powerpc/mm/4k: don't allocate larger pmd page table for 4k
[linux/fpc-iii.git] / drivers / net / cris / eth_v10.c
blob91c876a0a647ba1b17bdc734db168c9ee456409e
1 /*
2 * e100net.c: A network driver for the ETRAX 100LX network controller.
4 * Copyright (c) 1998-2002 Axis Communications AB.
6 * The outline of this driver comes from skeleton.c.
8 */
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/types.h>
13 #include <linux/fcntl.h>
14 #include <linux/interrupt.h>
15 #include <linux/ptrace.h>
16 #include <linux/ioport.h>
17 #include <linux/in.h>
18 #include <linux/string.h>
19 #include <linux/spinlock.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/bitops.h>
24 #include <linux/if.h>
25 #include <linux/mii.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/ethtool.h>
31 #include <arch/svinto.h>/* DMA and register descriptions */
32 #include <asm/io.h> /* CRIS_LED_* I/O functions */
33 #include <asm/irq.h>
34 #include <asm/dma.h>
35 #include <asm/ethernet.h>
36 #include <asm/cache.h>
37 #include <arch/io_interface_mux.h>
39 //#define ETHDEBUG
40 #define D(x)
43 * The name of the card. Is used for messages and in the requests for
44 * io regions, irqs and dma channels
47 static const char* cardname = "ETRAX 100LX built-in ethernet controller";
49 /* A default ethernet address. Highlevel SW will set the real one later */
51 static struct sockaddr default_mac = {
53 { 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 }
56 /* Information that need to be kept for each board. */
57 struct net_local {
58 struct mii_if_info mii_if;
60 /* Tx control lock. This protects the transmit buffer ring
61 * state along with the "tx full" state of the driver. This
62 * means all netif_queue flow control actions are protected
63 * by this lock as well.
65 spinlock_t lock;
67 spinlock_t led_lock; /* Protect LED state */
68 spinlock_t transceiver_lock; /* Protect transceiver state. */
71 typedef struct etrax_eth_descr
73 etrax_dma_descr descr;
74 struct sk_buff* skb;
75 } etrax_eth_descr;
77 /* Some transceivers requires special handling */
78 struct transceiver_ops
80 unsigned int oui;
81 void (*check_speed)(struct net_device* dev);
82 void (*check_duplex)(struct net_device* dev);
85 /* Duplex settings */
86 enum duplex
88 half,
89 full,
90 autoneg
93 /* Dma descriptors etc. */
95 #define MAX_MEDIA_DATA_SIZE 1522
97 #define MIN_PACKET_LEN 46
98 #define ETHER_HEAD_LEN 14
101 ** MDIO constants.
103 #define MDIO_START 0x1
104 #define MDIO_READ 0x2
105 #define MDIO_WRITE 0x1
106 #define MDIO_PREAMBLE 0xfffffffful
108 /* Broadcom specific */
109 #define MDIO_AUX_CTRL_STATUS_REG 0x18
110 #define MDIO_BC_FULL_DUPLEX_IND 0x1
111 #define MDIO_BC_SPEED 0x2
113 /* TDK specific */
114 #define MDIO_TDK_DIAGNOSTIC_REG 18
115 #define MDIO_TDK_DIAGNOSTIC_RATE 0x400
116 #define MDIO_TDK_DIAGNOSTIC_DPLX 0x800
118 /*Intel LXT972A specific*/
119 #define MDIO_INT_STATUS_REG_2 0x0011
120 #define MDIO_INT_FULL_DUPLEX_IND (1 << 9)
121 #define MDIO_INT_SPEED (1 << 14)
123 /* Network flash constants */
124 #define NET_FLASH_TIME (HZ/50) /* 20 ms */
125 #define NET_FLASH_PAUSE (HZ/100) /* 10 ms */
126 #define NET_LINK_UP_CHECK_INTERVAL (2*HZ) /* 2 s */
127 #define NET_DUPLEX_CHECK_INTERVAL (2*HZ) /* 2 s */
129 #define NO_NETWORK_ACTIVITY 0
130 #define NETWORK_ACTIVITY 1
132 #define NBR_OF_RX_DESC 32
133 #define NBR_OF_TX_DESC 16
135 /* Large packets are sent directly to upper layers while small packets are */
136 /* copied (to reduce memory waste). The following constant decides the breakpoint */
137 #define RX_COPYBREAK 256
139 /* Due to a chip bug we need to flush the cache when descriptors are returned */
140 /* to the DMA. To decrease performance impact we return descriptors in chunks. */
141 /* The following constant determines the number of descriptors to return. */
142 #define RX_QUEUE_THRESHOLD NBR_OF_RX_DESC/2
144 #define GET_BIT(bit,val) (((val) >> (bit)) & 0x01)
146 /* Define some macros to access ETRAX 100 registers */
147 #define SETF(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
148 IO_FIELD_(reg##_, field##_, val)
149 #define SETS(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
150 IO_STATE_(reg##_, field##_, _##val)
152 static etrax_eth_descr *myNextRxDesc; /* Points to the next descriptor to
153 to be processed */
154 static etrax_eth_descr *myLastRxDesc; /* The last processed descriptor */
156 static etrax_eth_descr RxDescList[NBR_OF_RX_DESC] __attribute__ ((aligned(32)));
158 static etrax_eth_descr* myFirstTxDesc; /* First packet not yet sent */
159 static etrax_eth_descr* myLastTxDesc; /* End of send queue */
160 static etrax_eth_descr* myNextTxDesc; /* Next descriptor to use */
161 static etrax_eth_descr TxDescList[NBR_OF_TX_DESC] __attribute__ ((aligned(32)));
163 static unsigned int network_rec_config_shadow = 0;
165 static unsigned int network_tr_ctrl_shadow = 0;
167 /* Network speed indication. */
168 static DEFINE_TIMER(speed_timer, NULL, 0, 0);
169 static DEFINE_TIMER(clear_led_timer, NULL, 0, 0);
170 static int current_speed; /* Speed read from transceiver */
171 static int current_speed_selection; /* Speed selected by user */
172 static unsigned long led_next_time;
173 static int led_active;
174 static int rx_queue_len;
176 /* Duplex */
177 static DEFINE_TIMER(duplex_timer, NULL, 0, 0);
178 static int full_duplex;
179 static enum duplex current_duplex;
181 /* Index to functions, as function prototypes. */
183 static int etrax_ethernet_init(void);
185 static int e100_open(struct net_device *dev);
186 static int e100_set_mac_address(struct net_device *dev, void *addr);
187 static int e100_send_packet(struct sk_buff *skb, struct net_device *dev);
188 static irqreturn_t e100rxtx_interrupt(int irq, void *dev_id);
189 static irqreturn_t e100nw_interrupt(int irq, void *dev_id);
190 static void e100_rx(struct net_device *dev);
191 static int e100_close(struct net_device *dev);
192 static int e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd);
193 static int e100_set_config(struct net_device* dev, struct ifmap* map);
194 static void e100_tx_timeout(struct net_device *dev);
195 static struct net_device_stats *e100_get_stats(struct net_device *dev);
196 static void set_multicast_list(struct net_device *dev);
197 static void e100_hardware_send_packet(struct net_local* np, char *buf, int length);
198 static void update_rx_stats(struct net_device_stats *);
199 static void update_tx_stats(struct net_device_stats *);
200 static int e100_probe_transceiver(struct net_device* dev);
202 static void e100_check_speed(unsigned long priv);
203 static void e100_set_speed(struct net_device* dev, unsigned long speed);
204 static void e100_check_duplex(unsigned long priv);
205 static void e100_set_duplex(struct net_device* dev, enum duplex);
206 static void e100_negotiate(struct net_device* dev);
208 static int e100_get_mdio_reg(struct net_device *dev, int phy_id, int location);
209 static void e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value);
211 static void e100_send_mdio_cmd(unsigned short cmd, int write_cmd);
212 static void e100_send_mdio_bit(unsigned char bit);
213 static unsigned char e100_receive_mdio_bit(void);
214 static void e100_reset_transceiver(struct net_device* net);
216 static void e100_clear_network_leds(unsigned long dummy);
217 static void e100_set_network_leds(int active);
219 static const struct ethtool_ops e100_ethtool_ops;
220 #if defined(CONFIG_ETRAX_NO_PHY)
221 static void dummy_check_speed(struct net_device* dev);
222 static void dummy_check_duplex(struct net_device* dev);
223 #else
224 static void broadcom_check_speed(struct net_device* dev);
225 static void broadcom_check_duplex(struct net_device* dev);
226 static void tdk_check_speed(struct net_device* dev);
227 static void tdk_check_duplex(struct net_device* dev);
228 static void intel_check_speed(struct net_device* dev);
229 static void intel_check_duplex(struct net_device* dev);
230 static void generic_check_speed(struct net_device* dev);
231 static void generic_check_duplex(struct net_device* dev);
232 #endif
233 #ifdef CONFIG_NET_POLL_CONTROLLER
234 static void e100_netpoll(struct net_device* dev);
235 #endif
237 static int autoneg_normal = 1;
239 struct transceiver_ops transceivers[] =
241 #if defined(CONFIG_ETRAX_NO_PHY)
242 {0x0000, dummy_check_speed, dummy_check_duplex} /* Dummy */
243 #else
244 {0x1018, broadcom_check_speed, broadcom_check_duplex}, /* Broadcom */
245 {0xC039, tdk_check_speed, tdk_check_duplex}, /* TDK 2120 */
246 {0x039C, tdk_check_speed, tdk_check_duplex}, /* TDK 2120C */
247 {0x04de, intel_check_speed, intel_check_duplex}, /* Intel LXT972A*/
248 {0x0000, generic_check_speed, generic_check_duplex} /* Generic, must be last */
249 #endif
252 struct transceiver_ops* transceiver = &transceivers[0];
254 static const struct net_device_ops e100_netdev_ops = {
255 .ndo_open = e100_open,
256 .ndo_stop = e100_close,
257 .ndo_start_xmit = e100_send_packet,
258 .ndo_tx_timeout = e100_tx_timeout,
259 .ndo_get_stats = e100_get_stats,
260 .ndo_set_rx_mode = set_multicast_list,
261 .ndo_do_ioctl = e100_ioctl,
262 .ndo_set_mac_address = e100_set_mac_address,
263 .ndo_validate_addr = eth_validate_addr,
264 .ndo_set_config = e100_set_config,
265 #ifdef CONFIG_NET_POLL_CONTROLLER
266 .ndo_poll_controller = e100_netpoll,
267 #endif
270 #define tx_done(dev) (*R_DMA_CH0_CMD == 0)
273 * Check for a network adaptor of this type, and return '0' if one exists.
274 * If dev->base_addr == 0, probe all likely locations.
275 * If dev->base_addr == 1, always return failure.
276 * If dev->base_addr == 2, allocate space for the device and return success
277 * (detachable devices only).
280 static int __init
281 etrax_ethernet_init(void)
283 struct net_device *dev;
284 struct net_local* np;
285 int i, err;
287 printk(KERN_INFO
288 "ETRAX 100LX 10/100MBit ethernet v2.0 (c) 1998-2007 Axis Communications AB\n");
290 if (cris_request_io_interface(if_eth, cardname)) {
291 printk(KERN_CRIT "etrax_ethernet_init failed to get IO interface\n");
292 return -EBUSY;
295 dev = alloc_etherdev(sizeof(struct net_local));
296 if (!dev)
297 return -ENOMEM;
299 np = netdev_priv(dev);
301 /* we do our own locking */
302 dev->features |= NETIF_F_LLTX;
304 dev->base_addr = (unsigned int)R_NETWORK_SA_0; /* just to have something to show */
306 /* now setup our etrax specific stuff */
308 dev->irq = NETWORK_DMA_RX_IRQ_NBR; /* we really use DMATX as well... */
309 dev->dma = NETWORK_RX_DMA_NBR;
311 /* fill in our handlers so the network layer can talk to us in the future */
313 dev->ethtool_ops = &e100_ethtool_ops;
314 dev->netdev_ops = &e100_netdev_ops;
316 spin_lock_init(&np->lock);
317 spin_lock_init(&np->led_lock);
318 spin_lock_init(&np->transceiver_lock);
320 /* Initialise the list of Etrax DMA-descriptors */
322 /* Initialise receive descriptors */
324 for (i = 0; i < NBR_OF_RX_DESC; i++) {
325 /* Allocate two extra cachelines to make sure that buffer used
326 * by DMA does not share cacheline with any other data (to
327 * avoid cache bug)
329 RxDescList[i].skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
330 if (!RxDescList[i].skb)
331 return -ENOMEM;
332 RxDescList[i].descr.ctrl = 0;
333 RxDescList[i].descr.sw_len = MAX_MEDIA_DATA_SIZE;
334 RxDescList[i].descr.next = virt_to_phys(&RxDescList[i + 1]);
335 RxDescList[i].descr.buf = L1_CACHE_ALIGN(virt_to_phys(RxDescList[i].skb->data));
336 RxDescList[i].descr.status = 0;
337 RxDescList[i].descr.hw_len = 0;
338 prepare_rx_descriptor(&RxDescList[i].descr);
341 RxDescList[NBR_OF_RX_DESC - 1].descr.ctrl = d_eol;
342 RxDescList[NBR_OF_RX_DESC - 1].descr.next = virt_to_phys(&RxDescList[0]);
343 rx_queue_len = 0;
345 /* Initialize transmit descriptors */
346 for (i = 0; i < NBR_OF_TX_DESC; i++) {
347 TxDescList[i].descr.ctrl = 0;
348 TxDescList[i].descr.sw_len = 0;
349 TxDescList[i].descr.next = virt_to_phys(&TxDescList[i + 1].descr);
350 TxDescList[i].descr.buf = 0;
351 TxDescList[i].descr.status = 0;
352 TxDescList[i].descr.hw_len = 0;
353 TxDescList[i].skb = 0;
356 TxDescList[NBR_OF_TX_DESC - 1].descr.ctrl = d_eol;
357 TxDescList[NBR_OF_TX_DESC - 1].descr.next = virt_to_phys(&TxDescList[0].descr);
359 /* Initialise initial pointers */
361 myNextRxDesc = &RxDescList[0];
362 myLastRxDesc = &RxDescList[NBR_OF_RX_DESC - 1];
363 myFirstTxDesc = &TxDescList[0];
364 myNextTxDesc = &TxDescList[0];
365 myLastTxDesc = &TxDescList[NBR_OF_TX_DESC - 1];
367 /* Register device */
368 err = register_netdev(dev);
369 if (err) {
370 free_netdev(dev);
371 return err;
374 /* set the default MAC address */
376 e100_set_mac_address(dev, &default_mac);
378 /* Initialize speed indicator stuff. */
380 current_speed = 10;
381 current_speed_selection = 0; /* Auto */
382 speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
383 speed_timer.data = (unsigned long)dev;
384 speed_timer.function = e100_check_speed;
386 clear_led_timer.function = e100_clear_network_leds;
387 clear_led_timer.data = (unsigned long)dev;
389 full_duplex = 0;
390 current_duplex = autoneg;
391 duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
392 duplex_timer.data = (unsigned long)dev;
393 duplex_timer.function = e100_check_duplex;
395 /* Initialize mii interface */
396 np->mii_if.phy_id_mask = 0x1f;
397 np->mii_if.reg_num_mask = 0x1f;
398 np->mii_if.dev = dev;
399 np->mii_if.mdio_read = e100_get_mdio_reg;
400 np->mii_if.mdio_write = e100_set_mdio_reg;
402 /* Initialize group address registers to make sure that no */
403 /* unwanted addresses are matched */
404 *R_NETWORK_GA_0 = 0x00000000;
405 *R_NETWORK_GA_1 = 0x00000000;
407 /* Initialize next time the led can flash */
408 led_next_time = jiffies;
409 return 0;
411 device_initcall(etrax_ethernet_init)
413 /* set MAC address of the interface. called from the core after a
414 * SIOCSIFADDR ioctl, and from the bootup above.
417 static int
418 e100_set_mac_address(struct net_device *dev, void *p)
420 struct net_local *np = netdev_priv(dev);
421 struct sockaddr *addr = p;
423 spin_lock(&np->lock); /* preemption protection */
425 /* remember it */
427 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len);
429 /* Write it to the hardware.
430 * Note the way the address is wrapped:
431 * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24);
432 * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8);
435 *R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
436 (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
437 *R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
438 *R_NETWORK_SA_2 = 0;
440 /* show it in the log as well */
442 printk(KERN_INFO "%s: changed MAC to %pM\n", dev->name, dev->dev_addr);
444 spin_unlock(&np->lock);
446 return 0;
450 * Open/initialize the board. This is called (in the current kernel)
451 * sometime after booting when the 'ifconfig' program is run.
453 * This routine should set everything up anew at each open, even
454 * registers that "should" only need to be set once at boot, so that
455 * there is non-reboot way to recover if something goes wrong.
458 static int
459 e100_open(struct net_device *dev)
461 unsigned long flags;
463 /* enable the MDIO output pin */
465 *R_NETWORK_MGM_CTRL = IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable);
467 *R_IRQ_MASK0_CLR =
468 IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
469 IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
470 IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
472 /* clear dma0 and 1 eop and descr irq masks */
473 *R_IRQ_MASK2_CLR =
474 IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
475 IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
476 IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
477 IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
479 /* Reset and wait for the DMA channels */
481 RESET_DMA(NETWORK_TX_DMA_NBR);
482 RESET_DMA(NETWORK_RX_DMA_NBR);
483 WAIT_DMA(NETWORK_TX_DMA_NBR);
484 WAIT_DMA(NETWORK_RX_DMA_NBR);
486 /* Initialise the etrax network controller */
488 /* allocate the irq corresponding to the receiving DMA */
490 if (request_irq(NETWORK_DMA_RX_IRQ_NBR, e100rxtx_interrupt, 0, cardname,
491 (void *)dev)) {
492 goto grace_exit0;
495 /* allocate the irq corresponding to the transmitting DMA */
497 if (request_irq(NETWORK_DMA_TX_IRQ_NBR, e100rxtx_interrupt, 0,
498 cardname, (void *)dev)) {
499 goto grace_exit1;
502 /* allocate the irq corresponding to the network errors etc */
504 if (request_irq(NETWORK_STATUS_IRQ_NBR, e100nw_interrupt, 0,
505 cardname, (void *)dev)) {
506 goto grace_exit2;
510 * Always allocate the DMA channels after the IRQ,
511 * and clean up on failure.
514 if (cris_request_dma(NETWORK_TX_DMA_NBR,
515 cardname,
516 DMA_VERBOSE_ON_ERROR,
517 dma_eth)) {
518 goto grace_exit3;
521 if (cris_request_dma(NETWORK_RX_DMA_NBR,
522 cardname,
523 DMA_VERBOSE_ON_ERROR,
524 dma_eth)) {
525 goto grace_exit4;
528 /* give the HW an idea of what MAC address we want */
530 *R_NETWORK_SA_0 = dev->dev_addr[0] | (dev->dev_addr[1] << 8) |
531 (dev->dev_addr[2] << 16) | (dev->dev_addr[3] << 24);
532 *R_NETWORK_SA_1 = dev->dev_addr[4] | (dev->dev_addr[5] << 8);
533 *R_NETWORK_SA_2 = 0;
535 #if 0
536 /* use promiscuous mode for testing */
537 *R_NETWORK_GA_0 = 0xffffffff;
538 *R_NETWORK_GA_1 = 0xffffffff;
540 *R_NETWORK_REC_CONFIG = 0xd; /* broadcast rec, individ. rec, ma0 enabled */
541 #else
542 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, max_size, size1522);
543 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, broadcast, receive);
544 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, ma0, enable);
545 SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
546 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
547 #endif
549 *R_NETWORK_GEN_CONFIG =
550 IO_STATE(R_NETWORK_GEN_CONFIG, phy, mii_clk) |
551 IO_STATE(R_NETWORK_GEN_CONFIG, enable, on);
553 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
554 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, delay, none);
555 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cancel, dont);
556 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, cd, enable);
557 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, retry, enable);
558 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, pad, enable);
559 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, crc, enable);
560 *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
562 local_irq_save(flags);
564 /* enable the irq's for ethernet DMA */
566 *R_IRQ_MASK2_SET =
567 IO_STATE(R_IRQ_MASK2_SET, dma0_eop, set) |
568 IO_STATE(R_IRQ_MASK2_SET, dma1_eop, set);
570 *R_IRQ_MASK0_SET =
571 IO_STATE(R_IRQ_MASK0_SET, overrun, set) |
572 IO_STATE(R_IRQ_MASK0_SET, underrun, set) |
573 IO_STATE(R_IRQ_MASK0_SET, excessive_col, set);
575 /* make sure the irqs are cleared */
577 *R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
578 *R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
580 /* make sure the rec and transmit error counters are cleared */
582 (void)*R_REC_COUNTERS; /* dummy read */
583 (void)*R_TR_COUNTERS; /* dummy read */
585 /* start the receiving DMA channel so we can receive packets from now on */
587 *R_DMA_CH1_FIRST = virt_to_phys(myNextRxDesc);
588 *R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, start);
590 /* Set up transmit DMA channel so it can be restarted later */
592 *R_DMA_CH0_FIRST = 0;
593 *R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
594 netif_start_queue(dev);
596 local_irq_restore(flags);
598 /* Probe for transceiver */
599 if (e100_probe_transceiver(dev))
600 goto grace_exit5;
602 /* Start duplex/speed timers */
603 add_timer(&speed_timer);
604 add_timer(&duplex_timer);
606 /* We are now ready to accept transmit requeusts from
607 * the queueing layer of the networking.
609 netif_carrier_on(dev);
611 return 0;
613 grace_exit5:
614 cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
615 grace_exit4:
616 cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
617 grace_exit3:
618 free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
619 grace_exit2:
620 free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
621 grace_exit1:
622 free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
623 grace_exit0:
624 return -EAGAIN;
627 #if defined(CONFIG_ETRAX_NO_PHY)
628 static void
629 dummy_check_speed(struct net_device* dev)
631 current_speed = 100;
633 #else
634 static void
635 generic_check_speed(struct net_device* dev)
637 unsigned long data;
638 struct net_local *np = netdev_priv(dev);
640 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
641 if ((data & ADVERTISE_100FULL) ||
642 (data & ADVERTISE_100HALF))
643 current_speed = 100;
644 else
645 current_speed = 10;
648 static void
649 tdk_check_speed(struct net_device* dev)
651 unsigned long data;
652 struct net_local *np = netdev_priv(dev);
654 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
655 MDIO_TDK_DIAGNOSTIC_REG);
656 current_speed = (data & MDIO_TDK_DIAGNOSTIC_RATE ? 100 : 10);
659 static void
660 broadcom_check_speed(struct net_device* dev)
662 unsigned long data;
663 struct net_local *np = netdev_priv(dev);
665 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
666 MDIO_AUX_CTRL_STATUS_REG);
667 current_speed = (data & MDIO_BC_SPEED ? 100 : 10);
670 static void
671 intel_check_speed(struct net_device* dev)
673 unsigned long data;
674 struct net_local *np = netdev_priv(dev);
676 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
677 MDIO_INT_STATUS_REG_2);
678 current_speed = (data & MDIO_INT_SPEED ? 100 : 10);
680 #endif
681 static void
682 e100_check_speed(unsigned long priv)
684 struct net_device* dev = (struct net_device*)priv;
685 struct net_local *np = netdev_priv(dev);
686 static int led_initiated = 0;
687 unsigned long data;
688 int old_speed = current_speed;
690 spin_lock(&np->transceiver_lock);
692 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMSR);
693 if (!(data & BMSR_LSTATUS)) {
694 current_speed = 0;
695 } else {
696 transceiver->check_speed(dev);
699 spin_lock(&np->led_lock);
700 if ((old_speed != current_speed) || !led_initiated) {
701 led_initiated = 1;
702 e100_set_network_leds(NO_NETWORK_ACTIVITY);
703 if (current_speed)
704 netif_carrier_on(dev);
705 else
706 netif_carrier_off(dev);
708 spin_unlock(&np->led_lock);
710 /* Reinitialize the timer. */
711 speed_timer.expires = jiffies + NET_LINK_UP_CHECK_INTERVAL;
712 add_timer(&speed_timer);
714 spin_unlock(&np->transceiver_lock);
717 static void
718 e100_negotiate(struct net_device* dev)
720 struct net_local *np = netdev_priv(dev);
721 unsigned short data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
722 MII_ADVERTISE);
724 /* Discard old speed and duplex settings */
725 data &= ~(ADVERTISE_100HALF | ADVERTISE_100FULL |
726 ADVERTISE_10HALF | ADVERTISE_10FULL);
728 switch (current_speed_selection) {
729 case 10:
730 if (current_duplex == full)
731 data |= ADVERTISE_10FULL;
732 else if (current_duplex == half)
733 data |= ADVERTISE_10HALF;
734 else
735 data |= ADVERTISE_10HALF | ADVERTISE_10FULL;
736 break;
738 case 100:
739 if (current_duplex == full)
740 data |= ADVERTISE_100FULL;
741 else if (current_duplex == half)
742 data |= ADVERTISE_100HALF;
743 else
744 data |= ADVERTISE_100HALF | ADVERTISE_100FULL;
745 break;
747 case 0: /* Auto */
748 if (current_duplex == full)
749 data |= ADVERTISE_100FULL | ADVERTISE_10FULL;
750 else if (current_duplex == half)
751 data |= ADVERTISE_100HALF | ADVERTISE_10HALF;
752 else
753 data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
754 ADVERTISE_100HALF | ADVERTISE_100FULL;
755 break;
757 default: /* assume autoneg speed and duplex */
758 data |= ADVERTISE_10HALF | ADVERTISE_10FULL |
759 ADVERTISE_100HALF | ADVERTISE_100FULL;
760 break;
763 e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE, data);
765 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
766 if (autoneg_normal) {
767 /* Renegotiate with link partner */
768 data |= BMCR_ANENABLE | BMCR_ANRESTART;
769 } else {
770 /* Don't negotiate speed or duplex */
771 data &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
773 /* Set speed and duplex static */
774 if (current_speed_selection == 10)
775 data &= ~BMCR_SPEED100;
776 else
777 data |= BMCR_SPEED100;
779 if (current_duplex != full)
780 data &= ~BMCR_FULLDPLX;
781 else
782 data |= BMCR_FULLDPLX;
784 e100_set_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR, data);
787 static void
788 e100_set_speed(struct net_device* dev, unsigned long speed)
790 struct net_local *np = netdev_priv(dev);
792 spin_lock(&np->transceiver_lock);
793 if (speed != current_speed_selection) {
794 current_speed_selection = speed;
795 e100_negotiate(dev);
797 spin_unlock(&np->transceiver_lock);
800 static void
801 e100_check_duplex(unsigned long priv)
803 struct net_device *dev = (struct net_device *)priv;
804 struct net_local *np = netdev_priv(dev);
805 int old_duplex;
807 spin_lock(&np->transceiver_lock);
808 old_duplex = full_duplex;
809 transceiver->check_duplex(dev);
810 if (old_duplex != full_duplex) {
811 /* Duplex changed */
812 SETF(network_rec_config_shadow, R_NETWORK_REC_CONFIG, duplex, full_duplex);
813 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
816 /* Reinitialize the timer. */
817 duplex_timer.expires = jiffies + NET_DUPLEX_CHECK_INTERVAL;
818 add_timer(&duplex_timer);
819 np->mii_if.full_duplex = full_duplex;
820 spin_unlock(&np->transceiver_lock);
822 #if defined(CONFIG_ETRAX_NO_PHY)
823 static void
824 dummy_check_duplex(struct net_device* dev)
826 full_duplex = 1;
828 #else
829 static void
830 generic_check_duplex(struct net_device* dev)
832 unsigned long data;
833 struct net_local *np = netdev_priv(dev);
835 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_ADVERTISE);
836 if ((data & ADVERTISE_10FULL) ||
837 (data & ADVERTISE_100FULL))
838 full_duplex = 1;
839 else
840 full_duplex = 0;
843 static void
844 tdk_check_duplex(struct net_device* dev)
846 unsigned long data;
847 struct net_local *np = netdev_priv(dev);
849 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
850 MDIO_TDK_DIAGNOSTIC_REG);
851 full_duplex = (data & MDIO_TDK_DIAGNOSTIC_DPLX) ? 1 : 0;
854 static void
855 broadcom_check_duplex(struct net_device* dev)
857 unsigned long data;
858 struct net_local *np = netdev_priv(dev);
860 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
861 MDIO_AUX_CTRL_STATUS_REG);
862 full_duplex = (data & MDIO_BC_FULL_DUPLEX_IND) ? 1 : 0;
865 static void
866 intel_check_duplex(struct net_device* dev)
868 unsigned long data;
869 struct net_local *np = netdev_priv(dev);
871 data = e100_get_mdio_reg(dev, np->mii_if.phy_id,
872 MDIO_INT_STATUS_REG_2);
873 full_duplex = (data & MDIO_INT_FULL_DUPLEX_IND) ? 1 : 0;
875 #endif
876 static void
877 e100_set_duplex(struct net_device* dev, enum duplex new_duplex)
879 struct net_local *np = netdev_priv(dev);
881 spin_lock(&np->transceiver_lock);
882 if (new_duplex != current_duplex) {
883 current_duplex = new_duplex;
884 e100_negotiate(dev);
886 spin_unlock(&np->transceiver_lock);
889 static int
890 e100_probe_transceiver(struct net_device* dev)
892 int ret = 0;
894 #if !defined(CONFIG_ETRAX_NO_PHY)
895 unsigned int phyid_high;
896 unsigned int phyid_low;
897 unsigned int oui;
898 struct transceiver_ops* ops = NULL;
899 struct net_local *np = netdev_priv(dev);
901 spin_lock(&np->transceiver_lock);
903 /* Probe MDIO physical address */
904 for (np->mii_if.phy_id = 0; np->mii_if.phy_id <= 31;
905 np->mii_if.phy_id++) {
906 if (e100_get_mdio_reg(dev,
907 np->mii_if.phy_id, MII_BMSR) != 0xffff)
908 break;
910 if (np->mii_if.phy_id == 32) {
911 ret = -ENODEV;
912 goto out;
915 /* Get manufacturer */
916 phyid_high = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID1);
917 phyid_low = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_PHYSID2);
918 oui = (phyid_high << 6) | (phyid_low >> 10);
920 for (ops = &transceivers[0]; ops->oui; ops++) {
921 if (ops->oui == oui)
922 break;
924 transceiver = ops;
925 out:
926 spin_unlock(&np->transceiver_lock);
927 #endif
928 return ret;
931 static int
932 e100_get_mdio_reg(struct net_device *dev, int phy_id, int location)
934 unsigned short cmd; /* Data to be sent on MDIO port */
935 int data; /* Data read from MDIO */
936 int bitCounter;
938 /* Start of frame, OP Code, Physical Address, Register Address */
939 cmd = (MDIO_START << 14) | (MDIO_READ << 12) | (phy_id << 7) |
940 (location << 2);
942 e100_send_mdio_cmd(cmd, 0);
944 data = 0;
946 /* Data... */
947 for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
948 data |= (e100_receive_mdio_bit() << bitCounter);
951 return data;
954 static void
955 e100_set_mdio_reg(struct net_device *dev, int phy_id, int location, int value)
957 int bitCounter;
958 unsigned short cmd;
960 cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (phy_id << 7) |
961 (location << 2);
963 e100_send_mdio_cmd(cmd, 1);
965 /* Data... */
966 for (bitCounter=15; bitCounter>=0 ; bitCounter--) {
967 e100_send_mdio_bit(GET_BIT(bitCounter, value));
972 static void
973 e100_send_mdio_cmd(unsigned short cmd, int write_cmd)
975 int bitCounter;
976 unsigned char data = 0x2;
978 /* Preamble */
979 for (bitCounter = 31; bitCounter>= 0; bitCounter--)
980 e100_send_mdio_bit(GET_BIT(bitCounter, MDIO_PREAMBLE));
982 for (bitCounter = 15; bitCounter >= 2; bitCounter--)
983 e100_send_mdio_bit(GET_BIT(bitCounter, cmd));
985 /* Turnaround */
986 for (bitCounter = 1; bitCounter >= 0 ; bitCounter--)
987 if (write_cmd)
988 e100_send_mdio_bit(GET_BIT(bitCounter, data));
989 else
990 e100_receive_mdio_bit();
993 static void
994 e100_send_mdio_bit(unsigned char bit)
996 *R_NETWORK_MGM_CTRL =
997 IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
998 IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
999 udelay(1);
1000 *R_NETWORK_MGM_CTRL =
1001 IO_STATE(R_NETWORK_MGM_CTRL, mdoe, enable) |
1002 IO_MASK(R_NETWORK_MGM_CTRL, mdck) |
1003 IO_FIELD(R_NETWORK_MGM_CTRL, mdio, bit);
1004 udelay(1);
1007 static unsigned char
1008 e100_receive_mdio_bit(void)
1010 unsigned char bit;
1011 *R_NETWORK_MGM_CTRL = 0;
1012 bit = IO_EXTRACT(R_NETWORK_STAT, mdio, *R_NETWORK_STAT);
1013 udelay(1);
1014 *R_NETWORK_MGM_CTRL = IO_MASK(R_NETWORK_MGM_CTRL, mdck);
1015 udelay(1);
1016 return bit;
1019 static void
1020 e100_reset_transceiver(struct net_device* dev)
1022 struct net_local *np = netdev_priv(dev);
1023 unsigned short cmd;
1024 unsigned short data;
1025 int bitCounter;
1027 data = e100_get_mdio_reg(dev, np->mii_if.phy_id, MII_BMCR);
1029 cmd = (MDIO_START << 14) | (MDIO_WRITE << 12) | (np->mii_if.phy_id << 7) | (MII_BMCR << 2);
1031 e100_send_mdio_cmd(cmd, 1);
1033 data |= 0x8000;
1035 for (bitCounter = 15; bitCounter >= 0 ; bitCounter--) {
1036 e100_send_mdio_bit(GET_BIT(bitCounter, data));
1040 /* Called by upper layers if they decide it took too long to complete
1041 * sending a packet - we need to reset and stuff.
1044 static void
1045 e100_tx_timeout(struct net_device *dev)
1047 struct net_local *np = netdev_priv(dev);
1048 unsigned long flags;
1050 spin_lock_irqsave(&np->lock, flags);
1052 printk(KERN_WARNING "%s: transmit timed out, %s?\n", dev->name,
1053 tx_done(dev) ? "IRQ problem" : "network cable problem");
1055 /* remember we got an error */
1057 dev->stats.tx_errors++;
1059 /* reset the TX DMA in case it has hung on something */
1061 RESET_DMA(NETWORK_TX_DMA_NBR);
1062 WAIT_DMA(NETWORK_TX_DMA_NBR);
1064 /* Reset the transceiver. */
1066 e100_reset_transceiver(dev);
1068 /* and get rid of the packets that never got an interrupt */
1069 while (myFirstTxDesc != myNextTxDesc) {
1070 dev_kfree_skb(myFirstTxDesc->skb);
1071 myFirstTxDesc->skb = 0;
1072 myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
1075 /* Set up transmit DMA channel so it can be restarted later */
1076 *R_DMA_CH0_FIRST = 0;
1077 *R_DMA_CH0_DESCR = virt_to_phys(myLastTxDesc);
1079 /* tell the upper layers we're ok again */
1081 netif_wake_queue(dev);
1082 spin_unlock_irqrestore(&np->lock, flags);
1086 /* This will only be invoked if the driver is _not_ in XOFF state.
1087 * What this means is that we need not check it, and that this
1088 * invariant will hold if we make sure that the netif_*_queue()
1089 * calls are done at the proper times.
1092 static int
1093 e100_send_packet(struct sk_buff *skb, struct net_device *dev)
1095 struct net_local *np = netdev_priv(dev);
1096 unsigned char *buf = skb->data;
1097 unsigned long flags;
1099 #ifdef ETHDEBUG
1100 printk("send packet len %d\n", length);
1101 #endif
1102 spin_lock_irqsave(&np->lock, flags); /* protect from tx_interrupt and ourself */
1104 myNextTxDesc->skb = skb;
1106 netif_trans_update(dev); /* NETIF_F_LLTX driver :( */
1108 e100_hardware_send_packet(np, buf, skb->len);
1110 myNextTxDesc = phys_to_virt(myNextTxDesc->descr.next);
1112 /* Stop queue if full */
1113 if (myNextTxDesc == myFirstTxDesc) {
1114 netif_stop_queue(dev);
1117 spin_unlock_irqrestore(&np->lock, flags);
1119 return NETDEV_TX_OK;
1123 * The typical workload of the driver:
1124 * Handle the network interface interrupts.
1127 static irqreturn_t
1128 e100rxtx_interrupt(int irq, void *dev_id)
1130 struct net_device *dev = (struct net_device *)dev_id;
1131 unsigned long irqbits;
1134 * Note that both rx and tx interrupts are blocked at this point,
1135 * regardless of which got us here.
1138 irqbits = *R_IRQ_MASK2_RD;
1140 /* Handle received packets */
1141 if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma1_eop, active)) {
1142 /* acknowledge the eop interrupt */
1144 *R_DMA_CH1_CLR_INTR = IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do);
1146 /* check if one or more complete packets were indeed received */
1148 while ((*R_DMA_CH1_FIRST != virt_to_phys(myNextRxDesc)) &&
1149 (myNextRxDesc != myLastRxDesc)) {
1150 /* Take out the buffer and give it to the OS, then
1151 * allocate a new buffer to put a packet in.
1153 e100_rx(dev);
1154 dev->stats.rx_packets++;
1155 /* restart/continue on the channel, for safety */
1156 *R_DMA_CH1_CMD = IO_STATE(R_DMA_CH1_CMD, cmd, restart);
1157 /* clear dma channel 1 eop/descr irq bits */
1158 *R_DMA_CH1_CLR_INTR =
1159 IO_STATE(R_DMA_CH1_CLR_INTR, clr_eop, do) |
1160 IO_STATE(R_DMA_CH1_CLR_INTR, clr_descr, do);
1162 /* now, we might have gotten another packet
1163 so we have to loop back and check if so */
1167 /* Report any packets that have been sent */
1168 while (virt_to_phys(myFirstTxDesc) != *R_DMA_CH0_FIRST &&
1169 (netif_queue_stopped(dev) || myFirstTxDesc != myNextTxDesc)) {
1170 dev->stats.tx_bytes += myFirstTxDesc->skb->len;
1171 dev->stats.tx_packets++;
1173 /* dma is ready with the transmission of the data in tx_skb, so now
1174 we can release the skb memory */
1175 dev_kfree_skb_irq(myFirstTxDesc->skb);
1176 myFirstTxDesc->skb = 0;
1177 myFirstTxDesc = phys_to_virt(myFirstTxDesc->descr.next);
1178 /* Wake up queue. */
1179 netif_wake_queue(dev);
1182 if (irqbits & IO_STATE(R_IRQ_MASK2_RD, dma0_eop, active)) {
1183 /* acknowledge the eop interrupt. */
1184 *R_DMA_CH0_CLR_INTR = IO_STATE(R_DMA_CH0_CLR_INTR, clr_eop, do);
1187 return IRQ_HANDLED;
1190 static irqreturn_t
1191 e100nw_interrupt(int irq, void *dev_id)
1193 struct net_device *dev = (struct net_device *)dev_id;
1194 unsigned long irqbits = *R_IRQ_MASK0_RD;
1196 /* check for underrun irq */
1197 if (irqbits & IO_STATE(R_IRQ_MASK0_RD, underrun, active)) {
1198 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
1199 *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
1200 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
1201 dev->stats.tx_errors++;
1202 D(printk("ethernet receiver underrun!\n"));
1205 /* check for overrun irq */
1206 if (irqbits & IO_STATE(R_IRQ_MASK0_RD, overrun, active)) {
1207 update_rx_stats(&dev->stats); /* this will ack the irq */
1208 D(printk("ethernet receiver overrun!\n"));
1210 /* check for excessive collision irq */
1211 if (irqbits & IO_STATE(R_IRQ_MASK0_RD, excessive_col, active)) {
1212 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, clr);
1213 *R_NETWORK_TR_CTRL = network_tr_ctrl_shadow;
1214 SETS(network_tr_ctrl_shadow, R_NETWORK_TR_CTRL, clr_error, nop);
1215 dev->stats.tx_errors++;
1216 D(printk("ethernet excessive collisions!\n"));
1218 return IRQ_HANDLED;
1221 /* We have a good packet(s), get it/them out of the buffers. */
1222 static void
1223 e100_rx(struct net_device *dev)
1225 struct sk_buff *skb;
1226 int length = 0;
1227 struct net_local *np = netdev_priv(dev);
1228 unsigned char *skb_data_ptr;
1229 #ifdef ETHDEBUG
1230 int i;
1231 #endif
1232 etrax_eth_descr *prevRxDesc; /* The descriptor right before myNextRxDesc */
1233 spin_lock(&np->led_lock);
1234 if (!led_active && time_after(jiffies, led_next_time)) {
1235 /* light the network leds depending on the current speed. */
1236 e100_set_network_leds(NETWORK_ACTIVITY);
1238 /* Set the earliest time we may clear the LED */
1239 led_next_time = jiffies + NET_FLASH_TIME;
1240 led_active = 1;
1241 mod_timer(&clear_led_timer, jiffies + HZ/10);
1243 spin_unlock(&np->led_lock);
1245 length = myNextRxDesc->descr.hw_len - 4;
1246 dev->stats.rx_bytes += length;
1248 #ifdef ETHDEBUG
1249 printk("Got a packet of length %d:\n", length);
1250 /* dump the first bytes in the packet */
1251 skb_data_ptr = (unsigned char *)phys_to_virt(myNextRxDesc->descr.buf);
1252 for (i = 0; i < 8; i++) {
1253 printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i * 8,
1254 skb_data_ptr[0],skb_data_ptr[1],skb_data_ptr[2],skb_data_ptr[3],
1255 skb_data_ptr[4],skb_data_ptr[5],skb_data_ptr[6],skb_data_ptr[7]);
1256 skb_data_ptr += 8;
1258 #endif
1260 if (length < RX_COPYBREAK) {
1261 /* Small packet, copy data */
1262 skb = dev_alloc_skb(length - ETHER_HEAD_LEN);
1263 if (!skb) {
1264 dev->stats.rx_errors++;
1265 printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1266 goto update_nextrxdesc;
1269 skb_put(skb, length - ETHER_HEAD_LEN); /* allocate room for the packet body */
1270 skb_data_ptr = skb_push(skb, ETHER_HEAD_LEN); /* allocate room for the header */
1272 #ifdef ETHDEBUG
1273 printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n",
1274 skb->head, skb->data, skb_tail_pointer(skb),
1275 skb_end_pointer(skb));
1276 printk("copying packet to 0x%x.\n", skb_data_ptr);
1277 #endif
1279 memcpy(skb_data_ptr, phys_to_virt(myNextRxDesc->descr.buf), length);
1281 else {
1282 /* Large packet, send directly to upper layers and allocate new
1283 * memory (aligned to cache line boundary to avoid bug).
1284 * Before sending the skb to upper layers we must make sure
1285 * that skb->data points to the aligned start of the packet.
1287 int align;
1288 struct sk_buff *new_skb = dev_alloc_skb(MAX_MEDIA_DATA_SIZE + 2 * L1_CACHE_BYTES);
1289 if (!new_skb) {
1290 dev->stats.rx_errors++;
1291 printk(KERN_NOTICE "%s: Memory squeeze, dropping packet.\n", dev->name);
1292 goto update_nextrxdesc;
1294 skb = myNextRxDesc->skb;
1295 align = (int)phys_to_virt(myNextRxDesc->descr.buf) - (int)skb->data;
1296 skb_put(skb, length + align);
1297 skb_pull(skb, align); /* Remove alignment bytes */
1298 myNextRxDesc->skb = new_skb;
1299 myNextRxDesc->descr.buf = L1_CACHE_ALIGN(virt_to_phys(myNextRxDesc->skb->data));
1302 skb->protocol = eth_type_trans(skb, dev);
1304 /* Send the packet to the upper layers */
1305 netif_rx(skb);
1307 update_nextrxdesc:
1308 /* Prepare for next packet */
1309 myNextRxDesc->descr.status = 0;
1310 prevRxDesc = myNextRxDesc;
1311 myNextRxDesc = phys_to_virt(myNextRxDesc->descr.next);
1313 rx_queue_len++;
1315 /* Check if descriptors should be returned */
1316 if (rx_queue_len == RX_QUEUE_THRESHOLD) {
1317 flush_etrax_cache();
1318 prevRxDesc->descr.ctrl |= d_eol;
1319 myLastRxDesc->descr.ctrl &= ~d_eol;
1320 myLastRxDesc = prevRxDesc;
1321 rx_queue_len = 0;
1325 /* The inverse routine to net_open(). */
1326 static int
1327 e100_close(struct net_device *dev)
1329 printk(KERN_INFO "Closing %s.\n", dev->name);
1331 netif_stop_queue(dev);
1333 *R_IRQ_MASK0_CLR =
1334 IO_STATE(R_IRQ_MASK0_CLR, overrun, clr) |
1335 IO_STATE(R_IRQ_MASK0_CLR, underrun, clr) |
1336 IO_STATE(R_IRQ_MASK0_CLR, excessive_col, clr);
1338 *R_IRQ_MASK2_CLR =
1339 IO_STATE(R_IRQ_MASK2_CLR, dma0_descr, clr) |
1340 IO_STATE(R_IRQ_MASK2_CLR, dma0_eop, clr) |
1341 IO_STATE(R_IRQ_MASK2_CLR, dma1_descr, clr) |
1342 IO_STATE(R_IRQ_MASK2_CLR, dma1_eop, clr);
1344 /* Stop the receiver and the transmitter */
1346 RESET_DMA(NETWORK_TX_DMA_NBR);
1347 RESET_DMA(NETWORK_RX_DMA_NBR);
1349 /* Flush the Tx and disable Rx here. */
1351 free_irq(NETWORK_DMA_RX_IRQ_NBR, (void *)dev);
1352 free_irq(NETWORK_DMA_TX_IRQ_NBR, (void *)dev);
1353 free_irq(NETWORK_STATUS_IRQ_NBR, (void *)dev);
1355 cris_free_dma(NETWORK_TX_DMA_NBR, cardname);
1356 cris_free_dma(NETWORK_RX_DMA_NBR, cardname);
1358 /* Update the statistics here. */
1360 update_rx_stats(&dev->stats);
1361 update_tx_stats(&dev->stats);
1363 /* Stop speed/duplex timers */
1364 del_timer(&speed_timer);
1365 del_timer(&duplex_timer);
1367 return 0;
1370 static int
1371 e100_ioctl(struct net_device *dev, struct ifreq *ifr, int cmd)
1373 struct mii_ioctl_data *data = if_mii(ifr);
1374 struct net_local *np = netdev_priv(dev);
1375 int rc = 0;
1376 int old_autoneg;
1378 spin_lock(&np->lock); /* Preempt protection */
1379 switch (cmd) {
1380 /* The ioctls below should be considered obsolete but are */
1381 /* still present for compatibility with old scripts/apps */
1382 case SET_ETH_SPEED_10: /* 10 Mbps */
1383 e100_set_speed(dev, 10);
1384 break;
1385 case SET_ETH_SPEED_100: /* 100 Mbps */
1386 e100_set_speed(dev, 100);
1387 break;
1388 case SET_ETH_SPEED_AUTO: /* Auto-negotiate speed */
1389 e100_set_speed(dev, 0);
1390 break;
1391 case SET_ETH_DUPLEX_HALF: /* Half duplex */
1392 e100_set_duplex(dev, half);
1393 break;
1394 case SET_ETH_DUPLEX_FULL: /* Full duplex */
1395 e100_set_duplex(dev, full);
1396 break;
1397 case SET_ETH_DUPLEX_AUTO: /* Auto-negotiate duplex */
1398 e100_set_duplex(dev, autoneg);
1399 break;
1400 case SET_ETH_AUTONEG:
1401 old_autoneg = autoneg_normal;
1402 autoneg_normal = *(int*)data;
1403 if (autoneg_normal != old_autoneg)
1404 e100_negotiate(dev);
1405 break;
1406 default:
1407 rc = generic_mii_ioctl(&np->mii_if, if_mii(ifr),
1408 cmd, NULL);
1409 break;
1411 spin_unlock(&np->lock);
1412 return rc;
1415 static int e100_get_settings(struct net_device *dev,
1416 struct ethtool_cmd *cmd)
1418 struct net_local *np = netdev_priv(dev);
1419 int err;
1421 spin_lock_irq(&np->lock);
1422 err = mii_ethtool_gset(&np->mii_if, cmd);
1423 spin_unlock_irq(&np->lock);
1425 /* The PHY may support 1000baseT, but the Etrax100 does not. */
1426 cmd->supported &= ~(SUPPORTED_1000baseT_Half
1427 | SUPPORTED_1000baseT_Full);
1428 return err;
1431 static int e100_set_settings(struct net_device *dev,
1432 struct ethtool_cmd *ecmd)
1434 if (ecmd->autoneg == AUTONEG_ENABLE) {
1435 e100_set_duplex(dev, autoneg);
1436 e100_set_speed(dev, 0);
1437 } else {
1438 e100_set_duplex(dev, ecmd->duplex == DUPLEX_HALF ? half : full);
1439 e100_set_speed(dev, ecmd->speed == SPEED_10 ? 10: 100);
1442 return 0;
1445 static void e100_get_drvinfo(struct net_device *dev,
1446 struct ethtool_drvinfo *info)
1448 strlcpy(info->driver, "ETRAX 100LX", sizeof(info->driver));
1449 strlcpy(info->version, "$Revision: 1.31 $", sizeof(info->version));
1450 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version));
1451 strlcpy(info->bus_info, "N/A", sizeof(info->bus_info));
1454 static int e100_nway_reset(struct net_device *dev)
1456 if (current_duplex == autoneg && current_speed_selection == 0)
1457 e100_negotiate(dev);
1458 return 0;
1461 static const struct ethtool_ops e100_ethtool_ops = {
1462 .get_settings = e100_get_settings,
1463 .set_settings = e100_set_settings,
1464 .get_drvinfo = e100_get_drvinfo,
1465 .nway_reset = e100_nway_reset,
1466 .get_link = ethtool_op_get_link,
1469 static int
1470 e100_set_config(struct net_device *dev, struct ifmap *map)
1472 struct net_local *np = netdev_priv(dev);
1474 spin_lock(&np->lock); /* Preempt protection */
1476 switch(map->port) {
1477 case IF_PORT_UNKNOWN:
1478 /* Use autoneg */
1479 e100_set_speed(dev, 0);
1480 e100_set_duplex(dev, autoneg);
1481 break;
1482 case IF_PORT_10BASET:
1483 e100_set_speed(dev, 10);
1484 e100_set_duplex(dev, autoneg);
1485 break;
1486 case IF_PORT_100BASET:
1487 case IF_PORT_100BASETX:
1488 e100_set_speed(dev, 100);
1489 e100_set_duplex(dev, autoneg);
1490 break;
1491 case IF_PORT_100BASEFX:
1492 case IF_PORT_10BASE2:
1493 case IF_PORT_AUI:
1494 spin_unlock(&np->lock);
1495 return -EOPNOTSUPP;
1496 default:
1497 printk(KERN_ERR "%s: Invalid media selected", dev->name);
1498 spin_unlock(&np->lock);
1499 return -EINVAL;
1501 spin_unlock(&np->lock);
1502 return 0;
1505 static void
1506 update_rx_stats(struct net_device_stats *es)
1508 unsigned long r = *R_REC_COUNTERS;
1509 /* update stats relevant to reception errors */
1510 es->rx_fifo_errors += IO_EXTRACT(R_REC_COUNTERS, congestion, r);
1511 es->rx_crc_errors += IO_EXTRACT(R_REC_COUNTERS, crc_error, r);
1512 es->rx_frame_errors += IO_EXTRACT(R_REC_COUNTERS, alignment_error, r);
1513 es->rx_length_errors += IO_EXTRACT(R_REC_COUNTERS, oversize, r);
1516 static void
1517 update_tx_stats(struct net_device_stats *es)
1519 unsigned long r = *R_TR_COUNTERS;
1520 /* update stats relevant to transmission errors */
1521 es->collisions +=
1522 IO_EXTRACT(R_TR_COUNTERS, single_col, r) +
1523 IO_EXTRACT(R_TR_COUNTERS, multiple_col, r);
1527 * Get the current statistics.
1528 * This may be called with the card open or closed.
1530 static struct net_device_stats *
1531 e100_get_stats(struct net_device *dev)
1533 struct net_local *lp = netdev_priv(dev);
1534 unsigned long flags;
1536 spin_lock_irqsave(&lp->lock, flags);
1538 update_rx_stats(&dev->stats);
1539 update_tx_stats(&dev->stats);
1541 spin_unlock_irqrestore(&lp->lock, flags);
1542 return &dev->stats;
1546 * Set or clear the multicast filter for this adaptor.
1547 * num_addrs == -1 Promiscuous mode, receive all packets
1548 * num_addrs == 0 Normal mode, clear multicast list
1549 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1550 * and do best-effort filtering.
1552 static void
1553 set_multicast_list(struct net_device *dev)
1555 struct net_local *lp = netdev_priv(dev);
1556 int num_addr = netdev_mc_count(dev);
1557 unsigned long int lo_bits;
1558 unsigned long int hi_bits;
1560 spin_lock(&lp->lock);
1561 if (dev->flags & IFF_PROMISC) {
1562 /* promiscuous mode */
1563 lo_bits = 0xfffffffful;
1564 hi_bits = 0xfffffffful;
1566 /* Enable individual receive */
1567 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, receive);
1568 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1569 } else if (dev->flags & IFF_ALLMULTI) {
1570 /* enable all multicasts */
1571 lo_bits = 0xfffffffful;
1572 hi_bits = 0xfffffffful;
1574 /* Disable individual receive */
1575 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1576 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1577 } else if (num_addr == 0) {
1578 /* Normal, clear the mc list */
1579 lo_bits = 0x00000000ul;
1580 hi_bits = 0x00000000ul;
1582 /* Disable individual receive */
1583 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1584 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1585 } else {
1586 /* MC mode, receive normal and MC packets */
1587 char hash_ix;
1588 struct netdev_hw_addr *ha;
1589 char *baddr;
1591 lo_bits = 0x00000000ul;
1592 hi_bits = 0x00000000ul;
1593 netdev_for_each_mc_addr(ha, dev) {
1594 /* Calculate the hash index for the GA registers */
1596 hash_ix = 0;
1597 baddr = ha->addr;
1598 hash_ix ^= (*baddr) & 0x3f;
1599 hash_ix ^= ((*baddr) >> 6) & 0x03;
1600 ++baddr;
1601 hash_ix ^= ((*baddr) << 2) & 0x03c;
1602 hash_ix ^= ((*baddr) >> 4) & 0xf;
1603 ++baddr;
1604 hash_ix ^= ((*baddr) << 4) & 0x30;
1605 hash_ix ^= ((*baddr) >> 2) & 0x3f;
1606 ++baddr;
1607 hash_ix ^= (*baddr) & 0x3f;
1608 hash_ix ^= ((*baddr) >> 6) & 0x03;
1609 ++baddr;
1610 hash_ix ^= ((*baddr) << 2) & 0x03c;
1611 hash_ix ^= ((*baddr) >> 4) & 0xf;
1612 ++baddr;
1613 hash_ix ^= ((*baddr) << 4) & 0x30;
1614 hash_ix ^= ((*baddr) >> 2) & 0x3f;
1616 hash_ix &= 0x3f;
1618 if (hash_ix >= 32) {
1619 hi_bits |= (1 << (hash_ix-32));
1620 } else {
1621 lo_bits |= (1 << hash_ix);
1624 /* Disable individual receive */
1625 SETS(network_rec_config_shadow, R_NETWORK_REC_CONFIG, individual, discard);
1626 *R_NETWORK_REC_CONFIG = network_rec_config_shadow;
1628 *R_NETWORK_GA_0 = lo_bits;
1629 *R_NETWORK_GA_1 = hi_bits;
1630 spin_unlock(&lp->lock);
1633 void
1634 e100_hardware_send_packet(struct net_local *np, char *buf, int length)
1636 D(printk("e100 send pack, buf 0x%x len %d\n", buf, length));
1638 spin_lock(&np->led_lock);
1639 if (!led_active && time_after(jiffies, led_next_time)) {
1640 /* light the network leds depending on the current speed. */
1641 e100_set_network_leds(NETWORK_ACTIVITY);
1643 /* Set the earliest time we may clear the LED */
1644 led_next_time = jiffies + NET_FLASH_TIME;
1645 led_active = 1;
1646 mod_timer(&clear_led_timer, jiffies + HZ/10);
1648 spin_unlock(&np->led_lock);
1650 /* configure the tx dma descriptor */
1651 myNextTxDesc->descr.sw_len = length;
1652 myNextTxDesc->descr.ctrl = d_eop | d_eol | d_wait;
1653 myNextTxDesc->descr.buf = virt_to_phys(buf);
1655 /* Move end of list */
1656 myLastTxDesc->descr.ctrl &= ~d_eol;
1657 myLastTxDesc = myNextTxDesc;
1659 /* Restart DMA channel */
1660 *R_DMA_CH0_CMD = IO_STATE(R_DMA_CH0_CMD, cmd, restart);
1663 static void
1664 e100_clear_network_leds(unsigned long dummy)
1666 struct net_device *dev = (struct net_device *)dummy;
1667 struct net_local *np = netdev_priv(dev);
1669 spin_lock(&np->led_lock);
1671 if (led_active && time_after(jiffies, led_next_time)) {
1672 e100_set_network_leds(NO_NETWORK_ACTIVITY);
1674 /* Set the earliest time we may set the LED */
1675 led_next_time = jiffies + NET_FLASH_PAUSE;
1676 led_active = 0;
1679 spin_unlock(&np->led_lock);
1682 static void
1683 e100_set_network_leds(int active)
1685 #if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK)
1686 int light_leds = (active == NO_NETWORK_ACTIVITY);
1687 #elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY)
1688 int light_leds = (active == NETWORK_ACTIVITY);
1689 #else
1690 #error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY"
1691 #endif
1693 if (!current_speed) {
1694 /* Make LED red, link is down */
1695 CRIS_LED_NETWORK_SET(CRIS_LED_OFF);
1696 } else if (light_leds) {
1697 if (current_speed == 10) {
1698 CRIS_LED_NETWORK_SET(CRIS_LED_ORANGE);
1699 } else {
1700 CRIS_LED_NETWORK_SET(CRIS_LED_GREEN);
1702 } else {
1703 CRIS_LED_NETWORK_SET(CRIS_LED_OFF);
1707 #ifdef CONFIG_NET_POLL_CONTROLLER
1708 static void
1709 e100_netpoll(struct net_device* netdev)
1711 e100rxtx_interrupt(NETWORK_DMA_TX_IRQ_NBR, netdev);
1713 #endif
1716 static int __init
1717 e100_boot_setup(char* str)
1719 struct sockaddr sa = {0};
1720 int i;
1722 /* Parse the colon separated Ethernet station address */
1723 for (i = 0; i < ETH_ALEN; i++) {
1724 unsigned int tmp;
1725 if (sscanf(str + 3*i, "%2x", &tmp) != 1) {
1726 printk(KERN_WARNING "Malformed station address");
1727 return 0;
1729 sa.sa_data[i] = (char)tmp;
1732 default_mac = sa;
1733 return 1;
1736 __setup("etrax100_eth=", e100_boot_setup);