1 // SPDX-License-Identifier: GPL-2.0-or-later
3 * 842 Software Compression
5 * Copyright (C) 2015 Dan Streetman, IBM Corp
7 * See 842.h for details of the 842 compressed format.
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 #define MODULE_NAME "842_compress"
13 #include <linux/hashtable.h>
16 #include "842_debugfs.h"
18 #define SW842_HASHTABLE8_BITS (10)
19 #define SW842_HASHTABLE4_BITS (11)
20 #define SW842_HASHTABLE2_BITS (10)
22 /* By default, we allow compressing input buffers of any length, but we must
23 * use the non-standard "short data" template so the decompressor can correctly
24 * reproduce the uncompressed data buffer at the right length. However the
25 * hardware 842 compressor will not recognize the "short data" template, and
26 * will fail to decompress any compressed buffer containing it (I have no idea
27 * why anyone would want to use software to compress and hardware to decompress
28 * but that's beside the point). This parameter forces the compression
29 * function to simply reject any input buffer that isn't a multiple of 8 bytes
30 * long, instead of using the "short data" template, so that all compressed
31 * buffers produced by this function will be decompressable by the 842 hardware
32 * decompressor. Unless you have a specific need for that, leave this disabled
33 * so that any length buffer can be compressed.
35 static bool sw842_strict
;
36 module_param_named(strict
, sw842_strict
, bool, 0644);
38 static u8 comp_ops
[OPS_MAX
][5] = { /* params size in bits */
39 { I8
, N0
, N0
, N0
, 0x19 }, /* 8 */
40 { I4
, I4
, N0
, N0
, 0x18 }, /* 18 */
41 { I4
, I2
, I2
, N0
, 0x17 }, /* 25 */
42 { I2
, I2
, I4
, N0
, 0x13 }, /* 25 */
43 { I2
, I2
, I2
, I2
, 0x12 }, /* 32 */
44 { I4
, I2
, D2
, N0
, 0x16 }, /* 33 */
45 { I4
, D2
, I2
, N0
, 0x15 }, /* 33 */
46 { I2
, D2
, I4
, N0
, 0x0e }, /* 33 */
47 { D2
, I2
, I4
, N0
, 0x09 }, /* 33 */
48 { I2
, I2
, I2
, D2
, 0x11 }, /* 40 */
49 { I2
, I2
, D2
, I2
, 0x10 }, /* 40 */
50 { I2
, D2
, I2
, I2
, 0x0d }, /* 40 */
51 { D2
, I2
, I2
, I2
, 0x08 }, /* 40 */
52 { I4
, D4
, N0
, N0
, 0x14 }, /* 41 */
53 { D4
, I4
, N0
, N0
, 0x04 }, /* 41 */
54 { I2
, I2
, D4
, N0
, 0x0f }, /* 48 */
55 { I2
, D2
, I2
, D2
, 0x0c }, /* 48 */
56 { I2
, D4
, I2
, N0
, 0x0b }, /* 48 */
57 { D2
, I2
, I2
, D2
, 0x07 }, /* 48 */
58 { D2
, I2
, D2
, I2
, 0x06 }, /* 48 */
59 { D4
, I2
, I2
, N0
, 0x03 }, /* 48 */
60 { I2
, D2
, D4
, N0
, 0x0a }, /* 56 */
61 { D2
, I2
, D4
, N0
, 0x05 }, /* 56 */
62 { D4
, I2
, D2
, N0
, 0x02 }, /* 56 */
63 { D4
, D2
, I2
, N0
, 0x01 }, /* 56 */
64 { D8
, N0
, N0
, N0
, 0x00 }, /* 64 */
67 struct sw842_hlist_node8
{
68 struct hlist_node node
;
73 struct sw842_hlist_node4
{
74 struct hlist_node node
;
79 struct sw842_hlist_node2
{
80 struct hlist_node node
;
85 #define INDEX_NOT_FOUND (-1)
86 #define INDEX_NOT_CHECKED (-2)
101 DECLARE_HASHTABLE(htable8
, SW842_HASHTABLE8_BITS
);
102 DECLARE_HASHTABLE(htable4
, SW842_HASHTABLE4_BITS
);
103 DECLARE_HASHTABLE(htable2
, SW842_HASHTABLE2_BITS
);
104 struct sw842_hlist_node8 node8
[1 << I8_BITS
];
105 struct sw842_hlist_node4 node4
[1 << I4_BITS
];
106 struct sw842_hlist_node2 node2
[1 << I2_BITS
];
109 #define get_input_data(p, o, b) \
110 be##b##_to_cpu(get_unaligned((__be##b *)((p)->in + (o))))
112 #define init_hashtable_nodes(p, b) do { \
114 hash_init((p)->htable##b); \
115 for (_i = 0; _i < ARRAY_SIZE((p)->node##b); _i++) { \
116 (p)->node##b[_i].index = _i; \
117 (p)->node##b[_i].data = 0; \
118 INIT_HLIST_NODE(&(p)->node##b[_i].node); \
122 #define find_index(p, b, n) ({ \
123 struct sw842_hlist_node##b *_n; \
124 p->index##b[n] = INDEX_NOT_FOUND; \
125 hash_for_each_possible(p->htable##b, _n, node, p->data##b[n]) { \
126 if (p->data##b[n] == _n->data) { \
127 p->index##b[n] = _n->index; \
131 p->index##b[n] >= 0; \
134 #define check_index(p, b, n) \
135 ((p)->index##b[n] == INDEX_NOT_CHECKED \
136 ? find_index(p, b, n) \
137 : (p)->index##b[n] >= 0)
139 #define replace_hash(p, b, i, d) do { \
140 struct sw842_hlist_node##b *_n = &(p)->node##b[(i)+(d)]; \
141 hash_del(&_n->node); \
142 _n->data = (p)->data##b[d]; \
143 pr_debug("add hash index%x %x pos %x data %lx\n", b, \
144 (unsigned int)_n->index, \
145 (unsigned int)((p)->in - (p)->instart), \
146 (unsigned long)_n->data); \
147 hash_add((p)->htable##b, &_n->node, _n->data); \
150 static u8 bmask
[8] = { 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe };
152 static int add_bits(struct sw842_param
*p
, u64 d
, u8 n
);
154 static int __split_add_bits(struct sw842_param
*p
, u64 d
, u8 n
, u8 s
)
161 ret
= add_bits(p
, d
>> s
, n
- s
);
164 return add_bits(p
, d
& GENMASK_ULL(s
- 1, 0), s
);
167 static int add_bits(struct sw842_param
*p
, u64 d
, u8 n
)
169 int b
= p
->bit
, bits
= b
+ n
, s
= round_up(bits
, 8) - bits
;
173 pr_debug("add %u bits %lx\n", (unsigned char)n
, (unsigned long)d
);
178 /* split this up if writing to > 8 bytes (i.e. n == 64 && p->bit > 0),
179 * or if we're at the end of the output buffer and would write past end
182 return __split_add_bits(p
, d
, n
, 32);
183 else if (p
->olen
< 8 && bits
> 32 && bits
<= 56)
184 return __split_add_bits(p
, d
, n
, 16);
185 else if (p
->olen
< 4 && bits
> 16 && bits
<= 24)
186 return __split_add_bits(p
, d
, n
, 8);
188 if (DIV_ROUND_UP(bits
, 8) > p
->olen
)
197 put_unaligned(cpu_to_be16(o
<< 8 | d
), (__be16
*)out
);
199 put_unaligned(cpu_to_be32(o
<< 24 | d
<< 8), (__be32
*)out
);
201 put_unaligned(cpu_to_be32(o
<< 24 | d
), (__be32
*)out
);
203 put_unaligned(cpu_to_be64(o
<< 56 | d
<< 24), (__be64
*)out
);
205 put_unaligned(cpu_to_be64(o
<< 56 | d
<< 16), (__be64
*)out
);
207 put_unaligned(cpu_to_be64(o
<< 56 | d
<< 8), (__be64
*)out
);
209 put_unaligned(cpu_to_be64(o
<< 56 | d
), (__be64
*)out
);
214 p
->out
+= p
->bit
/ 8;
215 p
->olen
-= p
->bit
/ 8;
222 static int add_template(struct sw842_param
*p
, u8 c
)
231 pr_debug("template %x\n", t
[4]);
233 ret
= add_bits(p
, t
[4], OP_BITS
);
237 for (i
= 0; i
< 4; i
++) {
238 pr_debug("op %x\n", t
[i
]);
240 switch (t
[i
] & OP_AMOUNT
) {
244 else if (t
[i
] & OP_ACTION_INDEX
)
245 ret
= add_bits(p
, p
->index8
[0], I8_BITS
);
246 else if (t
[i
] & OP_ACTION_DATA
)
247 ret
= add_bits(p
, p
->data8
[0], 64);
252 if (b
== 2 && t
[i
] & OP_ACTION_DATA
)
253 ret
= add_bits(p
, get_input_data(p
, 2, 32), 32);
254 else if (b
!= 0 && b
!= 4)
256 else if (t
[i
] & OP_ACTION_INDEX
)
257 ret
= add_bits(p
, p
->index4
[b
>> 2], I4_BITS
);
258 else if (t
[i
] & OP_ACTION_DATA
)
259 ret
= add_bits(p
, p
->data4
[b
>> 2], 32);
264 if (b
!= 0 && b
!= 2 && b
!= 4 && b
!= 6)
266 if (t
[i
] & OP_ACTION_INDEX
)
267 ret
= add_bits(p
, p
->index2
[b
>> 1], I2_BITS
);
268 else if (t
[i
] & OP_ACTION_DATA
)
269 ret
= add_bits(p
, p
->data2
[b
>> 1], 16);
274 inv
= (b
!= 8) || !(t
[i
] & OP_ACTION_NOOP
);
285 pr_err("Invalid templ %x op %d : %x %x %x %x\n",
286 c
, i
, t
[0], t
[1], t
[2], t
[3]);
290 b
+= t
[i
] & OP_AMOUNT
;
294 pr_err("Invalid template %x len %x : %x %x %x %x\n",
295 c
, b
, t
[0], t
[1], t
[2], t
[3]);
299 if (sw842_template_counts
)
300 atomic_inc(&template_count
[t
[4]]);
305 static int add_repeat_template(struct sw842_param
*p
, u8 r
)
309 /* repeat param is 0-based */
310 if (!r
|| --r
> REPEAT_BITS_MAX
)
313 ret
= add_bits(p
, OP_REPEAT
, OP_BITS
);
317 ret
= add_bits(p
, r
, REPEAT_BITS
);
321 if (sw842_template_counts
)
322 atomic_inc(&template_repeat_count
);
327 static int add_short_data_template(struct sw842_param
*p
, u8 b
)
331 if (!b
|| b
> SHORT_DATA_BITS_MAX
)
334 ret
= add_bits(p
, OP_SHORT_DATA
, OP_BITS
);
338 ret
= add_bits(p
, b
, SHORT_DATA_BITS
);
342 for (i
= 0; i
< b
; i
++) {
343 ret
= add_bits(p
, p
->in
[i
], 8);
348 if (sw842_template_counts
)
349 atomic_inc(&template_short_data_count
);
354 static int add_zeros_template(struct sw842_param
*p
)
356 int ret
= add_bits(p
, OP_ZEROS
, OP_BITS
);
361 if (sw842_template_counts
)
362 atomic_inc(&template_zeros_count
);
367 static int add_end_template(struct sw842_param
*p
)
369 int ret
= add_bits(p
, OP_END
, OP_BITS
);
374 if (sw842_template_counts
)
375 atomic_inc(&template_end_count
);
380 static bool check_template(struct sw842_param
*p
, u8 c
)
388 for (i
= 0; i
< 4; i
++) {
389 if (t
[i
] & OP_ACTION_INDEX
) {
390 if (t
[i
] & OP_AMOUNT_2
)
391 match
= check_index(p
, 2, b
>> 1);
392 else if (t
[i
] & OP_AMOUNT_4
)
393 match
= check_index(p
, 4, b
>> 2);
394 else if (t
[i
] & OP_AMOUNT_8
)
395 match
= check_index(p
, 8, 0);
402 b
+= t
[i
] & OP_AMOUNT
;
408 static void get_next_data(struct sw842_param
*p
)
410 p
->data8
[0] = get_input_data(p
, 0, 64);
411 p
->data4
[0] = get_input_data(p
, 0, 32);
412 p
->data4
[1] = get_input_data(p
, 4, 32);
413 p
->data2
[0] = get_input_data(p
, 0, 16);
414 p
->data2
[1] = get_input_data(p
, 2, 16);
415 p
->data2
[2] = get_input_data(p
, 4, 16);
416 p
->data2
[3] = get_input_data(p
, 6, 16);
419 /* update the hashtable entries.
420 * only call this after finding/adding the current template
421 * the dataN fields for the current 8 byte block must be already updated
423 static void update_hashtables(struct sw842_param
*p
)
425 u64 pos
= p
->in
- p
->instart
;
426 u64 n8
= (pos
>> 3) % (1 << I8_BITS
);
427 u64 n4
= (pos
>> 2) % (1 << I4_BITS
);
428 u64 n2
= (pos
>> 1) % (1 << I2_BITS
);
430 replace_hash(p
, 8, n8
, 0);
431 replace_hash(p
, 4, n4
, 0);
432 replace_hash(p
, 4, n4
, 1);
433 replace_hash(p
, 2, n2
, 0);
434 replace_hash(p
, 2, n2
, 1);
435 replace_hash(p
, 2, n2
, 2);
436 replace_hash(p
, 2, n2
, 3);
439 /* find the next template to use, and add it
440 * the p->dataN fields must already be set for the current 8 byte block
442 static int process_next(struct sw842_param
*p
)
446 p
->index8
[0] = INDEX_NOT_CHECKED
;
447 p
->index4
[0] = INDEX_NOT_CHECKED
;
448 p
->index4
[1] = INDEX_NOT_CHECKED
;
449 p
->index2
[0] = INDEX_NOT_CHECKED
;
450 p
->index2
[1] = INDEX_NOT_CHECKED
;
451 p
->index2
[2] = INDEX_NOT_CHECKED
;
452 p
->index2
[3] = INDEX_NOT_CHECKED
;
454 /* check up to OPS_MAX - 1; last op is our fallback */
455 for (i
= 0; i
< OPS_MAX
- 1; i
++) {
456 if (check_template(p
, i
))
460 ret
= add_template(p
, i
);
470 * Compress the uncompressed buffer of length @ilen at @in to the output buffer
471 * @out, using no more than @olen bytes, using the 842 compression format.
473 * Returns: 0 on success, error on failure. The @olen parameter
474 * will contain the number of output bytes written on success, or
477 int sw842_compress(const u8
*in
, unsigned int ilen
,
478 u8
*out
, unsigned int *olen
, void *wmem
)
480 struct sw842_param
*p
= (struct sw842_param
*)wmem
;
482 u64 last
, next
, pad
, total
;
486 BUILD_BUG_ON(sizeof(*p
) > SW842_MEM_COMPRESS
);
488 init_hashtable_nodes(p
, 8);
489 init_hashtable_nodes(p
, 4);
490 init_hashtable_nodes(p
, 2);
503 /* if using strict mode, we can only compress a multiple of 8 */
504 if (sw842_strict
&& (ilen
% 8)) {
505 pr_err("Using strict mode, can't compress len %d\n", ilen
);
509 /* let's compress at least 8 bytes, mkay? */
510 if (unlikely(ilen
< 8))
513 /* make initial 'last' different so we don't match the first time */
514 last
= ~get_unaligned((u64
*)p
->in
);
516 while (p
->ilen
> 7) {
517 next
= get_unaligned((u64
*)p
->in
);
519 /* must get the next data, as we need to update the hashtable
520 * entries with the new data every time
524 /* we don't care about endianness in last or next;
525 * we're just comparing 8 bytes to another 8 bytes,
526 * they're both the same endianness
529 /* repeat count bits are 0-based, so we stop at +1 */
530 if (++repeat_count
<= REPEAT_BITS_MAX
)
534 ret
= add_repeat_template(p
, repeat_count
);
536 if (next
== last
) /* reached max repeat bits */
541 ret
= add_zeros_template(p
);
543 ret
= process_next(p
);
550 update_hashtables(p
);
556 ret
= add_repeat_template(p
, repeat_count
);
563 ret
= add_short_data_template(p
, p
->ilen
);
571 ret
= add_end_template(p
);
576 * crc(0:31) is appended to target data starting with the next
577 * bit after End of stream template.
578 * nx842 calculates CRC for data in big-endian format. So doing
579 * same here so that sw842 decompression can be used for both
582 crc
= crc32_be(0, in
, ilen
);
583 ret
= add_bits(p
, crc
, CRC_BITS
);
593 /* pad compressed length to multiple of 8 */
594 pad
= (8 - ((total
- p
->olen
) % 8)) % 8;
596 if (pad
> p
->olen
) /* we were so close! */
598 memset(p
->out
, 0, pad
);
603 if (unlikely((total
- p
->olen
) > UINT_MAX
))
606 *olen
= total
- p
->olen
;
610 EXPORT_SYMBOL_GPL(sw842_compress
);
612 static int __init
sw842_init(void)
614 if (sw842_template_counts
)
615 sw842_debugfs_create();
619 module_init(sw842_init
);
621 static void __exit
sw842_exit(void)
623 if (sw842_template_counts
)
624 sw842_debugfs_remove();
626 module_exit(sw842_exit
);
628 MODULE_LICENSE("GPL");
629 MODULE_DESCRIPTION("Software 842 Compressor");
630 MODULE_AUTHOR("Dan Streetman <ddstreet@ieee.org>");