powerpc/mm/4k: don't allocate larger pmd page table for 4k
[linux/fpc-iii.git] / block / blk-mq.c
blobc3400b5444a7da9842622cb4b0c94b2f1b5ddd64
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/delay.h>
24 #include <linux/crash_dump.h>
25 #include <linux/prefetch.h>
27 #include <trace/events/block.h>
29 #include <linux/blk-mq.h>
30 #include "blk.h"
31 #include "blk-mq.h"
32 #include "blk-mq-tag.h"
33 #include "blk-stat.h"
34 #include "blk-wbt.h"
36 static DEFINE_MUTEX(all_q_mutex);
37 static LIST_HEAD(all_q_list);
40 * Check if any of the ctx's have pending work in this hardware queue
42 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
44 return sbitmap_any_bit_set(&hctx->ctx_map);
48 * Mark this ctx as having pending work in this hardware queue
50 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
51 struct blk_mq_ctx *ctx)
53 if (!sbitmap_test_bit(&hctx->ctx_map, ctx->index_hw))
54 sbitmap_set_bit(&hctx->ctx_map, ctx->index_hw);
57 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
58 struct blk_mq_ctx *ctx)
60 sbitmap_clear_bit(&hctx->ctx_map, ctx->index_hw);
63 void blk_mq_freeze_queue_start(struct request_queue *q)
65 int freeze_depth;
67 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
68 if (freeze_depth == 1) {
69 percpu_ref_kill(&q->q_usage_counter);
70 blk_mq_run_hw_queues(q, false);
73 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_start);
75 static void blk_mq_freeze_queue_wait(struct request_queue *q)
77 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
81 * Guarantee no request is in use, so we can change any data structure of
82 * the queue afterward.
84 void blk_freeze_queue(struct request_queue *q)
87 * In the !blk_mq case we are only calling this to kill the
88 * q_usage_counter, otherwise this increases the freeze depth
89 * and waits for it to return to zero. For this reason there is
90 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
91 * exported to drivers as the only user for unfreeze is blk_mq.
93 blk_mq_freeze_queue_start(q);
94 blk_mq_freeze_queue_wait(q);
97 void blk_mq_freeze_queue(struct request_queue *q)
100 * ...just an alias to keep freeze and unfreeze actions balanced
101 * in the blk_mq_* namespace
103 blk_freeze_queue(q);
105 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
107 void blk_mq_unfreeze_queue(struct request_queue *q)
109 int freeze_depth;
111 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
112 WARN_ON_ONCE(freeze_depth < 0);
113 if (!freeze_depth) {
114 percpu_ref_reinit(&q->q_usage_counter);
115 wake_up_all(&q->mq_freeze_wq);
118 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
121 * blk_mq_quiesce_queue() - wait until all ongoing queue_rq calls have finished
122 * @q: request queue.
124 * Note: this function does not prevent that the struct request end_io()
125 * callback function is invoked. Additionally, it is not prevented that
126 * new queue_rq() calls occur unless the queue has been stopped first.
128 void blk_mq_quiesce_queue(struct request_queue *q)
130 struct blk_mq_hw_ctx *hctx;
131 unsigned int i;
132 bool rcu = false;
134 blk_mq_stop_hw_queues(q);
136 queue_for_each_hw_ctx(q, hctx, i) {
137 if (hctx->flags & BLK_MQ_F_BLOCKING)
138 synchronize_srcu(&hctx->queue_rq_srcu);
139 else
140 rcu = true;
142 if (rcu)
143 synchronize_rcu();
145 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
147 void blk_mq_wake_waiters(struct request_queue *q)
149 struct blk_mq_hw_ctx *hctx;
150 unsigned int i;
152 queue_for_each_hw_ctx(q, hctx, i)
153 if (blk_mq_hw_queue_mapped(hctx))
154 blk_mq_tag_wakeup_all(hctx->tags, true);
157 * If we are called because the queue has now been marked as
158 * dying, we need to ensure that processes currently waiting on
159 * the queue are notified as well.
161 wake_up_all(&q->mq_freeze_wq);
164 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
166 return blk_mq_has_free_tags(hctx->tags);
168 EXPORT_SYMBOL(blk_mq_can_queue);
170 static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
171 struct request *rq, unsigned int op)
173 INIT_LIST_HEAD(&rq->queuelist);
174 /* csd/requeue_work/fifo_time is initialized before use */
175 rq->q = q;
176 rq->mq_ctx = ctx;
177 rq->cmd_flags = op;
178 if (blk_queue_io_stat(q))
179 rq->rq_flags |= RQF_IO_STAT;
180 /* do not touch atomic flags, it needs atomic ops against the timer */
181 rq->cpu = -1;
182 INIT_HLIST_NODE(&rq->hash);
183 RB_CLEAR_NODE(&rq->rb_node);
184 rq->rq_disk = NULL;
185 rq->part = NULL;
186 rq->start_time = jiffies;
187 #ifdef CONFIG_BLK_CGROUP
188 rq->rl = NULL;
189 set_start_time_ns(rq);
190 rq->io_start_time_ns = 0;
191 #endif
192 rq->nr_phys_segments = 0;
193 #if defined(CONFIG_BLK_DEV_INTEGRITY)
194 rq->nr_integrity_segments = 0;
195 #endif
196 rq->special = NULL;
197 /* tag was already set */
198 rq->errors = 0;
200 rq->cmd = rq->__cmd;
202 rq->extra_len = 0;
203 rq->sense_len = 0;
204 rq->resid_len = 0;
205 rq->sense = NULL;
207 INIT_LIST_HEAD(&rq->timeout_list);
208 rq->timeout = 0;
210 rq->end_io = NULL;
211 rq->end_io_data = NULL;
212 rq->next_rq = NULL;
214 ctx->rq_dispatched[op_is_sync(op)]++;
217 static struct request *
218 __blk_mq_alloc_request(struct blk_mq_alloc_data *data, unsigned int op)
220 struct request *rq;
221 unsigned int tag;
223 tag = blk_mq_get_tag(data);
224 if (tag != BLK_MQ_TAG_FAIL) {
225 rq = data->hctx->tags->rqs[tag];
227 if (blk_mq_tag_busy(data->hctx)) {
228 rq->rq_flags = RQF_MQ_INFLIGHT;
229 atomic_inc(&data->hctx->nr_active);
232 rq->tag = tag;
233 blk_mq_rq_ctx_init(data->q, data->ctx, rq, op);
234 return rq;
237 return NULL;
240 struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
241 unsigned int flags)
243 struct blk_mq_ctx *ctx;
244 struct blk_mq_hw_ctx *hctx;
245 struct request *rq;
246 struct blk_mq_alloc_data alloc_data;
247 int ret;
249 ret = blk_queue_enter(q, flags & BLK_MQ_REQ_NOWAIT);
250 if (ret)
251 return ERR_PTR(ret);
253 ctx = blk_mq_get_ctx(q);
254 hctx = blk_mq_map_queue(q, ctx->cpu);
255 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
256 rq = __blk_mq_alloc_request(&alloc_data, rw);
257 blk_mq_put_ctx(ctx);
259 if (!rq) {
260 blk_queue_exit(q);
261 return ERR_PTR(-EWOULDBLOCK);
264 rq->__data_len = 0;
265 rq->__sector = (sector_t) -1;
266 rq->bio = rq->biotail = NULL;
267 return rq;
269 EXPORT_SYMBOL(blk_mq_alloc_request);
271 struct request *blk_mq_alloc_request_hctx(struct request_queue *q, int rw,
272 unsigned int flags, unsigned int hctx_idx)
274 struct blk_mq_hw_ctx *hctx;
275 struct blk_mq_ctx *ctx;
276 struct request *rq;
277 struct blk_mq_alloc_data alloc_data;
278 int ret;
281 * If the tag allocator sleeps we could get an allocation for a
282 * different hardware context. No need to complicate the low level
283 * allocator for this for the rare use case of a command tied to
284 * a specific queue.
286 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
287 return ERR_PTR(-EINVAL);
289 if (hctx_idx >= q->nr_hw_queues)
290 return ERR_PTR(-EIO);
292 ret = blk_queue_enter(q, true);
293 if (ret)
294 return ERR_PTR(ret);
297 * Check if the hardware context is actually mapped to anything.
298 * If not tell the caller that it should skip this queue.
300 hctx = q->queue_hw_ctx[hctx_idx];
301 if (!blk_mq_hw_queue_mapped(hctx)) {
302 ret = -EXDEV;
303 goto out_queue_exit;
305 ctx = __blk_mq_get_ctx(q, cpumask_first(hctx->cpumask));
307 blk_mq_set_alloc_data(&alloc_data, q, flags, ctx, hctx);
308 rq = __blk_mq_alloc_request(&alloc_data, rw);
309 if (!rq) {
310 ret = -EWOULDBLOCK;
311 goto out_queue_exit;
314 return rq;
316 out_queue_exit:
317 blk_queue_exit(q);
318 return ERR_PTR(ret);
320 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
322 static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
323 struct blk_mq_ctx *ctx, struct request *rq)
325 const int tag = rq->tag;
326 struct request_queue *q = rq->q;
328 if (rq->rq_flags & RQF_MQ_INFLIGHT)
329 atomic_dec(&hctx->nr_active);
331 wbt_done(q->rq_wb, &rq->issue_stat);
332 rq->rq_flags = 0;
334 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
335 clear_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
336 blk_mq_put_tag(hctx, ctx, tag);
337 blk_queue_exit(q);
340 void blk_mq_free_hctx_request(struct blk_mq_hw_ctx *hctx, struct request *rq)
342 struct blk_mq_ctx *ctx = rq->mq_ctx;
344 ctx->rq_completed[rq_is_sync(rq)]++;
345 __blk_mq_free_request(hctx, ctx, rq);
348 EXPORT_SYMBOL_GPL(blk_mq_free_hctx_request);
350 void blk_mq_free_request(struct request *rq)
352 blk_mq_free_hctx_request(blk_mq_map_queue(rq->q, rq->mq_ctx->cpu), rq);
354 EXPORT_SYMBOL_GPL(blk_mq_free_request);
356 inline void __blk_mq_end_request(struct request *rq, int error)
358 blk_account_io_done(rq);
360 if (rq->end_io) {
361 wbt_done(rq->q->rq_wb, &rq->issue_stat);
362 rq->end_io(rq, error);
363 } else {
364 if (unlikely(blk_bidi_rq(rq)))
365 blk_mq_free_request(rq->next_rq);
366 blk_mq_free_request(rq);
369 EXPORT_SYMBOL(__blk_mq_end_request);
371 void blk_mq_end_request(struct request *rq, int error)
373 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
374 BUG();
375 __blk_mq_end_request(rq, error);
377 EXPORT_SYMBOL(blk_mq_end_request);
379 static void __blk_mq_complete_request_remote(void *data)
381 struct request *rq = data;
383 rq->q->softirq_done_fn(rq);
386 static void blk_mq_ipi_complete_request(struct request *rq)
388 struct blk_mq_ctx *ctx = rq->mq_ctx;
389 bool shared = false;
390 int cpu;
392 if (!test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags)) {
393 rq->q->softirq_done_fn(rq);
394 return;
397 cpu = get_cpu();
398 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags))
399 shared = cpus_share_cache(cpu, ctx->cpu);
401 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
402 rq->csd.func = __blk_mq_complete_request_remote;
403 rq->csd.info = rq;
404 rq->csd.flags = 0;
405 smp_call_function_single_async(ctx->cpu, &rq->csd);
406 } else {
407 rq->q->softirq_done_fn(rq);
409 put_cpu();
412 static void blk_mq_stat_add(struct request *rq)
414 if (rq->rq_flags & RQF_STATS) {
416 * We could rq->mq_ctx here, but there's less of a risk
417 * of races if we have the completion event add the stats
418 * to the local software queue.
420 struct blk_mq_ctx *ctx;
422 ctx = __blk_mq_get_ctx(rq->q, raw_smp_processor_id());
423 blk_stat_add(&ctx->stat[rq_data_dir(rq)], rq);
427 static void __blk_mq_complete_request(struct request *rq)
429 struct request_queue *q = rq->q;
431 blk_mq_stat_add(rq);
433 if (!q->softirq_done_fn)
434 blk_mq_end_request(rq, rq->errors);
435 else
436 blk_mq_ipi_complete_request(rq);
440 * blk_mq_complete_request - end I/O on a request
441 * @rq: the request being processed
443 * Description:
444 * Ends all I/O on a request. It does not handle partial completions.
445 * The actual completion happens out-of-order, through a IPI handler.
447 void blk_mq_complete_request(struct request *rq, int error)
449 struct request_queue *q = rq->q;
451 if (unlikely(blk_should_fake_timeout(q)))
452 return;
453 if (!blk_mark_rq_complete(rq)) {
454 rq->errors = error;
455 __blk_mq_complete_request(rq);
458 EXPORT_SYMBOL(blk_mq_complete_request);
460 int blk_mq_request_started(struct request *rq)
462 return test_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
464 EXPORT_SYMBOL_GPL(blk_mq_request_started);
466 void blk_mq_start_request(struct request *rq)
468 struct request_queue *q = rq->q;
470 trace_block_rq_issue(q, rq);
472 rq->resid_len = blk_rq_bytes(rq);
473 if (unlikely(blk_bidi_rq(rq)))
474 rq->next_rq->resid_len = blk_rq_bytes(rq->next_rq);
476 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
477 blk_stat_set_issue_time(&rq->issue_stat);
478 rq->rq_flags |= RQF_STATS;
479 wbt_issue(q->rq_wb, &rq->issue_stat);
482 blk_add_timer(rq);
485 * Ensure that ->deadline is visible before set the started
486 * flag and clear the completed flag.
488 smp_mb__before_atomic();
491 * Mark us as started and clear complete. Complete might have been
492 * set if requeue raced with timeout, which then marked it as
493 * complete. So be sure to clear complete again when we start
494 * the request, otherwise we'll ignore the completion event.
496 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
497 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
498 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
499 clear_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags);
501 if (q->dma_drain_size && blk_rq_bytes(rq)) {
503 * Make sure space for the drain appears. We know we can do
504 * this because max_hw_segments has been adjusted to be one
505 * fewer than the device can handle.
507 rq->nr_phys_segments++;
510 EXPORT_SYMBOL(blk_mq_start_request);
512 static void __blk_mq_requeue_request(struct request *rq)
514 struct request_queue *q = rq->q;
516 trace_block_rq_requeue(q, rq);
517 wbt_requeue(q->rq_wb, &rq->issue_stat);
519 if (test_and_clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
520 if (q->dma_drain_size && blk_rq_bytes(rq))
521 rq->nr_phys_segments--;
525 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
527 __blk_mq_requeue_request(rq);
529 BUG_ON(blk_queued_rq(rq));
530 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
532 EXPORT_SYMBOL(blk_mq_requeue_request);
534 static void blk_mq_requeue_work(struct work_struct *work)
536 struct request_queue *q =
537 container_of(work, struct request_queue, requeue_work.work);
538 LIST_HEAD(rq_list);
539 struct request *rq, *next;
540 unsigned long flags;
542 spin_lock_irqsave(&q->requeue_lock, flags);
543 list_splice_init(&q->requeue_list, &rq_list);
544 spin_unlock_irqrestore(&q->requeue_lock, flags);
546 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
547 if (!(rq->rq_flags & RQF_SOFTBARRIER))
548 continue;
550 rq->rq_flags &= ~RQF_SOFTBARRIER;
551 list_del_init(&rq->queuelist);
552 blk_mq_insert_request(rq, true, false, false);
555 while (!list_empty(&rq_list)) {
556 rq = list_entry(rq_list.next, struct request, queuelist);
557 list_del_init(&rq->queuelist);
558 blk_mq_insert_request(rq, false, false, false);
561 blk_mq_run_hw_queues(q, false);
564 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
565 bool kick_requeue_list)
567 struct request_queue *q = rq->q;
568 unsigned long flags;
571 * We abuse this flag that is otherwise used by the I/O scheduler to
572 * request head insertation from the workqueue.
574 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
576 spin_lock_irqsave(&q->requeue_lock, flags);
577 if (at_head) {
578 rq->rq_flags |= RQF_SOFTBARRIER;
579 list_add(&rq->queuelist, &q->requeue_list);
580 } else {
581 list_add_tail(&rq->queuelist, &q->requeue_list);
583 spin_unlock_irqrestore(&q->requeue_lock, flags);
585 if (kick_requeue_list)
586 blk_mq_kick_requeue_list(q);
588 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
590 void blk_mq_kick_requeue_list(struct request_queue *q)
592 kblockd_schedule_delayed_work(&q->requeue_work, 0);
594 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
596 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
597 unsigned long msecs)
599 kblockd_schedule_delayed_work(&q->requeue_work,
600 msecs_to_jiffies(msecs));
602 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
604 void blk_mq_abort_requeue_list(struct request_queue *q)
606 unsigned long flags;
607 LIST_HEAD(rq_list);
609 spin_lock_irqsave(&q->requeue_lock, flags);
610 list_splice_init(&q->requeue_list, &rq_list);
611 spin_unlock_irqrestore(&q->requeue_lock, flags);
613 while (!list_empty(&rq_list)) {
614 struct request *rq;
616 rq = list_first_entry(&rq_list, struct request, queuelist);
617 list_del_init(&rq->queuelist);
618 rq->errors = -EIO;
619 blk_mq_end_request(rq, rq->errors);
622 EXPORT_SYMBOL(blk_mq_abort_requeue_list);
624 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
626 if (tag < tags->nr_tags) {
627 prefetch(tags->rqs[tag]);
628 return tags->rqs[tag];
631 return NULL;
633 EXPORT_SYMBOL(blk_mq_tag_to_rq);
635 struct blk_mq_timeout_data {
636 unsigned long next;
637 unsigned int next_set;
640 void blk_mq_rq_timed_out(struct request *req, bool reserved)
642 struct blk_mq_ops *ops = req->q->mq_ops;
643 enum blk_eh_timer_return ret = BLK_EH_RESET_TIMER;
646 * We know that complete is set at this point. If STARTED isn't set
647 * anymore, then the request isn't active and the "timeout" should
648 * just be ignored. This can happen due to the bitflag ordering.
649 * Timeout first checks if STARTED is set, and if it is, assumes
650 * the request is active. But if we race with completion, then
651 * we both flags will get cleared. So check here again, and ignore
652 * a timeout event with a request that isn't active.
654 if (!test_bit(REQ_ATOM_STARTED, &req->atomic_flags))
655 return;
657 if (ops->timeout)
658 ret = ops->timeout(req, reserved);
660 switch (ret) {
661 case BLK_EH_HANDLED:
662 __blk_mq_complete_request(req);
663 break;
664 case BLK_EH_RESET_TIMER:
665 blk_add_timer(req);
666 blk_clear_rq_complete(req);
667 break;
668 case BLK_EH_NOT_HANDLED:
669 break;
670 default:
671 printk(KERN_ERR "block: bad eh return: %d\n", ret);
672 break;
676 static void blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
677 struct request *rq, void *priv, bool reserved)
679 struct blk_mq_timeout_data *data = priv;
681 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags)) {
683 * If a request wasn't started before the queue was
684 * marked dying, kill it here or it'll go unnoticed.
686 if (unlikely(blk_queue_dying(rq->q))) {
687 rq->errors = -EIO;
688 blk_mq_end_request(rq, rq->errors);
690 return;
693 if (time_after_eq(jiffies, rq->deadline)) {
694 if (!blk_mark_rq_complete(rq))
695 blk_mq_rq_timed_out(rq, reserved);
696 } else if (!data->next_set || time_after(data->next, rq->deadline)) {
697 data->next = rq->deadline;
698 data->next_set = 1;
702 static void blk_mq_timeout_work(struct work_struct *work)
704 struct request_queue *q =
705 container_of(work, struct request_queue, timeout_work);
706 struct blk_mq_timeout_data data = {
707 .next = 0,
708 .next_set = 0,
710 int i;
712 /* A deadlock might occur if a request is stuck requiring a
713 * timeout at the same time a queue freeze is waiting
714 * completion, since the timeout code would not be able to
715 * acquire the queue reference here.
717 * That's why we don't use blk_queue_enter here; instead, we use
718 * percpu_ref_tryget directly, because we need to be able to
719 * obtain a reference even in the short window between the queue
720 * starting to freeze, by dropping the first reference in
721 * blk_mq_freeze_queue_start, and the moment the last request is
722 * consumed, marked by the instant q_usage_counter reaches
723 * zero.
725 if (!percpu_ref_tryget(&q->q_usage_counter))
726 return;
728 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &data);
730 if (data.next_set) {
731 data.next = blk_rq_timeout(round_jiffies_up(data.next));
732 mod_timer(&q->timeout, data.next);
733 } else {
734 struct blk_mq_hw_ctx *hctx;
736 queue_for_each_hw_ctx(q, hctx, i) {
737 /* the hctx may be unmapped, so check it here */
738 if (blk_mq_hw_queue_mapped(hctx))
739 blk_mq_tag_idle(hctx);
742 blk_queue_exit(q);
746 * Reverse check our software queue for entries that we could potentially
747 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
748 * too much time checking for merges.
750 static bool blk_mq_attempt_merge(struct request_queue *q,
751 struct blk_mq_ctx *ctx, struct bio *bio)
753 struct request *rq;
754 int checked = 8;
756 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
757 int el_ret;
759 if (!checked--)
760 break;
762 if (!blk_rq_merge_ok(rq, bio))
763 continue;
765 el_ret = blk_try_merge(rq, bio);
766 if (el_ret == ELEVATOR_BACK_MERGE) {
767 if (bio_attempt_back_merge(q, rq, bio)) {
768 ctx->rq_merged++;
769 return true;
771 break;
772 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
773 if (bio_attempt_front_merge(q, rq, bio)) {
774 ctx->rq_merged++;
775 return true;
777 break;
781 return false;
784 struct flush_busy_ctx_data {
785 struct blk_mq_hw_ctx *hctx;
786 struct list_head *list;
789 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
791 struct flush_busy_ctx_data *flush_data = data;
792 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
793 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
795 sbitmap_clear_bit(sb, bitnr);
796 spin_lock(&ctx->lock);
797 list_splice_tail_init(&ctx->rq_list, flush_data->list);
798 spin_unlock(&ctx->lock);
799 return true;
803 * Process software queues that have been marked busy, splicing them
804 * to the for-dispatch
806 static void flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
808 struct flush_busy_ctx_data data = {
809 .hctx = hctx,
810 .list = list,
813 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
816 static inline unsigned int queued_to_index(unsigned int queued)
818 if (!queued)
819 return 0;
821 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
824 bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list)
826 struct request_queue *q = hctx->queue;
827 struct request *rq;
828 LIST_HEAD(driver_list);
829 struct list_head *dptr;
830 int queued, ret = BLK_MQ_RQ_QUEUE_OK;
833 * Start off with dptr being NULL, so we start the first request
834 * immediately, even if we have more pending.
836 dptr = NULL;
839 * Now process all the entries, sending them to the driver.
841 queued = 0;
842 while (!list_empty(list)) {
843 struct blk_mq_queue_data bd;
845 rq = list_first_entry(list, struct request, queuelist);
846 list_del_init(&rq->queuelist);
848 bd.rq = rq;
849 bd.list = dptr;
850 bd.last = list_empty(list);
852 ret = q->mq_ops->queue_rq(hctx, &bd);
853 switch (ret) {
854 case BLK_MQ_RQ_QUEUE_OK:
855 queued++;
856 break;
857 case BLK_MQ_RQ_QUEUE_BUSY:
858 list_add(&rq->queuelist, list);
859 __blk_mq_requeue_request(rq);
860 break;
861 default:
862 pr_err("blk-mq: bad return on queue: %d\n", ret);
863 case BLK_MQ_RQ_QUEUE_ERROR:
864 rq->errors = -EIO;
865 blk_mq_end_request(rq, rq->errors);
866 break;
869 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
870 break;
873 * We've done the first request. If we have more than 1
874 * left in the list, set dptr to defer issue.
876 if (!dptr && list->next != list->prev)
877 dptr = &driver_list;
880 hctx->dispatched[queued_to_index(queued)]++;
883 * Any items that need requeuing? Stuff them into hctx->dispatch,
884 * that is where we will continue on next queue run.
886 if (!list_empty(list)) {
887 spin_lock(&hctx->lock);
888 list_splice(list, &hctx->dispatch);
889 spin_unlock(&hctx->lock);
892 * the queue is expected stopped with BLK_MQ_RQ_QUEUE_BUSY, but
893 * it's possible the queue is stopped and restarted again
894 * before this. Queue restart will dispatch requests. And since
895 * requests in rq_list aren't added into hctx->dispatch yet,
896 * the requests in rq_list might get lost.
898 * blk_mq_run_hw_queue() already checks the STOPPED bit
900 blk_mq_run_hw_queue(hctx, true);
903 return ret != BLK_MQ_RQ_QUEUE_BUSY;
907 * Run this hardware queue, pulling any software queues mapped to it in.
908 * Note that this function currently has various problems around ordering
909 * of IO. In particular, we'd like FIFO behaviour on handling existing
910 * items on the hctx->dispatch list. Ignore that for now.
912 static void blk_mq_process_rq_list(struct blk_mq_hw_ctx *hctx)
914 LIST_HEAD(rq_list);
916 if (unlikely(blk_mq_hctx_stopped(hctx)))
917 return;
919 hctx->run++;
922 * Touch any software queue that has pending entries.
924 flush_busy_ctxs(hctx, &rq_list);
927 * If we have previous entries on our dispatch list, grab them
928 * and stuff them at the front for more fair dispatch.
930 if (!list_empty_careful(&hctx->dispatch)) {
931 spin_lock(&hctx->lock);
932 if (!list_empty(&hctx->dispatch))
933 list_splice_init(&hctx->dispatch, &rq_list);
934 spin_unlock(&hctx->lock);
937 blk_mq_dispatch_rq_list(hctx, &rq_list);
940 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
942 int srcu_idx;
944 WARN_ON(!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
945 cpu_online(hctx->next_cpu));
947 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
948 rcu_read_lock();
949 blk_mq_process_rq_list(hctx);
950 rcu_read_unlock();
951 } else {
952 srcu_idx = srcu_read_lock(&hctx->queue_rq_srcu);
953 blk_mq_process_rq_list(hctx);
954 srcu_read_unlock(&hctx->queue_rq_srcu, srcu_idx);
959 * It'd be great if the workqueue API had a way to pass
960 * in a mask and had some smarts for more clever placement.
961 * For now we just round-robin here, switching for every
962 * BLK_MQ_CPU_WORK_BATCH queued items.
964 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
966 if (hctx->queue->nr_hw_queues == 1)
967 return WORK_CPU_UNBOUND;
969 if (--hctx->next_cpu_batch <= 0) {
970 int next_cpu;
972 next_cpu = cpumask_next(hctx->next_cpu, hctx->cpumask);
973 if (next_cpu >= nr_cpu_ids)
974 next_cpu = cpumask_first(hctx->cpumask);
976 hctx->next_cpu = next_cpu;
977 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
980 return hctx->next_cpu;
983 void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
985 if (unlikely(blk_mq_hctx_stopped(hctx) ||
986 !blk_mq_hw_queue_mapped(hctx)))
987 return;
989 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
990 int cpu = get_cpu();
991 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
992 __blk_mq_run_hw_queue(hctx);
993 put_cpu();
994 return;
997 put_cpu();
1000 kblockd_schedule_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work);
1003 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1005 struct blk_mq_hw_ctx *hctx;
1006 int i;
1008 queue_for_each_hw_ctx(q, hctx, i) {
1009 if ((!blk_mq_hctx_has_pending(hctx) &&
1010 list_empty_careful(&hctx->dispatch)) ||
1011 blk_mq_hctx_stopped(hctx))
1012 continue;
1014 blk_mq_run_hw_queue(hctx, async);
1017 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1020 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1021 * @q: request queue.
1023 * The caller is responsible for serializing this function against
1024 * blk_mq_{start,stop}_hw_queue().
1026 bool blk_mq_queue_stopped(struct request_queue *q)
1028 struct blk_mq_hw_ctx *hctx;
1029 int i;
1031 queue_for_each_hw_ctx(q, hctx, i)
1032 if (blk_mq_hctx_stopped(hctx))
1033 return true;
1035 return false;
1037 EXPORT_SYMBOL(blk_mq_queue_stopped);
1039 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1041 cancel_work(&hctx->run_work);
1042 cancel_delayed_work(&hctx->delay_work);
1043 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1045 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1047 void blk_mq_stop_hw_queues(struct request_queue *q)
1049 struct blk_mq_hw_ctx *hctx;
1050 int i;
1052 queue_for_each_hw_ctx(q, hctx, i)
1053 blk_mq_stop_hw_queue(hctx);
1055 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1057 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1059 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1061 blk_mq_run_hw_queue(hctx, false);
1063 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1065 void blk_mq_start_hw_queues(struct request_queue *q)
1067 struct blk_mq_hw_ctx *hctx;
1068 int i;
1070 queue_for_each_hw_ctx(q, hctx, i)
1071 blk_mq_start_hw_queue(hctx);
1073 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1075 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1077 if (!blk_mq_hctx_stopped(hctx))
1078 return;
1080 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1081 blk_mq_run_hw_queue(hctx, async);
1083 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1085 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1087 struct blk_mq_hw_ctx *hctx;
1088 int i;
1090 queue_for_each_hw_ctx(q, hctx, i)
1091 blk_mq_start_stopped_hw_queue(hctx, async);
1093 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1095 static void blk_mq_run_work_fn(struct work_struct *work)
1097 struct blk_mq_hw_ctx *hctx;
1099 hctx = container_of(work, struct blk_mq_hw_ctx, run_work);
1101 __blk_mq_run_hw_queue(hctx);
1104 static void blk_mq_delay_work_fn(struct work_struct *work)
1106 struct blk_mq_hw_ctx *hctx;
1108 hctx = container_of(work, struct blk_mq_hw_ctx, delay_work.work);
1110 if (test_and_clear_bit(BLK_MQ_S_STOPPED, &hctx->state))
1111 __blk_mq_run_hw_queue(hctx);
1114 void blk_mq_delay_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1116 if (unlikely(!blk_mq_hw_queue_mapped(hctx)))
1117 return;
1119 kblockd_schedule_delayed_work_on(blk_mq_hctx_next_cpu(hctx),
1120 &hctx->delay_work, msecs_to_jiffies(msecs));
1122 EXPORT_SYMBOL(blk_mq_delay_queue);
1124 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1125 struct request *rq,
1126 bool at_head)
1128 struct blk_mq_ctx *ctx = rq->mq_ctx;
1130 trace_block_rq_insert(hctx->queue, rq);
1132 if (at_head)
1133 list_add(&rq->queuelist, &ctx->rq_list);
1134 else
1135 list_add_tail(&rq->queuelist, &ctx->rq_list);
1138 static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
1139 struct request *rq, bool at_head)
1141 struct blk_mq_ctx *ctx = rq->mq_ctx;
1143 __blk_mq_insert_req_list(hctx, rq, at_head);
1144 blk_mq_hctx_mark_pending(hctx, ctx);
1147 void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
1148 bool async)
1150 struct blk_mq_ctx *ctx = rq->mq_ctx;
1151 struct request_queue *q = rq->q;
1152 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1154 spin_lock(&ctx->lock);
1155 __blk_mq_insert_request(hctx, rq, at_head);
1156 spin_unlock(&ctx->lock);
1158 if (run_queue)
1159 blk_mq_run_hw_queue(hctx, async);
1162 static void blk_mq_insert_requests(struct request_queue *q,
1163 struct blk_mq_ctx *ctx,
1164 struct list_head *list,
1165 int depth,
1166 bool from_schedule)
1169 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, ctx->cpu);
1171 trace_block_unplug(q, depth, !from_schedule);
1174 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1175 * offline now
1177 spin_lock(&ctx->lock);
1178 while (!list_empty(list)) {
1179 struct request *rq;
1181 rq = list_first_entry(list, struct request, queuelist);
1182 BUG_ON(rq->mq_ctx != ctx);
1183 list_del_init(&rq->queuelist);
1184 __blk_mq_insert_req_list(hctx, rq, false);
1186 blk_mq_hctx_mark_pending(hctx, ctx);
1187 spin_unlock(&ctx->lock);
1189 blk_mq_run_hw_queue(hctx, from_schedule);
1192 static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
1194 struct request *rqa = container_of(a, struct request, queuelist);
1195 struct request *rqb = container_of(b, struct request, queuelist);
1197 return !(rqa->mq_ctx < rqb->mq_ctx ||
1198 (rqa->mq_ctx == rqb->mq_ctx &&
1199 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
1202 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1204 struct blk_mq_ctx *this_ctx;
1205 struct request_queue *this_q;
1206 struct request *rq;
1207 LIST_HEAD(list);
1208 LIST_HEAD(ctx_list);
1209 unsigned int depth;
1211 list_splice_init(&plug->mq_list, &list);
1213 list_sort(NULL, &list, plug_ctx_cmp);
1215 this_q = NULL;
1216 this_ctx = NULL;
1217 depth = 0;
1219 while (!list_empty(&list)) {
1220 rq = list_entry_rq(list.next);
1221 list_del_init(&rq->queuelist);
1222 BUG_ON(!rq->q);
1223 if (rq->mq_ctx != this_ctx) {
1224 if (this_ctx) {
1225 blk_mq_insert_requests(this_q, this_ctx,
1226 &ctx_list, depth,
1227 from_schedule);
1230 this_ctx = rq->mq_ctx;
1231 this_q = rq->q;
1232 depth = 0;
1235 depth++;
1236 list_add_tail(&rq->queuelist, &ctx_list);
1240 * If 'this_ctx' is set, we know we have entries to complete
1241 * on 'ctx_list'. Do those.
1243 if (this_ctx) {
1244 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
1245 from_schedule);
1249 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1251 init_request_from_bio(rq, bio);
1253 blk_account_io_start(rq, true);
1256 static inline bool hctx_allow_merges(struct blk_mq_hw_ctx *hctx)
1258 return (hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
1259 !blk_queue_nomerges(hctx->queue);
1262 static inline bool blk_mq_merge_queue_io(struct blk_mq_hw_ctx *hctx,
1263 struct blk_mq_ctx *ctx,
1264 struct request *rq, struct bio *bio)
1266 if (!hctx_allow_merges(hctx) || !bio_mergeable(bio)) {
1267 blk_mq_bio_to_request(rq, bio);
1268 spin_lock(&ctx->lock);
1269 insert_rq:
1270 __blk_mq_insert_request(hctx, rq, false);
1271 spin_unlock(&ctx->lock);
1272 return false;
1273 } else {
1274 struct request_queue *q = hctx->queue;
1276 spin_lock(&ctx->lock);
1277 if (!blk_mq_attempt_merge(q, ctx, bio)) {
1278 blk_mq_bio_to_request(rq, bio);
1279 goto insert_rq;
1282 spin_unlock(&ctx->lock);
1283 __blk_mq_free_request(hctx, ctx, rq);
1284 return true;
1288 static struct request *blk_mq_map_request(struct request_queue *q,
1289 struct bio *bio,
1290 struct blk_mq_alloc_data *data)
1292 struct blk_mq_hw_ctx *hctx;
1293 struct blk_mq_ctx *ctx;
1294 struct request *rq;
1296 blk_queue_enter_live(q);
1297 ctx = blk_mq_get_ctx(q);
1298 hctx = blk_mq_map_queue(q, ctx->cpu);
1300 trace_block_getrq(q, bio, bio->bi_opf);
1301 blk_mq_set_alloc_data(data, q, 0, ctx, hctx);
1302 rq = __blk_mq_alloc_request(data, bio->bi_opf);
1304 data->hctx->queued++;
1305 return rq;
1308 static void blk_mq_try_issue_directly(struct request *rq, blk_qc_t *cookie)
1310 int ret;
1311 struct request_queue *q = rq->q;
1312 struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, rq->mq_ctx->cpu);
1313 struct blk_mq_queue_data bd = {
1314 .rq = rq,
1315 .list = NULL,
1316 .last = 1
1318 blk_qc_t new_cookie = blk_tag_to_qc_t(rq->tag, hctx->queue_num);
1320 if (blk_mq_hctx_stopped(hctx))
1321 goto insert;
1324 * For OK queue, we are done. For error, kill it. Any other
1325 * error (busy), just add it to our list as we previously
1326 * would have done
1328 ret = q->mq_ops->queue_rq(hctx, &bd);
1329 if (ret == BLK_MQ_RQ_QUEUE_OK) {
1330 *cookie = new_cookie;
1331 return;
1334 __blk_mq_requeue_request(rq);
1336 if (ret == BLK_MQ_RQ_QUEUE_ERROR) {
1337 *cookie = BLK_QC_T_NONE;
1338 rq->errors = -EIO;
1339 blk_mq_end_request(rq, rq->errors);
1340 return;
1343 insert:
1344 blk_mq_insert_request(rq, false, true, true);
1348 * Multiple hardware queue variant. This will not use per-process plugs,
1349 * but will attempt to bypass the hctx queueing if we can go straight to
1350 * hardware for SYNC IO.
1352 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1354 const int is_sync = op_is_sync(bio->bi_opf);
1355 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1356 struct blk_mq_alloc_data data;
1357 struct request *rq;
1358 unsigned int request_count = 0, srcu_idx;
1359 struct blk_plug *plug;
1360 struct request *same_queue_rq = NULL;
1361 blk_qc_t cookie;
1362 unsigned int wb_acct;
1364 blk_queue_bounce(q, &bio);
1366 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1367 bio_io_error(bio);
1368 return BLK_QC_T_NONE;
1371 blk_queue_split(q, &bio, q->bio_split);
1373 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1374 blk_attempt_plug_merge(q, bio, &request_count, &same_queue_rq))
1375 return BLK_QC_T_NONE;
1377 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1379 rq = blk_mq_map_request(q, bio, &data);
1380 if (unlikely(!rq)) {
1381 __wbt_done(q->rq_wb, wb_acct);
1382 return BLK_QC_T_NONE;
1385 wbt_track(&rq->issue_stat, wb_acct);
1387 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1389 if (unlikely(is_flush_fua)) {
1390 blk_mq_bio_to_request(rq, bio);
1391 blk_insert_flush(rq);
1392 goto run_queue;
1395 plug = current->plug;
1397 * If the driver supports defer issued based on 'last', then
1398 * queue it up like normal since we can potentially save some
1399 * CPU this way.
1401 if (((plug && !blk_queue_nomerges(q)) || is_sync) &&
1402 !(data.hctx->flags & BLK_MQ_F_DEFER_ISSUE)) {
1403 struct request *old_rq = NULL;
1405 blk_mq_bio_to_request(rq, bio);
1408 * We do limited plugging. If the bio can be merged, do that.
1409 * Otherwise the existing request in the plug list will be
1410 * issued. So the plug list will have one request at most
1412 if (plug) {
1414 * The plug list might get flushed before this. If that
1415 * happens, same_queue_rq is invalid and plug list is
1416 * empty
1418 if (same_queue_rq && !list_empty(&plug->mq_list)) {
1419 old_rq = same_queue_rq;
1420 list_del_init(&old_rq->queuelist);
1422 list_add_tail(&rq->queuelist, &plug->mq_list);
1423 } else /* is_sync */
1424 old_rq = rq;
1425 blk_mq_put_ctx(data.ctx);
1426 if (!old_rq)
1427 goto done;
1429 if (!(data.hctx->flags & BLK_MQ_F_BLOCKING)) {
1430 rcu_read_lock();
1431 blk_mq_try_issue_directly(old_rq, &cookie);
1432 rcu_read_unlock();
1433 } else {
1434 srcu_idx = srcu_read_lock(&data.hctx->queue_rq_srcu);
1435 blk_mq_try_issue_directly(old_rq, &cookie);
1436 srcu_read_unlock(&data.hctx->queue_rq_srcu, srcu_idx);
1438 goto done;
1441 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1443 * For a SYNC request, send it to the hardware immediately. For
1444 * an ASYNC request, just ensure that we run it later on. The
1445 * latter allows for merging opportunities and more efficient
1446 * dispatching.
1448 run_queue:
1449 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1451 blk_mq_put_ctx(data.ctx);
1452 done:
1453 return cookie;
1457 * Single hardware queue variant. This will attempt to use any per-process
1458 * plug for merging and IO deferral.
1460 static blk_qc_t blk_sq_make_request(struct request_queue *q, struct bio *bio)
1462 const int is_sync = op_is_sync(bio->bi_opf);
1463 const int is_flush_fua = bio->bi_opf & (REQ_PREFLUSH | REQ_FUA);
1464 struct blk_plug *plug;
1465 unsigned int request_count = 0;
1466 struct blk_mq_alloc_data data;
1467 struct request *rq;
1468 blk_qc_t cookie;
1469 unsigned int wb_acct;
1471 blk_queue_bounce(q, &bio);
1473 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
1474 bio_io_error(bio);
1475 return BLK_QC_T_NONE;
1478 blk_queue_split(q, &bio, q->bio_split);
1480 if (!is_flush_fua && !blk_queue_nomerges(q)) {
1481 if (blk_attempt_plug_merge(q, bio, &request_count, NULL))
1482 return BLK_QC_T_NONE;
1483 } else
1484 request_count = blk_plug_queued_count(q);
1486 wb_acct = wbt_wait(q->rq_wb, bio, NULL);
1488 rq = blk_mq_map_request(q, bio, &data);
1489 if (unlikely(!rq)) {
1490 __wbt_done(q->rq_wb, wb_acct);
1491 return BLK_QC_T_NONE;
1494 wbt_track(&rq->issue_stat, wb_acct);
1496 cookie = blk_tag_to_qc_t(rq->tag, data.hctx->queue_num);
1498 if (unlikely(is_flush_fua)) {
1499 blk_mq_bio_to_request(rq, bio);
1500 blk_insert_flush(rq);
1501 goto run_queue;
1505 * A task plug currently exists. Since this is completely lockless,
1506 * utilize that to temporarily store requests until the task is
1507 * either done or scheduled away.
1509 plug = current->plug;
1510 if (plug) {
1511 struct request *last = NULL;
1513 blk_mq_bio_to_request(rq, bio);
1516 * @request_count may become stale because of schedule
1517 * out, so check the list again.
1519 if (list_empty(&plug->mq_list))
1520 request_count = 0;
1521 if (!request_count)
1522 trace_block_plug(q);
1523 else
1524 last = list_entry_rq(plug->mq_list.prev);
1526 blk_mq_put_ctx(data.ctx);
1528 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1529 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1530 blk_flush_plug_list(plug, false);
1531 trace_block_plug(q);
1534 list_add_tail(&rq->queuelist, &plug->mq_list);
1535 return cookie;
1538 if (!blk_mq_merge_queue_io(data.hctx, data.ctx, rq, bio)) {
1540 * For a SYNC request, send it to the hardware immediately. For
1541 * an ASYNC request, just ensure that we run it later on. The
1542 * latter allows for merging opportunities and more efficient
1543 * dispatching.
1545 run_queue:
1546 blk_mq_run_hw_queue(data.hctx, !is_sync || is_flush_fua);
1549 blk_mq_put_ctx(data.ctx);
1550 return cookie;
1553 static void blk_mq_free_rq_map(struct blk_mq_tag_set *set,
1554 struct blk_mq_tags *tags, unsigned int hctx_idx)
1556 struct page *page;
1558 if (tags->rqs && set->ops->exit_request) {
1559 int i;
1561 for (i = 0; i < tags->nr_tags; i++) {
1562 if (!tags->rqs[i])
1563 continue;
1564 set->ops->exit_request(set->driver_data, tags->rqs[i],
1565 hctx_idx, i);
1566 tags->rqs[i] = NULL;
1570 while (!list_empty(&tags->page_list)) {
1571 page = list_first_entry(&tags->page_list, struct page, lru);
1572 list_del_init(&page->lru);
1574 * Remove kmemleak object previously allocated in
1575 * blk_mq_init_rq_map().
1577 kmemleak_free(page_address(page));
1578 __free_pages(page, page->private);
1581 kfree(tags->rqs);
1583 blk_mq_free_tags(tags);
1586 static size_t order_to_size(unsigned int order)
1588 return (size_t)PAGE_SIZE << order;
1591 static struct blk_mq_tags *blk_mq_init_rq_map(struct blk_mq_tag_set *set,
1592 unsigned int hctx_idx)
1594 struct blk_mq_tags *tags;
1595 unsigned int i, j, entries_per_page, max_order = 4;
1596 size_t rq_size, left;
1598 tags = blk_mq_init_tags(set->queue_depth, set->reserved_tags,
1599 set->numa_node,
1600 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
1601 if (!tags)
1602 return NULL;
1604 INIT_LIST_HEAD(&tags->page_list);
1606 tags->rqs = kzalloc_node(set->queue_depth * sizeof(struct request *),
1607 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
1608 set->numa_node);
1609 if (!tags->rqs) {
1610 blk_mq_free_tags(tags);
1611 return NULL;
1615 * rq_size is the size of the request plus driver payload, rounded
1616 * to the cacheline size
1618 rq_size = round_up(sizeof(struct request) + set->cmd_size,
1619 cache_line_size());
1620 left = rq_size * set->queue_depth;
1622 for (i = 0; i < set->queue_depth; ) {
1623 int this_order = max_order;
1624 struct page *page;
1625 int to_do;
1626 void *p;
1628 while (this_order && left < order_to_size(this_order - 1))
1629 this_order--;
1631 do {
1632 page = alloc_pages_node(set->numa_node,
1633 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
1634 this_order);
1635 if (page)
1636 break;
1637 if (!this_order--)
1638 break;
1639 if (order_to_size(this_order) < rq_size)
1640 break;
1641 } while (1);
1643 if (!page)
1644 goto fail;
1646 page->private = this_order;
1647 list_add_tail(&page->lru, &tags->page_list);
1649 p = page_address(page);
1651 * Allow kmemleak to scan these pages as they contain pointers
1652 * to additional allocations like via ops->init_request().
1654 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
1655 entries_per_page = order_to_size(this_order) / rq_size;
1656 to_do = min(entries_per_page, set->queue_depth - i);
1657 left -= to_do * rq_size;
1658 for (j = 0; j < to_do; j++) {
1659 tags->rqs[i] = p;
1660 if (set->ops->init_request) {
1661 if (set->ops->init_request(set->driver_data,
1662 tags->rqs[i], hctx_idx, i,
1663 set->numa_node)) {
1664 tags->rqs[i] = NULL;
1665 goto fail;
1669 p += rq_size;
1670 i++;
1673 return tags;
1675 fail:
1676 blk_mq_free_rq_map(set, tags, hctx_idx);
1677 return NULL;
1681 * 'cpu' is going away. splice any existing rq_list entries from this
1682 * software queue to the hw queue dispatch list, and ensure that it
1683 * gets run.
1685 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
1687 struct blk_mq_hw_ctx *hctx;
1688 struct blk_mq_ctx *ctx;
1689 LIST_HEAD(tmp);
1691 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
1692 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1694 spin_lock(&ctx->lock);
1695 if (!list_empty(&ctx->rq_list)) {
1696 list_splice_init(&ctx->rq_list, &tmp);
1697 blk_mq_hctx_clear_pending(hctx, ctx);
1699 spin_unlock(&ctx->lock);
1701 if (list_empty(&tmp))
1702 return 0;
1704 spin_lock(&hctx->lock);
1705 list_splice_tail_init(&tmp, &hctx->dispatch);
1706 spin_unlock(&hctx->lock);
1708 blk_mq_run_hw_queue(hctx, true);
1709 return 0;
1712 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
1714 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
1715 &hctx->cpuhp_dead);
1718 /* hctx->ctxs will be freed in queue's release handler */
1719 static void blk_mq_exit_hctx(struct request_queue *q,
1720 struct blk_mq_tag_set *set,
1721 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
1723 unsigned flush_start_tag = set->queue_depth;
1725 blk_mq_tag_idle(hctx);
1727 if (set->ops->exit_request)
1728 set->ops->exit_request(set->driver_data,
1729 hctx->fq->flush_rq, hctx_idx,
1730 flush_start_tag + hctx_idx);
1732 if (set->ops->exit_hctx)
1733 set->ops->exit_hctx(hctx, hctx_idx);
1735 if (hctx->flags & BLK_MQ_F_BLOCKING)
1736 cleanup_srcu_struct(&hctx->queue_rq_srcu);
1738 blk_mq_remove_cpuhp(hctx);
1739 blk_free_flush_queue(hctx->fq);
1740 sbitmap_free(&hctx->ctx_map);
1743 static void blk_mq_exit_hw_queues(struct request_queue *q,
1744 struct blk_mq_tag_set *set, int nr_queue)
1746 struct blk_mq_hw_ctx *hctx;
1747 unsigned int i;
1749 queue_for_each_hw_ctx(q, hctx, i) {
1750 if (i == nr_queue)
1751 break;
1752 blk_mq_exit_hctx(q, set, hctx, i);
1756 static void blk_mq_free_hw_queues(struct request_queue *q,
1757 struct blk_mq_tag_set *set)
1759 struct blk_mq_hw_ctx *hctx;
1760 unsigned int i;
1762 queue_for_each_hw_ctx(q, hctx, i)
1763 free_cpumask_var(hctx->cpumask);
1766 static int blk_mq_init_hctx(struct request_queue *q,
1767 struct blk_mq_tag_set *set,
1768 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
1770 int node;
1771 unsigned flush_start_tag = set->queue_depth;
1773 node = hctx->numa_node;
1774 if (node == NUMA_NO_NODE)
1775 node = hctx->numa_node = set->numa_node;
1777 INIT_WORK(&hctx->run_work, blk_mq_run_work_fn);
1778 INIT_DELAYED_WORK(&hctx->delay_work, blk_mq_delay_work_fn);
1779 spin_lock_init(&hctx->lock);
1780 INIT_LIST_HEAD(&hctx->dispatch);
1781 hctx->queue = q;
1782 hctx->queue_num = hctx_idx;
1783 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
1785 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
1787 hctx->tags = set->tags[hctx_idx];
1790 * Allocate space for all possible cpus to avoid allocation at
1791 * runtime
1793 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1794 GFP_KERNEL, node);
1795 if (!hctx->ctxs)
1796 goto unregister_cpu_notifier;
1798 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8), GFP_KERNEL,
1799 node))
1800 goto free_ctxs;
1802 hctx->nr_ctx = 0;
1804 if (set->ops->init_hctx &&
1805 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
1806 goto free_bitmap;
1808 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size);
1809 if (!hctx->fq)
1810 goto exit_hctx;
1812 if (set->ops->init_request &&
1813 set->ops->init_request(set->driver_data,
1814 hctx->fq->flush_rq, hctx_idx,
1815 flush_start_tag + hctx_idx, node))
1816 goto free_fq;
1818 if (hctx->flags & BLK_MQ_F_BLOCKING)
1819 init_srcu_struct(&hctx->queue_rq_srcu);
1821 return 0;
1823 free_fq:
1824 kfree(hctx->fq);
1825 exit_hctx:
1826 if (set->ops->exit_hctx)
1827 set->ops->exit_hctx(hctx, hctx_idx);
1828 free_bitmap:
1829 sbitmap_free(&hctx->ctx_map);
1830 free_ctxs:
1831 kfree(hctx->ctxs);
1832 unregister_cpu_notifier:
1833 blk_mq_remove_cpuhp(hctx);
1834 return -1;
1837 static void blk_mq_init_cpu_queues(struct request_queue *q,
1838 unsigned int nr_hw_queues)
1840 unsigned int i;
1842 for_each_possible_cpu(i) {
1843 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1844 struct blk_mq_hw_ctx *hctx;
1846 memset(__ctx, 0, sizeof(*__ctx));
1847 __ctx->cpu = i;
1848 spin_lock_init(&__ctx->lock);
1849 INIT_LIST_HEAD(&__ctx->rq_list);
1850 __ctx->queue = q;
1851 blk_stat_init(&__ctx->stat[BLK_STAT_READ]);
1852 blk_stat_init(&__ctx->stat[BLK_STAT_WRITE]);
1854 /* If the cpu isn't online, the cpu is mapped to first hctx */
1855 if (!cpu_online(i))
1856 continue;
1858 hctx = blk_mq_map_queue(q, i);
1861 * Set local node, IFF we have more than one hw queue. If
1862 * not, we remain on the home node of the device
1864 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1865 hctx->numa_node = local_memory_node(cpu_to_node(i));
1869 static void blk_mq_map_swqueue(struct request_queue *q,
1870 const struct cpumask *online_mask)
1872 unsigned int i, hctx_idx;
1873 struct blk_mq_hw_ctx *hctx;
1874 struct blk_mq_ctx *ctx;
1875 struct blk_mq_tag_set *set = q->tag_set;
1878 * Avoid others reading imcomplete hctx->cpumask through sysfs
1880 mutex_lock(&q->sysfs_lock);
1882 queue_for_each_hw_ctx(q, hctx, i) {
1883 cpumask_clear(hctx->cpumask);
1884 hctx->nr_ctx = 0;
1888 * Map software to hardware queues
1890 for_each_possible_cpu(i) {
1891 /* If the cpu isn't online, the cpu is mapped to first hctx */
1892 if (!cpumask_test_cpu(i, online_mask))
1893 continue;
1895 hctx_idx = q->mq_map[i];
1896 /* unmapped hw queue can be remapped after CPU topo changed */
1897 if (!set->tags[hctx_idx]) {
1898 set->tags[hctx_idx] = blk_mq_init_rq_map(set, hctx_idx);
1901 * If tags initialization fail for some hctx,
1902 * that hctx won't be brought online. In this
1903 * case, remap the current ctx to hctx[0] which
1904 * is guaranteed to always have tags allocated
1906 if (!set->tags[hctx_idx])
1907 q->mq_map[i] = 0;
1910 ctx = per_cpu_ptr(q->queue_ctx, i);
1911 hctx = blk_mq_map_queue(q, i);
1913 cpumask_set_cpu(i, hctx->cpumask);
1914 ctx->index_hw = hctx->nr_ctx;
1915 hctx->ctxs[hctx->nr_ctx++] = ctx;
1918 mutex_unlock(&q->sysfs_lock);
1920 queue_for_each_hw_ctx(q, hctx, i) {
1922 * If no software queues are mapped to this hardware queue,
1923 * disable it and free the request entries.
1925 if (!hctx->nr_ctx) {
1926 /* Never unmap queue 0. We need it as a
1927 * fallback in case of a new remap fails
1928 * allocation
1930 if (i && set->tags[i]) {
1931 blk_mq_free_rq_map(set, set->tags[i], i);
1932 set->tags[i] = NULL;
1934 hctx->tags = NULL;
1935 continue;
1938 hctx->tags = set->tags[i];
1939 WARN_ON(!hctx->tags);
1942 * Set the map size to the number of mapped software queues.
1943 * This is more accurate and more efficient than looping
1944 * over all possibly mapped software queues.
1946 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
1949 * Initialize batch roundrobin counts
1951 hctx->next_cpu = cpumask_first(hctx->cpumask);
1952 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1956 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
1958 struct blk_mq_hw_ctx *hctx;
1959 int i;
1961 queue_for_each_hw_ctx(q, hctx, i) {
1962 if (shared)
1963 hctx->flags |= BLK_MQ_F_TAG_SHARED;
1964 else
1965 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
1969 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set, bool shared)
1971 struct request_queue *q;
1973 list_for_each_entry(q, &set->tag_list, tag_set_list) {
1974 blk_mq_freeze_queue(q);
1975 queue_set_hctx_shared(q, shared);
1976 blk_mq_unfreeze_queue(q);
1980 static void blk_mq_del_queue_tag_set(struct request_queue *q)
1982 struct blk_mq_tag_set *set = q->tag_set;
1984 mutex_lock(&set->tag_list_lock);
1985 list_del_init(&q->tag_set_list);
1986 if (list_is_singular(&set->tag_list)) {
1987 /* just transitioned to unshared */
1988 set->flags &= ~BLK_MQ_F_TAG_SHARED;
1989 /* update existing queue */
1990 blk_mq_update_tag_set_depth(set, false);
1992 mutex_unlock(&set->tag_list_lock);
1995 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
1996 struct request_queue *q)
1998 q->tag_set = set;
2000 mutex_lock(&set->tag_list_lock);
2002 /* Check to see if we're transitioning to shared (from 1 to 2 queues). */
2003 if (!list_empty(&set->tag_list) && !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2004 set->flags |= BLK_MQ_F_TAG_SHARED;
2005 /* update existing queue */
2006 blk_mq_update_tag_set_depth(set, true);
2008 if (set->flags & BLK_MQ_F_TAG_SHARED)
2009 queue_set_hctx_shared(q, true);
2010 list_add_tail(&q->tag_set_list, &set->tag_list);
2012 mutex_unlock(&set->tag_list_lock);
2016 * It is the actual release handler for mq, but we do it from
2017 * request queue's release handler for avoiding use-after-free
2018 * and headache because q->mq_kobj shouldn't have been introduced,
2019 * but we can't group ctx/kctx kobj without it.
2021 void blk_mq_release(struct request_queue *q)
2023 struct blk_mq_hw_ctx *hctx;
2024 unsigned int i;
2026 /* hctx kobj stays in hctx */
2027 queue_for_each_hw_ctx(q, hctx, i) {
2028 if (!hctx)
2029 continue;
2030 kfree(hctx->ctxs);
2031 kfree(hctx);
2034 q->mq_map = NULL;
2036 kfree(q->queue_hw_ctx);
2038 /* ctx kobj stays in queue_ctx */
2039 free_percpu(q->queue_ctx);
2042 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2044 struct request_queue *uninit_q, *q;
2046 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2047 if (!uninit_q)
2048 return ERR_PTR(-ENOMEM);
2050 q = blk_mq_init_allocated_queue(set, uninit_q);
2051 if (IS_ERR(q))
2052 blk_cleanup_queue(uninit_q);
2054 return q;
2056 EXPORT_SYMBOL(blk_mq_init_queue);
2058 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2059 struct request_queue *q)
2061 int i, j;
2062 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2064 blk_mq_sysfs_unregister(q);
2065 for (i = 0; i < set->nr_hw_queues; i++) {
2066 int node;
2068 if (hctxs[i])
2069 continue;
2071 node = blk_mq_hw_queue_to_node(q->mq_map, i);
2072 hctxs[i] = kzalloc_node(sizeof(struct blk_mq_hw_ctx),
2073 GFP_KERNEL, node);
2074 if (!hctxs[i])
2075 break;
2077 if (!zalloc_cpumask_var_node(&hctxs[i]->cpumask, GFP_KERNEL,
2078 node)) {
2079 kfree(hctxs[i]);
2080 hctxs[i] = NULL;
2081 break;
2084 atomic_set(&hctxs[i]->nr_active, 0);
2085 hctxs[i]->numa_node = node;
2086 hctxs[i]->queue_num = i;
2088 if (blk_mq_init_hctx(q, set, hctxs[i], i)) {
2089 free_cpumask_var(hctxs[i]->cpumask);
2090 kfree(hctxs[i]);
2091 hctxs[i] = NULL;
2092 break;
2094 blk_mq_hctx_kobj_init(hctxs[i]);
2096 for (j = i; j < q->nr_hw_queues; j++) {
2097 struct blk_mq_hw_ctx *hctx = hctxs[j];
2099 if (hctx) {
2100 if (hctx->tags) {
2101 blk_mq_free_rq_map(set, hctx->tags, j);
2102 set->tags[j] = NULL;
2104 blk_mq_exit_hctx(q, set, hctx, j);
2105 free_cpumask_var(hctx->cpumask);
2106 kobject_put(&hctx->kobj);
2107 kfree(hctx->ctxs);
2108 kfree(hctx);
2109 hctxs[j] = NULL;
2113 q->nr_hw_queues = i;
2114 blk_mq_sysfs_register(q);
2117 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2118 struct request_queue *q)
2120 /* mark the queue as mq asap */
2121 q->mq_ops = set->ops;
2123 q->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2124 if (!q->queue_ctx)
2125 goto err_exit;
2127 q->queue_hw_ctx = kzalloc_node(nr_cpu_ids * sizeof(*(q->queue_hw_ctx)),
2128 GFP_KERNEL, set->numa_node);
2129 if (!q->queue_hw_ctx)
2130 goto err_percpu;
2132 q->mq_map = set->mq_map;
2134 blk_mq_realloc_hw_ctxs(set, q);
2135 if (!q->nr_hw_queues)
2136 goto err_hctxs;
2138 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2139 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2141 q->nr_queues = nr_cpu_ids;
2143 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2145 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2146 q->queue_flags |= 1 << QUEUE_FLAG_NO_SG_MERGE;
2148 q->sg_reserved_size = INT_MAX;
2150 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2151 INIT_LIST_HEAD(&q->requeue_list);
2152 spin_lock_init(&q->requeue_lock);
2154 if (q->nr_hw_queues > 1)
2155 blk_queue_make_request(q, blk_mq_make_request);
2156 else
2157 blk_queue_make_request(q, blk_sq_make_request);
2160 * Do this after blk_queue_make_request() overrides it...
2162 q->nr_requests = set->queue_depth;
2165 * Default to classic polling
2167 q->poll_nsec = -1;
2169 if (set->ops->complete)
2170 blk_queue_softirq_done(q, set->ops->complete);
2172 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2174 get_online_cpus();
2175 mutex_lock(&all_q_mutex);
2177 list_add_tail(&q->all_q_node, &all_q_list);
2178 blk_mq_add_queue_tag_set(set, q);
2179 blk_mq_map_swqueue(q, cpu_online_mask);
2181 mutex_unlock(&all_q_mutex);
2182 put_online_cpus();
2184 return q;
2186 err_hctxs:
2187 kfree(q->queue_hw_ctx);
2188 err_percpu:
2189 free_percpu(q->queue_ctx);
2190 err_exit:
2191 q->mq_ops = NULL;
2192 return ERR_PTR(-ENOMEM);
2194 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2196 void blk_mq_free_queue(struct request_queue *q)
2198 struct blk_mq_tag_set *set = q->tag_set;
2200 mutex_lock(&all_q_mutex);
2201 list_del_init(&q->all_q_node);
2202 mutex_unlock(&all_q_mutex);
2204 wbt_exit(q);
2206 blk_mq_del_queue_tag_set(q);
2208 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2209 blk_mq_free_hw_queues(q, set);
2212 /* Basically redo blk_mq_init_queue with queue frozen */
2213 static void blk_mq_queue_reinit(struct request_queue *q,
2214 const struct cpumask *online_mask)
2216 WARN_ON_ONCE(!atomic_read(&q->mq_freeze_depth));
2218 blk_mq_sysfs_unregister(q);
2221 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
2222 * we should change hctx numa_node according to new topology (this
2223 * involves free and re-allocate memory, worthy doing?)
2226 blk_mq_map_swqueue(q, online_mask);
2228 blk_mq_sysfs_register(q);
2232 * New online cpumask which is going to be set in this hotplug event.
2233 * Declare this cpumasks as global as cpu-hotplug operation is invoked
2234 * one-by-one and dynamically allocating this could result in a failure.
2236 static struct cpumask cpuhp_online_new;
2238 static void blk_mq_queue_reinit_work(void)
2240 struct request_queue *q;
2242 mutex_lock(&all_q_mutex);
2244 * We need to freeze and reinit all existing queues. Freezing
2245 * involves synchronous wait for an RCU grace period and doing it
2246 * one by one may take a long time. Start freezing all queues in
2247 * one swoop and then wait for the completions so that freezing can
2248 * take place in parallel.
2250 list_for_each_entry(q, &all_q_list, all_q_node)
2251 blk_mq_freeze_queue_start(q);
2252 list_for_each_entry(q, &all_q_list, all_q_node)
2253 blk_mq_freeze_queue_wait(q);
2255 list_for_each_entry(q, &all_q_list, all_q_node)
2256 blk_mq_queue_reinit(q, &cpuhp_online_new);
2258 list_for_each_entry(q, &all_q_list, all_q_node)
2259 blk_mq_unfreeze_queue(q);
2261 mutex_unlock(&all_q_mutex);
2264 static int blk_mq_queue_reinit_dead(unsigned int cpu)
2266 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2267 blk_mq_queue_reinit_work();
2268 return 0;
2272 * Before hotadded cpu starts handling requests, new mappings must be
2273 * established. Otherwise, these requests in hw queue might never be
2274 * dispatched.
2276 * For example, there is a single hw queue (hctx) and two CPU queues (ctx0
2277 * for CPU0, and ctx1 for CPU1).
2279 * Now CPU1 is just onlined and a request is inserted into ctx1->rq_list
2280 * and set bit0 in pending bitmap as ctx1->index_hw is still zero.
2282 * And then while running hw queue, flush_busy_ctxs() finds bit0 is set in
2283 * pending bitmap and tries to retrieve requests in hctx->ctxs[0]->rq_list.
2284 * But htx->ctxs[0] is a pointer to ctx0, so the request in ctx1->rq_list
2285 * is ignored.
2287 static int blk_mq_queue_reinit_prepare(unsigned int cpu)
2289 cpumask_copy(&cpuhp_online_new, cpu_online_mask);
2290 cpumask_set_cpu(cpu, &cpuhp_online_new);
2291 blk_mq_queue_reinit_work();
2292 return 0;
2295 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2297 int i;
2299 for (i = 0; i < set->nr_hw_queues; i++) {
2300 set->tags[i] = blk_mq_init_rq_map(set, i);
2301 if (!set->tags[i])
2302 goto out_unwind;
2305 return 0;
2307 out_unwind:
2308 while (--i >= 0)
2309 blk_mq_free_rq_map(set, set->tags[i], i);
2311 return -ENOMEM;
2315 * Allocate the request maps associated with this tag_set. Note that this
2316 * may reduce the depth asked for, if memory is tight. set->queue_depth
2317 * will be updated to reflect the allocated depth.
2319 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2321 unsigned int depth;
2322 int err;
2324 depth = set->queue_depth;
2325 do {
2326 err = __blk_mq_alloc_rq_maps(set);
2327 if (!err)
2328 break;
2330 set->queue_depth >>= 1;
2331 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2332 err = -ENOMEM;
2333 break;
2335 } while (set->queue_depth);
2337 if (!set->queue_depth || err) {
2338 pr_err("blk-mq: failed to allocate request map\n");
2339 return -ENOMEM;
2342 if (depth != set->queue_depth)
2343 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2344 depth, set->queue_depth);
2346 return 0;
2350 * Alloc a tag set to be associated with one or more request queues.
2351 * May fail with EINVAL for various error conditions. May adjust the
2352 * requested depth down, if if it too large. In that case, the set
2353 * value will be stored in set->queue_depth.
2355 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2357 int ret;
2359 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2361 if (!set->nr_hw_queues)
2362 return -EINVAL;
2363 if (!set->queue_depth)
2364 return -EINVAL;
2365 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
2366 return -EINVAL;
2368 if (!set->ops->queue_rq)
2369 return -EINVAL;
2371 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
2372 pr_info("blk-mq: reduced tag depth to %u\n",
2373 BLK_MQ_MAX_DEPTH);
2374 set->queue_depth = BLK_MQ_MAX_DEPTH;
2378 * If a crashdump is active, then we are potentially in a very
2379 * memory constrained environment. Limit us to 1 queue and
2380 * 64 tags to prevent using too much memory.
2382 if (is_kdump_kernel()) {
2383 set->nr_hw_queues = 1;
2384 set->queue_depth = min(64U, set->queue_depth);
2387 * There is no use for more h/w queues than cpus.
2389 if (set->nr_hw_queues > nr_cpu_ids)
2390 set->nr_hw_queues = nr_cpu_ids;
2392 set->tags = kzalloc_node(nr_cpu_ids * sizeof(struct blk_mq_tags *),
2393 GFP_KERNEL, set->numa_node);
2394 if (!set->tags)
2395 return -ENOMEM;
2397 ret = -ENOMEM;
2398 set->mq_map = kzalloc_node(sizeof(*set->mq_map) * nr_cpu_ids,
2399 GFP_KERNEL, set->numa_node);
2400 if (!set->mq_map)
2401 goto out_free_tags;
2403 if (set->ops->map_queues)
2404 ret = set->ops->map_queues(set);
2405 else
2406 ret = blk_mq_map_queues(set);
2407 if (ret)
2408 goto out_free_mq_map;
2410 ret = blk_mq_alloc_rq_maps(set);
2411 if (ret)
2412 goto out_free_mq_map;
2414 mutex_init(&set->tag_list_lock);
2415 INIT_LIST_HEAD(&set->tag_list);
2417 return 0;
2419 out_free_mq_map:
2420 kfree(set->mq_map);
2421 set->mq_map = NULL;
2422 out_free_tags:
2423 kfree(set->tags);
2424 set->tags = NULL;
2425 return ret;
2427 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
2429 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
2431 int i;
2433 for (i = 0; i < nr_cpu_ids; i++) {
2434 if (set->tags[i])
2435 blk_mq_free_rq_map(set, set->tags[i], i);
2438 kfree(set->mq_map);
2439 set->mq_map = NULL;
2441 kfree(set->tags);
2442 set->tags = NULL;
2444 EXPORT_SYMBOL(blk_mq_free_tag_set);
2446 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
2448 struct blk_mq_tag_set *set = q->tag_set;
2449 struct blk_mq_hw_ctx *hctx;
2450 int i, ret;
2452 if (!set || nr > set->queue_depth)
2453 return -EINVAL;
2455 ret = 0;
2456 queue_for_each_hw_ctx(q, hctx, i) {
2457 if (!hctx->tags)
2458 continue;
2459 ret = blk_mq_tag_update_depth(hctx->tags, nr);
2460 if (ret)
2461 break;
2464 if (!ret)
2465 q->nr_requests = nr;
2467 return ret;
2470 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
2472 struct request_queue *q;
2474 if (nr_hw_queues > nr_cpu_ids)
2475 nr_hw_queues = nr_cpu_ids;
2476 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
2477 return;
2479 list_for_each_entry(q, &set->tag_list, tag_set_list)
2480 blk_mq_freeze_queue(q);
2482 set->nr_hw_queues = nr_hw_queues;
2483 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2484 blk_mq_realloc_hw_ctxs(set, q);
2486 if (q->nr_hw_queues > 1)
2487 blk_queue_make_request(q, blk_mq_make_request);
2488 else
2489 blk_queue_make_request(q, blk_sq_make_request);
2491 blk_mq_queue_reinit(q, cpu_online_mask);
2494 list_for_each_entry(q, &set->tag_list, tag_set_list)
2495 blk_mq_unfreeze_queue(q);
2497 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
2499 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
2500 struct blk_mq_hw_ctx *hctx,
2501 struct request *rq)
2503 struct blk_rq_stat stat[2];
2504 unsigned long ret = 0;
2507 * If stats collection isn't on, don't sleep but turn it on for
2508 * future users
2510 if (!blk_stat_enable(q))
2511 return 0;
2514 * We don't have to do this once per IO, should optimize this
2515 * to just use the current window of stats until it changes
2517 memset(&stat, 0, sizeof(stat));
2518 blk_hctx_stat_get(hctx, stat);
2521 * As an optimistic guess, use half of the mean service time
2522 * for this type of request. We can (and should) make this smarter.
2523 * For instance, if the completion latencies are tight, we can
2524 * get closer than just half the mean. This is especially
2525 * important on devices where the completion latencies are longer
2526 * than ~10 usec.
2528 if (req_op(rq) == REQ_OP_READ && stat[BLK_STAT_READ].nr_samples)
2529 ret = (stat[BLK_STAT_READ].mean + 1) / 2;
2530 else if (req_op(rq) == REQ_OP_WRITE && stat[BLK_STAT_WRITE].nr_samples)
2531 ret = (stat[BLK_STAT_WRITE].mean + 1) / 2;
2533 return ret;
2536 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
2537 struct blk_mq_hw_ctx *hctx,
2538 struct request *rq)
2540 struct hrtimer_sleeper hs;
2541 enum hrtimer_mode mode;
2542 unsigned int nsecs;
2543 ktime_t kt;
2545 if (test_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags))
2546 return false;
2549 * poll_nsec can be:
2551 * -1: don't ever hybrid sleep
2552 * 0: use half of prev avg
2553 * >0: use this specific value
2555 if (q->poll_nsec == -1)
2556 return false;
2557 else if (q->poll_nsec > 0)
2558 nsecs = q->poll_nsec;
2559 else
2560 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
2562 if (!nsecs)
2563 return false;
2565 set_bit(REQ_ATOM_POLL_SLEPT, &rq->atomic_flags);
2568 * This will be replaced with the stats tracking code, using
2569 * 'avg_completion_time / 2' as the pre-sleep target.
2571 kt = nsecs;
2573 mode = HRTIMER_MODE_REL;
2574 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
2575 hrtimer_set_expires(&hs.timer, kt);
2577 hrtimer_init_sleeper(&hs, current);
2578 do {
2579 if (test_bit(REQ_ATOM_COMPLETE, &rq->atomic_flags))
2580 break;
2581 set_current_state(TASK_UNINTERRUPTIBLE);
2582 hrtimer_start_expires(&hs.timer, mode);
2583 if (hs.task)
2584 io_schedule();
2585 hrtimer_cancel(&hs.timer);
2586 mode = HRTIMER_MODE_ABS;
2587 } while (hs.task && !signal_pending(current));
2589 __set_current_state(TASK_RUNNING);
2590 destroy_hrtimer_on_stack(&hs.timer);
2591 return true;
2594 static bool __blk_mq_poll(struct blk_mq_hw_ctx *hctx, struct request *rq)
2596 struct request_queue *q = hctx->queue;
2597 long state;
2600 * If we sleep, have the caller restart the poll loop to reset
2601 * the state. Like for the other success return cases, the
2602 * caller is responsible for checking if the IO completed. If
2603 * the IO isn't complete, we'll get called again and will go
2604 * straight to the busy poll loop.
2606 if (blk_mq_poll_hybrid_sleep(q, hctx, rq))
2607 return true;
2609 hctx->poll_considered++;
2611 state = current->state;
2612 while (!need_resched()) {
2613 int ret;
2615 hctx->poll_invoked++;
2617 ret = q->mq_ops->poll(hctx, rq->tag);
2618 if (ret > 0) {
2619 hctx->poll_success++;
2620 set_current_state(TASK_RUNNING);
2621 return true;
2624 if (signal_pending_state(state, current))
2625 set_current_state(TASK_RUNNING);
2627 if (current->state == TASK_RUNNING)
2628 return true;
2629 if (ret < 0)
2630 break;
2631 cpu_relax();
2634 return false;
2637 bool blk_mq_poll(struct request_queue *q, blk_qc_t cookie)
2639 struct blk_mq_hw_ctx *hctx;
2640 struct blk_plug *plug;
2641 struct request *rq;
2643 if (!q->mq_ops || !q->mq_ops->poll || !blk_qc_t_valid(cookie) ||
2644 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
2645 return false;
2647 plug = current->plug;
2648 if (plug)
2649 blk_flush_plug_list(plug, false);
2651 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
2652 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
2654 return __blk_mq_poll(hctx, rq);
2656 EXPORT_SYMBOL_GPL(blk_mq_poll);
2658 void blk_mq_disable_hotplug(void)
2660 mutex_lock(&all_q_mutex);
2663 void blk_mq_enable_hotplug(void)
2665 mutex_unlock(&all_q_mutex);
2668 static int __init blk_mq_init(void)
2670 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
2671 blk_mq_hctx_notify_dead);
2673 cpuhp_setup_state_nocalls(CPUHP_BLK_MQ_PREPARE, "block/mq:prepare",
2674 blk_mq_queue_reinit_prepare,
2675 blk_mq_queue_reinit_dead);
2676 return 0;
2678 subsys_initcall(blk_mq_init);