usb: xhci-plat: properly handle probe deferral for devm_clk_get()
[linux/fpc-iii.git] / drivers / spi / spi-bcm2835aux.c
blob7428091d3f5b8ffa77ed2a3be65a114720cb4bfa
1 /*
2 * Driver for Broadcom BCM2835 auxiliary SPI Controllers
4 * the driver does not rely on the native chipselects at all
5 * but only uses the gpio type chipselects
7 * Based on: spi-bcm2835.c
9 * Copyright (C) 2015 Martin Sperl
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
22 #include <linux/clk.h>
23 #include <linux/completion.h>
24 #include <linux/delay.h>
25 #include <linux/err.h>
26 #include <linux/interrupt.h>
27 #include <linux/io.h>
28 #include <linux/kernel.h>
29 #include <linux/module.h>
30 #include <linux/of.h>
31 #include <linux/of_address.h>
32 #include <linux/of_device.h>
33 #include <linux/of_gpio.h>
34 #include <linux/of_irq.h>
35 #include <linux/regmap.h>
36 #include <linux/spi/spi.h>
37 #include <linux/spinlock.h>
40 * spi register defines
42 * note there is garbage in the "official" documentation,
43 * so some data is taken from the file:
44 * brcm_usrlib/dag/vmcsx/vcinclude/bcm2708_chip/aux_io.h
45 * inside of:
46 * http://www.broadcom.com/docs/support/videocore/Brcm_Android_ICS_Graphics_Stack.tar.gz
49 /* SPI register offsets */
50 #define BCM2835_AUX_SPI_CNTL0 0x00
51 #define BCM2835_AUX_SPI_CNTL1 0x04
52 #define BCM2835_AUX_SPI_STAT 0x08
53 #define BCM2835_AUX_SPI_PEEK 0x0C
54 #define BCM2835_AUX_SPI_IO 0x20
55 #define BCM2835_AUX_SPI_TXHOLD 0x30
57 /* Bitfields in CNTL0 */
58 #define BCM2835_AUX_SPI_CNTL0_SPEED 0xFFF00000
59 #define BCM2835_AUX_SPI_CNTL0_SPEED_MAX 0xFFF
60 #define BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT 20
61 #define BCM2835_AUX_SPI_CNTL0_CS 0x000E0000
62 #define BCM2835_AUX_SPI_CNTL0_POSTINPUT 0x00010000
63 #define BCM2835_AUX_SPI_CNTL0_VAR_CS 0x00008000
64 #define BCM2835_AUX_SPI_CNTL0_VAR_WIDTH 0x00004000
65 #define BCM2835_AUX_SPI_CNTL0_DOUTHOLD 0x00003000
66 #define BCM2835_AUX_SPI_CNTL0_ENABLE 0x00000800
67 #define BCM2835_AUX_SPI_CNTL0_IN_RISING 0x00000400
68 #define BCM2835_AUX_SPI_CNTL0_CLEARFIFO 0x00000200
69 #define BCM2835_AUX_SPI_CNTL0_OUT_RISING 0x00000100
70 #define BCM2835_AUX_SPI_CNTL0_CPOL 0x00000080
71 #define BCM2835_AUX_SPI_CNTL0_MSBF_OUT 0x00000040
72 #define BCM2835_AUX_SPI_CNTL0_SHIFTLEN 0x0000003F
74 /* Bitfields in CNTL1 */
75 #define BCM2835_AUX_SPI_CNTL1_CSHIGH 0x00000700
76 #define BCM2835_AUX_SPI_CNTL1_TXEMPTY 0x00000080
77 #define BCM2835_AUX_SPI_CNTL1_IDLE 0x00000040
78 #define BCM2835_AUX_SPI_CNTL1_MSBF_IN 0x00000002
79 #define BCM2835_AUX_SPI_CNTL1_KEEP_IN 0x00000001
81 /* Bitfields in STAT */
82 #define BCM2835_AUX_SPI_STAT_TX_LVL 0xFF000000
83 #define BCM2835_AUX_SPI_STAT_RX_LVL 0x00FF0000
84 #define BCM2835_AUX_SPI_STAT_TX_FULL 0x00000400
85 #define BCM2835_AUX_SPI_STAT_TX_EMPTY 0x00000200
86 #define BCM2835_AUX_SPI_STAT_RX_FULL 0x00000100
87 #define BCM2835_AUX_SPI_STAT_RX_EMPTY 0x00000080
88 #define BCM2835_AUX_SPI_STAT_BUSY 0x00000040
89 #define BCM2835_AUX_SPI_STAT_BITCOUNT 0x0000003F
91 /* timeout values */
92 #define BCM2835_AUX_SPI_POLLING_LIMIT_US 30
93 #define BCM2835_AUX_SPI_POLLING_JIFFIES 2
95 struct bcm2835aux_spi {
96 void __iomem *regs;
97 struct clk *clk;
98 int irq;
99 u32 cntl[2];
100 const u8 *tx_buf;
101 u8 *rx_buf;
102 int tx_len;
103 int rx_len;
104 int pending;
107 static inline u32 bcm2835aux_rd(struct bcm2835aux_spi *bs, unsigned reg)
109 return readl(bs->regs + reg);
112 static inline void bcm2835aux_wr(struct bcm2835aux_spi *bs, unsigned reg,
113 u32 val)
115 writel(val, bs->regs + reg);
118 static inline void bcm2835aux_rd_fifo(struct bcm2835aux_spi *bs)
120 u32 data;
121 int count = min(bs->rx_len, 3);
123 data = bcm2835aux_rd(bs, BCM2835_AUX_SPI_IO);
124 if (bs->rx_buf) {
125 switch (count) {
126 case 4:
127 *bs->rx_buf++ = (data >> 24) & 0xff;
128 /* fallthrough */
129 case 3:
130 *bs->rx_buf++ = (data >> 16) & 0xff;
131 /* fallthrough */
132 case 2:
133 *bs->rx_buf++ = (data >> 8) & 0xff;
134 /* fallthrough */
135 case 1:
136 *bs->rx_buf++ = (data >> 0) & 0xff;
137 /* fallthrough - no default */
140 bs->rx_len -= count;
141 bs->pending -= count;
144 static inline void bcm2835aux_wr_fifo(struct bcm2835aux_spi *bs)
146 u32 data;
147 u8 byte;
148 int count;
149 int i;
151 /* gather up to 3 bytes to write to the FIFO */
152 count = min(bs->tx_len, 3);
153 data = 0;
154 for (i = 0; i < count; i++) {
155 byte = bs->tx_buf ? *bs->tx_buf++ : 0;
156 data |= byte << (8 * (2 - i));
159 /* and set the variable bit-length */
160 data |= (count * 8) << 24;
162 /* and decrement length */
163 bs->tx_len -= count;
164 bs->pending += count;
166 /* write to the correct TX-register */
167 if (bs->tx_len)
168 bcm2835aux_wr(bs, BCM2835_AUX_SPI_TXHOLD, data);
169 else
170 bcm2835aux_wr(bs, BCM2835_AUX_SPI_IO, data);
173 static void bcm2835aux_spi_reset_hw(struct bcm2835aux_spi *bs)
175 /* disable spi clearing fifo and interrupts */
176 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, 0);
177 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0,
178 BCM2835_AUX_SPI_CNTL0_CLEARFIFO);
181 static irqreturn_t bcm2835aux_spi_interrupt(int irq, void *dev_id)
183 struct spi_master *master = dev_id;
184 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
185 irqreturn_t ret = IRQ_NONE;
187 /* check if we have data to read */
188 while (bs->rx_len &&
189 (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
190 BCM2835_AUX_SPI_STAT_RX_EMPTY))) {
191 bcm2835aux_rd_fifo(bs);
192 ret = IRQ_HANDLED;
195 /* check if we have data to write */
196 while (bs->tx_len &&
197 (bs->pending < 12) &&
198 (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
199 BCM2835_AUX_SPI_STAT_TX_FULL))) {
200 bcm2835aux_wr_fifo(bs);
201 ret = IRQ_HANDLED;
204 /* and check if we have reached "done" */
205 while (bs->rx_len &&
206 (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
207 BCM2835_AUX_SPI_STAT_BUSY))) {
208 bcm2835aux_rd_fifo(bs);
209 ret = IRQ_HANDLED;
212 if (!bs->tx_len) {
213 /* disable tx fifo empty interrupt */
214 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
215 BCM2835_AUX_SPI_CNTL1_IDLE);
218 /* and if rx_len is 0 then disable interrupts and wake up completion */
219 if (!bs->rx_len) {
220 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
221 complete(&master->xfer_completion);
224 /* and return */
225 return ret;
228 static int __bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
229 struct spi_device *spi,
230 struct spi_transfer *tfr)
232 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
234 /* enable interrupts */
235 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1] |
236 BCM2835_AUX_SPI_CNTL1_TXEMPTY |
237 BCM2835_AUX_SPI_CNTL1_IDLE);
239 /* and wait for finish... */
240 return 1;
243 static int bcm2835aux_spi_transfer_one_irq(struct spi_master *master,
244 struct spi_device *spi,
245 struct spi_transfer *tfr)
247 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
249 /* fill in registers and fifos before enabling interrupts */
250 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
251 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
253 /* fill in tx fifo with data before enabling interrupts */
254 while ((bs->tx_len) &&
255 (bs->pending < 12) &&
256 (!(bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT) &
257 BCM2835_AUX_SPI_STAT_TX_FULL))) {
258 bcm2835aux_wr_fifo(bs);
261 /* now run the interrupt mode */
262 return __bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
265 static int bcm2835aux_spi_transfer_one_poll(struct spi_master *master,
266 struct spi_device *spi,
267 struct spi_transfer *tfr)
269 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
270 unsigned long timeout;
271 u32 stat;
273 /* configure spi */
274 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
275 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
277 /* set the timeout */
278 timeout = jiffies + BCM2835_AUX_SPI_POLLING_JIFFIES;
280 /* loop until finished the transfer */
281 while (bs->rx_len) {
282 /* read status */
283 stat = bcm2835aux_rd(bs, BCM2835_AUX_SPI_STAT);
285 /* fill in tx fifo with remaining data */
286 if ((bs->tx_len) && (!(stat & BCM2835_AUX_SPI_STAT_TX_FULL))) {
287 bcm2835aux_wr_fifo(bs);
288 continue;
291 /* read data from fifo for both cases */
292 if (!(stat & BCM2835_AUX_SPI_STAT_RX_EMPTY)) {
293 bcm2835aux_rd_fifo(bs);
294 continue;
296 if (!(stat & BCM2835_AUX_SPI_STAT_BUSY)) {
297 bcm2835aux_rd_fifo(bs);
298 continue;
301 /* there is still data pending to read check the timeout */
302 if (bs->rx_len && time_after(jiffies, timeout)) {
303 dev_dbg_ratelimited(&spi->dev,
304 "timeout period reached: jiffies: %lu remaining tx/rx: %d/%d - falling back to interrupt mode\n",
305 jiffies - timeout,
306 bs->tx_len, bs->rx_len);
307 /* forward to interrupt handler */
308 return __bcm2835aux_spi_transfer_one_irq(master,
309 spi, tfr);
313 /* and return without waiting for completion */
314 return 0;
317 static int bcm2835aux_spi_transfer_one(struct spi_master *master,
318 struct spi_device *spi,
319 struct spi_transfer *tfr)
321 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
322 unsigned long spi_hz, clk_hz, speed;
323 unsigned long spi_used_hz;
324 unsigned long long xfer_time_us;
326 /* calculate the registers to handle
328 * note that we use the variable data mode, which
329 * is not optimal for longer transfers as we waste registers
330 * resulting (potentially) in more interrupts when transferring
331 * more than 12 bytes
334 /* set clock */
335 spi_hz = tfr->speed_hz;
336 clk_hz = clk_get_rate(bs->clk);
338 if (spi_hz >= clk_hz / 2) {
339 speed = 0;
340 } else if (spi_hz) {
341 speed = DIV_ROUND_UP(clk_hz, 2 * spi_hz) - 1;
342 if (speed > BCM2835_AUX_SPI_CNTL0_SPEED_MAX)
343 speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
344 } else { /* the slowest we can go */
345 speed = BCM2835_AUX_SPI_CNTL0_SPEED_MAX;
347 /* mask out old speed from previous spi_transfer */
348 bs->cntl[0] &= ~(BCM2835_AUX_SPI_CNTL0_SPEED);
349 /* set the new speed */
350 bs->cntl[0] |= speed << BCM2835_AUX_SPI_CNTL0_SPEED_SHIFT;
352 spi_used_hz = clk_hz / (2 * (speed + 1));
354 /* set transmit buffers and length */
355 bs->tx_buf = tfr->tx_buf;
356 bs->rx_buf = tfr->rx_buf;
357 bs->tx_len = tfr->len;
358 bs->rx_len = tfr->len;
359 bs->pending = 0;
361 /* calculate the estimated time in us the transfer runs
362 * note that there are are 2 idle clocks after each
363 * chunk getting transferred - in our case the chunk size
364 * is 3 bytes, so we approximate this by 9 bits/byte
366 xfer_time_us = tfr->len * 9 * 1000000;
367 do_div(xfer_time_us, spi_used_hz);
369 /* run in polling mode for short transfers */
370 if (xfer_time_us < BCM2835_AUX_SPI_POLLING_LIMIT_US)
371 return bcm2835aux_spi_transfer_one_poll(master, spi, tfr);
373 /* run in interrupt mode for all others */
374 return bcm2835aux_spi_transfer_one_irq(master, spi, tfr);
377 static int bcm2835aux_spi_prepare_message(struct spi_master *master,
378 struct spi_message *msg)
380 struct spi_device *spi = msg->spi;
381 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
383 bs->cntl[0] = BCM2835_AUX_SPI_CNTL0_ENABLE |
384 BCM2835_AUX_SPI_CNTL0_VAR_WIDTH |
385 BCM2835_AUX_SPI_CNTL0_MSBF_OUT;
386 bs->cntl[1] = BCM2835_AUX_SPI_CNTL1_MSBF_IN;
388 /* handle all the modes */
389 if (spi->mode & SPI_CPOL) {
390 bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_CPOL;
391 bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_OUT_RISING;
392 } else {
393 bs->cntl[0] |= BCM2835_AUX_SPI_CNTL0_IN_RISING;
395 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL1, bs->cntl[1]);
396 bcm2835aux_wr(bs, BCM2835_AUX_SPI_CNTL0, bs->cntl[0]);
398 return 0;
401 static int bcm2835aux_spi_unprepare_message(struct spi_master *master,
402 struct spi_message *msg)
404 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
406 bcm2835aux_spi_reset_hw(bs);
408 return 0;
411 static void bcm2835aux_spi_handle_err(struct spi_master *master,
412 struct spi_message *msg)
414 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
416 bcm2835aux_spi_reset_hw(bs);
419 static int bcm2835aux_spi_probe(struct platform_device *pdev)
421 struct spi_master *master;
422 struct bcm2835aux_spi *bs;
423 struct resource *res;
424 unsigned long clk_hz;
425 int err;
427 master = spi_alloc_master(&pdev->dev, sizeof(*bs));
428 if (!master) {
429 dev_err(&pdev->dev, "spi_alloc_master() failed\n");
430 return -ENOMEM;
433 platform_set_drvdata(pdev, master);
434 master->mode_bits = (SPI_CPOL | SPI_CS_HIGH | SPI_NO_CS);
435 master->bits_per_word_mask = SPI_BPW_MASK(8);
436 master->num_chipselect = -1;
437 master->transfer_one = bcm2835aux_spi_transfer_one;
438 master->handle_err = bcm2835aux_spi_handle_err;
439 master->prepare_message = bcm2835aux_spi_prepare_message;
440 master->unprepare_message = bcm2835aux_spi_unprepare_message;
441 master->dev.of_node = pdev->dev.of_node;
443 bs = spi_master_get_devdata(master);
445 /* the main area */
446 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
447 bs->regs = devm_ioremap_resource(&pdev->dev, res);
448 if (IS_ERR(bs->regs)) {
449 err = PTR_ERR(bs->regs);
450 goto out_master_put;
453 bs->clk = devm_clk_get(&pdev->dev, NULL);
454 if ((!bs->clk) || (IS_ERR(bs->clk))) {
455 err = PTR_ERR(bs->clk);
456 dev_err(&pdev->dev, "could not get clk: %d\n", err);
457 goto out_master_put;
460 bs->irq = platform_get_irq(pdev, 0);
461 if (bs->irq <= 0) {
462 dev_err(&pdev->dev, "could not get IRQ: %d\n", bs->irq);
463 err = bs->irq ? bs->irq : -ENODEV;
464 goto out_master_put;
467 /* this also enables the HW block */
468 err = clk_prepare_enable(bs->clk);
469 if (err) {
470 dev_err(&pdev->dev, "could not prepare clock: %d\n", err);
471 goto out_master_put;
474 /* just checking if the clock returns a sane value */
475 clk_hz = clk_get_rate(bs->clk);
476 if (!clk_hz) {
477 dev_err(&pdev->dev, "clock returns 0 Hz\n");
478 err = -ENODEV;
479 goto out_clk_disable;
482 /* reset SPI-HW block */
483 bcm2835aux_spi_reset_hw(bs);
485 err = devm_request_irq(&pdev->dev, bs->irq,
486 bcm2835aux_spi_interrupt,
487 IRQF_SHARED,
488 dev_name(&pdev->dev), master);
489 if (err) {
490 dev_err(&pdev->dev, "could not request IRQ: %d\n", err);
491 goto out_clk_disable;
494 err = devm_spi_register_master(&pdev->dev, master);
495 if (err) {
496 dev_err(&pdev->dev, "could not register SPI master: %d\n", err);
497 goto out_clk_disable;
500 return 0;
502 out_clk_disable:
503 clk_disable_unprepare(bs->clk);
504 out_master_put:
505 spi_master_put(master);
506 return err;
509 static int bcm2835aux_spi_remove(struct platform_device *pdev)
511 struct spi_master *master = platform_get_drvdata(pdev);
512 struct bcm2835aux_spi *bs = spi_master_get_devdata(master);
514 bcm2835aux_spi_reset_hw(bs);
516 /* disable the HW block by releasing the clock */
517 clk_disable_unprepare(bs->clk);
519 return 0;
522 static const struct of_device_id bcm2835aux_spi_match[] = {
523 { .compatible = "brcm,bcm2835-aux-spi", },
526 MODULE_DEVICE_TABLE(of, bcm2835aux_spi_match);
528 static struct platform_driver bcm2835aux_spi_driver = {
529 .driver = {
530 .name = "spi-bcm2835aux",
531 .of_match_table = bcm2835aux_spi_match,
533 .probe = bcm2835aux_spi_probe,
534 .remove = bcm2835aux_spi_remove,
536 module_platform_driver(bcm2835aux_spi_driver);
538 MODULE_DESCRIPTION("SPI controller driver for Broadcom BCM2835 aux");
539 MODULE_AUTHOR("Martin Sperl <kernel@martin.sperl.org>");
540 MODULE_LICENSE("GPL v2");