2 * e100net.c: A network driver for the ETRAX 100LX network controller.
4 * Copyright (c) 1998-2002 Axis Communications AB.
6 * The outline of this driver comes from skeleton.c.
10 #include <linux/kernel.h>
11 #include <linux/delay.h>
12 #include <linux/types.h>
13 #include <linux/fcntl.h>
14 #include <linux/interrupt.h>
15 #include <linux/ptrace.h>
16 #include <linux/ioport.h>
18 #include <linux/string.h>
19 #include <linux/spinlock.h>
20 #include <linux/errno.h>
21 #include <linux/init.h>
22 #include <linux/bitops.h>
25 #include <linux/mii.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/skbuff.h>
29 #include <linux/ethtool.h>
31 #include <arch/svinto.h>/* DMA and register descriptions */
32 #include <asm/io.h> /* CRIS_LED_* I/O functions */
35 #include <asm/ethernet.h>
36 #include <asm/cache.h>
37 #include <arch/io_interface_mux.h>
43 * The name of the card. Is used for messages and in the requests for
44 * io regions, irqs and dma channels
47 static const char* cardname
= "ETRAX 100LX built-in ethernet controller";
49 /* A default ethernet address. Highlevel SW will set the real one later */
51 static struct sockaddr default_mac
= {
53 { 0x00, 0x40, 0x8C, 0xCD, 0x00, 0x00 }
56 /* Information that need to be kept for each board. */
58 struct mii_if_info mii_if
;
60 /* Tx control lock. This protects the transmit buffer ring
61 * state along with the "tx full" state of the driver. This
62 * means all netif_queue flow control actions are protected
63 * by this lock as well.
67 spinlock_t led_lock
; /* Protect LED state */
68 spinlock_t transceiver_lock
; /* Protect transceiver state. */
71 typedef struct etrax_eth_descr
73 etrax_dma_descr descr
;
77 /* Some transceivers requires special handling */
78 struct transceiver_ops
81 void (*check_speed
)(struct net_device
* dev
);
82 void (*check_duplex
)(struct net_device
* dev
);
93 /* Dma descriptors etc. */
95 #define MAX_MEDIA_DATA_SIZE 1522
97 #define MIN_PACKET_LEN 46
98 #define ETHER_HEAD_LEN 14
103 #define MDIO_START 0x1
104 #define MDIO_READ 0x2
105 #define MDIO_WRITE 0x1
106 #define MDIO_PREAMBLE 0xfffffffful
108 /* Broadcom specific */
109 #define MDIO_AUX_CTRL_STATUS_REG 0x18
110 #define MDIO_BC_FULL_DUPLEX_IND 0x1
111 #define MDIO_BC_SPEED 0x2
114 #define MDIO_TDK_DIAGNOSTIC_REG 18
115 #define MDIO_TDK_DIAGNOSTIC_RATE 0x400
116 #define MDIO_TDK_DIAGNOSTIC_DPLX 0x800
118 /*Intel LXT972A specific*/
119 #define MDIO_INT_STATUS_REG_2 0x0011
120 #define MDIO_INT_FULL_DUPLEX_IND (1 << 9)
121 #define MDIO_INT_SPEED (1 << 14)
123 /* Network flash constants */
124 #define NET_FLASH_TIME (HZ/50) /* 20 ms */
125 #define NET_FLASH_PAUSE (HZ/100) /* 10 ms */
126 #define NET_LINK_UP_CHECK_INTERVAL (2*HZ) /* 2 s */
127 #define NET_DUPLEX_CHECK_INTERVAL (2*HZ) /* 2 s */
129 #define NO_NETWORK_ACTIVITY 0
130 #define NETWORK_ACTIVITY 1
132 #define NBR_OF_RX_DESC 32
133 #define NBR_OF_TX_DESC 16
135 /* Large packets are sent directly to upper layers while small packets are */
136 /* copied (to reduce memory waste). The following constant decides the breakpoint */
137 #define RX_COPYBREAK 256
139 /* Due to a chip bug we need to flush the cache when descriptors are returned */
140 /* to the DMA. To decrease performance impact we return descriptors in chunks. */
141 /* The following constant determines the number of descriptors to return. */
142 #define RX_QUEUE_THRESHOLD NBR_OF_RX_DESC/2
144 #define GET_BIT(bit,val) (((val) >> (bit)) & 0x01)
146 /* Define some macros to access ETRAX 100 registers */
147 #define SETF(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
148 IO_FIELD_(reg##_, field##_, val)
149 #define SETS(var, reg, field, val) var = (var & ~IO_MASK_(reg##_, field##_)) | \
150 IO_STATE_(reg##_, field##_, _##val)
152 static etrax_eth_descr
*myNextRxDesc
; /* Points to the next descriptor to
154 static etrax_eth_descr
*myLastRxDesc
; /* The last processed descriptor */
156 static etrax_eth_descr RxDescList
[NBR_OF_RX_DESC
] __attribute__ ((aligned(32)));
158 static etrax_eth_descr
* myFirstTxDesc
; /* First packet not yet sent */
159 static etrax_eth_descr
* myLastTxDesc
; /* End of send queue */
160 static etrax_eth_descr
* myNextTxDesc
; /* Next descriptor to use */
161 static etrax_eth_descr TxDescList
[NBR_OF_TX_DESC
] __attribute__ ((aligned(32)));
163 static unsigned int network_rec_config_shadow
= 0;
165 static unsigned int network_tr_ctrl_shadow
= 0;
167 /* Network speed indication. */
168 static DEFINE_TIMER(speed_timer
, NULL
, 0, 0);
169 static DEFINE_TIMER(clear_led_timer
, NULL
, 0, 0);
170 static int current_speed
; /* Speed read from transceiver */
171 static int current_speed_selection
; /* Speed selected by user */
172 static unsigned long led_next_time
;
173 static int led_active
;
174 static int rx_queue_len
;
177 static DEFINE_TIMER(duplex_timer
, NULL
, 0, 0);
178 static int full_duplex
;
179 static enum duplex current_duplex
;
181 /* Index to functions, as function prototypes. */
183 static int etrax_ethernet_init(void);
185 static int e100_open(struct net_device
*dev
);
186 static int e100_set_mac_address(struct net_device
*dev
, void *addr
);
187 static int e100_send_packet(struct sk_buff
*skb
, struct net_device
*dev
);
188 static irqreturn_t
e100rxtx_interrupt(int irq
, void *dev_id
);
189 static irqreturn_t
e100nw_interrupt(int irq
, void *dev_id
);
190 static void e100_rx(struct net_device
*dev
);
191 static int e100_close(struct net_device
*dev
);
192 static int e100_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
);
193 static int e100_set_config(struct net_device
* dev
, struct ifmap
* map
);
194 static void e100_tx_timeout(struct net_device
*dev
);
195 static struct net_device_stats
*e100_get_stats(struct net_device
*dev
);
196 static void set_multicast_list(struct net_device
*dev
);
197 static void e100_hardware_send_packet(struct net_local
* np
, char *buf
, int length
);
198 static void update_rx_stats(struct net_device_stats
*);
199 static void update_tx_stats(struct net_device_stats
*);
200 static int e100_probe_transceiver(struct net_device
* dev
);
202 static void e100_check_speed(unsigned long priv
);
203 static void e100_set_speed(struct net_device
* dev
, unsigned long speed
);
204 static void e100_check_duplex(unsigned long priv
);
205 static void e100_set_duplex(struct net_device
* dev
, enum duplex
);
206 static void e100_negotiate(struct net_device
* dev
);
208 static int e100_get_mdio_reg(struct net_device
*dev
, int phy_id
, int location
);
209 static void e100_set_mdio_reg(struct net_device
*dev
, int phy_id
, int location
, int value
);
211 static void e100_send_mdio_cmd(unsigned short cmd
, int write_cmd
);
212 static void e100_send_mdio_bit(unsigned char bit
);
213 static unsigned char e100_receive_mdio_bit(void);
214 static void e100_reset_transceiver(struct net_device
* net
);
216 static void e100_clear_network_leds(unsigned long dummy
);
217 static void e100_set_network_leds(int active
);
219 static const struct ethtool_ops e100_ethtool_ops
;
220 #if defined(CONFIG_ETRAX_NO_PHY)
221 static void dummy_check_speed(struct net_device
* dev
);
222 static void dummy_check_duplex(struct net_device
* dev
);
224 static void broadcom_check_speed(struct net_device
* dev
);
225 static void broadcom_check_duplex(struct net_device
* dev
);
226 static void tdk_check_speed(struct net_device
* dev
);
227 static void tdk_check_duplex(struct net_device
* dev
);
228 static void intel_check_speed(struct net_device
* dev
);
229 static void intel_check_duplex(struct net_device
* dev
);
230 static void generic_check_speed(struct net_device
* dev
);
231 static void generic_check_duplex(struct net_device
* dev
);
233 #ifdef CONFIG_NET_POLL_CONTROLLER
234 static void e100_netpoll(struct net_device
* dev
);
237 static int autoneg_normal
= 1;
239 struct transceiver_ops transceivers
[] =
241 #if defined(CONFIG_ETRAX_NO_PHY)
242 {0x0000, dummy_check_speed
, dummy_check_duplex
} /* Dummy */
244 {0x1018, broadcom_check_speed
, broadcom_check_duplex
}, /* Broadcom */
245 {0xC039, tdk_check_speed
, tdk_check_duplex
}, /* TDK 2120 */
246 {0x039C, tdk_check_speed
, tdk_check_duplex
}, /* TDK 2120C */
247 {0x04de, intel_check_speed
, intel_check_duplex
}, /* Intel LXT972A*/
248 {0x0000, generic_check_speed
, generic_check_duplex
} /* Generic, must be last */
252 struct transceiver_ops
* transceiver
= &transceivers
[0];
254 static const struct net_device_ops e100_netdev_ops
= {
255 .ndo_open
= e100_open
,
256 .ndo_stop
= e100_close
,
257 .ndo_start_xmit
= e100_send_packet
,
258 .ndo_tx_timeout
= e100_tx_timeout
,
259 .ndo_get_stats
= e100_get_stats
,
260 .ndo_set_rx_mode
= set_multicast_list
,
261 .ndo_do_ioctl
= e100_ioctl
,
262 .ndo_set_mac_address
= e100_set_mac_address
,
263 .ndo_validate_addr
= eth_validate_addr
,
264 .ndo_set_config
= e100_set_config
,
265 #ifdef CONFIG_NET_POLL_CONTROLLER
266 .ndo_poll_controller
= e100_netpoll
,
270 #define tx_done(dev) (*R_DMA_CH0_CMD == 0)
273 * Check for a network adaptor of this type, and return '0' if one exists.
274 * If dev->base_addr == 0, probe all likely locations.
275 * If dev->base_addr == 1, always return failure.
276 * If dev->base_addr == 2, allocate space for the device and return success
277 * (detachable devices only).
281 etrax_ethernet_init(void)
283 struct net_device
*dev
;
284 struct net_local
* np
;
288 "ETRAX 100LX 10/100MBit ethernet v2.0 (c) 1998-2007 Axis Communications AB\n");
290 if (cris_request_io_interface(if_eth
, cardname
)) {
291 printk(KERN_CRIT
"etrax_ethernet_init failed to get IO interface\n");
295 dev
= alloc_etherdev(sizeof(struct net_local
));
299 np
= netdev_priv(dev
);
301 /* we do our own locking */
302 dev
->features
|= NETIF_F_LLTX
;
304 dev
->base_addr
= (unsigned int)R_NETWORK_SA_0
; /* just to have something to show */
306 /* now setup our etrax specific stuff */
308 dev
->irq
= NETWORK_DMA_RX_IRQ_NBR
; /* we really use DMATX as well... */
309 dev
->dma
= NETWORK_RX_DMA_NBR
;
311 /* fill in our handlers so the network layer can talk to us in the future */
313 dev
->ethtool_ops
= &e100_ethtool_ops
;
314 dev
->netdev_ops
= &e100_netdev_ops
;
316 spin_lock_init(&np
->lock
);
317 spin_lock_init(&np
->led_lock
);
318 spin_lock_init(&np
->transceiver_lock
);
320 /* Initialise the list of Etrax DMA-descriptors */
322 /* Initialise receive descriptors */
324 for (i
= 0; i
< NBR_OF_RX_DESC
; i
++) {
325 /* Allocate two extra cachelines to make sure that buffer used
326 * by DMA does not share cacheline with any other data (to
329 RxDescList
[i
].skb
= dev_alloc_skb(MAX_MEDIA_DATA_SIZE
+ 2 * L1_CACHE_BYTES
);
330 if (!RxDescList
[i
].skb
)
332 RxDescList
[i
].descr
.ctrl
= 0;
333 RxDescList
[i
].descr
.sw_len
= MAX_MEDIA_DATA_SIZE
;
334 RxDescList
[i
].descr
.next
= virt_to_phys(&RxDescList
[i
+ 1]);
335 RxDescList
[i
].descr
.buf
= L1_CACHE_ALIGN(virt_to_phys(RxDescList
[i
].skb
->data
));
336 RxDescList
[i
].descr
.status
= 0;
337 RxDescList
[i
].descr
.hw_len
= 0;
338 prepare_rx_descriptor(&RxDescList
[i
].descr
);
341 RxDescList
[NBR_OF_RX_DESC
- 1].descr
.ctrl
= d_eol
;
342 RxDescList
[NBR_OF_RX_DESC
- 1].descr
.next
= virt_to_phys(&RxDescList
[0]);
345 /* Initialize transmit descriptors */
346 for (i
= 0; i
< NBR_OF_TX_DESC
; i
++) {
347 TxDescList
[i
].descr
.ctrl
= 0;
348 TxDescList
[i
].descr
.sw_len
= 0;
349 TxDescList
[i
].descr
.next
= virt_to_phys(&TxDescList
[i
+ 1].descr
);
350 TxDescList
[i
].descr
.buf
= 0;
351 TxDescList
[i
].descr
.status
= 0;
352 TxDescList
[i
].descr
.hw_len
= 0;
353 TxDescList
[i
].skb
= 0;
356 TxDescList
[NBR_OF_TX_DESC
- 1].descr
.ctrl
= d_eol
;
357 TxDescList
[NBR_OF_TX_DESC
- 1].descr
.next
= virt_to_phys(&TxDescList
[0].descr
);
359 /* Initialise initial pointers */
361 myNextRxDesc
= &RxDescList
[0];
362 myLastRxDesc
= &RxDescList
[NBR_OF_RX_DESC
- 1];
363 myFirstTxDesc
= &TxDescList
[0];
364 myNextTxDesc
= &TxDescList
[0];
365 myLastTxDesc
= &TxDescList
[NBR_OF_TX_DESC
- 1];
367 /* Register device */
368 err
= register_netdev(dev
);
374 /* set the default MAC address */
376 e100_set_mac_address(dev
, &default_mac
);
378 /* Initialize speed indicator stuff. */
381 current_speed_selection
= 0; /* Auto */
382 speed_timer
.expires
= jiffies
+ NET_LINK_UP_CHECK_INTERVAL
;
383 speed_timer
.data
= (unsigned long)dev
;
384 speed_timer
.function
= e100_check_speed
;
386 clear_led_timer
.function
= e100_clear_network_leds
;
387 clear_led_timer
.data
= (unsigned long)dev
;
390 current_duplex
= autoneg
;
391 duplex_timer
.expires
= jiffies
+ NET_DUPLEX_CHECK_INTERVAL
;
392 duplex_timer
.data
= (unsigned long)dev
;
393 duplex_timer
.function
= e100_check_duplex
;
395 /* Initialize mii interface */
396 np
->mii_if
.phy_id_mask
= 0x1f;
397 np
->mii_if
.reg_num_mask
= 0x1f;
398 np
->mii_if
.dev
= dev
;
399 np
->mii_if
.mdio_read
= e100_get_mdio_reg
;
400 np
->mii_if
.mdio_write
= e100_set_mdio_reg
;
402 /* Initialize group address registers to make sure that no */
403 /* unwanted addresses are matched */
404 *R_NETWORK_GA_0
= 0x00000000;
405 *R_NETWORK_GA_1
= 0x00000000;
407 /* Initialize next time the led can flash */
408 led_next_time
= jiffies
;
411 device_initcall(etrax_ethernet_init
)
413 /* set MAC address of the interface. called from the core after a
414 * SIOCSIFADDR ioctl, and from the bootup above.
418 e100_set_mac_address(struct net_device
*dev
, void *p
)
420 struct net_local
*np
= netdev_priv(dev
);
421 struct sockaddr
*addr
= p
;
423 spin_lock(&np
->lock
); /* preemption protection */
427 memcpy(dev
->dev_addr
, addr
->sa_data
, dev
->addr_len
);
429 /* Write it to the hardware.
430 * Note the way the address is wrapped:
431 * *R_NETWORK_SA_0 = a0_0 | (a0_1 << 8) | (a0_2 << 16) | (a0_3 << 24);
432 * *R_NETWORK_SA_1 = a0_4 | (a0_5 << 8);
435 *R_NETWORK_SA_0
= dev
->dev_addr
[0] | (dev
->dev_addr
[1] << 8) |
436 (dev
->dev_addr
[2] << 16) | (dev
->dev_addr
[3] << 24);
437 *R_NETWORK_SA_1
= dev
->dev_addr
[4] | (dev
->dev_addr
[5] << 8);
440 /* show it in the log as well */
442 printk(KERN_INFO
"%s: changed MAC to %pM\n", dev
->name
, dev
->dev_addr
);
444 spin_unlock(&np
->lock
);
450 * Open/initialize the board. This is called (in the current kernel)
451 * sometime after booting when the 'ifconfig' program is run.
453 * This routine should set everything up anew at each open, even
454 * registers that "should" only need to be set once at boot, so that
455 * there is non-reboot way to recover if something goes wrong.
459 e100_open(struct net_device
*dev
)
463 /* enable the MDIO output pin */
465 *R_NETWORK_MGM_CTRL
= IO_STATE(R_NETWORK_MGM_CTRL
, mdoe
, enable
);
468 IO_STATE(R_IRQ_MASK0_CLR
, overrun
, clr
) |
469 IO_STATE(R_IRQ_MASK0_CLR
, underrun
, clr
) |
470 IO_STATE(R_IRQ_MASK0_CLR
, excessive_col
, clr
);
472 /* clear dma0 and 1 eop and descr irq masks */
474 IO_STATE(R_IRQ_MASK2_CLR
, dma0_descr
, clr
) |
475 IO_STATE(R_IRQ_MASK2_CLR
, dma0_eop
, clr
) |
476 IO_STATE(R_IRQ_MASK2_CLR
, dma1_descr
, clr
) |
477 IO_STATE(R_IRQ_MASK2_CLR
, dma1_eop
, clr
);
479 /* Reset and wait for the DMA channels */
481 RESET_DMA(NETWORK_TX_DMA_NBR
);
482 RESET_DMA(NETWORK_RX_DMA_NBR
);
483 WAIT_DMA(NETWORK_TX_DMA_NBR
);
484 WAIT_DMA(NETWORK_RX_DMA_NBR
);
486 /* Initialise the etrax network controller */
488 /* allocate the irq corresponding to the receiving DMA */
490 if (request_irq(NETWORK_DMA_RX_IRQ_NBR
, e100rxtx_interrupt
, 0, cardname
,
495 /* allocate the irq corresponding to the transmitting DMA */
497 if (request_irq(NETWORK_DMA_TX_IRQ_NBR
, e100rxtx_interrupt
, 0,
498 cardname
, (void *)dev
)) {
502 /* allocate the irq corresponding to the network errors etc */
504 if (request_irq(NETWORK_STATUS_IRQ_NBR
, e100nw_interrupt
, 0,
505 cardname
, (void *)dev
)) {
510 * Always allocate the DMA channels after the IRQ,
511 * and clean up on failure.
514 if (cris_request_dma(NETWORK_TX_DMA_NBR
,
516 DMA_VERBOSE_ON_ERROR
,
521 if (cris_request_dma(NETWORK_RX_DMA_NBR
,
523 DMA_VERBOSE_ON_ERROR
,
528 /* give the HW an idea of what MAC address we want */
530 *R_NETWORK_SA_0
= dev
->dev_addr
[0] | (dev
->dev_addr
[1] << 8) |
531 (dev
->dev_addr
[2] << 16) | (dev
->dev_addr
[3] << 24);
532 *R_NETWORK_SA_1
= dev
->dev_addr
[4] | (dev
->dev_addr
[5] << 8);
536 /* use promiscuous mode for testing */
537 *R_NETWORK_GA_0
= 0xffffffff;
538 *R_NETWORK_GA_1
= 0xffffffff;
540 *R_NETWORK_REC_CONFIG
= 0xd; /* broadcast rec, individ. rec, ma0 enabled */
542 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, max_size
, size1522
);
543 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, broadcast
, receive
);
544 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, ma0
, enable
);
545 SETF(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, duplex
, full_duplex
);
546 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
549 *R_NETWORK_GEN_CONFIG
=
550 IO_STATE(R_NETWORK_GEN_CONFIG
, phy
, mii_clk
) |
551 IO_STATE(R_NETWORK_GEN_CONFIG
, enable
, on
);
553 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, clr
);
554 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, delay
, none
);
555 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, cancel
, dont
);
556 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, cd
, enable
);
557 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, retry
, enable
);
558 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, pad
, enable
);
559 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, crc
, enable
);
560 *R_NETWORK_TR_CTRL
= network_tr_ctrl_shadow
;
562 local_irq_save(flags
);
564 /* enable the irq's for ethernet DMA */
567 IO_STATE(R_IRQ_MASK2_SET
, dma0_eop
, set
) |
568 IO_STATE(R_IRQ_MASK2_SET
, dma1_eop
, set
);
571 IO_STATE(R_IRQ_MASK0_SET
, overrun
, set
) |
572 IO_STATE(R_IRQ_MASK0_SET
, underrun
, set
) |
573 IO_STATE(R_IRQ_MASK0_SET
, excessive_col
, set
);
575 /* make sure the irqs are cleared */
577 *R_DMA_CH0_CLR_INTR
= IO_STATE(R_DMA_CH0_CLR_INTR
, clr_eop
, do);
578 *R_DMA_CH1_CLR_INTR
= IO_STATE(R_DMA_CH1_CLR_INTR
, clr_eop
, do);
580 /* make sure the rec and transmit error counters are cleared */
582 (void)*R_REC_COUNTERS
; /* dummy read */
583 (void)*R_TR_COUNTERS
; /* dummy read */
585 /* start the receiving DMA channel so we can receive packets from now on */
587 *R_DMA_CH1_FIRST
= virt_to_phys(myNextRxDesc
);
588 *R_DMA_CH1_CMD
= IO_STATE(R_DMA_CH1_CMD
, cmd
, start
);
590 /* Set up transmit DMA channel so it can be restarted later */
592 *R_DMA_CH0_FIRST
= 0;
593 *R_DMA_CH0_DESCR
= virt_to_phys(myLastTxDesc
);
594 netif_start_queue(dev
);
596 local_irq_restore(flags
);
598 /* Probe for transceiver */
599 if (e100_probe_transceiver(dev
))
602 /* Start duplex/speed timers */
603 add_timer(&speed_timer
);
604 add_timer(&duplex_timer
);
606 /* We are now ready to accept transmit requeusts from
607 * the queueing layer of the networking.
609 netif_carrier_on(dev
);
614 cris_free_dma(NETWORK_RX_DMA_NBR
, cardname
);
616 cris_free_dma(NETWORK_TX_DMA_NBR
, cardname
);
618 free_irq(NETWORK_STATUS_IRQ_NBR
, (void *)dev
);
620 free_irq(NETWORK_DMA_TX_IRQ_NBR
, (void *)dev
);
622 free_irq(NETWORK_DMA_RX_IRQ_NBR
, (void *)dev
);
627 #if defined(CONFIG_ETRAX_NO_PHY)
629 dummy_check_speed(struct net_device
* dev
)
635 generic_check_speed(struct net_device
* dev
)
638 struct net_local
*np
= netdev_priv(dev
);
640 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_ADVERTISE
);
641 if ((data
& ADVERTISE_100FULL
) ||
642 (data
& ADVERTISE_100HALF
))
649 tdk_check_speed(struct net_device
* dev
)
652 struct net_local
*np
= netdev_priv(dev
);
654 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
655 MDIO_TDK_DIAGNOSTIC_REG
);
656 current_speed
= (data
& MDIO_TDK_DIAGNOSTIC_RATE
? 100 : 10);
660 broadcom_check_speed(struct net_device
* dev
)
663 struct net_local
*np
= netdev_priv(dev
);
665 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
666 MDIO_AUX_CTRL_STATUS_REG
);
667 current_speed
= (data
& MDIO_BC_SPEED
? 100 : 10);
671 intel_check_speed(struct net_device
* dev
)
674 struct net_local
*np
= netdev_priv(dev
);
676 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
677 MDIO_INT_STATUS_REG_2
);
678 current_speed
= (data
& MDIO_INT_SPEED
? 100 : 10);
682 e100_check_speed(unsigned long priv
)
684 struct net_device
* dev
= (struct net_device
*)priv
;
685 struct net_local
*np
= netdev_priv(dev
);
686 static int led_initiated
= 0;
688 int old_speed
= current_speed
;
690 spin_lock(&np
->transceiver_lock
);
692 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMSR
);
693 if (!(data
& BMSR_LSTATUS
)) {
696 transceiver
->check_speed(dev
);
699 spin_lock(&np
->led_lock
);
700 if ((old_speed
!= current_speed
) || !led_initiated
) {
702 e100_set_network_leds(NO_NETWORK_ACTIVITY
);
704 netif_carrier_on(dev
);
706 netif_carrier_off(dev
);
708 spin_unlock(&np
->led_lock
);
710 /* Reinitialize the timer. */
711 speed_timer
.expires
= jiffies
+ NET_LINK_UP_CHECK_INTERVAL
;
712 add_timer(&speed_timer
);
714 spin_unlock(&np
->transceiver_lock
);
718 e100_negotiate(struct net_device
* dev
)
720 struct net_local
*np
= netdev_priv(dev
);
721 unsigned short data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
724 /* Discard old speed and duplex settings */
725 data
&= ~(ADVERTISE_100HALF
| ADVERTISE_100FULL
|
726 ADVERTISE_10HALF
| ADVERTISE_10FULL
);
728 switch (current_speed_selection
) {
730 if (current_duplex
== full
)
731 data
|= ADVERTISE_10FULL
;
732 else if (current_duplex
== half
)
733 data
|= ADVERTISE_10HALF
;
735 data
|= ADVERTISE_10HALF
| ADVERTISE_10FULL
;
739 if (current_duplex
== full
)
740 data
|= ADVERTISE_100FULL
;
741 else if (current_duplex
== half
)
742 data
|= ADVERTISE_100HALF
;
744 data
|= ADVERTISE_100HALF
| ADVERTISE_100FULL
;
748 if (current_duplex
== full
)
749 data
|= ADVERTISE_100FULL
| ADVERTISE_10FULL
;
750 else if (current_duplex
== half
)
751 data
|= ADVERTISE_100HALF
| ADVERTISE_10HALF
;
753 data
|= ADVERTISE_10HALF
| ADVERTISE_10FULL
|
754 ADVERTISE_100HALF
| ADVERTISE_100FULL
;
757 default: /* assume autoneg speed and duplex */
758 data
|= ADVERTISE_10HALF
| ADVERTISE_10FULL
|
759 ADVERTISE_100HALF
| ADVERTISE_100FULL
;
763 e100_set_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_ADVERTISE
, data
);
765 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMCR
);
766 if (autoneg_normal
) {
767 /* Renegotiate with link partner */
768 data
|= BMCR_ANENABLE
| BMCR_ANRESTART
;
770 /* Don't negotiate speed or duplex */
771 data
&= ~(BMCR_ANENABLE
| BMCR_ANRESTART
);
773 /* Set speed and duplex static */
774 if (current_speed_selection
== 10)
775 data
&= ~BMCR_SPEED100
;
777 data
|= BMCR_SPEED100
;
779 if (current_duplex
!= full
)
780 data
&= ~BMCR_FULLDPLX
;
782 data
|= BMCR_FULLDPLX
;
784 e100_set_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMCR
, data
);
788 e100_set_speed(struct net_device
* dev
, unsigned long speed
)
790 struct net_local
*np
= netdev_priv(dev
);
792 spin_lock(&np
->transceiver_lock
);
793 if (speed
!= current_speed_selection
) {
794 current_speed_selection
= speed
;
797 spin_unlock(&np
->transceiver_lock
);
801 e100_check_duplex(unsigned long priv
)
803 struct net_device
*dev
= (struct net_device
*)priv
;
804 struct net_local
*np
= netdev_priv(dev
);
807 spin_lock(&np
->transceiver_lock
);
808 old_duplex
= full_duplex
;
809 transceiver
->check_duplex(dev
);
810 if (old_duplex
!= full_duplex
) {
812 SETF(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, duplex
, full_duplex
);
813 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
816 /* Reinitialize the timer. */
817 duplex_timer
.expires
= jiffies
+ NET_DUPLEX_CHECK_INTERVAL
;
818 add_timer(&duplex_timer
);
819 np
->mii_if
.full_duplex
= full_duplex
;
820 spin_unlock(&np
->transceiver_lock
);
822 #if defined(CONFIG_ETRAX_NO_PHY)
824 dummy_check_duplex(struct net_device
* dev
)
830 generic_check_duplex(struct net_device
* dev
)
833 struct net_local
*np
= netdev_priv(dev
);
835 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_ADVERTISE
);
836 if ((data
& ADVERTISE_10FULL
) ||
837 (data
& ADVERTISE_100FULL
))
844 tdk_check_duplex(struct net_device
* dev
)
847 struct net_local
*np
= netdev_priv(dev
);
849 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
850 MDIO_TDK_DIAGNOSTIC_REG
);
851 full_duplex
= (data
& MDIO_TDK_DIAGNOSTIC_DPLX
) ? 1 : 0;
855 broadcom_check_duplex(struct net_device
* dev
)
858 struct net_local
*np
= netdev_priv(dev
);
860 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
861 MDIO_AUX_CTRL_STATUS_REG
);
862 full_duplex
= (data
& MDIO_BC_FULL_DUPLEX_IND
) ? 1 : 0;
866 intel_check_duplex(struct net_device
* dev
)
869 struct net_local
*np
= netdev_priv(dev
);
871 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
,
872 MDIO_INT_STATUS_REG_2
);
873 full_duplex
= (data
& MDIO_INT_FULL_DUPLEX_IND
) ? 1 : 0;
877 e100_set_duplex(struct net_device
* dev
, enum duplex new_duplex
)
879 struct net_local
*np
= netdev_priv(dev
);
881 spin_lock(&np
->transceiver_lock
);
882 if (new_duplex
!= current_duplex
) {
883 current_duplex
= new_duplex
;
886 spin_unlock(&np
->transceiver_lock
);
890 e100_probe_transceiver(struct net_device
* dev
)
894 #if !defined(CONFIG_ETRAX_NO_PHY)
895 unsigned int phyid_high
;
896 unsigned int phyid_low
;
898 struct transceiver_ops
* ops
= NULL
;
899 struct net_local
*np
= netdev_priv(dev
);
901 spin_lock(&np
->transceiver_lock
);
903 /* Probe MDIO physical address */
904 for (np
->mii_if
.phy_id
= 0; np
->mii_if
.phy_id
<= 31;
905 np
->mii_if
.phy_id
++) {
906 if (e100_get_mdio_reg(dev
,
907 np
->mii_if
.phy_id
, MII_BMSR
) != 0xffff)
910 if (np
->mii_if
.phy_id
== 32) {
915 /* Get manufacturer */
916 phyid_high
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_PHYSID1
);
917 phyid_low
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_PHYSID2
);
918 oui
= (phyid_high
<< 6) | (phyid_low
>> 10);
920 for (ops
= &transceivers
[0]; ops
->oui
; ops
++) {
926 spin_unlock(&np
->transceiver_lock
);
932 e100_get_mdio_reg(struct net_device
*dev
, int phy_id
, int location
)
934 unsigned short cmd
; /* Data to be sent on MDIO port */
935 int data
; /* Data read from MDIO */
938 /* Start of frame, OP Code, Physical Address, Register Address */
939 cmd
= (MDIO_START
<< 14) | (MDIO_READ
<< 12) | (phy_id
<< 7) |
942 e100_send_mdio_cmd(cmd
, 0);
947 for (bitCounter
=15; bitCounter
>=0 ; bitCounter
--) {
948 data
|= (e100_receive_mdio_bit() << bitCounter
);
955 e100_set_mdio_reg(struct net_device
*dev
, int phy_id
, int location
, int value
)
960 cmd
= (MDIO_START
<< 14) | (MDIO_WRITE
<< 12) | (phy_id
<< 7) |
963 e100_send_mdio_cmd(cmd
, 1);
966 for (bitCounter
=15; bitCounter
>=0 ; bitCounter
--) {
967 e100_send_mdio_bit(GET_BIT(bitCounter
, value
));
973 e100_send_mdio_cmd(unsigned short cmd
, int write_cmd
)
976 unsigned char data
= 0x2;
979 for (bitCounter
= 31; bitCounter
>= 0; bitCounter
--)
980 e100_send_mdio_bit(GET_BIT(bitCounter
, MDIO_PREAMBLE
));
982 for (bitCounter
= 15; bitCounter
>= 2; bitCounter
--)
983 e100_send_mdio_bit(GET_BIT(bitCounter
, cmd
));
986 for (bitCounter
= 1; bitCounter
>= 0 ; bitCounter
--)
988 e100_send_mdio_bit(GET_BIT(bitCounter
, data
));
990 e100_receive_mdio_bit();
994 e100_send_mdio_bit(unsigned char bit
)
996 *R_NETWORK_MGM_CTRL
=
997 IO_STATE(R_NETWORK_MGM_CTRL
, mdoe
, enable
) |
998 IO_FIELD(R_NETWORK_MGM_CTRL
, mdio
, bit
);
1000 *R_NETWORK_MGM_CTRL
=
1001 IO_STATE(R_NETWORK_MGM_CTRL
, mdoe
, enable
) |
1002 IO_MASK(R_NETWORK_MGM_CTRL
, mdck
) |
1003 IO_FIELD(R_NETWORK_MGM_CTRL
, mdio
, bit
);
1007 static unsigned char
1008 e100_receive_mdio_bit(void)
1011 *R_NETWORK_MGM_CTRL
= 0;
1012 bit
= IO_EXTRACT(R_NETWORK_STAT
, mdio
, *R_NETWORK_STAT
);
1014 *R_NETWORK_MGM_CTRL
= IO_MASK(R_NETWORK_MGM_CTRL
, mdck
);
1020 e100_reset_transceiver(struct net_device
* dev
)
1022 struct net_local
*np
= netdev_priv(dev
);
1024 unsigned short data
;
1027 data
= e100_get_mdio_reg(dev
, np
->mii_if
.phy_id
, MII_BMCR
);
1029 cmd
= (MDIO_START
<< 14) | (MDIO_WRITE
<< 12) | (np
->mii_if
.phy_id
<< 7) | (MII_BMCR
<< 2);
1031 e100_send_mdio_cmd(cmd
, 1);
1035 for (bitCounter
= 15; bitCounter
>= 0 ; bitCounter
--) {
1036 e100_send_mdio_bit(GET_BIT(bitCounter
, data
));
1040 /* Called by upper layers if they decide it took too long to complete
1041 * sending a packet - we need to reset and stuff.
1045 e100_tx_timeout(struct net_device
*dev
)
1047 struct net_local
*np
= netdev_priv(dev
);
1048 unsigned long flags
;
1050 spin_lock_irqsave(&np
->lock
, flags
);
1052 printk(KERN_WARNING
"%s: transmit timed out, %s?\n", dev
->name
,
1053 tx_done(dev
) ? "IRQ problem" : "network cable problem");
1055 /* remember we got an error */
1057 dev
->stats
.tx_errors
++;
1059 /* reset the TX DMA in case it has hung on something */
1061 RESET_DMA(NETWORK_TX_DMA_NBR
);
1062 WAIT_DMA(NETWORK_TX_DMA_NBR
);
1064 /* Reset the transceiver. */
1066 e100_reset_transceiver(dev
);
1068 /* and get rid of the packets that never got an interrupt */
1069 while (myFirstTxDesc
!= myNextTxDesc
) {
1070 dev_kfree_skb(myFirstTxDesc
->skb
);
1071 myFirstTxDesc
->skb
= 0;
1072 myFirstTxDesc
= phys_to_virt(myFirstTxDesc
->descr
.next
);
1075 /* Set up transmit DMA channel so it can be restarted later */
1076 *R_DMA_CH0_FIRST
= 0;
1077 *R_DMA_CH0_DESCR
= virt_to_phys(myLastTxDesc
);
1079 /* tell the upper layers we're ok again */
1081 netif_wake_queue(dev
);
1082 spin_unlock_irqrestore(&np
->lock
, flags
);
1086 /* This will only be invoked if the driver is _not_ in XOFF state.
1087 * What this means is that we need not check it, and that this
1088 * invariant will hold if we make sure that the netif_*_queue()
1089 * calls are done at the proper times.
1093 e100_send_packet(struct sk_buff
*skb
, struct net_device
*dev
)
1095 struct net_local
*np
= netdev_priv(dev
);
1096 unsigned char *buf
= skb
->data
;
1097 unsigned long flags
;
1100 printk("send packet len %d\n", length
);
1102 spin_lock_irqsave(&np
->lock
, flags
); /* protect from tx_interrupt and ourself */
1104 myNextTxDesc
->skb
= skb
;
1106 netif_trans_update(dev
); /* NETIF_F_LLTX driver :( */
1108 e100_hardware_send_packet(np
, buf
, skb
->len
);
1110 myNextTxDesc
= phys_to_virt(myNextTxDesc
->descr
.next
);
1112 /* Stop queue if full */
1113 if (myNextTxDesc
== myFirstTxDesc
) {
1114 netif_stop_queue(dev
);
1117 spin_unlock_irqrestore(&np
->lock
, flags
);
1119 return NETDEV_TX_OK
;
1123 * The typical workload of the driver:
1124 * Handle the network interface interrupts.
1128 e100rxtx_interrupt(int irq
, void *dev_id
)
1130 struct net_device
*dev
= (struct net_device
*)dev_id
;
1131 unsigned long irqbits
;
1134 * Note that both rx and tx interrupts are blocked at this point,
1135 * regardless of which got us here.
1138 irqbits
= *R_IRQ_MASK2_RD
;
1140 /* Handle received packets */
1141 if (irqbits
& IO_STATE(R_IRQ_MASK2_RD
, dma1_eop
, active
)) {
1142 /* acknowledge the eop interrupt */
1144 *R_DMA_CH1_CLR_INTR
= IO_STATE(R_DMA_CH1_CLR_INTR
, clr_eop
, do);
1146 /* check if one or more complete packets were indeed received */
1148 while ((*R_DMA_CH1_FIRST
!= virt_to_phys(myNextRxDesc
)) &&
1149 (myNextRxDesc
!= myLastRxDesc
)) {
1150 /* Take out the buffer and give it to the OS, then
1151 * allocate a new buffer to put a packet in.
1154 dev
->stats
.rx_packets
++;
1155 /* restart/continue on the channel, for safety */
1156 *R_DMA_CH1_CMD
= IO_STATE(R_DMA_CH1_CMD
, cmd
, restart
);
1157 /* clear dma channel 1 eop/descr irq bits */
1158 *R_DMA_CH1_CLR_INTR
=
1159 IO_STATE(R_DMA_CH1_CLR_INTR
, clr_eop
, do) |
1160 IO_STATE(R_DMA_CH1_CLR_INTR
, clr_descr
, do);
1162 /* now, we might have gotten another packet
1163 so we have to loop back and check if so */
1167 /* Report any packets that have been sent */
1168 while (virt_to_phys(myFirstTxDesc
) != *R_DMA_CH0_FIRST
&&
1169 (netif_queue_stopped(dev
) || myFirstTxDesc
!= myNextTxDesc
)) {
1170 dev
->stats
.tx_bytes
+= myFirstTxDesc
->skb
->len
;
1171 dev
->stats
.tx_packets
++;
1173 /* dma is ready with the transmission of the data in tx_skb, so now
1174 we can release the skb memory */
1175 dev_kfree_skb_irq(myFirstTxDesc
->skb
);
1176 myFirstTxDesc
->skb
= 0;
1177 myFirstTxDesc
= phys_to_virt(myFirstTxDesc
->descr
.next
);
1178 /* Wake up queue. */
1179 netif_wake_queue(dev
);
1182 if (irqbits
& IO_STATE(R_IRQ_MASK2_RD
, dma0_eop
, active
)) {
1183 /* acknowledge the eop interrupt. */
1184 *R_DMA_CH0_CLR_INTR
= IO_STATE(R_DMA_CH0_CLR_INTR
, clr_eop
, do);
1191 e100nw_interrupt(int irq
, void *dev_id
)
1193 struct net_device
*dev
= (struct net_device
*)dev_id
;
1194 unsigned long irqbits
= *R_IRQ_MASK0_RD
;
1196 /* check for underrun irq */
1197 if (irqbits
& IO_STATE(R_IRQ_MASK0_RD
, underrun
, active
)) {
1198 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, clr
);
1199 *R_NETWORK_TR_CTRL
= network_tr_ctrl_shadow
;
1200 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, nop
);
1201 dev
->stats
.tx_errors
++;
1202 D(printk("ethernet receiver underrun!\n"));
1205 /* check for overrun irq */
1206 if (irqbits
& IO_STATE(R_IRQ_MASK0_RD
, overrun
, active
)) {
1207 update_rx_stats(&dev
->stats
); /* this will ack the irq */
1208 D(printk("ethernet receiver overrun!\n"));
1210 /* check for excessive collision irq */
1211 if (irqbits
& IO_STATE(R_IRQ_MASK0_RD
, excessive_col
, active
)) {
1212 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, clr
);
1213 *R_NETWORK_TR_CTRL
= network_tr_ctrl_shadow
;
1214 SETS(network_tr_ctrl_shadow
, R_NETWORK_TR_CTRL
, clr_error
, nop
);
1215 dev
->stats
.tx_errors
++;
1216 D(printk("ethernet excessive collisions!\n"));
1221 /* We have a good packet(s), get it/them out of the buffers. */
1223 e100_rx(struct net_device
*dev
)
1225 struct sk_buff
*skb
;
1227 struct net_local
*np
= netdev_priv(dev
);
1228 unsigned char *skb_data_ptr
;
1232 etrax_eth_descr
*prevRxDesc
; /* The descriptor right before myNextRxDesc */
1233 spin_lock(&np
->led_lock
);
1234 if (!led_active
&& time_after(jiffies
, led_next_time
)) {
1235 /* light the network leds depending on the current speed. */
1236 e100_set_network_leds(NETWORK_ACTIVITY
);
1238 /* Set the earliest time we may clear the LED */
1239 led_next_time
= jiffies
+ NET_FLASH_TIME
;
1241 mod_timer(&clear_led_timer
, jiffies
+ HZ
/10);
1243 spin_unlock(&np
->led_lock
);
1245 length
= myNextRxDesc
->descr
.hw_len
- 4;
1246 dev
->stats
.rx_bytes
+= length
;
1249 printk("Got a packet of length %d:\n", length
);
1250 /* dump the first bytes in the packet */
1251 skb_data_ptr
= (unsigned char *)phys_to_virt(myNextRxDesc
->descr
.buf
);
1252 for (i
= 0; i
< 8; i
++) {
1253 printk("%d: %.2x %.2x %.2x %.2x %.2x %.2x %.2x %.2x\n", i
* 8,
1254 skb_data_ptr
[0],skb_data_ptr
[1],skb_data_ptr
[2],skb_data_ptr
[3],
1255 skb_data_ptr
[4],skb_data_ptr
[5],skb_data_ptr
[6],skb_data_ptr
[7]);
1260 if (length
< RX_COPYBREAK
) {
1261 /* Small packet, copy data */
1262 skb
= dev_alloc_skb(length
- ETHER_HEAD_LEN
);
1264 dev
->stats
.rx_errors
++;
1265 printk(KERN_NOTICE
"%s: Memory squeeze, dropping packet.\n", dev
->name
);
1266 goto update_nextrxdesc
;
1269 skb_put(skb
, length
- ETHER_HEAD_LEN
); /* allocate room for the packet body */
1270 skb_data_ptr
= skb_push(skb
, ETHER_HEAD_LEN
); /* allocate room for the header */
1273 printk("head = 0x%x, data = 0x%x, tail = 0x%x, end = 0x%x\n",
1274 skb
->head
, skb
->data
, skb_tail_pointer(skb
),
1275 skb_end_pointer(skb
));
1276 printk("copying packet to 0x%x.\n", skb_data_ptr
);
1279 memcpy(skb_data_ptr
, phys_to_virt(myNextRxDesc
->descr
.buf
), length
);
1282 /* Large packet, send directly to upper layers and allocate new
1283 * memory (aligned to cache line boundary to avoid bug).
1284 * Before sending the skb to upper layers we must make sure
1285 * that skb->data points to the aligned start of the packet.
1288 struct sk_buff
*new_skb
= dev_alloc_skb(MAX_MEDIA_DATA_SIZE
+ 2 * L1_CACHE_BYTES
);
1290 dev
->stats
.rx_errors
++;
1291 printk(KERN_NOTICE
"%s: Memory squeeze, dropping packet.\n", dev
->name
);
1292 goto update_nextrxdesc
;
1294 skb
= myNextRxDesc
->skb
;
1295 align
= (int)phys_to_virt(myNextRxDesc
->descr
.buf
) - (int)skb
->data
;
1296 skb_put(skb
, length
+ align
);
1297 skb_pull(skb
, align
); /* Remove alignment bytes */
1298 myNextRxDesc
->skb
= new_skb
;
1299 myNextRxDesc
->descr
.buf
= L1_CACHE_ALIGN(virt_to_phys(myNextRxDesc
->skb
->data
));
1302 skb
->protocol
= eth_type_trans(skb
, dev
);
1304 /* Send the packet to the upper layers */
1308 /* Prepare for next packet */
1309 myNextRxDesc
->descr
.status
= 0;
1310 prevRxDesc
= myNextRxDesc
;
1311 myNextRxDesc
= phys_to_virt(myNextRxDesc
->descr
.next
);
1315 /* Check if descriptors should be returned */
1316 if (rx_queue_len
== RX_QUEUE_THRESHOLD
) {
1317 flush_etrax_cache();
1318 prevRxDesc
->descr
.ctrl
|= d_eol
;
1319 myLastRxDesc
->descr
.ctrl
&= ~d_eol
;
1320 myLastRxDesc
= prevRxDesc
;
1325 /* The inverse routine to net_open(). */
1327 e100_close(struct net_device
*dev
)
1329 printk(KERN_INFO
"Closing %s.\n", dev
->name
);
1331 netif_stop_queue(dev
);
1334 IO_STATE(R_IRQ_MASK0_CLR
, overrun
, clr
) |
1335 IO_STATE(R_IRQ_MASK0_CLR
, underrun
, clr
) |
1336 IO_STATE(R_IRQ_MASK0_CLR
, excessive_col
, clr
);
1339 IO_STATE(R_IRQ_MASK2_CLR
, dma0_descr
, clr
) |
1340 IO_STATE(R_IRQ_MASK2_CLR
, dma0_eop
, clr
) |
1341 IO_STATE(R_IRQ_MASK2_CLR
, dma1_descr
, clr
) |
1342 IO_STATE(R_IRQ_MASK2_CLR
, dma1_eop
, clr
);
1344 /* Stop the receiver and the transmitter */
1346 RESET_DMA(NETWORK_TX_DMA_NBR
);
1347 RESET_DMA(NETWORK_RX_DMA_NBR
);
1349 /* Flush the Tx and disable Rx here. */
1351 free_irq(NETWORK_DMA_RX_IRQ_NBR
, (void *)dev
);
1352 free_irq(NETWORK_DMA_TX_IRQ_NBR
, (void *)dev
);
1353 free_irq(NETWORK_STATUS_IRQ_NBR
, (void *)dev
);
1355 cris_free_dma(NETWORK_TX_DMA_NBR
, cardname
);
1356 cris_free_dma(NETWORK_RX_DMA_NBR
, cardname
);
1358 /* Update the statistics here. */
1360 update_rx_stats(&dev
->stats
);
1361 update_tx_stats(&dev
->stats
);
1363 /* Stop speed/duplex timers */
1364 del_timer(&speed_timer
);
1365 del_timer(&duplex_timer
);
1371 e100_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
1373 struct mii_ioctl_data
*data
= if_mii(ifr
);
1374 struct net_local
*np
= netdev_priv(dev
);
1378 spin_lock(&np
->lock
); /* Preempt protection */
1380 /* The ioctls below should be considered obsolete but are */
1381 /* still present for compatibility with old scripts/apps */
1382 case SET_ETH_SPEED_10
: /* 10 Mbps */
1383 e100_set_speed(dev
, 10);
1385 case SET_ETH_SPEED_100
: /* 100 Mbps */
1386 e100_set_speed(dev
, 100);
1388 case SET_ETH_SPEED_AUTO
: /* Auto-negotiate speed */
1389 e100_set_speed(dev
, 0);
1391 case SET_ETH_DUPLEX_HALF
: /* Half duplex */
1392 e100_set_duplex(dev
, half
);
1394 case SET_ETH_DUPLEX_FULL
: /* Full duplex */
1395 e100_set_duplex(dev
, full
);
1397 case SET_ETH_DUPLEX_AUTO
: /* Auto-negotiate duplex */
1398 e100_set_duplex(dev
, autoneg
);
1400 case SET_ETH_AUTONEG
:
1401 old_autoneg
= autoneg_normal
;
1402 autoneg_normal
= *(int*)data
;
1403 if (autoneg_normal
!= old_autoneg
)
1404 e100_negotiate(dev
);
1407 rc
= generic_mii_ioctl(&np
->mii_if
, if_mii(ifr
),
1411 spin_unlock(&np
->lock
);
1415 static int e100_get_settings(struct net_device
*dev
,
1416 struct ethtool_cmd
*cmd
)
1418 struct net_local
*np
= netdev_priv(dev
);
1421 spin_lock_irq(&np
->lock
);
1422 err
= mii_ethtool_gset(&np
->mii_if
, cmd
);
1423 spin_unlock_irq(&np
->lock
);
1425 /* The PHY may support 1000baseT, but the Etrax100 does not. */
1426 cmd
->supported
&= ~(SUPPORTED_1000baseT_Half
1427 | SUPPORTED_1000baseT_Full
);
1431 static int e100_set_settings(struct net_device
*dev
,
1432 struct ethtool_cmd
*ecmd
)
1434 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
1435 e100_set_duplex(dev
, autoneg
);
1436 e100_set_speed(dev
, 0);
1438 e100_set_duplex(dev
, ecmd
->duplex
== DUPLEX_HALF
? half
: full
);
1439 e100_set_speed(dev
, ecmd
->speed
== SPEED_10
? 10: 100);
1445 static void e100_get_drvinfo(struct net_device
*dev
,
1446 struct ethtool_drvinfo
*info
)
1448 strlcpy(info
->driver
, "ETRAX 100LX", sizeof(info
->driver
));
1449 strlcpy(info
->version
, "$Revision: 1.31 $", sizeof(info
->version
));
1450 strlcpy(info
->fw_version
, "N/A", sizeof(info
->fw_version
));
1451 strlcpy(info
->bus_info
, "N/A", sizeof(info
->bus_info
));
1454 static int e100_nway_reset(struct net_device
*dev
)
1456 if (current_duplex
== autoneg
&& current_speed_selection
== 0)
1457 e100_negotiate(dev
);
1461 static const struct ethtool_ops e100_ethtool_ops
= {
1462 .get_settings
= e100_get_settings
,
1463 .set_settings
= e100_set_settings
,
1464 .get_drvinfo
= e100_get_drvinfo
,
1465 .nway_reset
= e100_nway_reset
,
1466 .get_link
= ethtool_op_get_link
,
1470 e100_set_config(struct net_device
*dev
, struct ifmap
*map
)
1472 struct net_local
*np
= netdev_priv(dev
);
1474 spin_lock(&np
->lock
); /* Preempt protection */
1477 case IF_PORT_UNKNOWN
:
1479 e100_set_speed(dev
, 0);
1480 e100_set_duplex(dev
, autoneg
);
1482 case IF_PORT_10BASET
:
1483 e100_set_speed(dev
, 10);
1484 e100_set_duplex(dev
, autoneg
);
1486 case IF_PORT_100BASET
:
1487 case IF_PORT_100BASETX
:
1488 e100_set_speed(dev
, 100);
1489 e100_set_duplex(dev
, autoneg
);
1491 case IF_PORT_100BASEFX
:
1492 case IF_PORT_10BASE2
:
1494 spin_unlock(&np
->lock
);
1497 printk(KERN_ERR
"%s: Invalid media selected", dev
->name
);
1498 spin_unlock(&np
->lock
);
1501 spin_unlock(&np
->lock
);
1506 update_rx_stats(struct net_device_stats
*es
)
1508 unsigned long r
= *R_REC_COUNTERS
;
1509 /* update stats relevant to reception errors */
1510 es
->rx_fifo_errors
+= IO_EXTRACT(R_REC_COUNTERS
, congestion
, r
);
1511 es
->rx_crc_errors
+= IO_EXTRACT(R_REC_COUNTERS
, crc_error
, r
);
1512 es
->rx_frame_errors
+= IO_EXTRACT(R_REC_COUNTERS
, alignment_error
, r
);
1513 es
->rx_length_errors
+= IO_EXTRACT(R_REC_COUNTERS
, oversize
, r
);
1517 update_tx_stats(struct net_device_stats
*es
)
1519 unsigned long r
= *R_TR_COUNTERS
;
1520 /* update stats relevant to transmission errors */
1522 IO_EXTRACT(R_TR_COUNTERS
, single_col
, r
) +
1523 IO_EXTRACT(R_TR_COUNTERS
, multiple_col
, r
);
1527 * Get the current statistics.
1528 * This may be called with the card open or closed.
1530 static struct net_device_stats
*
1531 e100_get_stats(struct net_device
*dev
)
1533 struct net_local
*lp
= netdev_priv(dev
);
1534 unsigned long flags
;
1536 spin_lock_irqsave(&lp
->lock
, flags
);
1538 update_rx_stats(&dev
->stats
);
1539 update_tx_stats(&dev
->stats
);
1541 spin_unlock_irqrestore(&lp
->lock
, flags
);
1546 * Set or clear the multicast filter for this adaptor.
1547 * num_addrs == -1 Promiscuous mode, receive all packets
1548 * num_addrs == 0 Normal mode, clear multicast list
1549 * num_addrs > 0 Multicast mode, receive normal and MC packets,
1550 * and do best-effort filtering.
1553 set_multicast_list(struct net_device
*dev
)
1555 struct net_local
*lp
= netdev_priv(dev
);
1556 int num_addr
= netdev_mc_count(dev
);
1557 unsigned long int lo_bits
;
1558 unsigned long int hi_bits
;
1560 spin_lock(&lp
->lock
);
1561 if (dev
->flags
& IFF_PROMISC
) {
1562 /* promiscuous mode */
1563 lo_bits
= 0xfffffffful
;
1564 hi_bits
= 0xfffffffful
;
1566 /* Enable individual receive */
1567 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, receive
);
1568 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1569 } else if (dev
->flags
& IFF_ALLMULTI
) {
1570 /* enable all multicasts */
1571 lo_bits
= 0xfffffffful
;
1572 hi_bits
= 0xfffffffful
;
1574 /* Disable individual receive */
1575 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, discard
);
1576 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1577 } else if (num_addr
== 0) {
1578 /* Normal, clear the mc list */
1579 lo_bits
= 0x00000000ul
;
1580 hi_bits
= 0x00000000ul
;
1582 /* Disable individual receive */
1583 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, discard
);
1584 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1586 /* MC mode, receive normal and MC packets */
1588 struct netdev_hw_addr
*ha
;
1591 lo_bits
= 0x00000000ul
;
1592 hi_bits
= 0x00000000ul
;
1593 netdev_for_each_mc_addr(ha
, dev
) {
1594 /* Calculate the hash index for the GA registers */
1598 hash_ix
^= (*baddr
) & 0x3f;
1599 hash_ix
^= ((*baddr
) >> 6) & 0x03;
1601 hash_ix
^= ((*baddr
) << 2) & 0x03c;
1602 hash_ix
^= ((*baddr
) >> 4) & 0xf;
1604 hash_ix
^= ((*baddr
) << 4) & 0x30;
1605 hash_ix
^= ((*baddr
) >> 2) & 0x3f;
1607 hash_ix
^= (*baddr
) & 0x3f;
1608 hash_ix
^= ((*baddr
) >> 6) & 0x03;
1610 hash_ix
^= ((*baddr
) << 2) & 0x03c;
1611 hash_ix
^= ((*baddr
) >> 4) & 0xf;
1613 hash_ix
^= ((*baddr
) << 4) & 0x30;
1614 hash_ix
^= ((*baddr
) >> 2) & 0x3f;
1618 if (hash_ix
>= 32) {
1619 hi_bits
|= (1 << (hash_ix
-32));
1621 lo_bits
|= (1 << hash_ix
);
1624 /* Disable individual receive */
1625 SETS(network_rec_config_shadow
, R_NETWORK_REC_CONFIG
, individual
, discard
);
1626 *R_NETWORK_REC_CONFIG
= network_rec_config_shadow
;
1628 *R_NETWORK_GA_0
= lo_bits
;
1629 *R_NETWORK_GA_1
= hi_bits
;
1630 spin_unlock(&lp
->lock
);
1634 e100_hardware_send_packet(struct net_local
*np
, char *buf
, int length
)
1636 D(printk("e100 send pack, buf 0x%x len %d\n", buf
, length
));
1638 spin_lock(&np
->led_lock
);
1639 if (!led_active
&& time_after(jiffies
, led_next_time
)) {
1640 /* light the network leds depending on the current speed. */
1641 e100_set_network_leds(NETWORK_ACTIVITY
);
1643 /* Set the earliest time we may clear the LED */
1644 led_next_time
= jiffies
+ NET_FLASH_TIME
;
1646 mod_timer(&clear_led_timer
, jiffies
+ HZ
/10);
1648 spin_unlock(&np
->led_lock
);
1650 /* configure the tx dma descriptor */
1651 myNextTxDesc
->descr
.sw_len
= length
;
1652 myNextTxDesc
->descr
.ctrl
= d_eop
| d_eol
| d_wait
;
1653 myNextTxDesc
->descr
.buf
= virt_to_phys(buf
);
1655 /* Move end of list */
1656 myLastTxDesc
->descr
.ctrl
&= ~d_eol
;
1657 myLastTxDesc
= myNextTxDesc
;
1659 /* Restart DMA channel */
1660 *R_DMA_CH0_CMD
= IO_STATE(R_DMA_CH0_CMD
, cmd
, restart
);
1664 e100_clear_network_leds(unsigned long dummy
)
1666 struct net_device
*dev
= (struct net_device
*)dummy
;
1667 struct net_local
*np
= netdev_priv(dev
);
1669 spin_lock(&np
->led_lock
);
1671 if (led_active
&& time_after(jiffies
, led_next_time
)) {
1672 e100_set_network_leds(NO_NETWORK_ACTIVITY
);
1674 /* Set the earliest time we may set the LED */
1675 led_next_time
= jiffies
+ NET_FLASH_PAUSE
;
1679 spin_unlock(&np
->led_lock
);
1683 e100_set_network_leds(int active
)
1685 #if defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK)
1686 int light_leds
= (active
== NO_NETWORK_ACTIVITY
);
1687 #elif defined(CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY)
1688 int light_leds
= (active
== NETWORK_ACTIVITY
);
1690 #error "Define either CONFIG_ETRAX_NETWORK_LED_ON_WHEN_LINK or CONFIG_ETRAX_NETWORK_LED_ON_WHEN_ACTIVITY"
1693 if (!current_speed
) {
1694 /* Make LED red, link is down */
1695 CRIS_LED_NETWORK_SET(CRIS_LED_OFF
);
1696 } else if (light_leds
) {
1697 if (current_speed
== 10) {
1698 CRIS_LED_NETWORK_SET(CRIS_LED_ORANGE
);
1700 CRIS_LED_NETWORK_SET(CRIS_LED_GREEN
);
1703 CRIS_LED_NETWORK_SET(CRIS_LED_OFF
);
1707 #ifdef CONFIG_NET_POLL_CONTROLLER
1709 e100_netpoll(struct net_device
* netdev
)
1711 e100rxtx_interrupt(NETWORK_DMA_TX_IRQ_NBR
, netdev
);
1717 e100_boot_setup(char* str
)
1719 struct sockaddr sa
= {0};
1722 /* Parse the colon separated Ethernet station address */
1723 for (i
= 0; i
< ETH_ALEN
; i
++) {
1725 if (sscanf(str
+ 3*i
, "%2x", &tmp
) != 1) {
1726 printk(KERN_WARNING
"Malformed station address");
1729 sa
.sa_data
[i
] = (char)tmp
;
1736 __setup("etrax100_eth=", e100_boot_setup
);