4 The mmu (in arch/x86/kvm, files mmu.[ch] and paging_tmpl.h) is responsible
5 for presenting a standard x86 mmu to the guest, while translating guest
6 physical addresses to host physical addresses.
8 The mmu code attempts to satisfy the following requirements:
10 - correctness: the guest should not be able to determine that it is running
11 on an emulated mmu except for timing (we attempt to comply
12 with the specification, not emulate the characteristics of
13 a particular implementation such as tlb size)
14 - security: the guest must not be able to touch host memory not assigned
16 - performance: minimize the performance penalty imposed by the mmu
17 - scaling: need to scale to large memory and large vcpu guests
18 - hardware: support the full range of x86 virtualization hardware
19 - integration: Linux memory management code must be in control of guest memory
20 so that swapping, page migration, page merging, transparent
21 hugepages, and similar features work without change
22 - dirty tracking: report writes to guest memory to enable live migration
23 and framebuffer-based displays
24 - footprint: keep the amount of pinned kernel memory low (most memory
26 - reliability: avoid multipage or GFP_ATOMIC allocations
31 pfn host page frame number
32 hpa host physical address
33 hva host virtual address
34 gfn guest frame number
35 gpa guest physical address
36 gva guest virtual address
37 ngpa nested guest physical address
38 ngva nested guest virtual address
39 pte page table entry (used also to refer generically to paging structure
41 gpte guest pte (referring to gfns)
42 spte shadow pte (referring to pfns)
43 tdp two dimensional paging (vendor neutral term for NPT and EPT)
45 Virtual and real hardware supported
46 ===================================
48 The mmu supports first-generation mmu hardware, which allows an atomic switch
49 of the current paging mode and cr3 during guest entry, as well as
50 two-dimensional paging (AMD's NPT and Intel's EPT). The emulated hardware
51 it exposes is the traditional 2/3/4 level x86 mmu, with support for global
52 pages, pae, pse, pse36, cr0.wp, and 1GB pages. Emulated hardware also
53 able to expose NPT capable hardware on NPT capable hosts.
58 The primary job of the mmu is to program the processor's mmu to translate
59 addresses for the guest. Different translations are required at different
62 - when guest paging is disabled, we translate guest physical addresses to
63 host physical addresses (gpa->hpa)
64 - when guest paging is enabled, we translate guest virtual addresses, to
65 guest physical addresses, to host physical addresses (gva->gpa->hpa)
66 - when the guest launches a guest of its own, we translate nested guest
67 virtual addresses, to nested guest physical addresses, to guest physical
68 addresses, to host physical addresses (ngva->ngpa->gpa->hpa)
70 The primary challenge is to encode between 1 and 3 translations into hardware
71 that support only 1 (traditional) and 2 (tdp) translations. When the
72 number of required translations matches the hardware, the mmu operates in
73 direct mode; otherwise it operates in shadow mode (see below).
78 Guest memory (gpa) is part of the user address space of the process that is
79 using kvm. Userspace defines the translation between guest addresses and user
80 addresses (gpa->hva); note that two gpas may alias to the same hva, but not
83 These hvas may be backed using any method available to the host: anonymous
84 memory, file backed memory, and device memory. Memory might be paged by the
90 The mmu is driven by events, some from the guest, some from the host.
92 Guest generated events:
93 - writes to control registers (especially cr3)
94 - invlpg/invlpga instruction execution
95 - access to missing or protected translations
97 Host generated events:
98 - changes in the gpa->hpa translation (either through gpa->hva changes or
99 through hva->hpa changes)
100 - memory pressure (the shrinker)
105 The principal data structure is the shadow page, 'struct kvm_mmu_page'. A
106 shadow page contains 512 sptes, which can be either leaf or nonleaf sptes. A
107 shadow page may contain a mix of leaf and nonleaf sptes.
109 A nonleaf spte allows the hardware mmu to reach the leaf pages and
110 is not related to a translation directly. It points to other shadow pages.
112 A leaf spte corresponds to either one or two translations encoded into
113 one paging structure entry. These are always the lowest level of the
114 translation stack, with optional higher level translations left to NPT/EPT.
115 Leaf ptes point at guest pages.
117 The following table shows translations encoded by leaf ptes, with higher-level
118 translations in parentheses:
122 paging: gva->gpa->hpa
123 paging, tdp: (gva->)gpa->hpa
125 non-tdp: ngva->gpa->hpa (*)
126 tdp: (ngva->)ngpa->gpa->hpa
128 (*) the guest hypervisor will encode the ngva->gpa translation into its page
129 tables if npt is not present
131 Shadow pages contain the following information:
133 The level in the shadow paging hierarchy that this shadow page belongs to.
134 1=4k sptes, 2=2M sptes, 3=1G sptes, etc.
136 If set, leaf sptes reachable from this page are for a linear range.
137 Examples include real mode translation, large guest pages backed by small
138 host pages, and gpa->hpa translations when NPT or EPT is active.
139 The linear range starts at (gfn << PAGE_SHIFT) and its size is determined
140 by role.level (2MB for first level, 1GB for second level, 0.5TB for third
141 level, 256TB for fourth level)
142 If clear, this page corresponds to a guest page table denoted by the gfn
145 When role.gpte_is_8_bytes=0, the guest uses 32-bit gptes while the host uses 64-bit
146 sptes. That means a guest page table contains more ptes than the host,
147 so multiple shadow pages are needed to shadow one guest page.
148 For first-level shadow pages, role.quadrant can be 0 or 1 and denotes the
149 first or second 512-gpte block in the guest page table. For second-level
150 page tables, each 32-bit gpte is converted to two 64-bit sptes
151 (since each first-level guest page is shadowed by two first-level
152 shadow pages) so role.quadrant takes values in the range 0..3. Each
153 quadrant maps 1GB virtual address space.
155 Inherited guest access permissions in the form uwx. Note execute
156 permission is positive, not negative.
158 The page is invalid and should not be used. It is a root page that is
159 currently pinned (by a cpu hardware register pointing to it); once it is
160 unpinned it will be destroyed.
161 role.gpte_is_8_bytes:
162 Reflects the size of the guest PTE for which the page is valid, i.e. '1'
163 if 64-bit gptes are in use, '0' if 32-bit gptes are in use.
165 Contains the value of efer.nxe for which the page is valid.
167 Contains the value of cr0.wp for which the page is valid.
169 Contains the value of cr4.smep && !cr0.wp for which the page is valid
170 (pages for which this is true are different from other pages; see the
171 treatment of cr0.wp=0 below).
173 Contains the value of cr4.smap && !cr0.wp for which the page is valid
174 (pages for which this is true are different from other pages; see the
175 treatment of cr0.wp=0 below).
177 This is a virtual flag to denote a shadowed nested EPT page. ept_sp
178 is true if "cr0_wp && smap_andnot_wp", an otherwise invalid combination.
180 Is 1 if the page is valid in system management mode. This field
181 determines which of the kvm_memslots array was used to build this
182 shadow page; it is also used to go back from a struct kvm_mmu_page
183 to a memslot, through the kvm_memslots_for_spte_role macro and
186 Is 1 if the MMU instance cannot use A/D bits. EPT did not have A/D
187 bits before Haswell; shadow EPT page tables also cannot use A/D bits
188 if the L1 hypervisor does not enable them.
190 Either the guest page table containing the translations shadowed by this
191 page, or the base page frame for linear translations. See role.direct.
193 A pageful of 64-bit sptes containing the translations for this page.
194 Accessed by both kvm and hardware.
195 The page pointed to by spt will have its page->private pointing back
196 at the shadow page structure.
197 sptes in spt point either at guest pages, or at lower-level shadow pages.
198 Specifically, if sp1 and sp2 are shadow pages, then sp1->spt[n] may point
199 at __pa(sp2->spt). sp2 will point back at sp1 through parent_pte.
200 The spt array forms a DAG structure with the shadow page as a node, and
201 guest pages as leaves.
203 An array of 512 guest frame numbers, one for each present pte. Used to
204 perform a reverse map from a pte to a gfn. When role.direct is set, any
205 element of this array can be calculated from the gfn field when used, in
206 this case, the array of gfns is not allocated. See role.direct and gfn.
208 A counter keeping track of how many hardware registers (guest cr3 or
209 pdptrs) are now pointing at the page. While this counter is nonzero, the
210 page cannot be destroyed. See role.invalid.
212 The reverse mapping for the pte/ptes pointing at this page's spt. If
213 parent_ptes bit 0 is zero, only one spte points at this page and
214 parent_ptes points at this single spte, otherwise, there exists multiple
215 sptes pointing at this page and (parent_ptes & ~0x1) points at a data
216 structure with a list of parent sptes.
218 If true, then the translations in this page may not match the guest's
219 translation. This is equivalent to the state of the tlb when a pte is
220 changed but before the tlb entry is flushed. Accordingly, unsync ptes
221 are synchronized when the guest executes invlpg or flushes its tlb by
222 other means. Valid for leaf pages.
224 How many sptes in the page point at pages that are unsync (or have
225 unsynchronized children).
227 A bitmap indicating which sptes in spt point (directly or indirectly) at
228 pages that may be unsynchronized. Used to quickly locate all unsychronized
229 pages reachable from a given page.
231 Only present on 32-bit hosts, where a 64-bit spte cannot be written
232 atomically. The reader uses this while running out of the MMU lock
233 to detect in-progress updates and retry them until the writer has
235 write_flooding_count:
236 A guest may write to a page table many times, causing a lot of
237 emulations if the page needs to be write-protected (see "Synchronized
238 and unsynchronized pages" below). Leaf pages can be unsynchronized
239 so that they do not trigger frequent emulation, but this is not
240 possible for non-leafs. This field counts the number of emulations
241 since the last time the page table was actually used; if emulation
242 is triggered too frequently on this page, KVM will unmap the page
243 to avoid emulation in the future.
248 The mmu maintains a reverse mapping whereby all ptes mapping a page can be
249 reached given its gfn. This is used, for example, when swapping out a page.
251 Synchronized and unsynchronized pages
252 =====================================
254 The guest uses two events to synchronize its tlb and page tables: tlb flushes
255 and page invalidations (invlpg).
257 A tlb flush means that we need to synchronize all sptes reachable from the
258 guest's cr3. This is expensive, so we keep all guest page tables write
259 protected, and synchronize sptes to gptes when a gpte is written.
261 A special case is when a guest page table is reachable from the current
262 guest cr3. In this case, the guest is obliged to issue an invlpg instruction
263 before using the translation. We take advantage of that by removing write
264 protection from the guest page, and allowing the guest to modify it freely.
265 We synchronize modified gptes when the guest invokes invlpg. This reduces
266 the amount of emulation we have to do when the guest modifies multiple gptes,
267 or when the a guest page is no longer used as a page table and is used for
270 As a side effect we have to resynchronize all reachable unsynchronized shadow
271 pages on a tlb flush.
277 - guest page fault (or npt page fault, or ept violation)
279 This is the most complicated event. The cause of a page fault can be:
281 - a true guest fault (the guest translation won't allow the access) (*)
282 - access to a missing translation
283 - access to a protected translation
284 - when logging dirty pages, memory is write protected
285 - synchronized shadow pages are write protected (*)
286 - access to untranslatable memory (mmio)
288 (*) not applicable in direct mode
290 Handling a page fault is performed as follows:
292 - if the RSV bit of the error code is set, the page fault is caused by guest
293 accessing MMIO and cached MMIO information is available.
294 - walk shadow page table
295 - check for valid generation number in the spte (see "Fast invalidation of
297 - cache the information to vcpu->arch.mmio_gva, vcpu->arch.mmio_access and
298 vcpu->arch.mmio_gfn, and call the emulator
299 - If both P bit and R/W bit of error code are set, this could possibly
300 be handled as a "fast page fault" (fixed without taking the MMU lock). See
301 the description in Documentation/virt/kvm/locking.txt.
302 - if needed, walk the guest page tables to determine the guest translation
303 (gva->gpa or ngpa->gpa)
304 - if permissions are insufficient, reflect the fault back to the guest
305 - determine the host page
306 - if this is an mmio request, there is no host page; cache the info to
307 vcpu->arch.mmio_gva, vcpu->arch.mmio_access and vcpu->arch.mmio_gfn
308 - walk the shadow page table to find the spte for the translation,
309 instantiating missing intermediate page tables as necessary
310 - If this is an mmio request, cache the mmio info to the spte and set some
311 reserved bit on the spte (see callers of kvm_mmu_set_mmio_spte_mask)
312 - try to unsynchronize the page
313 - if successful, we can let the guest continue and modify the gpte
314 - emulate the instruction
315 - if failed, unshadow the page and let the guest continue
316 - update any translations that were modified by the instruction
320 - walk the shadow page hierarchy and drop affected translations
321 - try to reinstantiate the indicated translation in the hope that the
322 guest will use it in the near future
324 Guest control register updates:
327 - look up new shadow roots
328 - synchronize newly reachable shadow pages
330 - mov to cr0/cr4/efer
331 - set up mmu context for new paging mode
332 - look up new shadow roots
333 - synchronize newly reachable shadow pages
335 Host translation updates:
337 - mmu notifier called with updated hva
338 - look up affected sptes through reverse map
339 - drop (or update) translations
344 If tdp is not enabled, the host must keep cr0.wp=1 so page write protection
345 works for the guest kernel, not guest guest userspace. When the guest
346 cr0.wp=1, this does not present a problem. However when the guest cr0.wp=0,
347 we cannot map the permissions for gpte.u=1, gpte.w=0 to any spte (the
348 semantics require allowing any guest kernel access plus user read access).
350 We handle this by mapping the permissions to two possible sptes, depending
353 - kernel write fault: spte.u=0, spte.w=1 (allows full kernel access,
354 disallows user access)
355 - read fault: spte.u=1, spte.w=0 (allows full read access, disallows kernel
358 (user write faults generate a #PF)
360 In the first case there are two additional complications:
361 - if CR4.SMEP is enabled: since we've turned the page into a kernel page,
362 the kernel may now execute it. We handle this by also setting spte.nx.
363 If we get a user fetch or read fault, we'll change spte.u=1 and
364 spte.nx=gpte.nx back. For this to work, KVM forces EFER.NX to 1 when
365 shadow paging is in use.
366 - if CR4.SMAP is disabled: since the page has been changed to a kernel
367 page, it can not be reused when CR4.SMAP is enabled. We set
368 CR4.SMAP && !CR0.WP into shadow page's role to avoid this case. Note,
369 here we do not care the case that CR4.SMAP is enabled since KVM will
370 directly inject #PF to guest due to failed permission check.
372 To prevent an spte that was converted into a kernel page with cr0.wp=0
373 from being written by the kernel after cr0.wp has changed to 1, we make
374 the value of cr0.wp part of the page role. This means that an spte created
375 with one value of cr0.wp cannot be used when cr0.wp has a different value -
376 it will simply be missed by the shadow page lookup code. A similar issue
377 exists when an spte created with cr0.wp=0 and cr4.smep=0 is used after
378 changing cr4.smep to 1. To avoid this, the value of !cr0.wp && cr4.smep
379 is also made a part of the page role.
384 The mmu supports all combinations of large and small guest and host pages.
385 Supported page sizes include 4k, 2M, 4M, and 1G. 4M pages are treated as
386 two separate 2M pages, on both guest and host, since the mmu always uses PAE
389 To instantiate a large spte, four constraints must be satisfied:
391 - the spte must point to a large host page
392 - the guest pte must be a large pte of at least equivalent size (if tdp is
393 enabled, there is no guest pte and this condition is satisfied)
394 - if the spte will be writeable, the large page frame may not overlap any
395 write-protected pages
396 - the guest page must be wholly contained by a single memory slot
398 To check the last two conditions, the mmu maintains a ->disallow_lpage set of
399 arrays for each memory slot and large page size. Every write protected page
400 causes its disallow_lpage to be incremented, thus preventing instantiation of
401 a large spte. The frames at the end of an unaligned memory slot have
402 artificially inflated ->disallow_lpages so they can never be instantiated.
404 Fast invalidation of MMIO sptes
405 ===============================
407 As mentioned in "Reaction to events" above, kvm will cache MMIO
408 information in leaf sptes. When a new memslot is added or an existing
409 memslot is changed, this information may become stale and needs to be
410 invalidated. This also needs to hold the MMU lock while walking all
411 shadow pages, and is made more scalable with a similar technique.
413 MMIO sptes have a few spare bits, which are used to store a
414 generation number. The global generation number is stored in
415 kvm_memslots(kvm)->generation, and increased whenever guest memory info
418 When KVM finds an MMIO spte, it checks the generation number of the spte.
419 If the generation number of the spte does not equal the global generation
420 number, it will ignore the cached MMIO information and handle the page
421 fault through the slow path.
423 Since only 19 bits are used to store generation-number on mmio spte, all
424 pages are zapped when there is an overflow.
426 Unfortunately, a single memory access might access kvm_memslots(kvm) multiple
427 times, the last one happening when the generation number is retrieved and
428 stored into the MMIO spte. Thus, the MMIO spte might be created based on
429 out-of-date information, but with an up-to-date generation number.
431 To avoid this, the generation number is incremented again after synchronize_srcu
432 returns; thus, bit 63 of kvm_memslots(kvm)->generation set to 1 only during a
433 memslot update, while some SRCU readers might be using the old copy. We do not
434 want to use an MMIO sptes created with an odd generation number, and we can do
435 this without losing a bit in the MMIO spte. The "update in-progress" bit of the
436 generation is not stored in MMIO spte, and is so is implicitly zero when the
437 generation is extracted out of the spte. If KVM is unlucky and creates an MMIO
438 spte while an update is in-progress, the next access to the spte will always be
439 a cache miss. For example, a subsequent access during the update window will
440 miss due to the in-progress flag diverging, while an access after the update
441 window closes will have a higher generation number (as compared to the spte).
447 - NPT presentation from KVM Forum 2008
448 http://www.linux-kvm.org/images/c/c8/KvmForum2008%24kdf2008_21.pdf