl_tad_dram_offset_lo
[] = {
1159 0x404, 0x504, 0x604, 0x704,
1160 0x804, 0x904, 0xa04, 0xb04,
1163 /* High 16 bits of TAD limit and offset. */
1164 static const u32 knl_tad_dram_hi
[] = {
1165 0x408, 0x508, 0x608, 0x708,
1166 0x808, 0x908, 0xa08, 0xb08,
1169 /* Number of ways a tad entry is interleaved. */
1170 static const u32 knl_tad_ways
[] = {
1175 * Retrieve the n'th Target Address Decode table entry
1176 * from the memory controller's TAD table.
1178 * @pvt: driver private data
1179 * @entry: which entry you want to retrieve
1180 * @mc: which memory controller (0 or 1)
1181 * @offset: output tad range offset
1182 * @limit: output address of first byte above tad range
1183 * @ways: output number of interleave ways
1185 * The offset value has curious semantics. It's a sort of running total
1186 * of the sizes of all the memory regions that aren't mapped in this
1189 static int knl_get_tad(const struct sbridge_pvt
*pvt
,
1196 u32 reg_limit_lo
, reg_offset_lo
, reg_hi
;
1197 struct pci_dev
*pci_mc
;
1202 pci_mc
= pvt
->knl
.pci_mc0
;
1205 pci_mc
= pvt
->knl
.pci_mc1
;
1212 pci_read_config_dword(pci_mc
,
1213 knl_tad_dram_limit_lo
[entry
], ®_limit_lo
);
1214 pci_read_config_dword(pci_mc
,
1215 knl_tad_dram_offset_lo
[entry
], ®_offset_lo
);
1216 pci_read_config_dword(pci_mc
,
1217 knl_tad_dram_hi
[entry
], ®_hi
);
1219 /* Is this TAD entry enabled? */
1220 if (!GET_BITFIELD(reg_limit_lo
, 0, 0))
1223 way_id
= GET_BITFIELD(reg_limit_lo
, 3, 5);
1225 if (way_id
< ARRAY_SIZE(knl_tad_ways
)) {
1226 *ways
= knl_tad_ways
[way_id
];
1229 sbridge_printk(KERN_ERR
,
1230 "Unexpected value %d in mc_tad_limit_lo wayness field\n",
1236 * The least significant 6 bits of base and limit are truncated.
1237 * For limit, we fill the missing bits with 1s.
1239 *offset
= ((u64
) GET_BITFIELD(reg_offset_lo
, 6, 31) << 6) |
1240 ((u64
) GET_BITFIELD(reg_hi
, 0, 15) << 32);
1241 *limit
= ((u64
) GET_BITFIELD(reg_limit_lo
, 6, 31) << 6) | 63 |
1242 ((u64
) GET_BITFIELD(reg_hi
, 16, 31) << 32);
1247 /* Determine which memory controller is responsible for a given channel. */
1248 static int knl_channel_mc(int channel
)
1250 WARN_ON(channel
< 0 || channel
>= 6);
1252 return channel
< 3 ? 1 : 0;
1256 * Get the Nth entry from EDC_ROUTE_TABLE register.
1257 * (This is the per-tile mapping of logical interleave targets to
1258 * physical EDC modules.)
1270 static u32
knl_get_edc_route(int entry
, u32 reg
)
1272 WARN_ON(entry
>= KNL_MAX_EDCS
);
1273 return GET_BITFIELD(reg
, entry
*3, (entry
*3)+2);
1277 * Get the Nth entry from MC_ROUTE_TABLE register.
1278 * (This is the per-tile mapping of logical interleave targets to
1279 * physical DRAM channels modules.)
1281 * entry 0: mc 0:2 channel 18:19
1282 * 1: mc 3:5 channel 20:21
1283 * 2: mc 6:8 channel 22:23
1284 * 3: mc 9:11 channel 24:25
1285 * 4: mc 12:14 channel 26:27
1286 * 5: mc 15:17 channel 28:29
1289 * Though we have 3 bits to identify the MC, we should only see
1290 * the values 0 or 1.
1293 static u32
knl_get_mc_route(int entry
, u32 reg
)
1297 WARN_ON(entry
>= KNL_MAX_CHANNELS
);
1299 mc
= GET_BITFIELD(reg
, entry
*3, (entry
*3)+2);
1300 chan
= GET_BITFIELD(reg
, (entry
*2) + 18, (entry
*2) + 18 + 1);
1302 return knl_channel_remap(mc
*3 + chan
);
1306 * Render the EDC_ROUTE register in human-readable form.
1307 * Output string s should be at least KNL_MAX_EDCS*2 bytes.
1309 static void knl_show_edc_route(u32 reg
, char *s
)
1313 for (i
= 0; i
< KNL_MAX_EDCS
; i
++) {
1314 s
[i
*2] = knl_get_edc_route(i
, reg
) + '0';
1318 s
[KNL_MAX_EDCS
*2 - 1] = '\0';
1322 * Render the MC_ROUTE register in human-readable form.
1323 * Output string s should be at least KNL_MAX_CHANNELS*2 bytes.
1325 static void knl_show_mc_route(u32 reg
, char *s
)
1329 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++) {
1330 s
[i
*2] = knl_get_mc_route(i
, reg
) + '0';
1334 s
[KNL_MAX_CHANNELS
*2 - 1] = '\0';
1337 #define KNL_EDC_ROUTE 0xb8
1338 #define KNL_MC_ROUTE 0xb4
1340 /* Is this dram rule backed by regular DRAM in flat mode? */
1341 #define KNL_EDRAM(reg) GET_BITFIELD(reg, 29, 29)
1343 /* Is this dram rule cached? */
1344 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1346 /* Is this rule backed by edc ? */
1347 #define KNL_EDRAM_ONLY(reg) GET_BITFIELD(reg, 29, 29)
1349 /* Is this rule backed by DRAM, cacheable in EDRAM? */
1350 #define KNL_CACHEABLE(reg) GET_BITFIELD(reg, 28, 28)
1352 /* Is this rule mod3? */
1353 #define KNL_MOD3(reg) GET_BITFIELD(reg, 27, 27)
1356 * Figure out how big our RAM modules are.
1358 * The DIMMMTR register in KNL doesn't tell us the size of the DIMMs, so we
1359 * have to figure this out from the SAD rules, interleave lists, route tables,
1362 * SAD rules can have holes in them (e.g. the 3G-4G hole), so we have to
1363 * inspect the TAD rules to figure out how large the SAD regions really are.
1365 * When we know the real size of a SAD region and how many ways it's
1366 * interleaved, we know the individual contribution of each channel to
1369 * Finally, we have to check whether each channel participates in each SAD
1372 * Fortunately, KNL only supports one DIMM per channel, so once we know how
1373 * much memory the channel uses, we know the DIMM is at least that large.
1374 * (The BIOS might possibly choose not to map all available memory, in which
1375 * case we will underreport the size of the DIMM.)
1377 * In theory, we could try to determine the EDC sizes as well, but that would
1378 * only work in flat mode, not in cache mode.
1380 * @mc_sizes: Output sizes of channels (must have space for KNL_MAX_CHANNELS
1383 static int knl_get_dimm_capacity(struct sbridge_pvt
*pvt
, u64
*mc_sizes
)
1385 u64 sad_base
, sad_size
, sad_limit
= 0;
1386 u64 tad_base
, tad_size
, tad_limit
, tad_deadspace
, tad_livespace
;
1389 int intrlv_ways
, tad_ways
;
1392 u64 sad_actual_size
[2]; /* sad size accounting for holes, per mc */
1393 u32 dram_rule
, interleave_reg
;
1394 u32 mc_route_reg
[KNL_MAX_CHAS
];
1395 u32 edc_route_reg
[KNL_MAX_CHAS
];
1397 char edc_route_string
[KNL_MAX_EDCS
*2];
1398 char mc_route_string
[KNL_MAX_CHANNELS
*2];
1403 int participants
[KNL_MAX_CHANNELS
];
1404 int participant_count
= 0;
1406 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++)
1409 /* Read the EDC route table in each CHA. */
1411 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
1412 pci_read_config_dword(pvt
->knl
.pci_cha
[i
],
1413 KNL_EDC_ROUTE
, &edc_route_reg
[i
]);
1415 if (i
> 0 && edc_route_reg
[i
] != edc_route_reg
[i
-1]) {
1416 knl_show_edc_route(edc_route_reg
[i
-1],
1418 if (cur_reg_start
== i
-1)
1419 edac_dbg(0, "edc route table for CHA %d: %s\n",
1420 cur_reg_start
, edc_route_string
);
1422 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1423 cur_reg_start
, i
-1, edc_route_string
);
1427 knl_show_edc_route(edc_route_reg
[i
-1], edc_route_string
);
1428 if (cur_reg_start
== i
-1)
1429 edac_dbg(0, "edc route table for CHA %d: %s\n",
1430 cur_reg_start
, edc_route_string
);
1432 edac_dbg(0, "edc route table for CHA %d-%d: %s\n",
1433 cur_reg_start
, i
-1, edc_route_string
);
1435 /* Read the MC route table in each CHA. */
1437 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
1438 pci_read_config_dword(pvt
->knl
.pci_cha
[i
],
1439 KNL_MC_ROUTE
, &mc_route_reg
[i
]);
1441 if (i
> 0 && mc_route_reg
[i
] != mc_route_reg
[i
-1]) {
1442 knl_show_mc_route(mc_route_reg
[i
-1], mc_route_string
);
1443 if (cur_reg_start
== i
-1)
1444 edac_dbg(0, "mc route table for CHA %d: %s\n",
1445 cur_reg_start
, mc_route_string
);
1447 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1448 cur_reg_start
, i
-1, mc_route_string
);
1452 knl_show_mc_route(mc_route_reg
[i
-1], mc_route_string
);
1453 if (cur_reg_start
== i
-1)
1454 edac_dbg(0, "mc route table for CHA %d: %s\n",
1455 cur_reg_start
, mc_route_string
);
1457 edac_dbg(0, "mc route table for CHA %d-%d: %s\n",
1458 cur_reg_start
, i
-1, mc_route_string
);
1460 /* Process DRAM rules */
1461 for (sad_rule
= 0; sad_rule
< pvt
->info
.max_sad
; sad_rule
++) {
1462 /* previous limit becomes the new base */
1463 sad_base
= sad_limit
;
1465 pci_read_config_dword(pvt
->pci_sad0
,
1466 pvt
->info
.dram_rule
[sad_rule
], &dram_rule
);
1468 if (!DRAM_RULE_ENABLE(dram_rule
))
1471 edram_only
= KNL_EDRAM_ONLY(dram_rule
);
1473 sad_limit
= pvt
->info
.sad_limit(dram_rule
)+1;
1474 sad_size
= sad_limit
- sad_base
;
1476 pci_read_config_dword(pvt
->pci_sad0
,
1477 pvt
->info
.interleave_list
[sad_rule
], &interleave_reg
);
1480 * Find out how many ways this dram rule is interleaved.
1481 * We stop when we see the first channel again.
1483 first_pkg
= sad_pkg(pvt
->info
.interleave_pkg
,
1485 for (intrlv_ways
= 1; intrlv_ways
< 8; intrlv_ways
++) {
1486 pkg
= sad_pkg(pvt
->info
.interleave_pkg
,
1487 interleave_reg
, intrlv_ways
);
1489 if ((pkg
& 0x8) == 0) {
1491 * 0 bit means memory is non-local,
1492 * which KNL doesn't support
1494 edac_dbg(0, "Unexpected interleave target %d\n",
1499 if (pkg
== first_pkg
)
1502 if (KNL_MOD3(dram_rule
))
1505 edac_dbg(3, "dram rule %d (base 0x%llx, limit 0x%llx), %d way interleave%s\n",
1510 edram_only
? ", EDRAM" : "");
1513 * Find out how big the SAD region really is by iterating
1514 * over TAD tables (SAD regions may contain holes).
1515 * Each memory controller might have a different TAD table, so
1516 * we have to look at both.
1518 * Livespace is the memory that's mapped in this TAD table,
1519 * deadspace is the holes (this could be the MMIO hole, or it
1520 * could be memory that's mapped by the other TAD table but
1523 for (mc
= 0; mc
< 2; mc
++) {
1524 sad_actual_size
[mc
] = 0;
1527 tad_rule
< ARRAY_SIZE(
1528 knl_tad_dram_limit_lo
);
1530 if (knl_get_tad(pvt
,
1538 tad_size
= (tad_limit
+1) -
1539 (tad_livespace
+ tad_deadspace
);
1540 tad_livespace
+= tad_size
;
1541 tad_base
= (tad_limit
+1) - tad_size
;
1543 if (tad_base
< sad_base
) {
1544 if (tad_limit
> sad_base
)
1545 edac_dbg(0, "TAD region overlaps lower SAD boundary -- TAD tables may be configured incorrectly.\n");
1546 } else if (tad_base
< sad_limit
) {
1547 if (tad_limit
+1 > sad_limit
) {
1548 edac_dbg(0, "TAD region overlaps upper SAD boundary -- TAD tables may be configured incorrectly.\n");
1550 /* TAD region is completely inside SAD region */
1551 edac_dbg(3, "TAD region %d 0x%llx - 0x%llx (%lld bytes) table%d\n",
1553 tad_limit
, tad_size
,
1555 sad_actual_size
[mc
] += tad_size
;
1558 tad_base
= tad_limit
+1;
1562 for (mc
= 0; mc
< 2; mc
++) {
1563 edac_dbg(3, " total TAD DRAM footprint in table%d : 0x%llx (%lld bytes)\n",
1564 mc
, sad_actual_size
[mc
], sad_actual_size
[mc
]);
1567 /* Ignore EDRAM rule */
1571 /* Figure out which channels participate in interleave. */
1572 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++)
1573 participants
[channel
] = 0;
1575 /* For each channel, does at least one CHA have
1576 * this channel mapped to the given target?
1578 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++) {
1579 for (way
= 0; way
< intrlv_ways
; way
++) {
1583 if (KNL_MOD3(dram_rule
))
1586 target
= 0x7 & sad_pkg(
1587 pvt
->info
.interleave_pkg
, interleave_reg
, way
);
1589 for (cha
= 0; cha
< KNL_MAX_CHAS
; cha
++) {
1590 if (knl_get_mc_route(target
,
1591 mc_route_reg
[cha
]) == channel
1592 && !participants
[channel
]) {
1593 participant_count
++;
1594 participants
[channel
] = 1;
1601 if (participant_count
!= intrlv_ways
)
1602 edac_dbg(0, "participant_count (%d) != interleave_ways (%d): DIMM size may be incorrect\n",
1603 participant_count
, intrlv_ways
);
1605 for (channel
= 0; channel
< KNL_MAX_CHANNELS
; channel
++) {
1606 mc
= knl_channel_mc(channel
);
1607 if (participants
[channel
]) {
1608 edac_dbg(4, "mc channel %d contributes %lld bytes via sad entry %d\n",
1610 sad_actual_size
[mc
]/intrlv_ways
,
1612 mc_sizes
[channel
] +=
1613 sad_actual_size
[mc
]/intrlv_ways
;
1621 static int get_dimm_config(struct mem_ctl_info
*mci
)
1623 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1624 struct dimm_info
*dimm
;
1625 unsigned i
, j
, banks
, ranks
, rows
, cols
, npages
;
1628 enum edac_type mode
;
1629 enum mem_type mtype
;
1630 int channels
= pvt
->info
.type
== KNIGHTS_LANDING
?
1631 KNL_MAX_CHANNELS
: NUM_CHANNELS
;
1632 u64 knl_mc_sizes
[KNL_MAX_CHANNELS
];
1634 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
1635 pci_read_config_dword(pvt
->pci_ha0
, HASWELL_HASYSDEFEATURE2
, ®
);
1636 pvt
->is_chan_hash
= GET_BITFIELD(reg
, 21, 21);
1638 if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
||
1639 pvt
->info
.type
== KNIGHTS_LANDING
)
1640 pci_read_config_dword(pvt
->pci_sad1
, SAD_TARGET
, ®
);
1642 pci_read_config_dword(pvt
->pci_br0
, SAD_TARGET
, ®
);
1644 if (pvt
->info
.type
== KNIGHTS_LANDING
)
1645 pvt
->sbridge_dev
->source_id
= SOURCE_ID_KNL(reg
);
1647 pvt
->sbridge_dev
->source_id
= SOURCE_ID(reg
);
1649 pvt
->sbridge_dev
->node_id
= pvt
->info
.get_node_id(pvt
);
1650 edac_dbg(0, "mc#%d: Node ID: %d, source ID: %d\n",
1651 pvt
->sbridge_dev
->mc
,
1652 pvt
->sbridge_dev
->node_id
,
1653 pvt
->sbridge_dev
->source_id
);
1655 /* KNL doesn't support mirroring or lockstep,
1656 * and is always closed page
1658 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1659 mode
= EDAC_S4ECD4ED
;
1660 pvt
->is_mirrored
= false;
1662 if (knl_get_dimm_capacity(pvt
, knl_mc_sizes
) != 0)
1665 pci_read_config_dword(pvt
->pci_ras
, RASENABLES
, ®
);
1666 if (IS_MIRROR_ENABLED(reg
)) {
1667 edac_dbg(0, "Memory mirror is enabled\n");
1668 pvt
->is_mirrored
= true;
1670 edac_dbg(0, "Memory mirror is disabled\n");
1671 pvt
->is_mirrored
= false;
1674 pci_read_config_dword(pvt
->pci_ta
, MCMTR
, &pvt
->info
.mcmtr
);
1675 if (IS_LOCKSTEP_ENABLED(pvt
->info
.mcmtr
)) {
1676 edac_dbg(0, "Lockstep is enabled\n");
1677 mode
= EDAC_S8ECD8ED
;
1678 pvt
->is_lockstep
= true;
1680 edac_dbg(0, "Lockstep is disabled\n");
1681 mode
= EDAC_S4ECD4ED
;
1682 pvt
->is_lockstep
= false;
1684 if (IS_CLOSE_PG(pvt
->info
.mcmtr
)) {
1685 edac_dbg(0, "address map is on closed page mode\n");
1686 pvt
->is_close_pg
= true;
1688 edac_dbg(0, "address map is on open page mode\n");
1689 pvt
->is_close_pg
= false;
1693 mtype
= pvt
->info
.get_memory_type(pvt
);
1694 if (mtype
== MEM_RDDR3
|| mtype
== MEM_RDDR4
)
1695 edac_dbg(0, "Memory is registered\n");
1696 else if (mtype
== MEM_UNKNOWN
)
1697 edac_dbg(0, "Cannot determine memory type\n");
1699 edac_dbg(0, "Memory is unregistered\n");
1701 if (mtype
== MEM_DDR4
|| mtype
== MEM_RDDR4
)
1706 for (i
= 0; i
< channels
; i
++) {
1709 int max_dimms_per_channel
;
1711 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1712 max_dimms_per_channel
= 1;
1713 if (!pvt
->knl
.pci_channel
[i
])
1716 max_dimms_per_channel
= ARRAY_SIZE(mtr_regs
);
1717 if (!pvt
->pci_tad
[i
])
1721 for (j
= 0; j
< max_dimms_per_channel
; j
++) {
1722 dimm
= EDAC_DIMM_PTR(mci
->layers
, mci
->dimms
, mci
->n_layers
,
1724 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1725 pci_read_config_dword(pvt
->knl
.pci_channel
[i
],
1728 pci_read_config_dword(pvt
->pci_tad
[i
],
1731 edac_dbg(4, "Channel #%d MTR%d = %x\n", i
, j
, mtr
);
1732 if (IS_DIMM_PRESENT(mtr
)) {
1733 pvt
->channel
[i
].dimms
++;
1735 ranks
= numrank(pvt
->info
.type
, mtr
);
1737 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
1738 /* For DDR4, this is fixed. */
1740 rows
= knl_mc_sizes
[i
] /
1741 ((u64
) cols
* ranks
* banks
* 8);
1747 size
= ((u64
)rows
* cols
* banks
* ranks
) >> (20 - 3);
1748 npages
= MiB_TO_PAGES(size
);
1750 edac_dbg(0, "mc#%d: ha %d channel %d, dimm %d, %lld Mb (%d pages) bank: %d, rank: %d, row: %#x, col: %#x\n",
1751 pvt
->sbridge_dev
->mc
, i
/4, i
%4, j
,
1753 banks
, ranks
, rows
, cols
);
1755 dimm
->nr_pages
= npages
;
1757 dimm
->dtype
= pvt
->info
.get_width(pvt
, mtr
);
1758 dimm
->mtype
= mtype
;
1759 dimm
->edac_mode
= mode
;
1760 snprintf(dimm
->label
, sizeof(dimm
->label
),
1761 "CPU_SrcID#%u_Ha#%u_Chan#%u_DIMM#%u",
1762 pvt
->sbridge_dev
->source_id
, i
/4, i
%4, j
);
1770 static void get_memory_layout(const struct mem_ctl_info
*mci
)
1772 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1773 int i
, j
, k
, n_sads
, n_tads
, sad_interl
;
1781 * Step 1) Get TOLM/TOHM ranges
1784 pvt
->tolm
= pvt
->info
.get_tolm(pvt
);
1785 tmp_mb
= (1 + pvt
->tolm
) >> 20;
1787 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1788 edac_dbg(0, "TOLM: %u.%03u GB (0x%016Lx)\n",
1789 gb
, (mb
*1000)/1024, (u64
)pvt
->tolm
);
1791 /* Address range is already 45:25 */
1792 pvt
->tohm
= pvt
->info
.get_tohm(pvt
);
1793 tmp_mb
= (1 + pvt
->tohm
) >> 20;
1795 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1796 edac_dbg(0, "TOHM: %u.%03u GB (0x%016Lx)\n",
1797 gb
, (mb
*1000)/1024, (u64
)pvt
->tohm
);
1800 * Step 2) Get SAD range and SAD Interleave list
1801 * TAD registers contain the interleave wayness. However, it
1802 * seems simpler to just discover it indirectly, with the
1806 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1807 /* SAD_LIMIT Address range is 45:26 */
1808 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1810 limit
= pvt
->info
.sad_limit(reg
);
1812 if (!DRAM_RULE_ENABLE(reg
))
1818 tmp_mb
= (limit
+ 1) >> 20;
1819 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1820 edac_dbg(0, "SAD#%d %s up to %u.%03u GB (0x%016Lx) Interleave: %s reg=0x%08x\n",
1822 show_dram_attr(pvt
->info
.dram_attr(reg
)),
1824 ((u64
)tmp_mb
) << 20L,
1825 pvt
->info
.show_interleave_mode(reg
),
1829 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
1831 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
1832 for (j
= 0; j
< 8; j
++) {
1833 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, j
);
1834 if (j
> 0 && sad_interl
== pkg
)
1837 edac_dbg(0, "SAD#%d, interleave #%d: %d\n",
1842 if (pvt
->info
.type
== KNIGHTS_LANDING
)
1846 * Step 3) Get TAD range
1849 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
1850 pci_read_config_dword(pvt
->pci_ha0
, tad_dram_rule
[n_tads
],
1852 limit
= TAD_LIMIT(reg
);
1855 tmp_mb
= (limit
+ 1) >> 20;
1857 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1858 edac_dbg(0, "TAD#%d: up to %u.%03u GB (0x%016Lx), socket interleave %d, memory interleave %d, TGT: %d, %d, %d, %d, reg=0x%08x\n",
1859 n_tads
, gb
, (mb
*1000)/1024,
1860 ((u64
)tmp_mb
) << 20L,
1861 (u32
)(1 << TAD_SOCK(reg
)),
1862 (u32
)TAD_CH(reg
) + 1,
1872 * Step 4) Get TAD offsets, per each channel
1874 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1875 if (!pvt
->channel
[i
].dimms
)
1877 for (j
= 0; j
< n_tads
; j
++) {
1878 pci_read_config_dword(pvt
->pci_tad
[i
],
1879 tad_ch_nilv_offset
[j
],
1881 tmp_mb
= TAD_OFFSET(reg
) >> 20;
1882 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1883 edac_dbg(0, "TAD CH#%d, offset #%d: %u.%03u GB (0x%016Lx), reg=0x%08x\n",
1886 ((u64
)tmp_mb
) << 20L,
1892 * Step 6) Get RIR Wayness/Limit, per each channel
1894 for (i
= 0; i
< NUM_CHANNELS
; i
++) {
1895 if (!pvt
->channel
[i
].dimms
)
1897 for (j
= 0; j
< MAX_RIR_RANGES
; j
++) {
1898 pci_read_config_dword(pvt
->pci_tad
[i
],
1902 if (!IS_RIR_VALID(reg
))
1905 tmp_mb
= pvt
->info
.rir_limit(reg
) >> 20;
1906 rir_way
= 1 << RIR_WAY(reg
);
1907 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1908 edac_dbg(0, "CH#%d RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d, reg=0x%08x\n",
1911 ((u64
)tmp_mb
) << 20L,
1915 for (k
= 0; k
< rir_way
; k
++) {
1916 pci_read_config_dword(pvt
->pci_tad
[i
],
1919 tmp_mb
= RIR_OFFSET(reg
) << 6;
1921 gb
= div_u64_rem(tmp_mb
, 1024, &mb
);
1922 edac_dbg(0, "CH#%d RIR#%d INTL#%d, offset %u.%03u GB (0x%016Lx), tgt: %d, reg=0x%08x\n",
1925 ((u64
)tmp_mb
) << 20L,
1926 (u32
)RIR_RNK_TGT(reg
),
1933 static struct mem_ctl_info
*get_mci_for_node_id(u8 node_id
)
1935 struct sbridge_dev
*sbridge_dev
;
1937 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
1938 if (sbridge_dev
->node_id
== node_id
)
1939 return sbridge_dev
->mci
;
1944 static int get_memory_error_data(struct mem_ctl_info
*mci
,
1949 char **area_type
, char *msg
)
1951 struct mem_ctl_info
*new_mci
;
1952 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
1953 struct pci_dev
*pci_ha
;
1954 int n_rir
, n_sads
, n_tads
, sad_way
, sck_xch
;
1955 int sad_interl
, idx
, base_ch
;
1956 int interleave_mode
, shiftup
= 0;
1957 unsigned sad_interleave
[pvt
->info
.max_interleave
];
1959 u8 ch_way
, sck_way
, pkg
, sad_ha
= 0, ch_add
= 0;
1963 u64 ch_addr
, offset
, limit
= 0, prv
= 0;
1967 * Step 0) Check if the address is at special memory ranges
1968 * The check bellow is probably enough to fill all cases where
1969 * the error is not inside a memory, except for the legacy
1970 * range (e. g. VGA addresses). It is unlikely, however, that the
1971 * memory controller would generate an error on that range.
1973 if ((addr
> (u64
) pvt
->tolm
) && (addr
< (1LL << 32))) {
1974 sprintf(msg
, "Error at TOLM area, on addr 0x%08Lx", addr
);
1977 if (addr
>= (u64
)pvt
->tohm
) {
1978 sprintf(msg
, "Error at MMIOH area, on addr 0x%016Lx", addr
);
1983 * Step 1) Get socket
1985 for (n_sads
= 0; n_sads
< pvt
->info
.max_sad
; n_sads
++) {
1986 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.dram_rule
[n_sads
],
1989 if (!DRAM_RULE_ENABLE(reg
))
1992 limit
= pvt
->info
.sad_limit(reg
);
1994 sprintf(msg
, "Can't discover the memory socket");
2001 if (n_sads
== pvt
->info
.max_sad
) {
2002 sprintf(msg
, "Can't discover the memory socket");
2006 *area_type
= show_dram_attr(pvt
->info
.dram_attr(dram_rule
));
2007 interleave_mode
= pvt
->info
.interleave_mode(dram_rule
);
2009 pci_read_config_dword(pvt
->pci_sad0
, pvt
->info
.interleave_list
[n_sads
],
2012 if (pvt
->info
.type
== SANDY_BRIDGE
) {
2013 sad_interl
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, 0);
2014 for (sad_way
= 0; sad_way
< 8; sad_way
++) {
2015 u32 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, sad_way
);
2016 if (sad_way
> 0 && sad_interl
== pkg
)
2018 sad_interleave
[sad_way
] = pkg
;
2019 edac_dbg(0, "SAD interleave #%d: %d\n",
2020 sad_way
, sad_interleave
[sad_way
]);
2022 edac_dbg(0, "mc#%d: Error detected on SAD#%d: address 0x%016Lx < 0x%016Lx, Interleave [%d:6]%s\n",
2023 pvt
->sbridge_dev
->mc
,
2028 !interleave_mode
? "" : "XOR[18:16]");
2029 if (interleave_mode
)
2030 idx
= ((addr
>> 6) ^ (addr
>> 16)) & 7;
2032 idx
= (addr
>> 6) & 7;
2046 sprintf(msg
, "Can't discover socket interleave");
2049 *socket
= sad_interleave
[idx
];
2050 edac_dbg(0, "SAD interleave index: %d (wayness %d) = CPU socket %d\n",
2051 idx
, sad_way
, *socket
);
2052 } else if (pvt
->info
.type
== HASWELL
|| pvt
->info
.type
== BROADWELL
) {
2053 int bits
, a7mode
= A7MODE(dram_rule
);
2056 /* A7 mode swaps P9 with P6 */
2057 bits
= GET_BITFIELD(addr
, 7, 8) << 1;
2058 bits
|= GET_BITFIELD(addr
, 9, 9);
2060 bits
= GET_BITFIELD(addr
, 6, 8);
2062 if (interleave_mode
== 0) {
2063 /* interleave mode will XOR {8,7,6} with {18,17,16} */
2064 idx
= GET_BITFIELD(addr
, 16, 18);
2069 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
2070 *socket
= sad_pkg_socket(pkg
);
2071 sad_ha
= sad_pkg_ha(pkg
);
2076 /* MCChanShiftUpEnable */
2077 pci_read_config_dword(pvt
->pci_ha0
,
2078 HASWELL_HASYSDEFEATURE2
, ®
);
2079 shiftup
= GET_BITFIELD(reg
, 22, 22);
2082 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %i, shiftup: %i\n",
2083 idx
, *socket
, sad_ha
, shiftup
);
2085 /* Ivy Bridge's SAD mode doesn't support XOR interleave mode */
2086 idx
= (addr
>> 6) & 7;
2087 pkg
= sad_pkg(pvt
->info
.interleave_pkg
, reg
, idx
);
2088 *socket
= sad_pkg_socket(pkg
);
2089 sad_ha
= sad_pkg_ha(pkg
);
2092 edac_dbg(0, "SAD interleave package: %d = CPU socket %d, HA %d\n",
2093 idx
, *socket
, sad_ha
);
2099 * Move to the proper node structure, in order to access the
2100 * right PCI registers
2102 new_mci
= get_mci_for_node_id(*socket
);
2104 sprintf(msg
, "Struct for socket #%u wasn't initialized",
2109 pvt
= mci
->pvt_info
;
2112 * Step 2) Get memory channel
2115 if (pvt
->info
.type
== SANDY_BRIDGE
)
2116 pci_ha
= pvt
->pci_ha0
;
2119 pci_ha
= pvt
->pci_ha1
;
2121 pci_ha
= pvt
->pci_ha0
;
2123 for (n_tads
= 0; n_tads
< MAX_TAD
; n_tads
++) {
2124 pci_read_config_dword(pci_ha
, tad_dram_rule
[n_tads
], ®
);
2125 limit
= TAD_LIMIT(reg
);
2127 sprintf(msg
, "Can't discover the memory channel");
2134 if (n_tads
== MAX_TAD
) {
2135 sprintf(msg
, "Can't discover the memory channel");
2139 ch_way
= TAD_CH(reg
) + 1;
2140 sck_way
= TAD_SOCK(reg
);
2145 idx
= (addr
>> (6 + sck_way
+ shiftup
)) & 0x3;
2146 if (pvt
->is_chan_hash
)
2147 idx
= haswell_chan_hash(idx
, addr
);
2152 * FIXME: Shouldn't we use CHN_IDX_OFFSET() here, when ch_way == 3 ???
2156 base_ch
= TAD_TGT0(reg
);
2159 base_ch
= TAD_TGT1(reg
);
2162 base_ch
= TAD_TGT2(reg
);
2165 base_ch
= TAD_TGT3(reg
);
2168 sprintf(msg
, "Can't discover the TAD target");
2171 *channel_mask
= 1 << base_ch
;
2173 pci_read_config_dword(pvt
->pci_tad
[ch_add
+ base_ch
],
2174 tad_ch_nilv_offset
[n_tads
],
2177 if (pvt
->is_mirrored
) {
2178 *channel_mask
|= 1 << ((base_ch
+ 2) % 4);
2182 sck_xch
= (1 << sck_way
) * (ch_way
>> 1);
2185 sprintf(msg
, "Invalid mirror set. Can't decode addr");
2189 sck_xch
= (1 << sck_way
) * ch_way
;
2191 if (pvt
->is_lockstep
)
2192 *channel_mask
|= 1 << ((base_ch
+ 1) % 4);
2194 offset
= TAD_OFFSET(tad_offset
);
2196 edac_dbg(0, "TAD#%d: address 0x%016Lx < 0x%016Lx, socket interleave %d, channel interleave %d (offset 0x%08Lx), index %d, base ch: %d, ch mask: 0x%02lx\n",
2207 /* Calculate channel address */
2208 /* Remove the TAD offset */
2210 if (offset
> addr
) {
2211 sprintf(msg
, "Can't calculate ch addr: TAD offset 0x%08Lx is too high for addr 0x%08Lx!",
2216 ch_addr
= addr
- offset
;
2217 ch_addr
>>= (6 + shiftup
);
2219 ch_addr
<<= (6 + shiftup
);
2220 ch_addr
|= addr
& ((1 << (6 + shiftup
)) - 1);
2223 * Step 3) Decode rank
2225 for (n_rir
= 0; n_rir
< MAX_RIR_RANGES
; n_rir
++) {
2226 pci_read_config_dword(pvt
->pci_tad
[ch_add
+ base_ch
],
2227 rir_way_limit
[n_rir
],
2230 if (!IS_RIR_VALID(reg
))
2233 limit
= pvt
->info
.rir_limit(reg
);
2234 gb
= div_u64_rem(limit
>> 20, 1024, &mb
);
2235 edac_dbg(0, "RIR#%d, limit: %u.%03u GB (0x%016Lx), way: %d\n",
2240 if (ch_addr
<= limit
)
2243 if (n_rir
== MAX_RIR_RANGES
) {
2244 sprintf(msg
, "Can't discover the memory rank for ch addr 0x%08Lx",
2248 rir_way
= RIR_WAY(reg
);
2250 if (pvt
->is_close_pg
)
2251 idx
= (ch_addr
>> 6);
2253 idx
= (ch_addr
>> 13); /* FIXME: Datasheet says to shift by 15 */
2254 idx
%= 1 << rir_way
;
2256 pci_read_config_dword(pvt
->pci_tad
[ch_add
+ base_ch
],
2257 rir_offset
[n_rir
][idx
],
2259 *rank
= RIR_RNK_TGT(reg
);
2261 edac_dbg(0, "RIR#%d: channel address 0x%08Lx < 0x%08Lx, RIR interleave %d, index %d\n",
2271 /****************************************************************************
2272 Device initialization routines: put/get, init/exit
2273 ****************************************************************************/
2276 * sbridge_put_all_devices 'put' all the devices that we have
2277 * reserved via 'get'
2279 static void sbridge_put_devices(struct sbridge_dev
*sbridge_dev
)
2284 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2285 struct pci_dev
*pdev
= sbridge_dev
->pdev
[i
];
2288 edac_dbg(0, "Removing dev %02x:%02x.%d\n",
2290 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
));
2295 static void sbridge_put_all_devices(void)
2297 struct sbridge_dev
*sbridge_dev
, *tmp
;
2299 list_for_each_entry_safe(sbridge_dev
, tmp
, &sbridge_edac_list
, list
) {
2300 sbridge_put_devices(sbridge_dev
);
2301 free_sbridge_dev(sbridge_dev
);
2305 static int sbridge_get_onedevice(struct pci_dev
**prev
,
2307 const struct pci_id_table
*table
,
2308 const unsigned devno
,
2309 const int multi_bus
)
2311 struct sbridge_dev
*sbridge_dev
;
2312 const struct pci_id_descr
*dev_descr
= &table
->descr
[devno
];
2313 struct pci_dev
*pdev
= NULL
;
2316 sbridge_printk(KERN_DEBUG
,
2317 "Seeking for: PCI ID %04x:%04x\n",
2318 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2320 pdev
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2321 dev_descr
->dev_id
, *prev
);
2329 if (dev_descr
->optional
)
2332 /* if the HA wasn't found */
2336 sbridge_printk(KERN_INFO
,
2337 "Device not found: %04x:%04x\n",
2338 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2340 /* End of list, leave */
2343 bus
= pdev
->bus
->number
;
2345 sbridge_dev
= get_sbridge_dev(bus
, multi_bus
);
2347 sbridge_dev
= alloc_sbridge_dev(bus
, table
);
2355 if (sbridge_dev
->pdev
[devno
]) {
2356 sbridge_printk(KERN_ERR
,
2357 "Duplicated device for %04x:%04x\n",
2358 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2363 sbridge_dev
->pdev
[devno
] = pdev
;
2365 /* Be sure that the device is enabled */
2366 if (unlikely(pci_enable_device(pdev
) < 0)) {
2367 sbridge_printk(KERN_ERR
,
2368 "Couldn't enable %04x:%04x\n",
2369 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2373 edac_dbg(0, "Detected %04x:%04x\n",
2374 PCI_VENDOR_ID_INTEL
, dev_descr
->dev_id
);
2377 * As stated on drivers/pci/search.c, the reference count for
2378 * @from is always decremented if it is not %NULL. So, as we need
2379 * to get all devices up to null, we need to do a get for the device
2389 * sbridge_get_all_devices - Find and perform 'get' operation on the MCH's
2390 * devices we want to reference for this driver.
2391 * @num_mc: pointer to the memory controllers count, to be incremented in case
2393 * @table: model specific table
2394 * @allow_dups: allow for multiple devices to exist with the same device id
2395 * (as implemented, this isn't expected to work correctly in the
2396 * multi-socket case).
2397 * @multi_bus: don't assume devices on different buses belong to different
2398 * memory controllers.
2400 * returns 0 in case of success or error code
2402 static int sbridge_get_all_devices_full(u8
*num_mc
,
2403 const struct pci_id_table
*table
,
2408 struct pci_dev
*pdev
= NULL
;
2410 while (table
&& table
->descr
) {
2411 for (i
= 0; i
< table
->n_devs
; i
++) {
2412 if (!allow_dups
|| i
== 0 ||
2413 table
->descr
[i
].dev_id
!=
2414 table
->descr
[i
-1].dev_id
) {
2418 rc
= sbridge_get_onedevice(&pdev
, num_mc
,
2419 table
, i
, multi_bus
);
2425 sbridge_put_all_devices();
2428 } while (pdev
&& !allow_dups
);
2436 #define sbridge_get_all_devices(num_mc, table) \
2437 sbridge_get_all_devices_full(num_mc, table, 0, 0)
2438 #define sbridge_get_all_devices_knl(num_mc, table) \
2439 sbridge_get_all_devices_full(num_mc, table, 1, 1)
2441 static int sbridge_mci_bind_devs(struct mem_ctl_info
*mci
,
2442 struct sbridge_dev
*sbridge_dev
)
2444 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2445 struct pci_dev
*pdev
;
2446 u8 saw_chan_mask
= 0;
2449 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2450 pdev
= sbridge_dev
->pdev
[i
];
2454 switch (pdev
->device
) {
2455 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD0
:
2456 pvt
->pci_sad0
= pdev
;
2458 case PCI_DEVICE_ID_INTEL_SBRIDGE_SAD1
:
2459 pvt
->pci_sad1
= pdev
;
2461 case PCI_DEVICE_ID_INTEL_SBRIDGE_BR
:
2462 pvt
->pci_br0
= pdev
;
2464 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
:
2465 pvt
->pci_ha0
= pdev
;
2467 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TA
:
2470 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_RAS
:
2471 pvt
->pci_ras
= pdev
;
2473 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
:
2474 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD1
:
2475 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD2
:
2476 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD3
:
2478 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_TAD0
;
2479 pvt
->pci_tad
[id
] = pdev
;
2480 saw_chan_mask
|= 1 << id
;
2483 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_DDRIO
:
2484 pvt
->pci_ddrio
= pdev
;
2490 edac_dbg(0, "Associated PCI %02x:%02x, bus %d with dev = %p\n",
2491 pdev
->vendor
, pdev
->device
,
2496 /* Check if everything were registered */
2497 if (!pvt
->pci_sad0
|| !pvt
->pci_sad1
|| !pvt
->pci_ha0
||
2498 !pvt
-> pci_tad
|| !pvt
->pci_ras
|| !pvt
->pci_ta
)
2501 if (saw_chan_mask
!= 0x0f)
2506 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2510 sbridge_printk(KERN_ERR
, "Unexpected device %02x:%02x\n",
2511 PCI_VENDOR_ID_INTEL
, pdev
->device
);
2515 static int ibridge_mci_bind_devs(struct mem_ctl_info
*mci
,
2516 struct sbridge_dev
*sbridge_dev
)
2518 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2519 struct pci_dev
*pdev
;
2520 u8 saw_chan_mask
= 0;
2523 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2524 pdev
= sbridge_dev
->pdev
[i
];
2528 switch (pdev
->device
) {
2529 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0
:
2530 pvt
->pci_ha0
= pdev
;
2532 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
:
2534 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_RAS
:
2535 pvt
->pci_ras
= pdev
;
2537 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
:
2538 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD1
:
2539 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD2
:
2540 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD3
:
2542 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TAD0
;
2543 pvt
->pci_tad
[id
] = pdev
;
2544 saw_chan_mask
|= 1 << id
;
2547 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_2HA_DDRIO0
:
2548 pvt
->pci_ddrio
= pdev
;
2550 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_1HA_DDRIO0
:
2551 pvt
->pci_ddrio
= pdev
;
2553 case PCI_DEVICE_ID_INTEL_IBRIDGE_SAD
:
2554 pvt
->pci_sad0
= pdev
;
2556 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR0
:
2557 pvt
->pci_br0
= pdev
;
2559 case PCI_DEVICE_ID_INTEL_IBRIDGE_BR1
:
2560 pvt
->pci_br1
= pdev
;
2562 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1
:
2563 pvt
->pci_ha1
= pdev
;
2565 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
:
2566 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD1
:
2567 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD2
:
2568 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD3
:
2570 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA1_TAD0
+ 4;
2571 pvt
->pci_tad
[id
] = pdev
;
2572 saw_chan_mask
|= 1 << id
;
2579 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2581 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2585 /* Check if everything were registered */
2586 if (!pvt
->pci_sad0
|| !pvt
->pci_ha0
|| !pvt
->pci_br0
||
2587 !pvt
->pci_br1
|| !pvt
->pci_tad
|| !pvt
->pci_ras
||
2591 if (saw_chan_mask
!= 0x0f && /* -EN */
2592 saw_chan_mask
!= 0x33 && /* -EP */
2593 saw_chan_mask
!= 0xff) /* -EX */
2598 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2602 sbridge_printk(KERN_ERR
,
2603 "Unexpected device %02x:%02x\n", PCI_VENDOR_ID_INTEL
,
2608 static int haswell_mci_bind_devs(struct mem_ctl_info
*mci
,
2609 struct sbridge_dev
*sbridge_dev
)
2611 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2612 struct pci_dev
*pdev
;
2613 u8 saw_chan_mask
= 0;
2616 /* there's only one device per system; not tied to any bus */
2617 if (pvt
->info
.pci_vtd
== NULL
)
2618 /* result will be checked later */
2619 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2620 PCI_DEVICE_ID_INTEL_HASWELL_IMC_VTD_MISC
,
2623 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2624 pdev
= sbridge_dev
->pdev
[i
];
2628 switch (pdev
->device
) {
2629 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD0
:
2630 pvt
->pci_sad0
= pdev
;
2632 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_CBO_SAD1
:
2633 pvt
->pci_sad1
= pdev
;
2635 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
:
2636 pvt
->pci_ha0
= pdev
;
2638 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TA
:
2641 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_THERMAL
:
2642 pvt
->pci_ras
= pdev
;
2644 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
:
2645 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD1
:
2646 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD2
:
2647 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD3
:
2649 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0_TAD0
;
2651 pvt
->pci_tad
[id
] = pdev
;
2652 saw_chan_mask
|= 1 << id
;
2655 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
:
2656 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD1
:
2657 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD2
:
2658 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD3
:
2660 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TAD0
+ 4;
2662 pvt
->pci_tad
[id
] = pdev
;
2663 saw_chan_mask
|= 1 << id
;
2666 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO0
:
2667 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO1
:
2668 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO2
:
2669 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_DDRIO3
:
2670 if (!pvt
->pci_ddrio
)
2671 pvt
->pci_ddrio
= pdev
;
2673 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1
:
2674 pvt
->pci_ha1
= pdev
;
2676 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA1_TA
:
2677 pvt
->pci_ha1_ta
= pdev
;
2683 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2685 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2689 /* Check if everything were registered */
2690 if (!pvt
->pci_sad0
|| !pvt
->pci_ha0
|| !pvt
->pci_sad1
||
2691 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2694 if (saw_chan_mask
!= 0x0f && /* -EN */
2695 saw_chan_mask
!= 0x33 && /* -EP */
2696 saw_chan_mask
!= 0xff) /* -EX */
2701 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2705 static int broadwell_mci_bind_devs(struct mem_ctl_info
*mci
,
2706 struct sbridge_dev
*sbridge_dev
)
2708 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2709 struct pci_dev
*pdev
;
2710 u8 saw_chan_mask
= 0;
2713 /* there's only one device per system; not tied to any bus */
2714 if (pvt
->info
.pci_vtd
== NULL
)
2715 /* result will be checked later */
2716 pvt
->info
.pci_vtd
= pci_get_device(PCI_VENDOR_ID_INTEL
,
2717 PCI_DEVICE_ID_INTEL_BROADWELL_IMC_VTD_MISC
,
2720 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2721 pdev
= sbridge_dev
->pdev
[i
];
2725 switch (pdev
->device
) {
2726 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD0
:
2727 pvt
->pci_sad0
= pdev
;
2729 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_CBO_SAD1
:
2730 pvt
->pci_sad1
= pdev
;
2732 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
:
2733 pvt
->pci_ha0
= pdev
;
2735 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TA
:
2738 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_THERMAL
:
2739 pvt
->pci_ras
= pdev
;
2741 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
:
2742 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD1
:
2743 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD2
:
2744 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD3
:
2746 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0_TAD0
;
2747 pvt
->pci_tad
[id
] = pdev
;
2748 saw_chan_mask
|= 1 << id
;
2751 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
:
2752 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD1
:
2753 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD2
:
2754 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD3
:
2756 int id
= pdev
->device
- PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TAD0
+ 4;
2757 pvt
->pci_tad
[id
] = pdev
;
2758 saw_chan_mask
|= 1 << id
;
2761 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_DDRIO0
:
2762 pvt
->pci_ddrio
= pdev
;
2764 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1
:
2765 pvt
->pci_ha1
= pdev
;
2767 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA1_TA
:
2768 pvt
->pci_ha1_ta
= pdev
;
2774 edac_dbg(0, "Associated PCI %02x.%02d.%d with dev = %p\n",
2776 PCI_SLOT(pdev
->devfn
), PCI_FUNC(pdev
->devfn
),
2780 /* Check if everything were registered */
2781 if (!pvt
->pci_sad0
|| !pvt
->pci_ha0
|| !pvt
->pci_sad1
||
2782 !pvt
->pci_ras
|| !pvt
->pci_ta
|| !pvt
->info
.pci_vtd
)
2785 if (saw_chan_mask
!= 0x0f && /* -EN */
2786 saw_chan_mask
!= 0x33 && /* -EP */
2787 saw_chan_mask
!= 0xff) /* -EX */
2792 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2796 static int knl_mci_bind_devs(struct mem_ctl_info
*mci
,
2797 struct sbridge_dev
*sbridge_dev
)
2799 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2800 struct pci_dev
*pdev
;
2806 for (i
= 0; i
< sbridge_dev
->n_devs
; i
++) {
2807 pdev
= sbridge_dev
->pdev
[i
];
2811 /* Extract PCI device and function. */
2812 dev
= (pdev
->devfn
>> 3) & 0x1f;
2813 func
= pdev
->devfn
& 0x7;
2815 switch (pdev
->device
) {
2816 case PCI_DEVICE_ID_INTEL_KNL_IMC_MC
:
2818 pvt
->knl
.pci_mc0
= pdev
;
2820 pvt
->knl
.pci_mc1
= pdev
;
2822 sbridge_printk(KERN_ERR
,
2823 "Memory controller in unexpected place! (dev %d, fn %d)\n",
2829 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
:
2830 pvt
->pci_sad0
= pdev
;
2833 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD1
:
2834 pvt
->pci_sad1
= pdev
;
2837 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHA
:
2838 /* There are one of these per tile, and range from
2841 devidx
= ((dev
-14)*8)+func
;
2843 if (devidx
< 0 || devidx
>= KNL_MAX_CHAS
) {
2844 sbridge_printk(KERN_ERR
,
2845 "Caching and Home Agent in unexpected place! (dev %d, fn %d)\n",
2850 WARN_ON(pvt
->knl
.pci_cha
[devidx
] != NULL
);
2852 pvt
->knl
.pci_cha
[devidx
] = pdev
;
2855 case PCI_DEVICE_ID_INTEL_KNL_IMC_CHANNEL
:
2859 * MC0 channels 0-2 are device 9 function 2-4,
2860 * MC1 channels 3-5 are device 8 function 2-4.
2866 devidx
= 3 + (func
-2);
2868 if (devidx
< 0 || devidx
>= KNL_MAX_CHANNELS
) {
2869 sbridge_printk(KERN_ERR
,
2870 "DRAM Channel Registers in unexpected place! (dev %d, fn %d)\n",
2875 WARN_ON(pvt
->knl
.pci_channel
[devidx
] != NULL
);
2876 pvt
->knl
.pci_channel
[devidx
] = pdev
;
2879 case PCI_DEVICE_ID_INTEL_KNL_IMC_TOLHM
:
2880 pvt
->knl
.pci_mc_info
= pdev
;
2883 case PCI_DEVICE_ID_INTEL_KNL_IMC_TA
:
2888 sbridge_printk(KERN_ERR
, "Unexpected device %d\n",
2894 if (!pvt
->knl
.pci_mc0
|| !pvt
->knl
.pci_mc1
||
2895 !pvt
->pci_sad0
|| !pvt
->pci_sad1
||
2900 for (i
= 0; i
< KNL_MAX_CHANNELS
; i
++) {
2901 if (!pvt
->knl
.pci_channel
[i
]) {
2902 sbridge_printk(KERN_ERR
, "Missing channel %d\n", i
);
2907 for (i
= 0; i
< KNL_MAX_CHAS
; i
++) {
2908 if (!pvt
->knl
.pci_cha
[i
]) {
2909 sbridge_printk(KERN_ERR
, "Missing CHA %d\n", i
);
2917 sbridge_printk(KERN_ERR
, "Some needed devices are missing\n");
2921 /****************************************************************************
2922 Error check routines
2923 ****************************************************************************/
2926 * While Sandy Bridge has error count registers, SMI BIOS read values from
2927 * and resets the counters. So, they are not reliable for the OS to read
2928 * from them. So, we have no option but to just trust on whatever MCE is
2929 * telling us about the errors.
2931 static void sbridge_mce_output_error(struct mem_ctl_info
*mci
,
2932 const struct mce
*m
)
2934 struct mem_ctl_info
*new_mci
;
2935 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
2936 enum hw_event_mc_err_type tp_event
;
2937 char *type
, *optype
, msg
[256];
2938 bool ripv
= GET_BITFIELD(m
->mcgstatus
, 0, 0);
2939 bool overflow
= GET_BITFIELD(m
->status
, 62, 62);
2940 bool uncorrected_error
= GET_BITFIELD(m
->status
, 61, 61);
2942 u32 core_err_cnt
= GET_BITFIELD(m
->status
, 38, 52);
2943 u32 mscod
= GET_BITFIELD(m
->status
, 16, 31);
2944 u32 errcode
= GET_BITFIELD(m
->status
, 0, 15);
2945 u32 channel
= GET_BITFIELD(m
->status
, 0, 3);
2946 u32 optypenum
= GET_BITFIELD(m
->status
, 4, 6);
2947 long channel_mask
, first_channel
;
2948 u8 rank
, socket
, ha
;
2950 char *area_type
= NULL
;
2952 if (pvt
->info
.type
!= SANDY_BRIDGE
)
2955 recoverable
= GET_BITFIELD(m
->status
, 56, 56);
2957 if (uncorrected_error
) {
2960 tp_event
= HW_EVENT_ERR_FATAL
;
2963 tp_event
= HW_EVENT_ERR_UNCORRECTED
;
2967 tp_event
= HW_EVENT_ERR_CORRECTED
;
2971 * According with Table 15-9 of the Intel Architecture spec vol 3A,
2972 * memory errors should fit in this mask:
2973 * 000f 0000 1mmm cccc (binary)
2975 * f = Correction Report Filtering Bit. If 1, subsequent errors
2979 * If the mask doesn't match, report an error to the parsing logic
2981 if (! ((errcode
& 0xef80) == 0x80)) {
2982 optype
= "Can't parse: it is not a mem";
2984 switch (optypenum
) {
2986 optype
= "generic undef request error";
2989 optype
= "memory read error";
2992 optype
= "memory write error";
2995 optype
= "addr/cmd error";
2998 optype
= "memory scrubbing error";
3001 optype
= "reserved";
3006 /* Only decode errors with an valid address (ADDRV) */
3007 if (!GET_BITFIELD(m
->status
, 58, 58))
3010 if (pvt
->info
.type
== KNIGHTS_LANDING
) {
3011 if (channel
== 14) {
3012 edac_dbg(0, "%s%s err_code:%04x:%04x EDRAM bank %d\n",
3013 overflow
? " OVERFLOW" : "",
3014 (uncorrected_error
&& recoverable
)
3015 ? " recoverable" : "",
3021 channel
= knl_channel_remap(channel
);
3022 channel_mask
= 1 << channel
;
3023 snprintf(msg
, sizeof(msg
),
3024 "%s%s err_code:%04x:%04x channel:%d (DIMM_%c)",
3025 overflow
? " OVERFLOW" : "",
3026 (uncorrected_error
&& recoverable
)
3027 ? " recoverable" : " ",
3028 mscod
, errcode
, channel
, A
+ channel
);
3029 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
3030 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
3036 rc
= get_memory_error_data(mci
, m
->addr
, &socket
, &ha
,
3037 &channel_mask
, &rank
, &area_type
, msg
);
3042 new_mci
= get_mci_for_node_id(socket
);
3044 strcpy(msg
, "Error: socket got corrupted!");
3048 pvt
= mci
->pvt_info
;
3050 first_channel
= find_first_bit(&channel_mask
, NUM_CHANNELS
);
3061 * FIXME: On some memory configurations (mirror, lockstep), the
3062 * Memory Controller can't point the error to a single DIMM. The
3063 * EDAC core should be handling the channel mask, in order to point
3064 * to the group of dimm's where the error may be happening.
3066 if (!pvt
->is_lockstep
&& !pvt
->is_mirrored
&& !pvt
->is_close_pg
)
3067 channel
= first_channel
;
3069 snprintf(msg
, sizeof(msg
),
3070 "%s%s area:%s err_code:%04x:%04x socket:%d ha:%d channel_mask:%ld rank:%d",
3071 overflow
? " OVERFLOW" : "",
3072 (uncorrected_error
&& recoverable
) ? " recoverable" : "",
3079 edac_dbg(0, "%s\n", msg
);
3081 /* FIXME: need support for channel mask */
3083 if (channel
== CHANNEL_UNSPECIFIED
)
3086 /* Call the helper to output message */
3087 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
,
3088 m
->addr
>> PAGE_SHIFT
, m
->addr
& ~PAGE_MASK
, 0,
3089 4*ha
+channel
, dimm
, -1,
3093 edac_mc_handle_error(tp_event
, mci
, core_err_cnt
, 0, 0, 0,
3100 * sbridge_check_error Retrieve and process errors reported by the
3101 * hardware. Called by the Core module.
3103 static void sbridge_check_error(struct mem_ctl_info
*mci
)
3105 struct sbridge_pvt
*pvt
= mci
->pvt_info
;
3111 * MCE first step: Copy all mce errors into a temporary buffer
3112 * We use a double buffering here, to reduce the risk of
3116 count
= (pvt
->mce_out
+ MCE_LOG_LEN
- pvt
->mce_in
)
3121 m
= pvt
->mce_outentry
;
3122 if (pvt
->mce_in
+ count
> MCE_LOG_LEN
) {
3123 unsigned l
= MCE_LOG_LEN
- pvt
->mce_in
;
3125 memcpy(m
, &pvt
->mce_entry
[pvt
->mce_in
], sizeof(*m
) * l
);
3131 memcpy(m
, &pvt
->mce_entry
[pvt
->mce_in
], sizeof(*m
) * count
);
3133 pvt
->mce_in
+= count
;
3136 if (pvt
->mce_overrun
) {
3137 sbridge_printk(KERN_ERR
, "Lost %d memory errors\n",
3140 pvt
->mce_overrun
= 0;
3144 * MCE second step: parse errors and display
3146 for (i
= 0; i
< count
; i
++)
3147 sbridge_mce_output_error(mci
, &pvt
->mce_outentry
[i
]);
3151 * sbridge_mce_check_error Replicates mcelog routine to get errors
3152 * This routine simply queues mcelog errors, and
3153 * return. The error itself should be handled later
3154 * by sbridge_check_error.
3155 * WARNING: As this routine should be called at NMI time, extra care should
3156 * be taken to avoid deadlocks, and to be as fast as possible.
3158 static int sbridge_mce_check_error(struct notifier_block
*nb
, unsigned long val
,
3161 struct mce
*mce
= (struct mce
*)data
;
3162 struct mem_ctl_info
*mci
;
3163 struct sbridge_pvt
*pvt
;
3166 if (get_edac_report_status() == EDAC_REPORTING_DISABLED
)
3169 mci
= get_mci_for_node_id(mce
->socketid
);
3172 pvt
= mci
->pvt_info
;
3175 * Just let mcelog handle it if the error is
3176 * outside the memory controller. A memory error
3177 * is indicated by bit 7 = 1 and bits = 8-11,13-15 = 0.
3178 * bit 12 has an special meaning.
3180 if ((mce
->status
& 0xefff) >> 7 != 1)
3183 if (mce
->mcgstatus
& MCG_STATUS_MCIP
)
3188 sbridge_mc_printk(mci
, KERN_DEBUG
, "HANDLING MCE MEMORY ERROR\n");
3190 sbridge_mc_printk(mci
, KERN_DEBUG
, "CPU %d: Machine Check %s: %Lx "
3191 "Bank %d: %016Lx\n", mce
->extcpu
, type
,
3192 mce
->mcgstatus
, mce
->bank
, mce
->status
);
3193 sbridge_mc_printk(mci
, KERN_DEBUG
, "TSC %llx ", mce
->tsc
);
3194 sbridge_mc_printk(mci
, KERN_DEBUG
, "ADDR %llx ", mce
->addr
);
3195 sbridge_mc_printk(mci
, KERN_DEBUG
, "MISC %llx ", mce
->misc
);
3197 sbridge_mc_printk(mci
, KERN_DEBUG
, "PROCESSOR %u:%x TIME %llu SOCKET "
3198 "%u APIC %x\n", mce
->cpuvendor
, mce
->cpuid
,
3199 mce
->time
, mce
->socketid
, mce
->apicid
);
3202 if ((pvt
->mce_out
+ 1) % MCE_LOG_LEN
== pvt
->mce_in
) {
3208 /* Copy memory error at the ringbuffer */
3209 memcpy(&pvt
->mce_entry
[pvt
->mce_out
], mce
, sizeof(*mce
));
3211 pvt
->mce_out
= (pvt
->mce_out
+ 1) % MCE_LOG_LEN
;
3213 /* Handle fatal errors immediately */
3214 if (mce
->mcgstatus
& 1)
3215 sbridge_check_error(mci
);
3217 /* Advice mcelog that the error were handled */
3221 static struct notifier_block sbridge_mce_dec
= {
3222 .notifier_call
= sbridge_mce_check_error
,
3225 /****************************************************************************
3226 EDAC register/unregister logic
3227 ****************************************************************************/
3229 static void sbridge_unregister_mci(struct sbridge_dev
*sbridge_dev
)
3231 struct mem_ctl_info
*mci
= sbridge_dev
->mci
;
3232 struct sbridge_pvt
*pvt
;
3234 if (unlikely(!mci
|| !mci
->pvt_info
)) {
3235 edac_dbg(0, "MC: dev = %p\n", &sbridge_dev
->pdev
[0]->dev
);
3237 sbridge_printk(KERN_ERR
, "Couldn't find mci handler\n");
3241 pvt
= mci
->pvt_info
;
3243 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3244 mci
, &sbridge_dev
->pdev
[0]->dev
);
3246 /* Remove MC sysfs nodes */
3247 edac_mc_del_mc(mci
->pdev
);
3249 edac_dbg(1, "%s: free mci struct\n", mci
->ctl_name
);
3250 kfree(mci
->ctl_name
);
3252 sbridge_dev
->mci
= NULL
;
3255 static int sbridge_register_mci(struct sbridge_dev
*sbridge_dev
, enum type type
)
3257 struct mem_ctl_info
*mci
;
3258 struct edac_mc_layer layers
[2];
3259 struct sbridge_pvt
*pvt
;
3260 struct pci_dev
*pdev
= sbridge_dev
->pdev
[0];
3263 /* Check the number of active and not disabled channels */
3264 rc
= check_if_ecc_is_active(sbridge_dev
->bus
, type
);
3265 if (unlikely(rc
< 0))
3268 /* allocate a new MC control structure */
3269 layers
[0].type
= EDAC_MC_LAYER_CHANNEL
;
3270 layers
[0].size
= type
== KNIGHTS_LANDING
?
3271 KNL_MAX_CHANNELS
: NUM_CHANNELS
;
3272 layers
[0].is_virt_csrow
= false;
3273 layers
[1].type
= EDAC_MC_LAYER_SLOT
;
3274 layers
[1].size
= type
== KNIGHTS_LANDING
? 1 : MAX_DIMMS
;
3275 layers
[1].is_virt_csrow
= true;
3276 mci
= edac_mc_alloc(sbridge_dev
->mc
, ARRAY_SIZE(layers
), layers
,
3282 edac_dbg(0, "MC: mci = %p, dev = %p\n",
3285 pvt
= mci
->pvt_info
;
3286 memset(pvt
, 0, sizeof(*pvt
));
3288 /* Associate sbridge_dev and mci for future usage */
3289 pvt
->sbridge_dev
= sbridge_dev
;
3290 sbridge_dev
->mci
= mci
;
3292 mci
->mtype_cap
= type
== KNIGHTS_LANDING
?
3293 MEM_FLAG_DDR4
: MEM_FLAG_DDR3
;
3294 mci
->edac_ctl_cap
= EDAC_FLAG_NONE
;
3295 mci
->edac_cap
= EDAC_FLAG_NONE
;
3296 mci
->mod_name
= "sbridge_edac.c";
3297 mci
->mod_ver
= SBRIDGE_REVISION
;
3298 mci
->dev_name
= pci_name(pdev
);
3299 mci
->ctl_page_to_phys
= NULL
;
3301 /* Set the function pointer to an actual operation function */
3302 mci
->edac_check
= sbridge_check_error
;
3304 pvt
->info
.type
= type
;
3307 pvt
->info
.rankcfgr
= IB_RANK_CFG_A
;
3308 pvt
->info
.get_tolm
= ibridge_get_tolm
;
3309 pvt
->info
.get_tohm
= ibridge_get_tohm
;
3310 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3311 pvt
->info
.get_memory_type
= get_memory_type
;
3312 pvt
->info
.get_node_id
= get_node_id
;
3313 pvt
->info
.rir_limit
= rir_limit
;
3314 pvt
->info
.sad_limit
= sad_limit
;
3315 pvt
->info
.interleave_mode
= interleave_mode
;
3316 pvt
->info
.show_interleave_mode
= show_interleave_mode
;
3317 pvt
->info
.dram_attr
= dram_attr
;
3318 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3319 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3320 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
3321 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3322 pvt
->info
.get_width
= ibridge_get_width
;
3323 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Ivy Bridge Socket#%d", mci
->mc_idx
);
3325 /* Store pci devices at mci for faster access */
3326 rc
= ibridge_mci_bind_devs(mci
, sbridge_dev
);
3327 if (unlikely(rc
< 0))
3331 pvt
->info
.rankcfgr
= SB_RANK_CFG_A
;
3332 pvt
->info
.get_tolm
= sbridge_get_tolm
;
3333 pvt
->info
.get_tohm
= sbridge_get_tohm
;
3334 pvt
->info
.dram_rule
= sbridge_dram_rule
;
3335 pvt
->info
.get_memory_type
= get_memory_type
;
3336 pvt
->info
.get_node_id
= get_node_id
;
3337 pvt
->info
.rir_limit
= rir_limit
;
3338 pvt
->info
.sad_limit
= sad_limit
;
3339 pvt
->info
.interleave_mode
= interleave_mode
;
3340 pvt
->info
.show_interleave_mode
= show_interleave_mode
;
3341 pvt
->info
.dram_attr
= dram_attr
;
3342 pvt
->info
.max_sad
= ARRAY_SIZE(sbridge_dram_rule
);
3343 pvt
->info
.interleave_list
= sbridge_interleave_list
;
3344 pvt
->info
.max_interleave
= ARRAY_SIZE(sbridge_interleave_list
);
3345 pvt
->info
.interleave_pkg
= sbridge_interleave_pkg
;
3346 pvt
->info
.get_width
= sbridge_get_width
;
3347 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Sandy Bridge Socket#%d", mci
->mc_idx
);
3349 /* Store pci devices at mci for faster access */
3350 rc
= sbridge_mci_bind_devs(mci
, sbridge_dev
);
3351 if (unlikely(rc
< 0))
3355 /* rankcfgr isn't used */
3356 pvt
->info
.get_tolm
= haswell_get_tolm
;
3357 pvt
->info
.get_tohm
= haswell_get_tohm
;
3358 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3359 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
3360 pvt
->info
.get_node_id
= haswell_get_node_id
;
3361 pvt
->info
.rir_limit
= haswell_rir_limit
;
3362 pvt
->info
.sad_limit
= sad_limit
;
3363 pvt
->info
.interleave_mode
= interleave_mode
;
3364 pvt
->info
.show_interleave_mode
= show_interleave_mode
;
3365 pvt
->info
.dram_attr
= dram_attr
;
3366 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3367 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3368 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
3369 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3370 pvt
->info
.get_width
= ibridge_get_width
;
3371 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Haswell Socket#%d", mci
->mc_idx
);
3373 /* Store pci devices at mci for faster access */
3374 rc
= haswell_mci_bind_devs(mci
, sbridge_dev
);
3375 if (unlikely(rc
< 0))
3379 /* rankcfgr isn't used */
3380 pvt
->info
.get_tolm
= haswell_get_tolm
;
3381 pvt
->info
.get_tohm
= haswell_get_tohm
;
3382 pvt
->info
.dram_rule
= ibridge_dram_rule
;
3383 pvt
->info
.get_memory_type
= haswell_get_memory_type
;
3384 pvt
->info
.get_node_id
= haswell_get_node_id
;
3385 pvt
->info
.rir_limit
= haswell_rir_limit
;
3386 pvt
->info
.sad_limit
= sad_limit
;
3387 pvt
->info
.interleave_mode
= interleave_mode
;
3388 pvt
->info
.show_interleave_mode
= show_interleave_mode
;
3389 pvt
->info
.dram_attr
= dram_attr
;
3390 pvt
->info
.max_sad
= ARRAY_SIZE(ibridge_dram_rule
);
3391 pvt
->info
.interleave_list
= ibridge_interleave_list
;
3392 pvt
->info
.max_interleave
= ARRAY_SIZE(ibridge_interleave_list
);
3393 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3394 pvt
->info
.get_width
= broadwell_get_width
;
3395 mci
->ctl_name
= kasprintf(GFP_KERNEL
, "Broadwell Socket#%d", mci
->mc_idx
);
3397 /* Store pci devices at mci for faster access */
3398 rc
= broadwell_mci_bind_devs(mci
, sbridge_dev
);
3399 if (unlikely(rc
< 0))
3402 case KNIGHTS_LANDING
:
3403 /* pvt->info.rankcfgr == ??? */
3404 pvt
->info
.get_tolm
= knl_get_tolm
;
3405 pvt
->info
.get_tohm
= knl_get_tohm
;
3406 pvt
->info
.dram_rule
= knl_dram_rule
;
3407 pvt
->info
.get_memory_type
= knl_get_memory_type
;
3408 pvt
->info
.get_node_id
= knl_get_node_id
;
3409 pvt
->info
.rir_limit
= NULL
;
3410 pvt
->info
.sad_limit
= knl_sad_limit
;
3411 pvt
->info
.interleave_mode
= knl_interleave_mode
;
3412 pvt
->info
.show_interleave_mode
= knl_show_interleave_mode
;
3413 pvt
->info
.dram_attr
= dram_attr_knl
;
3414 pvt
->info
.max_sad
= ARRAY_SIZE(knl_dram_rule
);
3415 pvt
->info
.interleave_list
= knl_interleave_list
;
3416 pvt
->info
.max_interleave
= ARRAY_SIZE(knl_interleave_list
);
3417 pvt
->info
.interleave_pkg
= ibridge_interleave_pkg
;
3418 pvt
->info
.get_width
= knl_get_width
;
3419 mci
->ctl_name
= kasprintf(GFP_KERNEL
,
3420 "Knights Landing Socket#%d", mci
->mc_idx
);
3422 rc
= knl_mci_bind_devs(mci
, sbridge_dev
);
3423 if (unlikely(rc
< 0))
3428 /* Get dimm basic config and the memory layout */
3429 get_dimm_config(mci
);
3430 get_memory_layout(mci
);
3432 /* record ptr to the generic device */
3433 mci
->pdev
= &pdev
->dev
;
3435 /* add this new MC control structure to EDAC's list of MCs */
3436 if (unlikely(edac_mc_add_mc(mci
))) {
3437 edac_dbg(0, "MC: failed edac_mc_add_mc()\n");
3445 kfree(mci
->ctl_name
);
3447 sbridge_dev
->mci
= NULL
;
3452 * sbridge_probe Probe for ONE instance of device to see if it is
3455 * 0 for FOUND a device
3456 * < 0 for error code
3459 static int sbridge_probe(struct pci_dev
*pdev
, const struct pci_device_id
*id
)
3463 struct sbridge_dev
*sbridge_dev
;
3464 enum type type
= SANDY_BRIDGE
;
3466 /* get the pci devices we want to reserve for our use */
3467 mutex_lock(&sbridge_edac_lock
);
3470 * All memory controllers are allocated at the first pass.
3472 if (unlikely(probed
>= 1)) {
3473 mutex_unlock(&sbridge_edac_lock
);
3478 switch (pdev
->device
) {
3479 case PCI_DEVICE_ID_INTEL_IBRIDGE_IMC_HA0_TA
:
3480 rc
= sbridge_get_all_devices(&num_mc
,
3481 pci_dev_descr_ibridge_table
);
3484 case PCI_DEVICE_ID_INTEL_SBRIDGE_IMC_HA0
:
3485 rc
= sbridge_get_all_devices(&num_mc
,
3486 pci_dev_descr_sbridge_table
);
3487 type
= SANDY_BRIDGE
;
3489 case PCI_DEVICE_ID_INTEL_HASWELL_IMC_HA0
:
3490 rc
= sbridge_get_all_devices(&num_mc
,
3491 pci_dev_descr_haswell_table
);
3494 case PCI_DEVICE_ID_INTEL_BROADWELL_IMC_HA0
:
3495 rc
= sbridge_get_all_devices(&num_mc
,
3496 pci_dev_descr_broadwell_table
);
3499 case PCI_DEVICE_ID_INTEL_KNL_IMC_SAD0
:
3500 rc
= sbridge_get_all_devices_knl(&num_mc
,
3501 pci_dev_descr_knl_table
);
3502 type
= KNIGHTS_LANDING
;
3505 if (unlikely(rc
< 0)) {
3506 edac_dbg(0, "couldn't get all devices for 0x%x\n", pdev
->device
);
3512 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
) {
3513 edac_dbg(0, "Registering MC#%d (%d of %d)\n",
3514 mc
, mc
+ 1, num_mc
);
3516 sbridge_dev
->mc
= mc
++;
3517 rc
= sbridge_register_mci(sbridge_dev
, type
);
3518 if (unlikely(rc
< 0))
3522 sbridge_printk(KERN_INFO
, "%s\n", SBRIDGE_REVISION
);
3524 mutex_unlock(&sbridge_edac_lock
);
3528 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
3529 sbridge_unregister_mci(sbridge_dev
);
3531 sbridge_put_all_devices();
3533 mutex_unlock(&sbridge_edac_lock
);
3538 * sbridge_remove destructor for one instance of device
3541 static void sbridge_remove(struct pci_dev
*pdev
)
3543 struct sbridge_dev
*sbridge_dev
;
3548 * we have a trouble here: pdev value for removal will be wrong, since
3549 * it will point to the X58 register used to detect that the machine
3550 * is a Nehalem or upper design. However, due to the way several PCI
3551 * devices are grouped together to provide MC functionality, we need
3552 * to use a different method for releasing the devices
3555 mutex_lock(&sbridge_edac_lock
);
3557 if (unlikely(!probed
)) {
3558 mutex_unlock(&sbridge_edac_lock
);
3562 list_for_each_entry(sbridge_dev
, &sbridge_edac_list
, list
)
3563 sbridge_unregister_mci(sbridge_dev
);
3565 /* Release PCI resources */
3566 sbridge_put_all_devices();
3570 mutex_unlock(&sbridge_edac_lock
);
3573 MODULE_DEVICE_TABLE(pci
, sbridge_pci_tbl
);
3576 * sbridge_driver pci_driver structure for this module
3579 static struct pci_driver sbridge_driver
= {
3580 .name
= "sbridge_edac",
3581 .probe
= sbridge_probe
,
3582 .remove
= sbridge_remove
,
3583 .id_table
= sbridge_pci_tbl
,
3587 * sbridge_init Module entry function
3588 * Try to initialize this module for its devices
3590 static int __init
sbridge_init(void)
3596 /* Ensure that the OPSTATE is set correctly for POLL or NMI */
3599 pci_rc
= pci_register_driver(&sbridge_driver
);
3601 mce_register_decode_chain(&sbridge_mce_dec
);
3602 if (get_edac_report_status() == EDAC_REPORTING_DISABLED
)
3603 sbridge_printk(KERN_WARNING
, "Loading driver, error reporting disabled.\n");
3607 sbridge_printk(KERN_ERR
, "Failed to register device with error %d.\n",
3614 * sbridge_exit() Module exit function
3615 * Unregister the driver
3617 static void __exit
sbridge_exit(void)
3620 pci_unregister_driver(&sbridge_driver
);
3621 mce_unregister_decode_chain(&sbridge_mce_dec
);
3624 module_init(sbridge_init
);
3625 module_exit(sbridge_exit
);
3627 module_param(edac_op_state
, int, 0444);
3628 MODULE_PARM_DESC(edac_op_state
, "EDAC Error Reporting state: 0=Poll,1=NMI");
3630 MODULE_LICENSE("GPL");
3631 MODULE_AUTHOR("Mauro Carvalho Chehab");
3632 MODULE_AUTHOR("Red Hat Inc. (http://www.redhat.com)");
3633 MODULE_DESCRIPTION("MC Driver for Intel Sandy Bridge and Ivy Bridge memory controllers - "