2 * Procedures for interfacing to Open Firmware.
4 * Paul Mackerras August 1996.
5 * Copyright (C) 1996-2005 Paul Mackerras.
7 * Adapted for 64bit PowerPC by Dave Engebretsen and Peter Bergner.
8 * {engebret|bergner}@us.ibm.com
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
19 #include <linux/kernel.h>
20 #include <linux/string.h>
21 #include <linux/init.h>
22 #include <linux/threads.h>
23 #include <linux/spinlock.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/proc_fs.h>
27 #include <linux/stringify.h>
28 #include <linux/delay.h>
29 #include <linux/initrd.h>
30 #include <linux/bitops.h>
34 #include <asm/processor.h>
38 #include <asm/system.h>
40 #include <asm/pgtable.h>
42 #include <asm/iommu.h>
43 #include <asm/btext.h>
44 #include <asm/sections.h>
45 #include <asm/machdep.h>
47 #ifdef CONFIG_LOGO_LINUX_CLUT224
48 #include <linux/linux_logo.h>
49 extern const struct linux_logo logo_linux_clut224
;
53 * Properties whose value is longer than this get excluded from our
54 * copy of the device tree. This value does need to be big enough to
55 * ensure that we don't lose things like the interrupt-map property
56 * on a PCI-PCI bridge.
58 #define MAX_PROPERTY_LENGTH (1UL * 1024 * 1024)
61 * Eventually bump that one up
63 #define DEVTREE_CHUNK_SIZE 0x100000
66 * This is the size of the local memory reserve map that gets copied
67 * into the boot params passed to the kernel. That size is totally
68 * flexible as the kernel just reads the list until it encounters an
69 * entry with size 0, so it can be changed without breaking binary
72 #define MEM_RESERVE_MAP_SIZE 8
75 * prom_init() is called very early on, before the kernel text
76 * and data have been mapped to KERNELBASE. At this point the code
77 * is running at whatever address it has been loaded at.
78 * On ppc32 we compile with -mrelocatable, which means that references
79 * to extern and static variables get relocated automatically.
80 * On ppc64 we have to relocate the references explicitly with
81 * RELOC. (Note that strings count as static variables.)
83 * Because OF may have mapped I/O devices into the area starting at
84 * KERNELBASE, particularly on CHRP machines, we can't safely call
85 * OF once the kernel has been mapped to KERNELBASE. Therefore all
86 * OF calls must be done within prom_init().
88 * ADDR is used in calls to call_prom. The 4th and following
89 * arguments to call_prom should be 32-bit values.
90 * On ppc64, 64 bit values are truncated to 32 bits (and
91 * fortunately don't get interpreted as two arguments).
94 #define RELOC(x) (*PTRRELOC(&(x)))
95 #define ADDR(x) (u32) add_reloc_offset((unsigned long)(x))
96 #define OF_WORKAROUNDS 0
99 #define ADDR(x) (u32) (x)
100 #define OF_WORKAROUNDS of_workarounds
104 #define OF_WA_CLAIM 1 /* do phys/virt claim separately, then map */
105 #define OF_WA_LONGTRAIL 2 /* work around longtrail bugs */
107 #define PROM_BUG() do { \
108 prom_printf("kernel BUG at %s line 0x%x!\n", \
109 RELOC(__FILE__), __LINE__); \
110 __asm__ __volatile__(".long " BUG_ILLEGAL_INSTR); \
114 #define prom_debug(x...) prom_printf(x)
116 #define prom_debug(x...)
120 typedef u32 prom_arg_t
;
138 struct mem_map_entry
{
145 extern void __start(unsigned long r3
, unsigned long r4
, unsigned long r5
);
148 extern int enter_prom(struct prom_args
*args
, unsigned long entry
);
150 static inline int enter_prom(struct prom_args
*args
, unsigned long entry
)
152 return ((int (*)(struct prom_args
*))entry
)(args
);
156 extern void copy_and_flush(unsigned long dest
, unsigned long src
,
157 unsigned long size
, unsigned long offset
);
160 static struct prom_t __initdata prom
;
162 static unsigned long prom_entry __initdata
;
164 #define PROM_SCRATCH_SIZE 256
166 static char __initdata of_stdout_device
[256];
167 static char __initdata prom_scratch
[PROM_SCRATCH_SIZE
];
169 static unsigned long __initdata dt_header_start
;
170 static unsigned long __initdata dt_struct_start
, dt_struct_end
;
171 static unsigned long __initdata dt_string_start
, dt_string_end
;
173 static unsigned long __initdata prom_initrd_start
, prom_initrd_end
;
176 static int __initdata prom_iommu_force_on
;
177 static int __initdata prom_iommu_off
;
178 static unsigned long __initdata prom_tce_alloc_start
;
179 static unsigned long __initdata prom_tce_alloc_end
;
182 /* Platforms codes are now obsolete in the kernel. Now only used within this
183 * file and ultimately gone too. Feel free to change them if you need, they
184 * are not shared with anything outside of this file anymore
186 #define PLATFORM_PSERIES 0x0100
187 #define PLATFORM_PSERIES_LPAR 0x0101
188 #define PLATFORM_LPAR 0x0001
189 #define PLATFORM_POWERMAC 0x0400
190 #define PLATFORM_GENERIC 0x0500
192 static int __initdata of_platform
;
194 static char __initdata prom_cmd_line
[COMMAND_LINE_SIZE
];
196 static unsigned long __initdata alloc_top
;
197 static unsigned long __initdata alloc_top_high
;
198 static unsigned long __initdata alloc_bottom
;
199 static unsigned long __initdata rmo_top
;
200 static unsigned long __initdata ram_top
;
202 static struct mem_map_entry __initdata mem_reserve_map
[MEM_RESERVE_MAP_SIZE
];
203 static int __initdata mem_reserve_cnt
;
205 static cell_t __initdata regbuf
[1024];
208 #define MAX_CPU_THREADS 2
211 * Error results ... some OF calls will return "-1" on error, some
212 * will return 0, some will return either. To simplify, here are
213 * macros to use with any ihandle or phandle return value to check if
217 #define PROM_ERROR (-1u)
218 #define PHANDLE_VALID(p) ((p) != 0 && (p) != PROM_ERROR)
219 #define IHANDLE_VALID(i) ((i) != 0 && (i) != PROM_ERROR)
222 /* This is the one and *ONLY* place where we actually call open
226 static int __init
call_prom(const char *service
, int nargs
, int nret
, ...)
229 struct prom_args args
;
232 args
.service
= ADDR(service
);
236 va_start(list
, nret
);
237 for (i
= 0; i
< nargs
; i
++)
238 args
.args
[i
] = va_arg(list
, prom_arg_t
);
241 for (i
= 0; i
< nret
; i
++)
242 args
.args
[nargs
+i
] = 0;
244 if (enter_prom(&args
, RELOC(prom_entry
)) < 0)
247 return (nret
> 0) ? args
.args
[nargs
] : 0;
250 static int __init
call_prom_ret(const char *service
, int nargs
, int nret
,
251 prom_arg_t
*rets
, ...)
254 struct prom_args args
;
257 args
.service
= ADDR(service
);
261 va_start(list
, rets
);
262 for (i
= 0; i
< nargs
; i
++)
263 args
.args
[i
] = va_arg(list
, prom_arg_t
);
266 for (i
= 0; i
< nret
; i
++)
267 args
.args
[nargs
+i
] = 0;
269 if (enter_prom(&args
, RELOC(prom_entry
)) < 0)
273 for (i
= 1; i
< nret
; ++i
)
274 rets
[i
-1] = args
.args
[nargs
+i
];
276 return (nret
> 0) ? args
.args
[nargs
] : 0;
280 static void __init
prom_print(const char *msg
)
283 struct prom_t
*_prom
= &RELOC(prom
);
285 if (_prom
->stdout
== 0)
288 for (p
= msg
; *p
!= 0; p
= q
) {
289 for (q
= p
; *q
!= 0 && *q
!= '\n'; ++q
)
292 call_prom("write", 3, 1, _prom
->stdout
, p
, q
- p
);
296 call_prom("write", 3, 1, _prom
->stdout
, ADDR("\r\n"), 2);
301 static void __init
prom_print_hex(unsigned long val
)
303 int i
, nibbles
= sizeof(val
)*2;
304 char buf
[sizeof(val
)*2+1];
305 struct prom_t
*_prom
= &RELOC(prom
);
307 for (i
= nibbles
-1; i
>= 0; i
--) {
308 buf
[i
] = (val
& 0xf) + '0';
310 buf
[i
] += ('a'-'0'-10);
314 call_prom("write", 3, 1, _prom
->stdout
, buf
, nibbles
);
318 static void __init
prom_printf(const char *format
, ...)
320 const char *p
, *q
, *s
;
323 struct prom_t
*_prom
= &RELOC(prom
);
325 va_start(args
, format
);
327 format
= PTRRELOC(format
);
329 for (p
= format
; *p
!= 0; p
= q
) {
330 for (q
= p
; *q
!= 0 && *q
!= '\n' && *q
!= '%'; ++q
)
333 call_prom("write", 3, 1, _prom
->stdout
, p
, q
- p
);
338 call_prom("write", 3, 1, _prom
->stdout
,
348 s
= va_arg(args
, const char *);
353 v
= va_arg(args
, unsigned long);
361 static unsigned int __init
prom_claim(unsigned long virt
, unsigned long size
,
364 struct prom_t
*_prom
= &RELOC(prom
);
366 if (align
== 0 && (OF_WORKAROUNDS
& OF_WA_CLAIM
)) {
368 * Old OF requires we claim physical and virtual separately
369 * and then map explicitly (assuming virtual mode)
374 ret
= call_prom_ret("call-method", 5, 2, &result
,
375 ADDR("claim"), _prom
->memory
,
377 if (ret
!= 0 || result
== -1)
379 ret
= call_prom_ret("call-method", 5, 2, &result
,
380 ADDR("claim"), _prom
->mmumap
,
383 call_prom("call-method", 4, 1, ADDR("release"),
384 _prom
->memory
, size
, virt
);
387 /* the 0x12 is M (coherence) + PP == read/write */
388 call_prom("call-method", 6, 1,
389 ADDR("map"), _prom
->mmumap
, 0x12, size
, virt
, virt
);
392 return call_prom("claim", 3, 1, (prom_arg_t
)virt
, (prom_arg_t
)size
,
396 static void __init
__attribute__((noreturn
)) prom_panic(const char *reason
)
399 reason
= PTRRELOC(reason
);
402 /* Do not call exit because it clears the screen on pmac
403 * it also causes some sort of double-fault on early pmacs */
404 if (RELOC(of_platform
) == PLATFORM_POWERMAC
)
407 /* ToDo: should put up an SRC here on p/iSeries */
408 call_prom("exit", 0, 0);
410 for (;;) /* should never get here */
415 static int __init
prom_next_node(phandle
*nodep
)
419 if ((node
= *nodep
) != 0
420 && (*nodep
= call_prom("child", 1, 1, node
)) != 0)
422 if ((*nodep
= call_prom("peer", 1, 1, node
)) != 0)
425 if ((node
= call_prom("parent", 1, 1, node
)) == 0)
427 if ((*nodep
= call_prom("peer", 1, 1, node
)) != 0)
432 static int inline prom_getprop(phandle node
, const char *pname
,
433 void *value
, size_t valuelen
)
435 return call_prom("getprop", 4, 1, node
, ADDR(pname
),
436 (u32
)(unsigned long) value
, (u32
) valuelen
);
439 static int inline prom_getproplen(phandle node
, const char *pname
)
441 return call_prom("getproplen", 2, 1, node
, ADDR(pname
));
444 static void add_string(char **str
, const char *q
)
454 static char *tohex(unsigned int x
)
456 static char digits
[] = "0123456789abcdef";
457 static char result
[9];
464 result
[i
] = digits
[x
& 0xf];
466 } while (x
!= 0 && i
> 0);
470 static int __init
prom_setprop(phandle node
, const char *nodename
,
471 const char *pname
, void *value
, size_t valuelen
)
475 if (!(OF_WORKAROUNDS
& OF_WA_LONGTRAIL
))
476 return call_prom("setprop", 4, 1, node
, ADDR(pname
),
477 (u32
)(unsigned long) value
, (u32
) valuelen
);
479 /* gah... setprop doesn't work on longtrail, have to use interpret */
481 add_string(&p
, "dev");
482 add_string(&p
, nodename
);
483 add_string(&p
, tohex((u32
)(unsigned long) value
));
484 add_string(&p
, tohex(valuelen
));
485 add_string(&p
, tohex(ADDR(pname
)));
486 add_string(&p
, tohex(strlen(RELOC(pname
))));
487 add_string(&p
, "property");
489 return call_prom("interpret", 1, 1, (u32
)(unsigned long) cmd
);
492 /* We can't use the standard versions because of RELOC headaches. */
493 #define isxdigit(c) (('0' <= (c) && (c) <= '9') \
494 || ('a' <= (c) && (c) <= 'f') \
495 || ('A' <= (c) && (c) <= 'F'))
497 #define isdigit(c) ('0' <= (c) && (c) <= '9')
498 #define islower(c) ('a' <= (c) && (c) <= 'z')
499 #define toupper(c) (islower(c) ? ((c) - 'a' + 'A') : (c))
501 unsigned long prom_strtoul(const char *cp
, const char **endp
)
503 unsigned long result
= 0, base
= 10, value
;
508 if (toupper(*cp
) == 'X') {
514 while (isxdigit(*cp
) &&
515 (value
= isdigit(*cp
) ? *cp
- '0' : toupper(*cp
) - 'A' + 10) < base
) {
516 result
= result
* base
+ value
;
526 unsigned long prom_memparse(const char *ptr
, const char **retptr
)
528 unsigned long ret
= prom_strtoul(ptr
, retptr
);
532 * We can't use a switch here because GCC *may* generate a
533 * jump table which won't work, because we're not running at
534 * the address we're linked at.
536 if ('G' == **retptr
|| 'g' == **retptr
)
539 if ('M' == **retptr
|| 'm' == **retptr
)
542 if ('K' == **retptr
|| 'k' == **retptr
)
554 * Early parsing of the command line passed to the kernel, used for
555 * "mem=x" and the options that affect the iommu
557 static void __init
early_cmdline_parse(void)
559 struct prom_t
*_prom
= &RELOC(prom
);
566 RELOC(prom_cmd_line
[0]) = 0;
567 p
= RELOC(prom_cmd_line
);
568 if ((long)_prom
->chosen
> 0)
569 l
= prom_getprop(_prom
->chosen
, "bootargs", p
, COMMAND_LINE_SIZE
-1);
570 #ifdef CONFIG_CMDLINE
571 if (l
<= 0 || p
[0] == '\0') /* dbl check */
572 strlcpy(RELOC(prom_cmd_line
),
573 RELOC(CONFIG_CMDLINE
), sizeof(prom_cmd_line
));
574 #endif /* CONFIG_CMDLINE */
575 prom_printf("command line: %s\n", RELOC(prom_cmd_line
));
578 opt
= strstr(RELOC(prom_cmd_line
), RELOC("iommu="));
580 prom_printf("iommu opt is: %s\n", opt
);
582 while (*opt
&& *opt
== ' ')
584 if (!strncmp(opt
, RELOC("off"), 3))
585 RELOC(prom_iommu_off
) = 1;
586 else if (!strncmp(opt
, RELOC("force"), 5))
587 RELOC(prom_iommu_force_on
) = 1;
592 #ifdef CONFIG_PPC_PSERIES
594 * There are two methods for telling firmware what our capabilities are.
595 * Newer machines have an "ibm,client-architecture-support" method on the
596 * root node. For older machines, we have to call the "process-elf-header"
597 * method in the /packages/elf-loader node, passing it a fake 32-bit
598 * ELF header containing a couple of PT_NOTE sections that contain
599 * structures that contain various information.
603 * New method - extensible architecture description vector.
605 * Because the description vector contains a mix of byte and word
606 * values, we declare it as an unsigned char array, and use this
607 * macro to put word values in.
609 #define W(x) ((x) >> 24) & 0xff, ((x) >> 16) & 0xff, \
610 ((x) >> 8) & 0xff, (x) & 0xff
612 /* Option vector bits - generic bits in byte 1 */
613 #define OV_IGNORE 0x80 /* ignore this vector */
614 #define OV_CESSATION_POLICY 0x40 /* halt if unsupported option present*/
616 /* Option vector 1: processor architectures supported */
617 #define OV1_PPC_2_00 0x80 /* set if we support PowerPC 2.00 */
618 #define OV1_PPC_2_01 0x40 /* set if we support PowerPC 2.01 */
619 #define OV1_PPC_2_02 0x20 /* set if we support PowerPC 2.02 */
620 #define OV1_PPC_2_03 0x10 /* set if we support PowerPC 2.03 */
621 #define OV1_PPC_2_04 0x08 /* set if we support PowerPC 2.04 */
622 #define OV1_PPC_2_05 0x04 /* set if we support PowerPC 2.05 */
624 /* Option vector 2: Open Firmware options supported */
625 #define OV2_REAL_MODE 0x20 /* set if we want OF in real mode */
627 /* Option vector 3: processor options supported */
628 #define OV3_FP 0x80 /* floating point */
629 #define OV3_VMX 0x40 /* VMX/Altivec */
630 #define OV3_DFP 0x20 /* decimal FP */
632 /* Option vector 5: PAPR/OF options supported */
633 #define OV5_LPAR 0x80 /* logical partitioning supported */
634 #define OV5_SPLPAR 0x40 /* shared-processor LPAR supported */
635 /* ibm,dynamic-reconfiguration-memory property supported */
636 #define OV5_DRCONF_MEMORY 0x20
637 #define OV5_LARGE_PAGES 0x10 /* large pages supported */
638 #define OV5_DONATE_DEDICATE_CPU 0x02 /* donate dedicated CPU support */
639 /* PCIe/MSI support. Without MSI full PCIe is not supported */
640 #ifdef CONFIG_PCI_MSI
641 #define OV5_MSI 0x01 /* PCIe/MSI support */
644 #endif /* CONFIG_PCI_MSI */
647 * The architecture vector has an array of PVR mask/value pairs,
648 * followed by # option vectors - 1, followed by the option vectors.
650 static unsigned char ibm_architecture_vec
[] = {
651 W(0xfffe0000), W(0x003a0000), /* POWER5/POWER5+ */
652 W(0xffff0000), W(0x003e0000), /* POWER6 */
653 W(0xffffffff), W(0x0f000002), /* all 2.05-compliant */
654 W(0xfffffffe), W(0x0f000001), /* all 2.04-compliant and earlier */
655 5 - 1, /* 5 option vectors */
657 /* option vector 1: processor architectures supported */
659 0, /* don't ignore, don't halt */
660 OV1_PPC_2_00
| OV1_PPC_2_01
| OV1_PPC_2_02
| OV1_PPC_2_03
|
661 OV1_PPC_2_04
| OV1_PPC_2_05
,
663 /* option vector 2: Open Firmware options supported */
667 W(0xffffffff), /* real_base */
668 W(0xffffffff), /* real_size */
669 W(0xffffffff), /* virt_base */
670 W(0xffffffff), /* virt_size */
671 W(0xffffffff), /* load_base */
672 W(64), /* 128MB min RMA */
673 W(0xffffffff), /* full client load */
674 0, /* min RMA percentage of total RAM */
675 48, /* max log_2(hash table size) */
677 /* option vector 3: processor options supported */
679 0, /* don't ignore, don't halt */
680 OV3_FP
| OV3_VMX
| OV3_DFP
,
682 /* option vector 4: IBM PAPR implementation */
686 /* option vector 5: PAPR/OF options */
688 0, /* don't ignore, don't halt */
689 OV5_LPAR
| OV5_SPLPAR
| OV5_LARGE_PAGES
| OV5_DRCONF_MEMORY
|
690 OV5_DONATE_DEDICATE_CPU
| OV5_MSI
,
693 /* Old method - ELF header with PT_NOTE sections */
694 static struct fake_elf
{
701 char name
[8]; /* "PowerPC" */
715 char name
[24]; /* "IBM,RPA-Client-Config" */
729 .e_ident
= { 0x7f, 'E', 'L', 'F',
730 ELFCLASS32
, ELFDATA2MSB
, EV_CURRENT
},
731 .e_type
= ET_EXEC
, /* yeah right */
733 .e_version
= EV_CURRENT
,
734 .e_phoff
= offsetof(struct fake_elf
, phdr
),
735 .e_phentsize
= sizeof(Elf32_Phdr
),
741 .p_offset
= offsetof(struct fake_elf
, chrpnote
),
742 .p_filesz
= sizeof(struct chrpnote
)
745 .p_offset
= offsetof(struct fake_elf
, rpanote
),
746 .p_filesz
= sizeof(struct rpanote
)
750 .namesz
= sizeof("PowerPC"),
751 .descsz
= sizeof(struct chrpdesc
),
755 .real_mode
= ~0U, /* ~0 means "don't care" */
764 .namesz
= sizeof("IBM,RPA-Client-Config"),
765 .descsz
= sizeof(struct rpadesc
),
767 .name
= "IBM,RPA-Client-Config",
770 .min_rmo_size
= 64, /* in megabytes */
771 .min_rmo_percent
= 0,
772 .max_pft_size
= 48, /* 2^48 bytes max PFT size */
780 static void __init
prom_send_capabilities(void)
782 ihandle elfloader
, root
;
785 root
= call_prom("open", 1, 1, ADDR("/"));
787 /* try calling the ibm,client-architecture-support method */
788 if (call_prom_ret("call-method", 3, 2, &ret
,
789 ADDR("ibm,client-architecture-support"),
791 ADDR(ibm_architecture_vec
)) == 0) {
792 /* the call exists... */
794 prom_printf("WARNING: ibm,client-architecture"
795 "-support call FAILED!\n");
796 call_prom("close", 1, 0, root
);
799 call_prom("close", 1, 0, root
);
802 /* no ibm,client-architecture-support call, try the old way */
803 elfloader
= call_prom("open", 1, 1, ADDR("/packages/elf-loader"));
804 if (elfloader
== 0) {
805 prom_printf("couldn't open /packages/elf-loader\n");
808 call_prom("call-method", 3, 1, ADDR("process-elf-header"),
809 elfloader
, ADDR(&fake_elf
));
810 call_prom("close", 1, 0, elfloader
);
815 * Memory allocation strategy... our layout is normally:
817 * at 14Mb or more we have vmlinux, then a gap and initrd. In some
818 * rare cases, initrd might end up being before the kernel though.
819 * We assume this won't override the final kernel at 0, we have no
820 * provision to handle that in this version, but it should hopefully
823 * alloc_top is set to the top of RMO, eventually shrink down if the
826 * alloc_bottom is set to the top of kernel/initrd
828 * from there, allocations are done this way : rtas is allocated
829 * topmost, and the device-tree is allocated from the bottom. We try
830 * to grow the device-tree allocation as we progress. If we can't,
831 * then we fail, we don't currently have a facility to restart
832 * elsewhere, but that shouldn't be necessary.
834 * Note that calls to reserve_mem have to be done explicitly, memory
835 * allocated with either alloc_up or alloc_down isn't automatically
841 * Allocates memory in the RMO upward from the kernel/initrd
843 * When align is 0, this is a special case, it means to allocate in place
844 * at the current location of alloc_bottom or fail (that is basically
845 * extending the previous allocation). Used for the device-tree flattening
847 static unsigned long __init
alloc_up(unsigned long size
, unsigned long align
)
849 unsigned long base
= RELOC(alloc_bottom
);
850 unsigned long addr
= 0;
853 base
= _ALIGN_UP(base
, align
);
854 prom_debug("alloc_up(%x, %x)\n", size
, align
);
855 if (RELOC(ram_top
) == 0)
856 prom_panic("alloc_up() called with mem not initialized\n");
859 base
= _ALIGN_UP(RELOC(alloc_bottom
), align
);
861 base
= RELOC(alloc_bottom
);
863 for(; (base
+ size
) <= RELOC(alloc_top
);
864 base
= _ALIGN_UP(base
+ 0x100000, align
)) {
865 prom_debug(" trying: 0x%x\n\r", base
);
866 addr
= (unsigned long)prom_claim(base
, size
, 0);
867 if (addr
!= PROM_ERROR
&& addr
!= 0)
875 RELOC(alloc_bottom
) = addr
;
877 prom_debug(" -> %x\n", addr
);
878 prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom
));
879 prom_debug(" alloc_top : %x\n", RELOC(alloc_top
));
880 prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high
));
881 prom_debug(" rmo_top : %x\n", RELOC(rmo_top
));
882 prom_debug(" ram_top : %x\n", RELOC(ram_top
));
888 * Allocates memory downward, either from top of RMO, or if highmem
889 * is set, from the top of RAM. Note that this one doesn't handle
890 * failures. It does claim memory if highmem is not set.
892 static unsigned long __init
alloc_down(unsigned long size
, unsigned long align
,
895 unsigned long base
, addr
= 0;
897 prom_debug("alloc_down(%x, %x, %s)\n", size
, align
,
898 highmem
? RELOC("(high)") : RELOC("(low)"));
899 if (RELOC(ram_top
) == 0)
900 prom_panic("alloc_down() called with mem not initialized\n");
903 /* Carve out storage for the TCE table. */
904 addr
= _ALIGN_DOWN(RELOC(alloc_top_high
) - size
, align
);
905 if (addr
<= RELOC(alloc_bottom
))
907 /* Will we bump into the RMO ? If yes, check out that we
908 * didn't overlap existing allocations there, if we did,
909 * we are dead, we must be the first in town !
911 if (addr
< RELOC(rmo_top
)) {
912 /* Good, we are first */
913 if (RELOC(alloc_top
) == RELOC(rmo_top
))
914 RELOC(alloc_top
) = RELOC(rmo_top
) = addr
;
918 RELOC(alloc_top_high
) = addr
;
922 base
= _ALIGN_DOWN(RELOC(alloc_top
) - size
, align
);
923 for (; base
> RELOC(alloc_bottom
);
924 base
= _ALIGN_DOWN(base
- 0x100000, align
)) {
925 prom_debug(" trying: 0x%x\n\r", base
);
926 addr
= (unsigned long)prom_claim(base
, size
, 0);
927 if (addr
!= PROM_ERROR
&& addr
!= 0)
933 RELOC(alloc_top
) = addr
;
936 prom_debug(" -> %x\n", addr
);
937 prom_debug(" alloc_bottom : %x\n", RELOC(alloc_bottom
));
938 prom_debug(" alloc_top : %x\n", RELOC(alloc_top
));
939 prom_debug(" alloc_top_hi : %x\n", RELOC(alloc_top_high
));
940 prom_debug(" rmo_top : %x\n", RELOC(rmo_top
));
941 prom_debug(" ram_top : %x\n", RELOC(ram_top
));
949 static unsigned long __init
prom_next_cell(int s
, cell_t
**cellp
)
954 /* Ignore more than 2 cells */
955 while (s
> sizeof(unsigned long) / 4) {
971 * Very dumb function for adding to the memory reserve list, but
972 * we don't need anything smarter at this point
974 * XXX Eventually check for collisions. They should NEVER happen.
975 * If problems seem to show up, it would be a good start to track
978 static void __init
reserve_mem(u64 base
, u64 size
)
980 u64 top
= base
+ size
;
981 unsigned long cnt
= RELOC(mem_reserve_cnt
);
986 /* We need to always keep one empty entry so that we
987 * have our terminator with "size" set to 0 since we are
988 * dumb and just copy this entire array to the boot params
990 base
= _ALIGN_DOWN(base
, PAGE_SIZE
);
991 top
= _ALIGN_UP(top
, PAGE_SIZE
);
994 if (cnt
>= (MEM_RESERVE_MAP_SIZE
- 1))
995 prom_panic("Memory reserve map exhausted !\n");
996 RELOC(mem_reserve_map
)[cnt
].base
= base
;
997 RELOC(mem_reserve_map
)[cnt
].size
= size
;
998 RELOC(mem_reserve_cnt
) = cnt
+ 1;
1002 * Initialize memory allocation mechanism, parse "memory" nodes and
1003 * obtain that way the top of memory and RMO to setup out local allocator
1005 static void __init
prom_init_mem(void)
1008 char *path
, type
[64];
1011 struct prom_t
*_prom
= &RELOC(prom
);
1015 * We iterate the memory nodes to find
1016 * 1) top of RMO (first node)
1020 prom_getprop(_prom
->root
, "#address-cells", &rac
, sizeof(rac
));
1022 prom_getprop(_prom
->root
, "#size-cells", &rsc
, sizeof(rsc
));
1023 prom_debug("root_addr_cells: %x\n", (unsigned long) rac
);
1024 prom_debug("root_size_cells: %x\n", (unsigned long) rsc
);
1026 prom_debug("scanning memory:\n");
1027 path
= RELOC(prom_scratch
);
1029 for (node
= 0; prom_next_node(&node
); ) {
1031 prom_getprop(node
, "device_type", type
, sizeof(type
));
1035 * CHRP Longtrail machines have no device_type
1036 * on the memory node, so check the name instead...
1038 prom_getprop(node
, "name", type
, sizeof(type
));
1040 if (strcmp(type
, RELOC("memory")))
1043 plen
= prom_getprop(node
, "reg", RELOC(regbuf
), sizeof(regbuf
));
1044 if (plen
> sizeof(regbuf
)) {
1045 prom_printf("memory node too large for buffer !\n");
1046 plen
= sizeof(regbuf
);
1049 endp
= p
+ (plen
/ sizeof(cell_t
));
1052 memset(path
, 0, PROM_SCRATCH_SIZE
);
1053 call_prom("package-to-path", 3, 1, node
, path
, PROM_SCRATCH_SIZE
-1);
1054 prom_debug(" node %s :\n", path
);
1055 #endif /* DEBUG_PROM */
1057 while ((endp
- p
) >= (rac
+ rsc
)) {
1058 unsigned long base
, size
;
1060 base
= prom_next_cell(rac
, &p
);
1061 size
= prom_next_cell(rsc
, &p
);
1065 prom_debug(" %x %x\n", base
, size
);
1066 if (base
== 0 && (RELOC(of_platform
) & PLATFORM_LPAR
))
1067 RELOC(rmo_top
) = size
;
1068 if ((base
+ size
) > RELOC(ram_top
))
1069 RELOC(ram_top
) = base
+ size
;
1073 RELOC(alloc_bottom
) = PAGE_ALIGN((unsigned long)&RELOC(_end
) + 0x4000);
1075 /* Check if we have an initrd after the kernel, if we do move our bottom
1078 if (RELOC(prom_initrd_start
)) {
1079 if (RELOC(prom_initrd_end
) > RELOC(alloc_bottom
))
1080 RELOC(alloc_bottom
) = PAGE_ALIGN(RELOC(prom_initrd_end
));
1084 * Setup our top alloc point, that is top of RMO or top of
1085 * segment 0 when running non-LPAR.
1086 * Some RS64 machines have buggy firmware where claims up at
1087 * 1GB fail. Cap at 768MB as a workaround.
1088 * Since 768MB is plenty of room, and we need to cap to something
1089 * reasonable on 32-bit, cap at 768MB on all machines.
1091 if (!RELOC(rmo_top
))
1092 RELOC(rmo_top
) = RELOC(ram_top
);
1093 RELOC(rmo_top
) = min(0x30000000ul
, RELOC(rmo_top
));
1094 RELOC(alloc_top
) = RELOC(rmo_top
);
1095 RELOC(alloc_top_high
) = RELOC(ram_top
);
1097 prom_printf("memory layout at init:\n");
1098 prom_printf(" alloc_bottom : %x\n", RELOC(alloc_bottom
));
1099 prom_printf(" alloc_top : %x\n", RELOC(alloc_top
));
1100 prom_printf(" alloc_top_hi : %x\n", RELOC(alloc_top_high
));
1101 prom_printf(" rmo_top : %x\n", RELOC(rmo_top
));
1102 prom_printf(" ram_top : %x\n", RELOC(ram_top
));
1107 * Allocate room for and instantiate RTAS
1109 static void __init
prom_instantiate_rtas(void)
1113 u32 base
, entry
= 0;
1116 prom_debug("prom_instantiate_rtas: start...\n");
1118 rtas_node
= call_prom("finddevice", 1, 1, ADDR("/rtas"));
1119 prom_debug("rtas_node: %x\n", rtas_node
);
1120 if (!PHANDLE_VALID(rtas_node
))
1123 prom_getprop(rtas_node
, "rtas-size", &size
, sizeof(size
));
1127 base
= alloc_down(size
, PAGE_SIZE
, 0);
1129 prom_printf("RTAS allocation failed !\n");
1133 rtas_inst
= call_prom("open", 1, 1, ADDR("/rtas"));
1134 if (!IHANDLE_VALID(rtas_inst
)) {
1135 prom_printf("opening rtas package failed (%x)\n", rtas_inst
);
1139 prom_printf("instantiating rtas at 0x%x ...", base
);
1141 if (call_prom_ret("call-method", 3, 2, &entry
,
1142 ADDR("instantiate-rtas"),
1143 rtas_inst
, base
) != 0
1145 prom_printf(" failed\n");
1148 prom_printf(" done\n");
1150 reserve_mem(base
, size
);
1152 prom_setprop(rtas_node
, "/rtas", "linux,rtas-base",
1153 &base
, sizeof(base
));
1154 prom_setprop(rtas_node
, "/rtas", "linux,rtas-entry",
1155 &entry
, sizeof(entry
));
1157 prom_debug("rtas base = 0x%x\n", base
);
1158 prom_debug("rtas entry = 0x%x\n", entry
);
1159 prom_debug("rtas size = 0x%x\n", (long)size
);
1161 prom_debug("prom_instantiate_rtas: end...\n");
1166 * Allocate room for and initialize TCE tables
1168 static void __init
prom_initialize_tce_table(void)
1172 char compatible
[64], type
[64], model
[64];
1173 char *path
= RELOC(prom_scratch
);
1175 u32 minalign
, minsize
;
1176 u64 tce_entry
, *tce_entryp
;
1177 u64 local_alloc_top
, local_alloc_bottom
;
1180 if (RELOC(prom_iommu_off
))
1183 prom_debug("starting prom_initialize_tce_table\n");
1185 /* Cache current top of allocs so we reserve a single block */
1186 local_alloc_top
= RELOC(alloc_top_high
);
1187 local_alloc_bottom
= local_alloc_top
;
1189 /* Search all nodes looking for PHBs. */
1190 for (node
= 0; prom_next_node(&node
); ) {
1194 prom_getprop(node
, "compatible",
1195 compatible
, sizeof(compatible
));
1196 prom_getprop(node
, "device_type", type
, sizeof(type
));
1197 prom_getprop(node
, "model", model
, sizeof(model
));
1199 if ((type
[0] == 0) || (strstr(type
, RELOC("pci")) == NULL
))
1202 /* Keep the old logic intact to avoid regression. */
1203 if (compatible
[0] != 0) {
1204 if ((strstr(compatible
, RELOC("python")) == NULL
) &&
1205 (strstr(compatible
, RELOC("Speedwagon")) == NULL
) &&
1206 (strstr(compatible
, RELOC("Winnipeg")) == NULL
))
1208 } else if (model
[0] != 0) {
1209 if ((strstr(model
, RELOC("ython")) == NULL
) &&
1210 (strstr(model
, RELOC("peedwagon")) == NULL
) &&
1211 (strstr(model
, RELOC("innipeg")) == NULL
))
1215 if (prom_getprop(node
, "tce-table-minalign", &minalign
,
1216 sizeof(minalign
)) == PROM_ERROR
)
1218 if (prom_getprop(node
, "tce-table-minsize", &minsize
,
1219 sizeof(minsize
)) == PROM_ERROR
)
1220 minsize
= 4UL << 20;
1223 * Even though we read what OF wants, we just set the table
1224 * size to 4 MB. This is enough to map 2GB of PCI DMA space.
1225 * By doing this, we avoid the pitfalls of trying to DMA to
1226 * MMIO space and the DMA alias hole.
1228 * On POWER4, firmware sets the TCE region by assuming
1229 * each TCE table is 8MB. Using this memory for anything
1230 * else will impact performance, so we always allocate 8MB.
1233 if (__is_processor(PV_POWER4
) || __is_processor(PV_POWER4p
))
1234 minsize
= 8UL << 20;
1236 minsize
= 4UL << 20;
1238 /* Align to the greater of the align or size */
1239 align
= max(minalign
, minsize
);
1240 base
= alloc_down(minsize
, align
, 1);
1242 prom_panic("ERROR, cannot find space for TCE table.\n");
1243 if (base
< local_alloc_bottom
)
1244 local_alloc_bottom
= base
;
1246 /* It seems OF doesn't null-terminate the path :-( */
1247 memset(path
, 0, PROM_SCRATCH_SIZE
);
1248 /* Call OF to setup the TCE hardware */
1249 if (call_prom("package-to-path", 3, 1, node
,
1250 path
, PROM_SCRATCH_SIZE
-1) == PROM_ERROR
) {
1251 prom_printf("package-to-path failed\n");
1254 /* Save away the TCE table attributes for later use. */
1255 prom_setprop(node
, path
, "linux,tce-base", &base
, sizeof(base
));
1256 prom_setprop(node
, path
, "linux,tce-size", &minsize
, sizeof(minsize
));
1258 prom_debug("TCE table: %s\n", path
);
1259 prom_debug("\tnode = 0x%x\n", node
);
1260 prom_debug("\tbase = 0x%x\n", base
);
1261 prom_debug("\tsize = 0x%x\n", minsize
);
1263 /* Initialize the table to have a one-to-one mapping
1264 * over the allocated size.
1266 tce_entryp
= (unsigned long *)base
;
1267 for (i
= 0; i
< (minsize
>> 3) ;tce_entryp
++, i
++) {
1268 tce_entry
= (i
<< PAGE_SHIFT
);
1270 *tce_entryp
= tce_entry
;
1273 prom_printf("opening PHB %s", path
);
1274 phb_node
= call_prom("open", 1, 1, path
);
1276 prom_printf("... failed\n");
1278 prom_printf("... done\n");
1280 call_prom("call-method", 6, 0, ADDR("set-64-bit-addressing"),
1281 phb_node
, -1, minsize
,
1282 (u32
) base
, (u32
) (base
>> 32));
1283 call_prom("close", 1, 0, phb_node
);
1286 reserve_mem(local_alloc_bottom
, local_alloc_top
- local_alloc_bottom
);
1288 /* These are only really needed if there is a memory limit in
1289 * effect, but we don't know so export them always. */
1290 RELOC(prom_tce_alloc_start
) = local_alloc_bottom
;
1291 RELOC(prom_tce_alloc_end
) = local_alloc_top
;
1293 /* Flag the first invalid entry */
1294 prom_debug("ending prom_initialize_tce_table\n");
1299 * With CHRP SMP we need to use the OF to start the other processors.
1300 * We can't wait until smp_boot_cpus (the OF is trashed by then)
1301 * so we have to put the processors into a holding pattern controlled
1302 * by the kernel (not OF) before we destroy the OF.
1304 * This uses a chunk of low memory, puts some holding pattern
1305 * code there and sends the other processors off to there until
1306 * smp_boot_cpus tells them to do something. The holding pattern
1307 * checks that address until its cpu # is there, when it is that
1308 * cpu jumps to __secondary_start(). smp_boot_cpus() takes care
1309 * of setting those values.
1311 * We also use physical address 0x4 here to tell when a cpu
1312 * is in its holding pattern code.
1316 extern void __secondary_hold(void);
1317 extern unsigned long __secondary_hold_spinloop
;
1318 extern unsigned long __secondary_hold_acknowledge
;
1321 * We want to reference the copy of __secondary_hold_* in the
1322 * 0 - 0x100 address range
1324 #define LOW_ADDR(x) (((unsigned long) &(x)) & 0xff)
1326 static void __init
prom_hold_cpus(void)
1333 unsigned int interrupt_server
[MAX_CPU_THREADS
];
1334 unsigned int cpu_threads
, hw_cpu_num
;
1336 struct prom_t
*_prom
= &RELOC(prom
);
1337 unsigned long *spinloop
1338 = (void *) LOW_ADDR(__secondary_hold_spinloop
);
1339 unsigned long *acknowledge
1340 = (void *) LOW_ADDR(__secondary_hold_acknowledge
);
1342 /* __secondary_hold is actually a descriptor, not the text address */
1343 unsigned long secondary_hold
1344 = __pa(*PTRRELOC((unsigned long *)__secondary_hold
));
1346 unsigned long secondary_hold
= LOW_ADDR(__secondary_hold
);
1349 prom_debug("prom_hold_cpus: start...\n");
1350 prom_debug(" 1) spinloop = 0x%x\n", (unsigned long)spinloop
);
1351 prom_debug(" 1) *spinloop = 0x%x\n", *spinloop
);
1352 prom_debug(" 1) acknowledge = 0x%x\n",
1353 (unsigned long)acknowledge
);
1354 prom_debug(" 1) *acknowledge = 0x%x\n", *acknowledge
);
1355 prom_debug(" 1) secondary_hold = 0x%x\n", secondary_hold
);
1357 /* Set the common spinloop variable, so all of the secondary cpus
1358 * will block when they are awakened from their OF spinloop.
1359 * This must occur for both SMP and non SMP kernels, since OF will
1360 * be trashed when we move the kernel.
1365 for (node
= 0; prom_next_node(&node
); ) {
1367 prom_getprop(node
, "device_type", type
, sizeof(type
));
1368 if (strcmp(type
, RELOC("cpu")) != 0)
1371 /* Skip non-configured cpus. */
1372 if (prom_getprop(node
, "status", type
, sizeof(type
)) > 0)
1373 if (strcmp(type
, RELOC("okay")) != 0)
1377 prom_getprop(node
, "reg", ®
, sizeof(reg
));
1379 prom_debug("\ncpuid = 0x%x\n", cpuid
);
1380 prom_debug("cpu hw idx = 0x%x\n", reg
);
1382 /* Init the acknowledge var which will be reset by
1383 * the secondary cpu when it awakens from its OF
1386 *acknowledge
= (unsigned long)-1;
1388 propsize
= prom_getprop(node
, "ibm,ppc-interrupt-server#s",
1390 sizeof(interrupt_server
));
1392 /* no property. old hardware has no SMT */
1394 interrupt_server
[0] = reg
; /* fake it with phys id */
1396 /* We have a threaded processor */
1397 cpu_threads
= propsize
/ sizeof(u32
);
1398 if (cpu_threads
> MAX_CPU_THREADS
) {
1399 prom_printf("SMT: too many threads!\n"
1400 "SMT: found %x, max is %x\n",
1401 cpu_threads
, MAX_CPU_THREADS
);
1402 cpu_threads
= 1; /* ToDo: panic? */
1406 hw_cpu_num
= interrupt_server
[0];
1407 if (hw_cpu_num
!= _prom
->cpu
) {
1408 /* Primary Thread of non-boot cpu */
1409 prom_printf("%x : starting cpu hw idx %x... ", cpuid
, reg
);
1410 call_prom("start-cpu", 3, 0, node
,
1411 secondary_hold
, reg
);
1413 for (i
= 0; (i
< 100000000) &&
1414 (*acknowledge
== ((unsigned long)-1)); i
++ )
1417 if (*acknowledge
== reg
)
1418 prom_printf("done\n");
1420 prom_printf("failed: %x\n", *acknowledge
);
1424 prom_printf("%x : boot cpu %x\n", cpuid
, reg
);
1425 #endif /* CONFIG_SMP */
1427 /* Reserve cpu #s for secondary threads. They start later. */
1428 cpuid
+= cpu_threads
;
1431 if (cpuid
> NR_CPUS
)
1432 prom_printf("WARNING: maximum CPUs (" __stringify(NR_CPUS
)
1433 ") exceeded: ignoring extras\n");
1435 prom_debug("prom_hold_cpus: end...\n");
1439 static void __init
prom_init_client_services(unsigned long pp
)
1441 struct prom_t
*_prom
= &RELOC(prom
);
1443 /* Get a handle to the prom entry point before anything else */
1444 RELOC(prom_entry
) = pp
;
1446 /* get a handle for the stdout device */
1447 _prom
->chosen
= call_prom("finddevice", 1, 1, ADDR("/chosen"));
1448 if (!PHANDLE_VALID(_prom
->chosen
))
1449 prom_panic("cannot find chosen"); /* msg won't be printed :( */
1451 /* get device tree root */
1452 _prom
->root
= call_prom("finddevice", 1, 1, ADDR("/"));
1453 if (!PHANDLE_VALID(_prom
->root
))
1454 prom_panic("cannot find device tree root"); /* msg won't be printed :( */
1461 * For really old powermacs, we need to map things we claim.
1462 * For that, we need the ihandle of the mmu.
1463 * Also, on the longtrail, we need to work around other bugs.
1465 static void __init
prom_find_mmu(void)
1467 struct prom_t
*_prom
= &RELOC(prom
);
1471 oprom
= call_prom("finddevice", 1, 1, ADDR("/openprom"));
1472 if (!PHANDLE_VALID(oprom
))
1474 if (prom_getprop(oprom
, "model", version
, sizeof(version
)) <= 0)
1476 version
[sizeof(version
) - 1] = 0;
1477 /* XXX might need to add other versions here */
1478 if (strcmp(version
, "Open Firmware, 1.0.5") == 0)
1479 of_workarounds
= OF_WA_CLAIM
;
1480 else if (strncmp(version
, "FirmWorks,3.", 12) == 0) {
1481 of_workarounds
= OF_WA_CLAIM
| OF_WA_LONGTRAIL
;
1482 call_prom("interpret", 1, 1, "dev /memory 0 to allow-reclaim");
1485 _prom
->memory
= call_prom("open", 1, 1, ADDR("/memory"));
1486 prom_getprop(_prom
->chosen
, "mmu", &_prom
->mmumap
,
1487 sizeof(_prom
->mmumap
));
1488 if (!IHANDLE_VALID(_prom
->memory
) || !IHANDLE_VALID(_prom
->mmumap
))
1489 of_workarounds
&= ~OF_WA_CLAIM
; /* hmmm */
1492 #define prom_find_mmu()
1495 static void __init
prom_init_stdout(void)
1497 struct prom_t
*_prom
= &RELOC(prom
);
1498 char *path
= RELOC(of_stdout_device
);
1502 if (prom_getprop(_prom
->chosen
, "stdout", &val
, sizeof(val
)) <= 0)
1503 prom_panic("cannot find stdout");
1505 _prom
->stdout
= val
;
1507 /* Get the full OF pathname of the stdout device */
1508 memset(path
, 0, 256);
1509 call_prom("instance-to-path", 3, 1, _prom
->stdout
, path
, 255);
1510 val
= call_prom("instance-to-package", 1, 1, _prom
->stdout
);
1511 prom_setprop(_prom
->chosen
, "/chosen", "linux,stdout-package",
1513 prom_printf("OF stdout device is: %s\n", RELOC(of_stdout_device
));
1514 prom_setprop(_prom
->chosen
, "/chosen", "linux,stdout-path",
1515 path
, strlen(path
) + 1);
1517 /* If it's a display, note it */
1518 memset(type
, 0, sizeof(type
));
1519 prom_getprop(val
, "device_type", type
, sizeof(type
));
1520 if (strcmp(type
, RELOC("display")) == 0)
1521 prom_setprop(val
, path
, "linux,boot-display", NULL
, 0);
1524 static void __init
prom_close_stdin(void)
1526 struct prom_t
*_prom
= &RELOC(prom
);
1529 if (prom_getprop(_prom
->chosen
, "stdin", &val
, sizeof(val
)) > 0)
1530 call_prom("close", 1, 0, val
);
1533 static int __init
prom_find_machine_type(void)
1535 struct prom_t
*_prom
= &RELOC(prom
);
1543 /* Look for a PowerMac */
1544 len
= prom_getprop(_prom
->root
, "compatible",
1545 compat
, sizeof(compat
)-1);
1549 char *p
= &compat
[i
];
1553 if (strstr(p
, RELOC("Power Macintosh")) ||
1554 strstr(p
, RELOC("MacRISC")))
1555 return PLATFORM_POWERMAC
;
1557 /* We must make sure we don't detect the IBM Cell
1558 * blades as pSeries due to some firmware issues,
1561 if (strstr(p
, RELOC("IBM,CBEA")) ||
1562 strstr(p
, RELOC("IBM,CPBW-1.0")))
1563 return PLATFORM_GENERIC
;
1564 #endif /* CONFIG_PPC64 */
1569 /* If not a mac, try to figure out if it's an IBM pSeries or any other
1570 * PAPR compliant platform. We assume it is if :
1571 * - /device_type is "chrp" (please, do NOT use that for future
1575 len
= prom_getprop(_prom
->root
, "device_type",
1576 compat
, sizeof(compat
)-1);
1578 return PLATFORM_GENERIC
;
1579 if (strcmp(compat
, RELOC("chrp")))
1580 return PLATFORM_GENERIC
;
1582 /* Default to pSeries. We need to know if we are running LPAR */
1583 rtas
= call_prom("finddevice", 1, 1, ADDR("/rtas"));
1584 if (!PHANDLE_VALID(rtas
))
1585 return PLATFORM_GENERIC
;
1586 x
= prom_getproplen(rtas
, "ibm,hypertas-functions");
1587 if (x
!= PROM_ERROR
) {
1588 prom_printf("Hypertas detected, assuming LPAR !\n");
1589 return PLATFORM_PSERIES_LPAR
;
1591 return PLATFORM_PSERIES
;
1593 return PLATFORM_GENERIC
;
1597 static int __init
prom_set_color(ihandle ih
, int i
, int r
, int g
, int b
)
1599 return call_prom("call-method", 6, 1, ADDR("color!"), ih
, i
, b
, g
, r
);
1603 * If we have a display that we don't know how to drive,
1604 * we will want to try to execute OF's open method for it
1605 * later. However, OF will probably fall over if we do that
1606 * we've taken over the MMU.
1607 * So we check whether we will need to open the display,
1608 * and if so, open it now.
1610 static void __init
prom_check_displays(void)
1612 char type
[16], *path
;
1617 static unsigned char default_colors
[] = {
1635 const unsigned char *clut
;
1637 prom_printf("Looking for displays\n");
1638 for (node
= 0; prom_next_node(&node
); ) {
1639 memset(type
, 0, sizeof(type
));
1640 prom_getprop(node
, "device_type", type
, sizeof(type
));
1641 if (strcmp(type
, RELOC("display")) != 0)
1644 /* It seems OF doesn't null-terminate the path :-( */
1645 path
= RELOC(prom_scratch
);
1646 memset(path
, 0, PROM_SCRATCH_SIZE
);
1649 * leave some room at the end of the path for appending extra
1652 if (call_prom("package-to-path", 3, 1, node
, path
,
1653 PROM_SCRATCH_SIZE
-10) == PROM_ERROR
)
1655 prom_printf("found display : %s, opening ... ", path
);
1657 ih
= call_prom("open", 1, 1, path
);
1659 prom_printf("failed\n");
1664 prom_printf("done\n");
1665 prom_setprop(node
, path
, "linux,opened", NULL
, 0);
1667 /* Setup a usable color table when the appropriate
1668 * method is available. Should update this to set-colors */
1669 clut
= RELOC(default_colors
);
1670 for (i
= 0; i
< 32; i
++, clut
+= 3)
1671 if (prom_set_color(ih
, i
, clut
[0], clut
[1],
1675 #ifdef CONFIG_LOGO_LINUX_CLUT224
1676 clut
= PTRRELOC(RELOC(logo_linux_clut224
.clut
));
1677 for (i
= 0; i
< RELOC(logo_linux_clut224
.clutsize
); i
++, clut
+= 3)
1678 if (prom_set_color(ih
, i
+ 32, clut
[0], clut
[1],
1681 #endif /* CONFIG_LOGO_LINUX_CLUT224 */
1686 /* Return (relocated) pointer to this much memory: moves initrd if reqd. */
1687 static void __init
*make_room(unsigned long *mem_start
, unsigned long *mem_end
,
1688 unsigned long needed
, unsigned long align
)
1692 *mem_start
= _ALIGN(*mem_start
, align
);
1693 while ((*mem_start
+ needed
) > *mem_end
) {
1694 unsigned long room
, chunk
;
1696 prom_debug("Chunk exhausted, claiming more at %x...\n",
1697 RELOC(alloc_bottom
));
1698 room
= RELOC(alloc_top
) - RELOC(alloc_bottom
);
1699 if (room
> DEVTREE_CHUNK_SIZE
)
1700 room
= DEVTREE_CHUNK_SIZE
;
1701 if (room
< PAGE_SIZE
)
1702 prom_panic("No memory for flatten_device_tree (no room)");
1703 chunk
= alloc_up(room
, 0);
1705 prom_panic("No memory for flatten_device_tree (claim failed)");
1706 *mem_end
= RELOC(alloc_top
);
1709 ret
= (void *)*mem_start
;
1710 *mem_start
+= needed
;
1715 #define dt_push_token(token, mem_start, mem_end) \
1716 do { *((u32 *)make_room(mem_start, mem_end, 4, 4)) = token; } while(0)
1718 static unsigned long __init
dt_find_string(char *str
)
1722 s
= os
= (char *)RELOC(dt_string_start
);
1724 while (s
< (char *)RELOC(dt_string_end
)) {
1725 if (strcmp(s
, str
) == 0)
1733 * The Open Firmware 1275 specification states properties must be 31 bytes or
1734 * less, however not all firmwares obey this. Make it 64 bytes to be safe.
1736 #define MAX_PROPERTY_NAME 64
1738 static void __init
scan_dt_build_strings(phandle node
,
1739 unsigned long *mem_start
,
1740 unsigned long *mem_end
)
1742 char *prev_name
, *namep
, *sstart
;
1746 sstart
= (char *)RELOC(dt_string_start
);
1748 /* get and store all property names */
1749 prev_name
= RELOC("");
1751 /* 64 is max len of name including nul. */
1752 namep
= make_room(mem_start
, mem_end
, MAX_PROPERTY_NAME
, 1);
1753 if (call_prom("nextprop", 3, 1, node
, prev_name
, namep
) != 1) {
1754 /* No more nodes: unwind alloc */
1755 *mem_start
= (unsigned long)namep
;
1760 if (strcmp(namep
, RELOC("name")) == 0) {
1761 *mem_start
= (unsigned long)namep
;
1762 prev_name
= RELOC("name");
1765 /* get/create string entry */
1766 soff
= dt_find_string(namep
);
1768 *mem_start
= (unsigned long)namep
;
1769 namep
= sstart
+ soff
;
1771 /* Trim off some if we can */
1772 *mem_start
= (unsigned long)namep
+ strlen(namep
) + 1;
1773 RELOC(dt_string_end
) = *mem_start
;
1778 /* do all our children */
1779 child
= call_prom("child", 1, 1, node
);
1780 while (child
!= 0) {
1781 scan_dt_build_strings(child
, mem_start
, mem_end
);
1782 child
= call_prom("peer", 1, 1, child
);
1786 static void __init
scan_dt_build_struct(phandle node
, unsigned long *mem_start
,
1787 unsigned long *mem_end
)
1790 char *namep
, *prev_name
, *sstart
, *p
, *ep
, *lp
, *path
;
1792 unsigned char *valp
;
1793 static char pname
[MAX_PROPERTY_NAME
];
1796 dt_push_token(OF_DT_BEGIN_NODE
, mem_start
, mem_end
);
1798 /* get the node's full name */
1799 namep
= (char *)*mem_start
;
1800 room
= *mem_end
- *mem_start
;
1803 l
= call_prom("package-to-path", 3, 1, node
, namep
, room
);
1805 /* Didn't fit? Get more room. */
1807 if (l
>= *mem_end
- *mem_start
)
1808 namep
= make_room(mem_start
, mem_end
, l
+1, 1);
1809 call_prom("package-to-path", 3, 1, node
, namep
, l
);
1813 /* Fixup an Apple bug where they have bogus \0 chars in the
1814 * middle of the path in some properties, and extract
1815 * the unit name (everything after the last '/').
1817 for (lp
= p
= namep
, ep
= namep
+ l
; p
< ep
; p
++) {
1824 *mem_start
= _ALIGN((unsigned long)lp
+ 1, 4);
1827 /* get it again for debugging */
1828 path
= RELOC(prom_scratch
);
1829 memset(path
, 0, PROM_SCRATCH_SIZE
);
1830 call_prom("package-to-path", 3, 1, node
, path
, PROM_SCRATCH_SIZE
-1);
1832 /* get and store all properties */
1833 prev_name
= RELOC("");
1834 sstart
= (char *)RELOC(dt_string_start
);
1836 if (call_prom("nextprop", 3, 1, node
, prev_name
,
1841 if (strcmp(RELOC(pname
), RELOC("name")) == 0) {
1842 prev_name
= RELOC("name");
1846 /* find string offset */
1847 soff
= dt_find_string(RELOC(pname
));
1849 prom_printf("WARNING: Can't find string index for"
1850 " <%s>, node %s\n", RELOC(pname
), path
);
1853 prev_name
= sstart
+ soff
;
1856 l
= call_prom("getproplen", 2, 1, node
, RELOC(pname
));
1859 if (l
== PROM_ERROR
)
1861 if (l
> MAX_PROPERTY_LENGTH
) {
1862 prom_printf("WARNING: ignoring large property ");
1863 /* It seems OF doesn't null-terminate the path :-( */
1864 prom_printf("[%s] ", path
);
1865 prom_printf("%s length 0x%x\n", RELOC(pname
), l
);
1869 /* push property head */
1870 dt_push_token(OF_DT_PROP
, mem_start
, mem_end
);
1871 dt_push_token(l
, mem_start
, mem_end
);
1872 dt_push_token(soff
, mem_start
, mem_end
);
1874 /* push property content */
1875 valp
= make_room(mem_start
, mem_end
, l
, 4);
1876 call_prom("getprop", 4, 1, node
, RELOC(pname
), valp
, l
);
1877 *mem_start
= _ALIGN(*mem_start
, 4);
1880 /* Add a "linux,phandle" property. */
1881 soff
= dt_find_string(RELOC("linux,phandle"));
1883 prom_printf("WARNING: Can't find string index for"
1884 " <linux-phandle> node %s\n", path
);
1886 dt_push_token(OF_DT_PROP
, mem_start
, mem_end
);
1887 dt_push_token(4, mem_start
, mem_end
);
1888 dt_push_token(soff
, mem_start
, mem_end
);
1889 valp
= make_room(mem_start
, mem_end
, 4, 4);
1890 *(u32
*)valp
= node
;
1893 /* do all our children */
1894 child
= call_prom("child", 1, 1, node
);
1895 while (child
!= 0) {
1896 scan_dt_build_struct(child
, mem_start
, mem_end
);
1897 child
= call_prom("peer", 1, 1, child
);
1900 dt_push_token(OF_DT_END_NODE
, mem_start
, mem_end
);
1903 static void __init
flatten_device_tree(void)
1906 unsigned long mem_start
, mem_end
, room
;
1907 struct boot_param_header
*hdr
;
1908 struct prom_t
*_prom
= &RELOC(prom
);
1913 * Check how much room we have between alloc top & bottom (+/- a
1914 * few pages), crop to 4Mb, as this is our "chuck" size
1916 room
= RELOC(alloc_top
) - RELOC(alloc_bottom
) - 0x4000;
1917 if (room
> DEVTREE_CHUNK_SIZE
)
1918 room
= DEVTREE_CHUNK_SIZE
;
1919 prom_debug("starting device tree allocs at %x\n", RELOC(alloc_bottom
));
1921 /* Now try to claim that */
1922 mem_start
= (unsigned long)alloc_up(room
, PAGE_SIZE
);
1924 prom_panic("Can't allocate initial device-tree chunk\n");
1925 mem_end
= RELOC(alloc_top
);
1927 /* Get root of tree */
1928 root
= call_prom("peer", 1, 1, (phandle
)0);
1929 if (root
== (phandle
)0)
1930 prom_panic ("couldn't get device tree root\n");
1932 /* Build header and make room for mem rsv map */
1933 mem_start
= _ALIGN(mem_start
, 4);
1934 hdr
= make_room(&mem_start
, &mem_end
,
1935 sizeof(struct boot_param_header
), 4);
1936 RELOC(dt_header_start
) = (unsigned long)hdr
;
1937 rsvmap
= make_room(&mem_start
, &mem_end
, sizeof(mem_reserve_map
), 8);
1939 /* Start of strings */
1940 mem_start
= PAGE_ALIGN(mem_start
);
1941 RELOC(dt_string_start
) = mem_start
;
1942 mem_start
+= 4; /* hole */
1944 /* Add "linux,phandle" in there, we'll need it */
1945 namep
= make_room(&mem_start
, &mem_end
, 16, 1);
1946 strcpy(namep
, RELOC("linux,phandle"));
1947 mem_start
= (unsigned long)namep
+ strlen(namep
) + 1;
1949 /* Build string array */
1950 prom_printf("Building dt strings...\n");
1951 scan_dt_build_strings(root
, &mem_start
, &mem_end
);
1952 RELOC(dt_string_end
) = mem_start
;
1954 /* Build structure */
1955 mem_start
= PAGE_ALIGN(mem_start
);
1956 RELOC(dt_struct_start
) = mem_start
;
1957 prom_printf("Building dt structure...\n");
1958 scan_dt_build_struct(root
, &mem_start
, &mem_end
);
1959 dt_push_token(OF_DT_END
, &mem_start
, &mem_end
);
1960 RELOC(dt_struct_end
) = PAGE_ALIGN(mem_start
);
1963 hdr
->boot_cpuid_phys
= _prom
->cpu
;
1964 hdr
->magic
= OF_DT_HEADER
;
1965 hdr
->totalsize
= RELOC(dt_struct_end
) - RELOC(dt_header_start
);
1966 hdr
->off_dt_struct
= RELOC(dt_struct_start
) - RELOC(dt_header_start
);
1967 hdr
->off_dt_strings
= RELOC(dt_string_start
) - RELOC(dt_header_start
);
1968 hdr
->dt_strings_size
= RELOC(dt_string_end
) - RELOC(dt_string_start
);
1969 hdr
->off_mem_rsvmap
= ((unsigned long)rsvmap
) - RELOC(dt_header_start
);
1970 hdr
->version
= OF_DT_VERSION
;
1971 /* Version 16 is not backward compatible */
1972 hdr
->last_comp_version
= 0x10;
1974 /* Copy the reserve map in */
1975 memcpy(rsvmap
, RELOC(mem_reserve_map
), sizeof(mem_reserve_map
));
1980 prom_printf("reserved memory map:\n");
1981 for (i
= 0; i
< RELOC(mem_reserve_cnt
); i
++)
1982 prom_printf(" %x - %x\n",
1983 RELOC(mem_reserve_map
)[i
].base
,
1984 RELOC(mem_reserve_map
)[i
].size
);
1987 /* Bump mem_reserve_cnt to cause further reservations to fail
1988 * since it's too late.
1990 RELOC(mem_reserve_cnt
) = MEM_RESERVE_MAP_SIZE
;
1992 prom_printf("Device tree strings 0x%x -> 0x%x\n",
1993 RELOC(dt_string_start
), RELOC(dt_string_end
));
1994 prom_printf("Device tree struct 0x%x -> 0x%x\n",
1995 RELOC(dt_struct_start
), RELOC(dt_struct_end
));
1999 #ifdef CONFIG_PPC_MAPLE
2000 /* PIBS Version 1.05.0000 04/26/2005 has an incorrect /ht/isa/ranges property.
2001 * The values are bad, and it doesn't even have the right number of cells. */
2002 static void __init
fixup_device_tree_maple(void)
2005 u32 rloc
= 0x01002000; /* IO space; PCI device = 4 */
2009 name
= "/ht@0/isa@4";
2010 isa
= call_prom("finddevice", 1, 1, ADDR(name
));
2011 if (!PHANDLE_VALID(isa
)) {
2012 name
= "/ht@0/isa@6";
2013 isa
= call_prom("finddevice", 1, 1, ADDR(name
));
2014 rloc
= 0x01003000; /* IO space; PCI device = 6 */
2016 if (!PHANDLE_VALID(isa
))
2019 if (prom_getproplen(isa
, "ranges") != 12)
2021 if (prom_getprop(isa
, "ranges", isa_ranges
, sizeof(isa_ranges
))
2025 if (isa_ranges
[0] != 0x1 ||
2026 isa_ranges
[1] != 0xf4000000 ||
2027 isa_ranges
[2] != 0x00010000)
2030 prom_printf("Fixing up bogus ISA range on Maple/Apache...\n");
2032 isa_ranges
[0] = 0x1;
2033 isa_ranges
[1] = 0x0;
2034 isa_ranges
[2] = rloc
;
2035 isa_ranges
[3] = 0x0;
2036 isa_ranges
[4] = 0x0;
2037 isa_ranges
[5] = 0x00010000;
2038 prom_setprop(isa
, name
, "ranges",
2039 isa_ranges
, sizeof(isa_ranges
));
2042 #define fixup_device_tree_maple()
2045 #ifdef CONFIG_PPC_CHRP
2047 * Pegasos and BriQ lacks the "ranges" property in the isa node
2048 * Pegasos needs decimal IRQ 14/15, not hexadecimal
2049 * Pegasos has the IDE configured in legacy mode, but advertised as native
2051 static void __init
fixup_device_tree_chrp(void)
2055 u32 rloc
= 0x01006000; /* IO space; PCI device = 12 */
2059 name
= "/pci@80000000/isa@c";
2060 ph
= call_prom("finddevice", 1, 1, ADDR(name
));
2061 if (!PHANDLE_VALID(ph
)) {
2062 name
= "/pci@ff500000/isa@6";
2063 ph
= call_prom("finddevice", 1, 1, ADDR(name
));
2064 rloc
= 0x01003000; /* IO space; PCI device = 6 */
2066 if (PHANDLE_VALID(ph
)) {
2067 rc
= prom_getproplen(ph
, "ranges");
2068 if (rc
== 0 || rc
== PROM_ERROR
) {
2069 prom_printf("Fixing up missing ISA range on Pegasos...\n");
2076 prop
[5] = 0x00010000;
2077 prom_setprop(ph
, name
, "ranges", prop
, sizeof(prop
));
2081 name
= "/pci@80000000/ide@C,1";
2082 ph
= call_prom("finddevice", 1, 1, ADDR(name
));
2083 if (PHANDLE_VALID(ph
)) {
2084 prom_printf("Fixing up IDE interrupt on Pegasos...\n");
2087 prom_setprop(ph
, name
, "interrupts", prop
, 2*sizeof(u32
));
2088 prom_printf("Fixing up IDE class-code on Pegasos...\n");
2089 rc
= prom_getprop(ph
, "class-code", prop
, sizeof(u32
));
2090 if (rc
== sizeof(u32
)) {
2092 prom_setprop(ph
, name
, "class-code", prop
, sizeof(u32
));
2097 #define fixup_device_tree_chrp()
2100 #if defined(CONFIG_PPC64) && defined(CONFIG_PPC_PMAC)
2101 static void __init
fixup_device_tree_pmac(void)
2103 phandle u3
, i2c
, mpic
;
2108 /* Some G5s have a missing interrupt definition, fix it up here */
2109 u3
= call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000"));
2110 if (!PHANDLE_VALID(u3
))
2112 i2c
= call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/i2c@f8001000"));
2113 if (!PHANDLE_VALID(i2c
))
2115 mpic
= call_prom("finddevice", 1, 1, ADDR("/u3@0,f8000000/mpic@f8040000"));
2116 if (!PHANDLE_VALID(mpic
))
2119 /* check if proper rev of u3 */
2120 if (prom_getprop(u3
, "device-rev", &u3_rev
, sizeof(u3_rev
))
2123 if (u3_rev
< 0x35 || u3_rev
> 0x39)
2125 /* does it need fixup ? */
2126 if (prom_getproplen(i2c
, "interrupts") > 0)
2129 prom_printf("fixing up bogus interrupts for u3 i2c...\n");
2131 /* interrupt on this revision of u3 is number 0 and level */
2134 prom_setprop(i2c
, "/u3@0,f8000000/i2c@f8001000", "interrupts",
2135 &interrupts
, sizeof(interrupts
));
2137 prom_setprop(i2c
, "/u3@0,f8000000/i2c@f8001000", "interrupt-parent",
2138 &parent
, sizeof(parent
));
2141 #define fixup_device_tree_pmac()
2144 #ifdef CONFIG_PPC_EFIKA
2145 /* The current fw of the Efika has a device tree needs quite a few
2146 * fixups to be compliant with the mpc52xx bindings. It's currently
2147 * unknown if it will ever be compliant (come on bPlan ...) so we do fixups.
2148 * NOTE that we (barely) tolerate it because the EFIKA was out before
2149 * the bindings were finished, for any new boards -> RTFM ! */
2151 struct subst_entry
{
2158 static void __init
fixup_device_tree_efika(void)
2160 /* Substitution table */
2161 #define prop_cstr(x) x, sizeof(x)
2162 int prop_sound_irq
[3] = { 2, 2, 0 };
2163 int prop_bcomm_irq
[3*16] = { 3,0,0, 3,1,0, 3,2,0, 3,3,0,
2164 3,4,0, 3,5,0, 3,6,0, 3,7,0,
2165 3,8,0, 3,9,0, 3,10,0, 3,11,0,
2166 3,12,0, 3,13,0, 3,14,0, 3,15,0 };
2167 struct subst_entry efika_subst_table
[] = {
2168 { "/", "device_type", prop_cstr("efika") },
2169 { "/builtin", "device_type", prop_cstr("soc") },
2170 { "/builtin/ata", "compatible", prop_cstr("mpc5200b-ata\0mpc5200-ata"), },
2171 { "/builtin/bestcomm", "compatible", prop_cstr("mpc5200b-bestcomm\0mpc5200-bestcomm") },
2172 { "/builtin/bestcomm", "interrupts", prop_bcomm_irq
, sizeof(prop_bcomm_irq
) },
2173 { "/builtin/ethernet", "compatible", prop_cstr("mpc5200b-fec\0mpc5200-fec") },
2174 { "/builtin/pic", "compatible", prop_cstr("mpc5200b-pic\0mpc5200-pic") },
2175 { "/builtin/serial", "compatible", prop_cstr("mpc5200b-psc-uart\0mpc5200-psc-uart") },
2176 { "/builtin/sound", "compatible", prop_cstr("mpc5200b-psc-ac97\0mpc5200-psc-ac97") },
2177 { "/builtin/sound", "interrupts", prop_sound_irq
, sizeof(prop_sound_irq
) },
2178 { "/builtin/sram", "compatible", prop_cstr("mpc5200b-sram\0mpc5200-sram") },
2179 { "/builtin/sram", "device_type", prop_cstr("sram") },
2189 /* Check if we're really running on a EFIKA */
2190 node
= call_prom("finddevice", 1, 1, ADDR("/"));
2191 if (!PHANDLE_VALID(node
))
2194 rv
= prom_getprop(node
, "model", prop
, sizeof(prop
));
2195 if (rv
== PROM_ERROR
)
2197 if (strcmp(prop
, "EFIKA5K2"))
2200 prom_printf("Applying EFIKA device tree fixups\n");
2202 /* Process substitution table */
2203 for (i
=0; efika_subst_table
[i
].path
; i
++) {
2204 struct subst_entry
*se
= &efika_subst_table
[i
];
2206 node
= call_prom("finddevice", 1, 1, ADDR(se
->path
));
2207 if (!PHANDLE_VALID(node
)) {
2208 prom_printf("fixup_device_tree_efika: ",
2209 "skipped entry %x - not found\n", i
);
2213 rv
= prom_setprop(node
, se
->path
, se
->property
,
2214 se
->value
, se
->value_len
);
2215 if (rv
== PROM_ERROR
)
2216 prom_printf("fixup_device_tree_efika: ",
2217 "skipped entry %x - setprop error\n", i
);
2221 #define fixup_device_tree_efika()
2224 static void __init
fixup_device_tree(void)
2226 fixup_device_tree_maple();
2227 fixup_device_tree_chrp();
2228 fixup_device_tree_pmac();
2229 fixup_device_tree_efika();
2232 static void __init
prom_find_boot_cpu(void)
2234 struct prom_t
*_prom
= &RELOC(prom
);
2240 if (prom_getprop(_prom
->chosen
, "cpu", &prom_cpu
, sizeof(prom_cpu
)) <= 0)
2243 cpu_pkg
= call_prom("instance-to-package", 1, 1, prom_cpu
);
2245 prom_getprop(cpu_pkg
, "reg", &getprop_rval
, sizeof(getprop_rval
));
2246 _prom
->cpu
= getprop_rval
;
2248 prom_debug("Booting CPU hw index = 0x%x\n", _prom
->cpu
);
2251 static void __init
prom_check_initrd(unsigned long r3
, unsigned long r4
)
2253 #ifdef CONFIG_BLK_DEV_INITRD
2254 struct prom_t
*_prom
= &RELOC(prom
);
2256 if (r3
&& r4
&& r4
!= 0xdeadbeef) {
2259 RELOC(prom_initrd_start
) = is_kernel_addr(r3
) ? __pa(r3
) : r3
;
2260 RELOC(prom_initrd_end
) = RELOC(prom_initrd_start
) + r4
;
2262 val
= RELOC(prom_initrd_start
);
2263 prom_setprop(_prom
->chosen
, "/chosen", "linux,initrd-start",
2265 val
= RELOC(prom_initrd_end
);
2266 prom_setprop(_prom
->chosen
, "/chosen", "linux,initrd-end",
2269 reserve_mem(RELOC(prom_initrd_start
),
2270 RELOC(prom_initrd_end
) - RELOC(prom_initrd_start
));
2272 prom_debug("initrd_start=0x%x\n", RELOC(prom_initrd_start
));
2273 prom_debug("initrd_end=0x%x\n", RELOC(prom_initrd_end
));
2275 #endif /* CONFIG_BLK_DEV_INITRD */
2279 * We enter here early on, when the Open Firmware prom is still
2280 * handling exceptions and the MMU hash table for us.
2283 unsigned long __init
prom_init(unsigned long r3
, unsigned long r4
,
2285 unsigned long r6
, unsigned long r7
)
2287 struct prom_t
*_prom
;
2289 unsigned long offset
= reloc_offset();
2295 _prom
= &RELOC(prom
);
2298 * First zero the BSS
2300 memset(&RELOC(__bss_start
), 0, __bss_stop
- __bss_start
);
2303 * Init interface to Open Firmware, get some node references,
2306 prom_init_client_services(pp
);
2309 * See if this OF is old enough that we need to do explicit maps
2310 * and other workarounds
2315 * Init prom stdout device
2320 * Get default machine type. At this point, we do not differentiate
2321 * between pSeries SMP and pSeries LPAR
2323 RELOC(of_platform
) = prom_find_machine_type();
2325 /* Bail if this is a kdump kernel. */
2326 if (PHYSICAL_START
> 0)
2327 prom_panic("Error: You can't boot a kdump kernel from OF!\n");
2330 * Check for an initrd
2332 prom_check_initrd(r3
, r4
);
2334 #ifdef CONFIG_PPC_PSERIES
2336 * On pSeries, inform the firmware about our capabilities
2338 if (RELOC(of_platform
) == PLATFORM_PSERIES
||
2339 RELOC(of_platform
) == PLATFORM_PSERIES_LPAR
)
2340 prom_send_capabilities();
2344 * Copy the CPU hold code
2346 if (RELOC(of_platform
) != PLATFORM_POWERMAC
)
2347 copy_and_flush(0, KERNELBASE
+ offset
, 0x100, 0);
2350 * Do early parsing of command line
2352 early_cmdline_parse();
2355 * Initialize memory management within prom_init
2360 * Determine which cpu is actually running right _now_
2362 prom_find_boot_cpu();
2365 * Initialize display devices
2367 prom_check_displays();
2371 * Initialize IOMMU (TCE tables) on pSeries. Do that before anything else
2372 * that uses the allocator, we need to make sure we get the top of memory
2373 * available for us here...
2375 if (RELOC(of_platform
) == PLATFORM_PSERIES
)
2376 prom_initialize_tce_table();
2380 * On non-powermacs, try to instantiate RTAS and puts all CPUs
2381 * in spin-loops. PowerMacs don't have a working RTAS and use
2382 * a different way to spin CPUs
2384 if (RELOC(of_platform
) != PLATFORM_POWERMAC
) {
2385 prom_instantiate_rtas();
2390 * Fill in some infos for use by the kernel later on
2393 if (RELOC(prom_iommu_off
))
2394 prom_setprop(_prom
->chosen
, "/chosen", "linux,iommu-off",
2397 if (RELOC(prom_iommu_force_on
))
2398 prom_setprop(_prom
->chosen
, "/chosen", "linux,iommu-force-on",
2401 if (RELOC(prom_tce_alloc_start
)) {
2402 prom_setprop(_prom
->chosen
, "/chosen", "linux,tce-alloc-start",
2403 &RELOC(prom_tce_alloc_start
),
2404 sizeof(prom_tce_alloc_start
));
2405 prom_setprop(_prom
->chosen
, "/chosen", "linux,tce-alloc-end",
2406 &RELOC(prom_tce_alloc_end
),
2407 sizeof(prom_tce_alloc_end
));
2412 * Fixup any known bugs in the device-tree
2414 fixup_device_tree();
2417 * Now finally create the flattened device-tree
2419 prom_printf("copying OF device tree ...\n");
2420 flatten_device_tree();
2423 * in case stdin is USB and still active on IBM machines...
2424 * Unfortunately quiesce crashes on some powermacs if we have
2425 * closed stdin already (in particular the powerbook 101).
2427 if (RELOC(of_platform
) != PLATFORM_POWERMAC
)
2431 * Call OF "quiesce" method to shut down pending DMA's from
2434 prom_printf("Calling quiesce ...\n");
2435 call_prom("quiesce", 0, 0);
2438 * And finally, call the kernel passing it the flattened device
2439 * tree and NULL as r5, thus triggering the new entry point which
2440 * is common to us and kexec
2442 hdr
= RELOC(dt_header_start
);
2443 prom_printf("returning from prom_init\n");
2444 prom_debug("->dt_header_start=0x%x\n", hdr
);
2447 reloc_got2(-offset
);
2450 __start(hdr
, KERNELBASE
+ offset
, 0);