1 // SPDX-License-Identifier: GPL-2.0+
3 * Freescale MXS I2C bus driver
5 * Copyright (C) 2012-2013 Marek Vasut <marex@denx.de>
6 * Copyright (C) 2011-2012 Wolfram Sang, Pengutronix e.K.
8 * based on a (non-working) driver which was:
10 * Copyright (C) 2009-2010 Freescale Semiconductor, Inc. All Rights Reserved.
13 #include <linux/slab.h>
14 #include <linux/device.h>
15 #include <linux/module.h>
16 #include <linux/i2c.h>
17 #include <linux/err.h>
18 #include <linux/interrupt.h>
19 #include <linux/completion.h>
20 #include <linux/platform_device.h>
21 #include <linux/jiffies.h>
23 #include <linux/stmp_device.h>
25 #include <linux/of_device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmaengine.h>
28 #include <linux/dma/mxs-dma.h>
30 #define DRIVER_NAME "mxs-i2c"
32 #define MXS_I2C_CTRL0 (0x00)
33 #define MXS_I2C_CTRL0_SET (0x04)
34 #define MXS_I2C_CTRL0_CLR (0x08)
36 #define MXS_I2C_CTRL0_SFTRST 0x80000000
37 #define MXS_I2C_CTRL0_RUN 0x20000000
38 #define MXS_I2C_CTRL0_SEND_NAK_ON_LAST 0x02000000
39 #define MXS_I2C_CTRL0_PIO_MODE 0x01000000
40 #define MXS_I2C_CTRL0_RETAIN_CLOCK 0x00200000
41 #define MXS_I2C_CTRL0_POST_SEND_STOP 0x00100000
42 #define MXS_I2C_CTRL0_PRE_SEND_START 0x00080000
43 #define MXS_I2C_CTRL0_MASTER_MODE 0x00020000
44 #define MXS_I2C_CTRL0_DIRECTION 0x00010000
45 #define MXS_I2C_CTRL0_XFER_COUNT(v) ((v) & 0x0000FFFF)
47 #define MXS_I2C_TIMING0 (0x10)
48 #define MXS_I2C_TIMING1 (0x20)
49 #define MXS_I2C_TIMING2 (0x30)
51 #define MXS_I2C_CTRL1 (0x40)
52 #define MXS_I2C_CTRL1_SET (0x44)
53 #define MXS_I2C_CTRL1_CLR (0x48)
55 #define MXS_I2C_CTRL1_CLR_GOT_A_NAK 0x10000000
56 #define MXS_I2C_CTRL1_BUS_FREE_IRQ 0x80
57 #define MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ 0x40
58 #define MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ 0x20
59 #define MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ 0x10
60 #define MXS_I2C_CTRL1_EARLY_TERM_IRQ 0x08
61 #define MXS_I2C_CTRL1_MASTER_LOSS_IRQ 0x04
62 #define MXS_I2C_CTRL1_SLAVE_STOP_IRQ 0x02
63 #define MXS_I2C_CTRL1_SLAVE_IRQ 0x01
65 #define MXS_I2C_STAT (0x50)
66 #define MXS_I2C_STAT_GOT_A_NAK 0x10000000
67 #define MXS_I2C_STAT_BUS_BUSY 0x00000800
68 #define MXS_I2C_STAT_CLK_GEN_BUSY 0x00000400
70 #define MXS_I2C_DATA(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x60 : 0xa0)
72 #define MXS_I2C_DEBUG0_CLR(i2c) ((i2c->dev_type == MXS_I2C_V1) ? 0x78 : 0xb8)
74 #define MXS_I2C_DEBUG0_DMAREQ 0x80000000
76 #define MXS_I2C_IRQ_MASK (MXS_I2C_CTRL1_DATA_ENGINE_CMPLT_IRQ | \
77 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ | \
78 MXS_I2C_CTRL1_EARLY_TERM_IRQ | \
79 MXS_I2C_CTRL1_MASTER_LOSS_IRQ | \
80 MXS_I2C_CTRL1_SLAVE_STOP_IRQ | \
81 MXS_I2C_CTRL1_SLAVE_IRQ)
84 #define MXS_CMD_I2C_SELECT (MXS_I2C_CTRL0_RETAIN_CLOCK | \
85 MXS_I2C_CTRL0_PRE_SEND_START | \
86 MXS_I2C_CTRL0_MASTER_MODE | \
87 MXS_I2C_CTRL0_DIRECTION | \
88 MXS_I2C_CTRL0_XFER_COUNT(1))
90 #define MXS_CMD_I2C_WRITE (MXS_I2C_CTRL0_PRE_SEND_START | \
91 MXS_I2C_CTRL0_MASTER_MODE | \
92 MXS_I2C_CTRL0_DIRECTION)
94 #define MXS_CMD_I2C_READ (MXS_I2C_CTRL0_SEND_NAK_ON_LAST | \
95 MXS_I2C_CTRL0_MASTER_MODE)
97 enum mxs_i2c_devtype
{
104 * struct mxs_i2c_dev - per device, private MXS-I2C data
106 * @dev: driver model device node
107 * @dev_type: distinguish i.MX23/i.MX28 features
108 * @regs: IO registers pointer
109 * @cmd_complete: completion object for transaction wait
110 * @cmd_err: error code for last transaction
111 * @adapter: i2c subsystem adapter node
115 enum mxs_i2c_devtype dev_type
;
117 struct completion cmd_complete
;
119 struct i2c_adapter adapter
;
125 /* DMA support components */
126 struct dma_chan
*dmach
;
127 uint32_t pio_data
[2];
129 struct scatterlist sg_io
[2];
133 static int mxs_i2c_reset(struct mxs_i2c_dev
*i2c
)
135 int ret
= stmp_reset_block(i2c
->regs
);
140 * Configure timing for the I2C block. The I2C TIMING2 register has to
141 * be programmed with this particular magic number. The rest is derived
142 * from the XTAL speed and requested I2C speed.
144 * For details, see i.MX233 [25.4.2 - 25.4.4] and i.MX28 [27.5.2 - 27.5.4].
146 writel(i2c
->timing0
, i2c
->regs
+ MXS_I2C_TIMING0
);
147 writel(i2c
->timing1
, i2c
->regs
+ MXS_I2C_TIMING1
);
148 writel(i2c
->timing2
, i2c
->regs
+ MXS_I2C_TIMING2
);
150 writel(MXS_I2C_IRQ_MASK
<< 8, i2c
->regs
+ MXS_I2C_CTRL1_SET
);
155 static void mxs_i2c_dma_finish(struct mxs_i2c_dev
*i2c
)
158 dma_unmap_sg(i2c
->dev
, &i2c
->sg_io
[0], 1, DMA_TO_DEVICE
);
159 dma_unmap_sg(i2c
->dev
, &i2c
->sg_io
[1], 1, DMA_FROM_DEVICE
);
161 dma_unmap_sg(i2c
->dev
, i2c
->sg_io
, 2, DMA_TO_DEVICE
);
165 static void mxs_i2c_dma_irq_callback(void *param
)
167 struct mxs_i2c_dev
*i2c
= param
;
169 complete(&i2c
->cmd_complete
);
170 mxs_i2c_dma_finish(i2c
);
173 static int mxs_i2c_dma_setup_xfer(struct i2c_adapter
*adap
,
174 struct i2c_msg
*msg
, uint32_t flags
)
176 struct dma_async_tx_descriptor
*desc
;
177 struct mxs_i2c_dev
*i2c
= i2c_get_adapdata(adap
);
179 i2c
->addr_data
= i2c_8bit_addr_from_msg(msg
);
181 if (msg
->flags
& I2C_M_RD
) {
182 i2c
->dma_read
= true;
188 /* Queue the PIO register write transfer. */
189 i2c
->pio_data
[0] = MXS_CMD_I2C_SELECT
;
190 desc
= dmaengine_prep_slave_sg(i2c
->dmach
,
191 (struct scatterlist
*)&i2c
->pio_data
[0],
192 1, DMA_TRANS_NONE
, 0);
195 "Failed to get PIO reg. write descriptor.\n");
196 goto select_init_pio_fail
;
199 /* Queue the DMA data transfer. */
200 sg_init_one(&i2c
->sg_io
[0], &i2c
->addr_data
, 1);
201 dma_map_sg(i2c
->dev
, &i2c
->sg_io
[0], 1, DMA_TO_DEVICE
);
202 desc
= dmaengine_prep_slave_sg(i2c
->dmach
, &i2c
->sg_io
[0], 1,
205 MXS_DMA_CTRL_WAIT4END
);
208 "Failed to get DMA data write descriptor.\n");
209 goto select_init_dma_fail
;
216 /* Queue the PIO register write transfer. */
217 i2c
->pio_data
[1] = flags
| MXS_CMD_I2C_READ
|
218 MXS_I2C_CTRL0_XFER_COUNT(msg
->len
);
219 desc
= dmaengine_prep_slave_sg(i2c
->dmach
,
220 (struct scatterlist
*)&i2c
->pio_data
[1],
221 1, DMA_TRANS_NONE
, DMA_PREP_INTERRUPT
);
224 "Failed to get PIO reg. write descriptor.\n");
225 goto select_init_dma_fail
;
228 /* Queue the DMA data transfer. */
229 sg_init_one(&i2c
->sg_io
[1], msg
->buf
, msg
->len
);
230 dma_map_sg(i2c
->dev
, &i2c
->sg_io
[1], 1, DMA_FROM_DEVICE
);
231 desc
= dmaengine_prep_slave_sg(i2c
->dmach
, &i2c
->sg_io
[1], 1,
234 MXS_DMA_CTRL_WAIT4END
);
237 "Failed to get DMA data write descriptor.\n");
238 goto read_init_dma_fail
;
241 i2c
->dma_read
= false;
247 /* Queue the PIO register write transfer. */
248 i2c
->pio_data
[0] = flags
| MXS_CMD_I2C_WRITE
|
249 MXS_I2C_CTRL0_XFER_COUNT(msg
->len
+ 1);
250 desc
= dmaengine_prep_slave_sg(i2c
->dmach
,
251 (struct scatterlist
*)&i2c
->pio_data
[0],
252 1, DMA_TRANS_NONE
, 0);
255 "Failed to get PIO reg. write descriptor.\n");
256 goto write_init_pio_fail
;
259 /* Queue the DMA data transfer. */
260 sg_init_table(i2c
->sg_io
, 2);
261 sg_set_buf(&i2c
->sg_io
[0], &i2c
->addr_data
, 1);
262 sg_set_buf(&i2c
->sg_io
[1], msg
->buf
, msg
->len
);
263 dma_map_sg(i2c
->dev
, i2c
->sg_io
, 2, DMA_TO_DEVICE
);
264 desc
= dmaengine_prep_slave_sg(i2c
->dmach
, i2c
->sg_io
, 2,
267 MXS_DMA_CTRL_WAIT4END
);
270 "Failed to get DMA data write descriptor.\n");
271 goto write_init_dma_fail
;
276 * The last descriptor must have this callback,
277 * to finish the DMA transaction.
279 desc
->callback
= mxs_i2c_dma_irq_callback
;
280 desc
->callback_param
= i2c
;
282 /* Start the transfer. */
283 dmaengine_submit(desc
);
284 dma_async_issue_pending(i2c
->dmach
);
289 dma_unmap_sg(i2c
->dev
, &i2c
->sg_io
[1], 1, DMA_FROM_DEVICE
);
290 select_init_dma_fail
:
291 dma_unmap_sg(i2c
->dev
, &i2c
->sg_io
[0], 1, DMA_TO_DEVICE
);
292 select_init_pio_fail
:
293 dmaengine_terminate_all(i2c
->dmach
);
296 /* Write failpath. */
298 dma_unmap_sg(i2c
->dev
, i2c
->sg_io
, 2, DMA_TO_DEVICE
);
300 dmaengine_terminate_all(i2c
->dmach
);
304 static int mxs_i2c_pio_wait_xfer_end(struct mxs_i2c_dev
*i2c
)
306 unsigned long timeout
= jiffies
+ msecs_to_jiffies(1000);
308 while (readl(i2c
->regs
+ MXS_I2C_CTRL0
) & MXS_I2C_CTRL0_RUN
) {
309 if (readl(i2c
->regs
+ MXS_I2C_CTRL1
) &
310 MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ
)
312 if (time_after(jiffies
, timeout
))
320 static int mxs_i2c_pio_check_error_state(struct mxs_i2c_dev
*i2c
)
324 state
= readl(i2c
->regs
+ MXS_I2C_CTRL1_CLR
) & MXS_I2C_IRQ_MASK
;
326 if (state
& MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ
)
327 i2c
->cmd_err
= -ENXIO
;
328 else if (state
& (MXS_I2C_CTRL1_EARLY_TERM_IRQ
|
329 MXS_I2C_CTRL1_MASTER_LOSS_IRQ
|
330 MXS_I2C_CTRL1_SLAVE_STOP_IRQ
|
331 MXS_I2C_CTRL1_SLAVE_IRQ
))
337 static void mxs_i2c_pio_trigger_cmd(struct mxs_i2c_dev
*i2c
, u32 cmd
)
341 writel(cmd
, i2c
->regs
+ MXS_I2C_CTRL0
);
343 /* readback makes sure the write is latched into hardware */
344 reg
= readl(i2c
->regs
+ MXS_I2C_CTRL0
);
345 reg
|= MXS_I2C_CTRL0_RUN
;
346 writel(reg
, i2c
->regs
+ MXS_I2C_CTRL0
);
350 * Start WRITE transaction on the I2C bus. By studying i.MX23 datasheet,
351 * CTRL0::PIO_MODE bit description clarifies the order in which the registers
352 * must be written during PIO mode operation. First, the CTRL0 register has
353 * to be programmed with all the necessary bits but the RUN bit. Then the
354 * payload has to be written into the DATA register. Finally, the transmission
355 * is executed by setting the RUN bit in CTRL0.
357 static void mxs_i2c_pio_trigger_write_cmd(struct mxs_i2c_dev
*i2c
, u32 cmd
,
360 writel(cmd
, i2c
->regs
+ MXS_I2C_CTRL0
);
362 if (i2c
->dev_type
== MXS_I2C_V1
)
363 writel(MXS_I2C_CTRL0_PIO_MODE
, i2c
->regs
+ MXS_I2C_CTRL0_SET
);
365 writel(data
, i2c
->regs
+ MXS_I2C_DATA(i2c
));
366 writel(MXS_I2C_CTRL0_RUN
, i2c
->regs
+ MXS_I2C_CTRL0_SET
);
369 static int mxs_i2c_pio_setup_xfer(struct i2c_adapter
*adap
,
370 struct i2c_msg
*msg
, uint32_t flags
)
372 struct mxs_i2c_dev
*i2c
= i2c_get_adapdata(adap
);
373 uint32_t addr_data
= i2c_8bit_addr_from_msg(msg
);
375 int i
, ret
, xlen
= 0, xmit
= 0;
378 /* Mute IRQs coming from this block. */
379 writel(MXS_I2C_IRQ_MASK
<< 8, i2c
->regs
+ MXS_I2C_CTRL1_CLR
);
383 * - Enable CTRL0::PIO_MODE (1 << 24)
384 * - Enable CTRL1::ACK_MODE (1 << 27)
386 * WARNING! The MX23 is broken in some way, even if it claims
387 * to support PIO, when we try to transfer any amount of data
388 * that is not aligned to 4 bytes, the DMA engine will have
389 * bits in DEBUG1::DMA_BYTES_ENABLES still set even after the
390 * transfer. This in turn will mess up the next transfer as
391 * the block it emit one byte write onto the bus terminated
392 * with a NAK+STOP. A possible workaround is to reset the IP
393 * block after every PIO transmission, which might just work.
395 * NOTE: The CTRL0::PIO_MODE description is important, since
396 * it outlines how the PIO mode is really supposed to work.
398 if (msg
->flags
& I2C_M_RD
) {
402 * This transfer MUST be limited to 4 bytes maximum. It is not
403 * possible to transfer more than four bytes via PIO, since we
404 * can not in any way make sure we can read the data from the
405 * DATA register fast enough. Besides, the RX FIFO is only four
406 * bytes deep, thus we can only really read up to four bytes at
407 * time. Finally, there is no bit indicating us that new data
408 * arrived at the FIFO and can thus be fetched from the DATA
411 BUG_ON(msg
->len
> 4);
413 /* SELECT command. */
414 mxs_i2c_pio_trigger_write_cmd(i2c
, MXS_CMD_I2C_SELECT
,
417 ret
= mxs_i2c_pio_wait_xfer_end(i2c
);
420 "PIO: Failed to send SELECT command!\n");
425 mxs_i2c_pio_trigger_cmd(i2c
,
426 MXS_CMD_I2C_READ
| flags
|
427 MXS_I2C_CTRL0_XFER_COUNT(msg
->len
));
429 ret
= mxs_i2c_pio_wait_xfer_end(i2c
);
432 "PIO: Failed to send READ command!\n");
436 data
= readl(i2c
->regs
+ MXS_I2C_DATA(i2c
));
437 for (i
= 0; i
< msg
->len
; i
++) {
438 msg
->buf
[i
] = data
& 0xff;
443 * PIO WRITE transfer:
445 * The code below implements clock stretching to circumvent
446 * the possibility of kernel not being able to supply data
447 * fast enough. It is possible to transfer arbitrary amount
448 * of data using PIO write.
452 * The LSB of data buffer is the first byte blasted across
453 * the bus. Higher order bytes follow. Thus the following
457 data
= addr_data
<< 24;
459 /* Start the transfer with START condition. */
460 start
= MXS_I2C_CTRL0_PRE_SEND_START
;
462 /* If the transfer is long, use clock stretching. */
464 start
|= MXS_I2C_CTRL0_RETAIN_CLOCK
;
466 for (i
= 0; i
< msg
->len
; i
++) {
468 data
|= (msg
->buf
[i
] << 24);
472 /* This is the last transfer of the message. */
473 if (i
+ 1 == msg
->len
) {
474 /* Add optional STOP flag. */
476 /* Remove RETAIN_CLOCK bit. */
477 start
&= ~MXS_I2C_CTRL0_RETAIN_CLOCK
;
481 /* Four bytes are ready in the "data" variable. */
485 /* Nothing interesting happened, continue stuffing. */
490 * Compute the size of the transfer and shift the
493 * i = (4k + 0) .... xlen = 2
494 * i = (4k + 1) .... xlen = 3
495 * i = (4k + 2) .... xlen = 4
496 * i = (4k + 3) .... xlen = 1
504 data
>>= (4 - xlen
) * 8;
507 "PIO: len=%i pos=%i total=%i [W%s%s%s]\n",
509 start
& MXS_I2C_CTRL0_PRE_SEND_START
? "S" : "",
510 start
& MXS_I2C_CTRL0_POST_SEND_STOP
? "E" : "",
511 start
& MXS_I2C_CTRL0_RETAIN_CLOCK
? "C" : "");
513 writel(MXS_I2C_DEBUG0_DMAREQ
,
514 i2c
->regs
+ MXS_I2C_DEBUG0_CLR(i2c
));
516 mxs_i2c_pio_trigger_write_cmd(i2c
,
517 start
| MXS_I2C_CTRL0_MASTER_MODE
|
518 MXS_I2C_CTRL0_DIRECTION
|
519 MXS_I2C_CTRL0_XFER_COUNT(xlen
), data
);
521 /* The START condition is sent only once. */
522 start
&= ~MXS_I2C_CTRL0_PRE_SEND_START
;
524 /* Wait for the end of the transfer. */
525 ret
= mxs_i2c_pio_wait_xfer_end(i2c
);
528 "PIO: Failed to finish WRITE cmd!\n");
532 /* Check NAK here. */
533 ret
= readl(i2c
->regs
+ MXS_I2C_STAT
) &
534 MXS_I2C_STAT_GOT_A_NAK
;
542 /* make sure we capture any occurred error into cmd_err */
543 ret
= mxs_i2c_pio_check_error_state(i2c
);
546 /* Clear any dangling IRQs and re-enable interrupts. */
547 writel(MXS_I2C_IRQ_MASK
, i2c
->regs
+ MXS_I2C_CTRL1_CLR
);
548 writel(MXS_I2C_IRQ_MASK
<< 8, i2c
->regs
+ MXS_I2C_CTRL1_SET
);
550 /* Clear the PIO_MODE on i.MX23 */
551 if (i2c
->dev_type
== MXS_I2C_V1
)
552 writel(MXS_I2C_CTRL0_PIO_MODE
, i2c
->regs
+ MXS_I2C_CTRL0_CLR
);
558 * Low level master read/write transaction.
560 static int mxs_i2c_xfer_msg(struct i2c_adapter
*adap
, struct i2c_msg
*msg
,
563 struct mxs_i2c_dev
*i2c
= i2c_get_adapdata(adap
);
567 unsigned long time_left
;
569 flags
= stop
? MXS_I2C_CTRL0_POST_SEND_STOP
: 0;
571 dev_dbg(i2c
->dev
, "addr: 0x%04x, len: %d, flags: 0x%x, stop: %d\n",
572 msg
->addr
, msg
->len
, msg
->flags
, stop
);
575 * The MX28 I2C IP block can only do PIO READ for transfer of to up
576 * 4 bytes of length. The write transfer is not limited as it can use
577 * clock stretching to avoid FIFO underruns.
579 if ((msg
->flags
& I2C_M_RD
) && (msg
->len
<= 4))
581 if (!(msg
->flags
& I2C_M_RD
) && (msg
->len
< 7))
586 ret
= mxs_i2c_pio_setup_xfer(adap
, msg
, flags
);
587 /* No need to reset the block if NAK was received. */
588 if (ret
&& (ret
!= -ENXIO
))
591 reinit_completion(&i2c
->cmd_complete
);
592 ret
= mxs_i2c_dma_setup_xfer(adap
, msg
, flags
);
596 time_left
= wait_for_completion_timeout(&i2c
->cmd_complete
,
597 msecs_to_jiffies(1000));
606 * If the transfer fails with a NAK from the slave the
607 * controller halts until it gets told to return to idle state.
609 writel(MXS_I2C_CTRL1_CLR_GOT_A_NAK
,
610 i2c
->regs
+ MXS_I2C_CTRL1_SET
);
615 * The i.MX23 is strange. After each and every operation, it's I2C IP
616 * block must be reset, otherwise the IP block will misbehave. This can
617 * be observed on the bus by the block sending out one single byte onto
618 * the bus. In case such an error happens, bit 27 will be set in the
619 * DEBUG0 register. This bit is not documented in the i.MX23 datasheet
620 * and is marked as "TBD" instead. To reset this bit to a correct state,
621 * reset the whole block. Since the block reset does not take long, do
622 * reset the block after every transfer to play safe.
624 if (i2c
->dev_type
== MXS_I2C_V1
)
627 dev_dbg(i2c
->dev
, "Done with err=%d\n", ret
);
632 dev_dbg(i2c
->dev
, "Timeout!\n");
633 mxs_i2c_dma_finish(i2c
);
634 ret
= mxs_i2c_reset(i2c
);
641 static int mxs_i2c_xfer(struct i2c_adapter
*adap
, struct i2c_msg msgs
[],
647 for (i
= 0; i
< num
; i
++) {
648 err
= mxs_i2c_xfer_msg(adap
, &msgs
[i
], i
== (num
- 1));
656 static u32
mxs_i2c_func(struct i2c_adapter
*adap
)
658 return I2C_FUNC_I2C
| I2C_FUNC_SMBUS_EMUL
;
661 static irqreturn_t
mxs_i2c_isr(int this_irq
, void *dev_id
)
663 struct mxs_i2c_dev
*i2c
= dev_id
;
664 u32 stat
= readl(i2c
->regs
+ MXS_I2C_CTRL1
) & MXS_I2C_IRQ_MASK
;
669 if (stat
& MXS_I2C_CTRL1_NO_SLAVE_ACK_IRQ
)
670 i2c
->cmd_err
= -ENXIO
;
671 else if (stat
& (MXS_I2C_CTRL1_EARLY_TERM_IRQ
|
672 MXS_I2C_CTRL1_MASTER_LOSS_IRQ
|
673 MXS_I2C_CTRL1_SLAVE_STOP_IRQ
| MXS_I2C_CTRL1_SLAVE_IRQ
))
674 /* MXS_I2C_CTRL1_OVERSIZE_XFER_TERM_IRQ is only for slaves */
677 writel(stat
, i2c
->regs
+ MXS_I2C_CTRL1_CLR
);
682 static const struct i2c_algorithm mxs_i2c_algo
= {
683 .master_xfer
= mxs_i2c_xfer
,
684 .functionality
= mxs_i2c_func
,
687 static const struct i2c_adapter_quirks mxs_i2c_quirks
= {
688 .flags
= I2C_AQ_NO_ZERO_LEN
,
691 static void mxs_i2c_derive_timing(struct mxs_i2c_dev
*i2c
, uint32_t speed
)
693 /* The I2C block clock runs at 24MHz */
694 const uint32_t clk
= 24000000;
696 uint16_t high_count
, low_count
, rcv_count
, xmit_count
;
697 uint32_t bus_free
, leadin
;
698 struct device
*dev
= i2c
->dev
;
700 divider
= DIV_ROUND_UP(clk
, speed
);
704 * limit the divider, so that min(low_count, high_count)
709 "Speed too high (%u.%03u kHz), using %u.%03u kHz\n",
710 speed
/ 1000, speed
% 1000,
711 clk
/ divider
/ 1000, clk
/ divider
% 1000);
712 } else if (divider
> 1897) {
714 * limit the divider, so that max(low_count, high_count)
719 "Speed too low (%u.%03u kHz), using %u.%03u kHz\n",
720 speed
/ 1000, speed
% 1000,
721 clk
/ divider
/ 1000, clk
/ divider
% 1000);
725 * The I2C spec specifies the following timing data:
726 * standard mode fast mode Bitfield name
727 * tLOW (SCL LOW period) 4700 ns 1300 ns
728 * tHIGH (SCL HIGH period) 4000 ns 600 ns
729 * tSU;DAT (data setup time) 250 ns 100 ns
730 * tHD;STA (START hold time) 4000 ns 600 ns
731 * tBUF (bus free time) 4700 ns 1300 ns
733 * The hardware (of the i.MX28 at least) seems to add 2 additional
734 * clock cycles to the low_count and 7 cycles to the high_count.
735 * This is compensated for by subtracting the respective constants
736 * from the values written to the timing registers.
738 if (speed
> 100000) {
740 low_count
= DIV_ROUND_CLOSEST(divider
* 13, (13 + 6));
741 high_count
= DIV_ROUND_CLOSEST(divider
* 6, (13 + 6));
742 leadin
= DIV_ROUND_UP(600 * (clk
/ 1000000), 1000);
743 bus_free
= DIV_ROUND_UP(1300 * (clk
/ 1000000), 1000);
746 low_count
= DIV_ROUND_CLOSEST(divider
* 47, (47 + 40));
747 high_count
= DIV_ROUND_CLOSEST(divider
* 40, (47 + 40));
748 leadin
= DIV_ROUND_UP(4700 * (clk
/ 1000000), 1000);
749 bus_free
= DIV_ROUND_UP(4700 * (clk
/ 1000000), 1000);
751 rcv_count
= high_count
* 3 / 8;
752 xmit_count
= low_count
* 3 / 8;
755 "speed=%u(actual %u) divider=%u low=%u high=%u xmit=%u rcv=%u leadin=%u bus_free=%u\n",
756 speed
, clk
/ divider
, divider
, low_count
, high_count
,
757 xmit_count
, rcv_count
, leadin
, bus_free
);
761 i2c
->timing0
= (high_count
<< 16) | rcv_count
;
762 i2c
->timing1
= (low_count
<< 16) | xmit_count
;
763 i2c
->timing2
= (bus_free
<< 16 | leadin
);
766 static int mxs_i2c_get_ofdata(struct mxs_i2c_dev
*i2c
)
769 struct device
*dev
= i2c
->dev
;
770 struct device_node
*node
= dev
->of_node
;
773 ret
= of_property_read_u32(node
, "clock-frequency", &speed
);
775 dev_warn(dev
, "No I2C speed selected, using 100kHz\n");
779 mxs_i2c_derive_timing(i2c
, speed
);
784 static const struct platform_device_id mxs_i2c_devtype
[] = {
787 .driver_data
= MXS_I2C_V1
,
790 .driver_data
= MXS_I2C_V2
,
791 }, { /* sentinel */ }
793 MODULE_DEVICE_TABLE(platform
, mxs_i2c_devtype
);
795 static const struct of_device_id mxs_i2c_dt_ids
[] = {
796 { .compatible
= "fsl,imx23-i2c", .data
= &mxs_i2c_devtype
[0], },
797 { .compatible
= "fsl,imx28-i2c", .data
= &mxs_i2c_devtype
[1], },
800 MODULE_DEVICE_TABLE(of
, mxs_i2c_dt_ids
);
802 static int mxs_i2c_probe(struct platform_device
*pdev
)
804 const struct of_device_id
*of_id
=
805 of_match_device(mxs_i2c_dt_ids
, &pdev
->dev
);
806 struct device
*dev
= &pdev
->dev
;
807 struct mxs_i2c_dev
*i2c
;
808 struct i2c_adapter
*adap
;
811 i2c
= devm_kzalloc(dev
, sizeof(*i2c
), GFP_KERNEL
);
816 const struct platform_device_id
*device_id
= of_id
->data
;
817 i2c
->dev_type
= device_id
->driver_data
;
820 i2c
->regs
= devm_platform_ioremap_resource(pdev
, 0);
821 if (IS_ERR(i2c
->regs
))
822 return PTR_ERR(i2c
->regs
);
824 irq
= platform_get_irq(pdev
, 0);
828 err
= devm_request_irq(dev
, irq
, mxs_i2c_isr
, 0, dev_name(dev
), i2c
);
834 init_completion(&i2c
->cmd_complete
);
837 err
= mxs_i2c_get_ofdata(i2c
);
843 i2c
->dmach
= dma_request_slave_channel(dev
, "rx-tx");
845 dev_err(dev
, "Failed to request dma\n");
849 platform_set_drvdata(pdev
, i2c
);
851 /* Do reset to enforce correct startup after pinmuxing */
852 err
= mxs_i2c_reset(i2c
);
856 adap
= &i2c
->adapter
;
857 strlcpy(adap
->name
, "MXS I2C adapter", sizeof(adap
->name
));
858 adap
->owner
= THIS_MODULE
;
859 adap
->algo
= &mxs_i2c_algo
;
860 adap
->quirks
= &mxs_i2c_quirks
;
861 adap
->dev
.parent
= dev
;
863 adap
->dev
.of_node
= pdev
->dev
.of_node
;
864 i2c_set_adapdata(adap
, i2c
);
865 err
= i2c_add_numbered_adapter(adap
);
867 writel(MXS_I2C_CTRL0_SFTRST
,
868 i2c
->regs
+ MXS_I2C_CTRL0_SET
);
875 static int mxs_i2c_remove(struct platform_device
*pdev
)
877 struct mxs_i2c_dev
*i2c
= platform_get_drvdata(pdev
);
879 i2c_del_adapter(&i2c
->adapter
);
882 dma_release_channel(i2c
->dmach
);
884 writel(MXS_I2C_CTRL0_SFTRST
, i2c
->regs
+ MXS_I2C_CTRL0_SET
);
889 static struct platform_driver mxs_i2c_driver
= {
892 .of_match_table
= mxs_i2c_dt_ids
,
894 .probe
= mxs_i2c_probe
,
895 .remove
= mxs_i2c_remove
,
898 static int __init
mxs_i2c_init(void)
900 return platform_driver_register(&mxs_i2c_driver
);
902 subsys_initcall(mxs_i2c_init
);
904 static void __exit
mxs_i2c_exit(void)
906 platform_driver_unregister(&mxs_i2c_driver
);
908 module_exit(mxs_i2c_exit
);
910 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
911 MODULE_AUTHOR("Wolfram Sang <kernel@pengutronix.de>");
912 MODULE_DESCRIPTION("MXS I2C Bus Driver");
913 MODULE_LICENSE("GPL");
914 MODULE_ALIAS("platform:" DRIVER_NAME
);