2 * VFIO PCI config space virtualization
4 * Copyright (C) 2012 Red Hat, Inc. All rights reserved.
5 * Author: Alex Williamson <alex.williamson@redhat.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 * Derived from original vfio:
12 * Copyright 2010 Cisco Systems, Inc. All rights reserved.
13 * Author: Tom Lyon, pugs@cisco.com
17 * This code handles reading and writing of PCI configuration registers.
18 * This is hairy because we want to allow a lot of flexibility to the
19 * user driver, but cannot trust it with all of the config fields.
20 * Tables determine which fields can be read and written, as well as
21 * which fields are 'virtualized' - special actions and translations to
22 * make it appear to the user that he has control, when in fact things
23 * must be negotiated with the underlying OS.
27 #include <linux/pci.h>
28 #include <linux/uaccess.h>
29 #include <linux/vfio.h>
30 #include <linux/slab.h>
32 #include "vfio_pci_private.h"
34 /* Fake capability ID for standard config space */
35 #define PCI_CAP_ID_BASIC 0
37 #define is_bar(offset) \
38 ((offset >= PCI_BASE_ADDRESS_0 && offset < PCI_BASE_ADDRESS_5 + 4) || \
39 (offset >= PCI_ROM_ADDRESS && offset < PCI_ROM_ADDRESS + 4))
42 * Lengths of PCI Config Capabilities
43 * 0: Removed from the user visible capability list
46 static const u8 pci_cap_length
[PCI_CAP_ID_MAX
+ 1] = {
47 [PCI_CAP_ID_BASIC
] = PCI_STD_HEADER_SIZEOF
, /* pci config header */
48 [PCI_CAP_ID_PM
] = PCI_PM_SIZEOF
,
49 [PCI_CAP_ID_AGP
] = PCI_AGP_SIZEOF
,
50 [PCI_CAP_ID_VPD
] = PCI_CAP_VPD_SIZEOF
,
51 [PCI_CAP_ID_SLOTID
] = 0, /* bridge - don't care */
52 [PCI_CAP_ID_MSI
] = 0xFF, /* 10, 14, 20, or 24 */
53 [PCI_CAP_ID_CHSWP
] = 0, /* cpci - not yet */
54 [PCI_CAP_ID_PCIX
] = 0xFF, /* 8 or 24 */
55 [PCI_CAP_ID_HT
] = 0xFF, /* hypertransport */
56 [PCI_CAP_ID_VNDR
] = 0xFF, /* variable */
57 [PCI_CAP_ID_DBG
] = 0, /* debug - don't care */
58 [PCI_CAP_ID_CCRC
] = 0, /* cpci - not yet */
59 [PCI_CAP_ID_SHPC
] = 0, /* hotswap - not yet */
60 [PCI_CAP_ID_SSVID
] = 0, /* bridge - don't care */
61 [PCI_CAP_ID_AGP3
] = 0, /* AGP8x - not yet */
62 [PCI_CAP_ID_SECDEV
] = 0, /* secure device not yet */
63 [PCI_CAP_ID_EXP
] = 0xFF, /* 20 or 44 */
64 [PCI_CAP_ID_MSIX
] = PCI_CAP_MSIX_SIZEOF
,
65 [PCI_CAP_ID_SATA
] = 0xFF,
66 [PCI_CAP_ID_AF
] = PCI_CAP_AF_SIZEOF
,
70 * Lengths of PCIe/PCI-X Extended Config Capabilities
71 * 0: Removed or masked from the user visible capability list
74 static const u16 pci_ext_cap_length
[PCI_EXT_CAP_ID_MAX
+ 1] = {
75 [PCI_EXT_CAP_ID_ERR
] = PCI_ERR_ROOT_COMMAND
,
76 [PCI_EXT_CAP_ID_VC
] = 0xFF,
77 [PCI_EXT_CAP_ID_DSN
] = PCI_EXT_CAP_DSN_SIZEOF
,
78 [PCI_EXT_CAP_ID_PWR
] = PCI_EXT_CAP_PWR_SIZEOF
,
79 [PCI_EXT_CAP_ID_RCLD
] = 0, /* root only - don't care */
80 [PCI_EXT_CAP_ID_RCILC
] = 0, /* root only - don't care */
81 [PCI_EXT_CAP_ID_RCEC
] = 0, /* root only - don't care */
82 [PCI_EXT_CAP_ID_MFVC
] = 0xFF,
83 [PCI_EXT_CAP_ID_VC9
] = 0xFF, /* same as CAP_ID_VC */
84 [PCI_EXT_CAP_ID_RCRB
] = 0, /* root only - don't care */
85 [PCI_EXT_CAP_ID_VNDR
] = 0xFF,
86 [PCI_EXT_CAP_ID_CAC
] = 0, /* obsolete */
87 [PCI_EXT_CAP_ID_ACS
] = 0xFF,
88 [PCI_EXT_CAP_ID_ARI
] = PCI_EXT_CAP_ARI_SIZEOF
,
89 [PCI_EXT_CAP_ID_ATS
] = PCI_EXT_CAP_ATS_SIZEOF
,
90 [PCI_EXT_CAP_ID_SRIOV
] = PCI_EXT_CAP_SRIOV_SIZEOF
,
91 [PCI_EXT_CAP_ID_MRIOV
] = 0, /* not yet */
92 [PCI_EXT_CAP_ID_MCAST
] = PCI_EXT_CAP_MCAST_ENDPOINT_SIZEOF
,
93 [PCI_EXT_CAP_ID_PRI
] = PCI_EXT_CAP_PRI_SIZEOF
,
94 [PCI_EXT_CAP_ID_AMD_XXX
] = 0, /* not yet */
95 [PCI_EXT_CAP_ID_REBAR
] = 0xFF,
96 [PCI_EXT_CAP_ID_DPA
] = 0xFF,
97 [PCI_EXT_CAP_ID_TPH
] = 0xFF,
98 [PCI_EXT_CAP_ID_LTR
] = PCI_EXT_CAP_LTR_SIZEOF
,
99 [PCI_EXT_CAP_ID_SECPCI
] = 0, /* not yet */
100 [PCI_EXT_CAP_ID_PMUX
] = 0, /* not yet */
101 [PCI_EXT_CAP_ID_PASID
] = 0, /* not yet */
105 * Read/Write Permission Bits - one bit for each bit in capability
106 * Any field can be read if it exists, but what is read depends on
107 * whether the field is 'virtualized', or just pass thru to the
108 * hardware. Any virtualized field is also virtualized for writes.
109 * Writes are only permitted if they have a 1 bit here.
112 u8
*virt
; /* read/write virtual data, not hw */
113 u8
*write
; /* writeable bits */
114 int (*readfn
)(struct vfio_pci_device
*vdev
, int pos
, int count
,
115 struct perm_bits
*perm
, int offset
, __le32
*val
);
116 int (*writefn
)(struct vfio_pci_device
*vdev
, int pos
, int count
,
117 struct perm_bits
*perm
, int offset
, __le32 val
);
121 #define ALL_VIRT 0xFFFFFFFFU
123 #define ALL_WRITE 0xFFFFFFFFU
125 static int vfio_user_config_read(struct pci_dev
*pdev
, int offset
,
126 __le32
*val
, int count
)
135 ret
= pci_user_read_config_byte(pdev
, offset
, &tmp
);
142 ret
= pci_user_read_config_word(pdev
, offset
, &tmp
);
147 ret
= pci_user_read_config_dword(pdev
, offset
, &tmp_val
);
151 *val
= cpu_to_le32(tmp_val
);
156 static int vfio_user_config_write(struct pci_dev
*pdev
, int offset
,
157 __le32 val
, int count
)
160 u32 tmp_val
= le32_to_cpu(val
);
164 ret
= pci_user_write_config_byte(pdev
, offset
, tmp_val
);
167 ret
= pci_user_write_config_word(pdev
, offset
, tmp_val
);
170 ret
= pci_user_write_config_dword(pdev
, offset
, tmp_val
);
177 static int vfio_default_config_read(struct vfio_pci_device
*vdev
, int pos
,
178 int count
, struct perm_bits
*perm
,
179 int offset
, __le32
*val
)
183 memcpy(val
, vdev
->vconfig
+ pos
, count
);
185 memcpy(&virt
, perm
->virt
+ offset
, count
);
187 /* Any non-virtualized bits? */
188 if (cpu_to_le32(~0U >> (32 - (count
* 8))) != virt
) {
189 struct pci_dev
*pdev
= vdev
->pdev
;
193 ret
= vfio_user_config_read(pdev
, pos
, &phys_val
, count
);
197 *val
= (phys_val
& ~virt
) | (*val
& virt
);
203 static int vfio_default_config_write(struct vfio_pci_device
*vdev
, int pos
,
204 int count
, struct perm_bits
*perm
,
205 int offset
, __le32 val
)
207 __le32 virt
= 0, write
= 0;
209 memcpy(&write
, perm
->write
+ offset
, count
);
212 return count
; /* drop, no writable bits */
214 memcpy(&virt
, perm
->virt
+ offset
, count
);
216 /* Virtualized and writable bits go to vconfig */
220 memcpy(&virt_val
, vdev
->vconfig
+ pos
, count
);
222 virt_val
&= ~(write
& virt
);
223 virt_val
|= (val
& (write
& virt
));
225 memcpy(vdev
->vconfig
+ pos
, &virt_val
, count
);
228 /* Non-virtualzed and writable bits go to hardware */
230 struct pci_dev
*pdev
= vdev
->pdev
;
234 ret
= vfio_user_config_read(pdev
, pos
, &phys_val
, count
);
238 phys_val
&= ~(write
& ~virt
);
239 phys_val
|= (val
& (write
& ~virt
));
241 ret
= vfio_user_config_write(pdev
, pos
, phys_val
, count
);
249 /* Allow direct read from hardware, except for capability next pointer */
250 static int vfio_direct_config_read(struct vfio_pci_device
*vdev
, int pos
,
251 int count
, struct perm_bits
*perm
,
252 int offset
, __le32
*val
)
256 ret
= vfio_user_config_read(vdev
->pdev
, pos
, val
, count
);
260 if (pos
>= PCI_CFG_SPACE_SIZE
) { /* Extended cap header mangling */
262 memcpy(val
, vdev
->vconfig
+ pos
, count
);
263 } else if (pos
>= PCI_STD_HEADER_SIZEOF
) { /* Std cap mangling */
264 if (offset
== PCI_CAP_LIST_ID
&& count
> 1)
265 memcpy(val
, vdev
->vconfig
+ pos
,
266 min(PCI_CAP_FLAGS
, count
));
267 else if (offset
== PCI_CAP_LIST_NEXT
)
268 memcpy(val
, vdev
->vconfig
+ pos
, 1);
274 /* Raw access skips any kind of virtualization */
275 static int vfio_raw_config_write(struct vfio_pci_device
*vdev
, int pos
,
276 int count
, struct perm_bits
*perm
,
277 int offset
, __le32 val
)
281 ret
= vfio_user_config_write(vdev
->pdev
, pos
, val
, count
);
288 static int vfio_raw_config_read(struct vfio_pci_device
*vdev
, int pos
,
289 int count
, struct perm_bits
*perm
,
290 int offset
, __le32
*val
)
294 ret
= vfio_user_config_read(vdev
->pdev
, pos
, val
, count
);
301 /* Virt access uses only virtualization */
302 static int vfio_virt_config_write(struct vfio_pci_device
*vdev
, int pos
,
303 int count
, struct perm_bits
*perm
,
304 int offset
, __le32 val
)
306 memcpy(vdev
->vconfig
+ pos
, &val
, count
);
310 static int vfio_virt_config_read(struct vfio_pci_device
*vdev
, int pos
,
311 int count
, struct perm_bits
*perm
,
312 int offset
, __le32
*val
)
314 memcpy(val
, vdev
->vconfig
+ pos
, count
);
318 /* Default capability regions to read-only, no-virtualization */
319 static struct perm_bits cap_perms
[PCI_CAP_ID_MAX
+ 1] = {
320 [0 ... PCI_CAP_ID_MAX
] = { .readfn
= vfio_direct_config_read
}
322 static struct perm_bits ecap_perms
[PCI_EXT_CAP_ID_MAX
+ 1] = {
323 [0 ... PCI_EXT_CAP_ID_MAX
] = { .readfn
= vfio_direct_config_read
}
326 * Default unassigned regions to raw read-write access. Some devices
327 * require this to function as they hide registers between the gaps in
328 * config space (be2net). Like MMIO and I/O port registers, we have
329 * to trust the hardware isolation.
331 static struct perm_bits unassigned_perms
= {
332 .readfn
= vfio_raw_config_read
,
333 .writefn
= vfio_raw_config_write
336 static struct perm_bits virt_perms
= {
337 .readfn
= vfio_virt_config_read
,
338 .writefn
= vfio_virt_config_write
341 static void free_perm_bits(struct perm_bits
*perm
)
349 static int alloc_perm_bits(struct perm_bits
*perm
, int size
)
352 * Round up all permission bits to the next dword, this lets us
353 * ignore whether a read/write exceeds the defined capability
354 * structure. We can do this because:
355 * - Standard config space is already dword aligned
356 * - Capabilities are all dword aligned (bits 0:1 of next reserved)
357 * - Express capabilities defined as dword aligned
359 size
= round_up(size
, 4);
363 * - All Readable, None Writeable, None Virtualized
365 perm
->virt
= kzalloc(size
, GFP_KERNEL
);
366 perm
->write
= kzalloc(size
, GFP_KERNEL
);
367 if (!perm
->virt
|| !perm
->write
) {
368 free_perm_bits(perm
);
372 perm
->readfn
= vfio_default_config_read
;
373 perm
->writefn
= vfio_default_config_write
;
379 * Helper functions for filling in permission tables
381 static inline void p_setb(struct perm_bits
*p
, int off
, u8 virt
, u8 write
)
384 p
->write
[off
] = write
;
387 /* Handle endian-ness - pci and tables are little-endian */
388 static inline void p_setw(struct perm_bits
*p
, int off
, u16 virt
, u16 write
)
390 *(__le16
*)(&p
->virt
[off
]) = cpu_to_le16(virt
);
391 *(__le16
*)(&p
->write
[off
]) = cpu_to_le16(write
);
394 /* Handle endian-ness - pci and tables are little-endian */
395 static inline void p_setd(struct perm_bits
*p
, int off
, u32 virt
, u32 write
)
397 *(__le32
*)(&p
->virt
[off
]) = cpu_to_le32(virt
);
398 *(__le32
*)(&p
->write
[off
]) = cpu_to_le32(write
);
402 * Restore the *real* BARs after we detect a FLR or backdoor reset.
403 * (backdoor = some device specific technique that we didn't catch)
405 static void vfio_bar_restore(struct vfio_pci_device
*vdev
)
407 struct pci_dev
*pdev
= vdev
->pdev
;
408 u32
*rbar
= vdev
->rbar
;
415 pr_info("%s: %s reset recovery - restoring bars\n",
416 __func__
, dev_name(&pdev
->dev
));
418 for (i
= PCI_BASE_ADDRESS_0
; i
<= PCI_BASE_ADDRESS_5
; i
+= 4, rbar
++)
419 pci_user_write_config_dword(pdev
, i
, *rbar
);
421 pci_user_write_config_dword(pdev
, PCI_ROM_ADDRESS
, *rbar
);
424 pci_user_read_config_word(pdev
, PCI_COMMAND
, &cmd
);
425 cmd
|= PCI_COMMAND_INTX_DISABLE
;
426 pci_user_write_config_word(pdev
, PCI_COMMAND
, cmd
);
430 static __le32
vfio_generate_bar_flags(struct pci_dev
*pdev
, int bar
)
432 unsigned long flags
= pci_resource_flags(pdev
, bar
);
435 if (flags
& IORESOURCE_IO
)
436 return cpu_to_le32(PCI_BASE_ADDRESS_SPACE_IO
);
438 val
= PCI_BASE_ADDRESS_SPACE_MEMORY
;
440 if (flags
& IORESOURCE_PREFETCH
)
441 val
|= PCI_BASE_ADDRESS_MEM_PREFETCH
;
443 if (flags
& IORESOURCE_MEM_64
)
444 val
|= PCI_BASE_ADDRESS_MEM_TYPE_64
;
446 return cpu_to_le32(val
);
450 * Pretend we're hardware and tweak the values of the *virtual* PCI BARs
451 * to reflect the hardware capabilities. This implements BAR sizing.
453 static void vfio_bar_fixup(struct vfio_pci_device
*vdev
)
455 struct pci_dev
*pdev
= vdev
->pdev
;
460 bar
= (__le32
*)&vdev
->vconfig
[PCI_BASE_ADDRESS_0
];
462 for (i
= PCI_STD_RESOURCES
; i
<= PCI_STD_RESOURCE_END
; i
++, bar
++) {
463 if (!pci_resource_start(pdev
, i
)) {
464 *bar
= 0; /* Unmapped by host = unimplemented to user */
468 mask
= ~(pci_resource_len(pdev
, i
) - 1);
470 *bar
&= cpu_to_le32((u32
)mask
);
471 *bar
|= vfio_generate_bar_flags(pdev
, i
);
473 if (*bar
& cpu_to_le32(PCI_BASE_ADDRESS_MEM_TYPE_64
)) {
475 *bar
&= cpu_to_le32((u32
)(mask
>> 32));
480 bar
= (__le32
*)&vdev
->vconfig
[PCI_ROM_ADDRESS
];
483 * NB. REGION_INFO will have reported zero size if we weren't able
484 * to read the ROM, but we still return the actual BAR size here if
485 * it exists (or the shadow ROM space).
487 if (pci_resource_start(pdev
, PCI_ROM_RESOURCE
)) {
488 mask
= ~(pci_resource_len(pdev
, PCI_ROM_RESOURCE
) - 1);
489 mask
|= PCI_ROM_ADDRESS_ENABLE
;
490 *bar
&= cpu_to_le32((u32
)mask
);
491 } else if (pdev
->resource
[PCI_ROM_RESOURCE
].flags
&
492 IORESOURCE_ROM_SHADOW
) {
493 mask
= ~(0x20000 - 1);
494 mask
|= PCI_ROM_ADDRESS_ENABLE
;
495 *bar
&= cpu_to_le32((u32
)mask
);
499 vdev
->bardirty
= false;
502 static int vfio_basic_config_read(struct vfio_pci_device
*vdev
, int pos
,
503 int count
, struct perm_bits
*perm
,
504 int offset
, __le32
*val
)
506 if (is_bar(offset
)) /* pos == offset for basic config */
507 vfio_bar_fixup(vdev
);
509 count
= vfio_default_config_read(vdev
, pos
, count
, perm
, offset
, val
);
511 /* Mask in virtual memory enable for SR-IOV devices */
512 if (offset
== PCI_COMMAND
&& vdev
->pdev
->is_virtfn
) {
513 u16 cmd
= le16_to_cpu(*(__le16
*)&vdev
->vconfig
[PCI_COMMAND
]);
514 u32 tmp_val
= le32_to_cpu(*val
);
516 tmp_val
|= cmd
& PCI_COMMAND_MEMORY
;
517 *val
= cpu_to_le32(tmp_val
);
523 /* Test whether BARs match the value we think they should contain */
524 static bool vfio_need_bar_restore(struct vfio_pci_device
*vdev
)
526 int i
= 0, pos
= PCI_BASE_ADDRESS_0
, ret
;
529 for (; pos
<= PCI_BASE_ADDRESS_5
; i
++, pos
+= 4) {
531 ret
= pci_user_read_config_dword(vdev
->pdev
, pos
, &bar
);
532 if (ret
|| vdev
->rbar
[i
] != bar
)
540 static int vfio_basic_config_write(struct vfio_pci_device
*vdev
, int pos
,
541 int count
, struct perm_bits
*perm
,
542 int offset
, __le32 val
)
544 struct pci_dev
*pdev
= vdev
->pdev
;
549 virt_cmd
= (__le16
*)&vdev
->vconfig
[PCI_COMMAND
];
551 if (offset
== PCI_COMMAND
) {
552 bool phys_mem
, virt_mem
, new_mem
, phys_io
, virt_io
, new_io
;
555 ret
= pci_user_read_config_word(pdev
, PCI_COMMAND
, &phys_cmd
);
559 new_cmd
= le32_to_cpu(val
);
561 phys_mem
= !!(phys_cmd
& PCI_COMMAND_MEMORY
);
562 virt_mem
= !!(le16_to_cpu(*virt_cmd
) & PCI_COMMAND_MEMORY
);
563 new_mem
= !!(new_cmd
& PCI_COMMAND_MEMORY
);
565 phys_io
= !!(phys_cmd
& PCI_COMMAND_IO
);
566 virt_io
= !!(le16_to_cpu(*virt_cmd
) & PCI_COMMAND_IO
);
567 new_io
= !!(new_cmd
& PCI_COMMAND_IO
);
570 * If the user is writing mem/io enable (new_mem/io) and we
571 * think it's already enabled (virt_mem/io), but the hardware
572 * shows it disabled (phys_mem/io, then the device has
573 * undergone some kind of backdoor reset and needs to be
574 * restored before we allow it to enable the bars.
575 * SR-IOV devices will trigger this, but we catch them later
577 if ((new_mem
&& virt_mem
&& !phys_mem
) ||
578 (new_io
&& virt_io
&& !phys_io
) ||
579 vfio_need_bar_restore(vdev
))
580 vfio_bar_restore(vdev
);
583 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
588 * Save current memory/io enable bits in vconfig to allow for
589 * the test above next time.
591 if (offset
== PCI_COMMAND
) {
592 u16 mask
= PCI_COMMAND_MEMORY
| PCI_COMMAND_IO
;
594 *virt_cmd
&= cpu_to_le16(~mask
);
595 *virt_cmd
|= cpu_to_le16(new_cmd
& mask
);
598 /* Emulate INTx disable */
599 if (offset
>= PCI_COMMAND
&& offset
<= PCI_COMMAND
+ 1) {
600 bool virt_intx_disable
;
602 virt_intx_disable
= !!(le16_to_cpu(*virt_cmd
) &
603 PCI_COMMAND_INTX_DISABLE
);
605 if (virt_intx_disable
&& !vdev
->virq_disabled
) {
606 vdev
->virq_disabled
= true;
607 vfio_pci_intx_mask(vdev
);
608 } else if (!virt_intx_disable
&& vdev
->virq_disabled
) {
609 vdev
->virq_disabled
= false;
610 vfio_pci_intx_unmask(vdev
);
615 vdev
->bardirty
= true;
620 /* Permissions for the Basic PCI Header */
621 static int __init
init_pci_cap_basic_perm(struct perm_bits
*perm
)
623 if (alloc_perm_bits(perm
, PCI_STD_HEADER_SIZEOF
))
626 perm
->readfn
= vfio_basic_config_read
;
627 perm
->writefn
= vfio_basic_config_write
;
629 /* Virtualized for SR-IOV functions, which just have FFFF */
630 p_setw(perm
, PCI_VENDOR_ID
, (u16
)ALL_VIRT
, NO_WRITE
);
631 p_setw(perm
, PCI_DEVICE_ID
, (u16
)ALL_VIRT
, NO_WRITE
);
634 * Virtualize INTx disable, we use it internally for interrupt
635 * control and can emulate it for non-PCI 2.3 devices.
637 p_setw(perm
, PCI_COMMAND
, PCI_COMMAND_INTX_DISABLE
, (u16
)ALL_WRITE
);
639 /* Virtualize capability list, we might want to skip/disable */
640 p_setw(perm
, PCI_STATUS
, PCI_STATUS_CAP_LIST
, NO_WRITE
);
642 /* No harm to write */
643 p_setb(perm
, PCI_CACHE_LINE_SIZE
, NO_VIRT
, (u8
)ALL_WRITE
);
644 p_setb(perm
, PCI_LATENCY_TIMER
, NO_VIRT
, (u8
)ALL_WRITE
);
645 p_setb(perm
, PCI_BIST
, NO_VIRT
, (u8
)ALL_WRITE
);
647 /* Virtualize all bars, can't touch the real ones */
648 p_setd(perm
, PCI_BASE_ADDRESS_0
, ALL_VIRT
, ALL_WRITE
);
649 p_setd(perm
, PCI_BASE_ADDRESS_1
, ALL_VIRT
, ALL_WRITE
);
650 p_setd(perm
, PCI_BASE_ADDRESS_2
, ALL_VIRT
, ALL_WRITE
);
651 p_setd(perm
, PCI_BASE_ADDRESS_3
, ALL_VIRT
, ALL_WRITE
);
652 p_setd(perm
, PCI_BASE_ADDRESS_4
, ALL_VIRT
, ALL_WRITE
);
653 p_setd(perm
, PCI_BASE_ADDRESS_5
, ALL_VIRT
, ALL_WRITE
);
654 p_setd(perm
, PCI_ROM_ADDRESS
, ALL_VIRT
, ALL_WRITE
);
656 /* Allow us to adjust capability chain */
657 p_setb(perm
, PCI_CAPABILITY_LIST
, (u8
)ALL_VIRT
, NO_WRITE
);
659 /* Sometimes used by sw, just virtualize */
660 p_setb(perm
, PCI_INTERRUPT_LINE
, (u8
)ALL_VIRT
, (u8
)ALL_WRITE
);
662 /* Virtualize interrupt pin to allow hiding INTx */
663 p_setb(perm
, PCI_INTERRUPT_PIN
, (u8
)ALL_VIRT
, (u8
)NO_WRITE
);
668 static int vfio_pm_config_write(struct vfio_pci_device
*vdev
, int pos
,
669 int count
, struct perm_bits
*perm
,
670 int offset
, __le32 val
)
672 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
676 if (offset
== PCI_PM_CTRL
) {
679 switch (le32_to_cpu(val
) & PCI_PM_CTRL_STATE_MASK
) {
694 pci_set_power_state(vdev
->pdev
, state
);
700 /* Permissions for the Power Management capability */
701 static int __init
init_pci_cap_pm_perm(struct perm_bits
*perm
)
703 if (alloc_perm_bits(perm
, pci_cap_length
[PCI_CAP_ID_PM
]))
706 perm
->writefn
= vfio_pm_config_write
;
709 * We always virtualize the next field so we can remove
710 * capabilities from the chain if we want to.
712 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
715 * Power management is defined *per function*, so we can let
716 * the user change power state, but we trap and initiate the
717 * change ourselves, so the state bits are read-only.
719 p_setd(perm
, PCI_PM_CTRL
, NO_VIRT
, ~PCI_PM_CTRL_STATE_MASK
);
723 static int vfio_vpd_config_write(struct vfio_pci_device
*vdev
, int pos
,
724 int count
, struct perm_bits
*perm
,
725 int offset
, __le32 val
)
727 struct pci_dev
*pdev
= vdev
->pdev
;
728 __le16
*paddr
= (__le16
*)(vdev
->vconfig
+ pos
- offset
+ PCI_VPD_ADDR
);
729 __le32
*pdata
= (__le32
*)(vdev
->vconfig
+ pos
- offset
+ PCI_VPD_DATA
);
734 * Write through to emulation. If the write includes the upper byte
735 * of PCI_VPD_ADDR, then the PCI_VPD_ADDR_F bit is written and we
738 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
739 if (count
< 0 || offset
> PCI_VPD_ADDR
+ 1 ||
740 offset
+ count
<= PCI_VPD_ADDR
+ 1)
743 addr
= le16_to_cpu(*paddr
);
745 if (addr
& PCI_VPD_ADDR_F
) {
746 data
= le32_to_cpu(*pdata
);
747 if (pci_write_vpd(pdev
, addr
& ~PCI_VPD_ADDR_F
, 4, &data
) != 4)
751 if (pci_read_vpd(pdev
, addr
, 4, &data
) < 0)
753 *pdata
= cpu_to_le32(data
);
757 * Toggle PCI_VPD_ADDR_F in the emulated PCI_VPD_ADDR register to
758 * signal completion. If an error occurs above, we assume that not
759 * toggling this bit will induce a driver timeout.
761 addr
^= PCI_VPD_ADDR_F
;
762 *paddr
= cpu_to_le16(addr
);
767 /* Permissions for Vital Product Data capability */
768 static int __init
init_pci_cap_vpd_perm(struct perm_bits
*perm
)
770 if (alloc_perm_bits(perm
, pci_cap_length
[PCI_CAP_ID_VPD
]))
773 perm
->writefn
= vfio_vpd_config_write
;
776 * We always virtualize the next field so we can remove
777 * capabilities from the chain if we want to.
779 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
782 * Both the address and data registers are virtualized to
783 * enable access through the pci_vpd_read/write functions
785 p_setw(perm
, PCI_VPD_ADDR
, (u16
)ALL_VIRT
, (u16
)ALL_WRITE
);
786 p_setd(perm
, PCI_VPD_DATA
, ALL_VIRT
, ALL_WRITE
);
791 /* Permissions for PCI-X capability */
792 static int __init
init_pci_cap_pcix_perm(struct perm_bits
*perm
)
794 /* Alloc 24, but only 8 are used in v0 */
795 if (alloc_perm_bits(perm
, PCI_CAP_PCIX_SIZEOF_V2
))
798 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
800 p_setw(perm
, PCI_X_CMD
, NO_VIRT
, (u16
)ALL_WRITE
);
801 p_setd(perm
, PCI_X_ECC_CSR
, NO_VIRT
, ALL_WRITE
);
805 static int vfio_exp_config_write(struct vfio_pci_device
*vdev
, int pos
,
806 int count
, struct perm_bits
*perm
,
807 int offset
, __le32 val
)
809 __le16
*ctrl
= (__le16
*)(vdev
->vconfig
+ pos
-
810 offset
+ PCI_EXP_DEVCTL
);
812 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
817 * The FLR bit is virtualized, if set and the device supports PCIe
818 * FLR, issue a reset_function. Regardless, clear the bit, the spec
819 * requires it to be always read as zero. NB, reset_function might
820 * not use a PCIe FLR, we don't have that level of granularity.
822 if (*ctrl
& cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR
)) {
826 *ctrl
&= ~cpu_to_le16(PCI_EXP_DEVCTL_BCR_FLR
);
828 ret
= pci_user_read_config_dword(vdev
->pdev
,
829 pos
- offset
+ PCI_EXP_DEVCAP
,
832 if (!ret
&& (cap
& PCI_EXP_DEVCAP_FLR
))
833 pci_try_reset_function(vdev
->pdev
);
839 /* Permissions for PCI Express capability */
840 static int __init
init_pci_cap_exp_perm(struct perm_bits
*perm
)
842 /* Alloc larger of two possible sizes */
843 if (alloc_perm_bits(perm
, PCI_CAP_EXP_ENDPOINT_SIZEOF_V2
))
846 perm
->writefn
= vfio_exp_config_write
;
848 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
851 * Allow writes to device control fields, except devctl_phantom,
852 * which could confuse IOMMU, and the ARI bit in devctl2, which
853 * is set at probe time. FLR gets virtualized via our writefn.
855 p_setw(perm
, PCI_EXP_DEVCTL
,
856 PCI_EXP_DEVCTL_BCR_FLR
, ~PCI_EXP_DEVCTL_PHANTOM
);
857 p_setw(perm
, PCI_EXP_DEVCTL2
, NO_VIRT
, ~PCI_EXP_DEVCTL2_ARI
);
861 static int vfio_af_config_write(struct vfio_pci_device
*vdev
, int pos
,
862 int count
, struct perm_bits
*perm
,
863 int offset
, __le32 val
)
865 u8
*ctrl
= vdev
->vconfig
+ pos
- offset
+ PCI_AF_CTRL
;
867 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
872 * The FLR bit is virtualized, if set and the device supports AF
873 * FLR, issue a reset_function. Regardless, clear the bit, the spec
874 * requires it to be always read as zero. NB, reset_function might
875 * not use an AF FLR, we don't have that level of granularity.
877 if (*ctrl
& PCI_AF_CTRL_FLR
) {
881 *ctrl
&= ~PCI_AF_CTRL_FLR
;
883 ret
= pci_user_read_config_byte(vdev
->pdev
,
884 pos
- offset
+ PCI_AF_CAP
,
887 if (!ret
&& (cap
& PCI_AF_CAP_FLR
) && (cap
& PCI_AF_CAP_TP
))
888 pci_try_reset_function(vdev
->pdev
);
894 /* Permissions for Advanced Function capability */
895 static int __init
init_pci_cap_af_perm(struct perm_bits
*perm
)
897 if (alloc_perm_bits(perm
, pci_cap_length
[PCI_CAP_ID_AF
]))
900 perm
->writefn
= vfio_af_config_write
;
902 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
903 p_setb(perm
, PCI_AF_CTRL
, PCI_AF_CTRL_FLR
, PCI_AF_CTRL_FLR
);
907 /* Permissions for Advanced Error Reporting extended capability */
908 static int __init
init_pci_ext_cap_err_perm(struct perm_bits
*perm
)
912 if (alloc_perm_bits(perm
, pci_ext_cap_length
[PCI_EXT_CAP_ID_ERR
]))
916 * Virtualize the first dword of all express capabilities
917 * because it includes the next pointer. This lets us later
918 * remove capabilities from the chain if we need to.
920 p_setd(perm
, 0, ALL_VIRT
, NO_WRITE
);
922 /* Writable bits mask */
923 mask
= PCI_ERR_UNC_UND
| /* Undefined */
924 PCI_ERR_UNC_DLP
| /* Data Link Protocol */
925 PCI_ERR_UNC_SURPDN
| /* Surprise Down */
926 PCI_ERR_UNC_POISON_TLP
| /* Poisoned TLP */
927 PCI_ERR_UNC_FCP
| /* Flow Control Protocol */
928 PCI_ERR_UNC_COMP_TIME
| /* Completion Timeout */
929 PCI_ERR_UNC_COMP_ABORT
| /* Completer Abort */
930 PCI_ERR_UNC_UNX_COMP
| /* Unexpected Completion */
931 PCI_ERR_UNC_RX_OVER
| /* Receiver Overflow */
932 PCI_ERR_UNC_MALF_TLP
| /* Malformed TLP */
933 PCI_ERR_UNC_ECRC
| /* ECRC Error Status */
934 PCI_ERR_UNC_UNSUP
| /* Unsupported Request */
935 PCI_ERR_UNC_ACSV
| /* ACS Violation */
936 PCI_ERR_UNC_INTN
| /* internal error */
937 PCI_ERR_UNC_MCBTLP
| /* MC blocked TLP */
938 PCI_ERR_UNC_ATOMEG
| /* Atomic egress blocked */
939 PCI_ERR_UNC_TLPPRE
; /* TLP prefix blocked */
940 p_setd(perm
, PCI_ERR_UNCOR_STATUS
, NO_VIRT
, mask
);
941 p_setd(perm
, PCI_ERR_UNCOR_MASK
, NO_VIRT
, mask
);
942 p_setd(perm
, PCI_ERR_UNCOR_SEVER
, NO_VIRT
, mask
);
944 mask
= PCI_ERR_COR_RCVR
| /* Receiver Error Status */
945 PCI_ERR_COR_BAD_TLP
| /* Bad TLP Status */
946 PCI_ERR_COR_BAD_DLLP
| /* Bad DLLP Status */
947 PCI_ERR_COR_REP_ROLL
| /* REPLAY_NUM Rollover */
948 PCI_ERR_COR_REP_TIMER
| /* Replay Timer Timeout */
949 PCI_ERR_COR_ADV_NFAT
| /* Advisory Non-Fatal */
950 PCI_ERR_COR_INTERNAL
| /* Corrected Internal */
951 PCI_ERR_COR_LOG_OVER
; /* Header Log Overflow */
952 p_setd(perm
, PCI_ERR_COR_STATUS
, NO_VIRT
, mask
);
953 p_setd(perm
, PCI_ERR_COR_MASK
, NO_VIRT
, mask
);
955 mask
= PCI_ERR_CAP_ECRC_GENE
| /* ECRC Generation Enable */
956 PCI_ERR_CAP_ECRC_CHKE
; /* ECRC Check Enable */
957 p_setd(perm
, PCI_ERR_CAP
, NO_VIRT
, mask
);
961 /* Permissions for Power Budgeting extended capability */
962 static int __init
init_pci_ext_cap_pwr_perm(struct perm_bits
*perm
)
964 if (alloc_perm_bits(perm
, pci_ext_cap_length
[PCI_EXT_CAP_ID_PWR
]))
967 p_setd(perm
, 0, ALL_VIRT
, NO_WRITE
);
969 /* Writing the data selector is OK, the info is still read-only */
970 p_setb(perm
, PCI_PWR_DATA
, NO_VIRT
, (u8
)ALL_WRITE
);
975 * Initialize the shared permission tables
977 void vfio_pci_uninit_perm_bits(void)
979 free_perm_bits(&cap_perms
[PCI_CAP_ID_BASIC
]);
981 free_perm_bits(&cap_perms
[PCI_CAP_ID_PM
]);
982 free_perm_bits(&cap_perms
[PCI_CAP_ID_VPD
]);
983 free_perm_bits(&cap_perms
[PCI_CAP_ID_PCIX
]);
984 free_perm_bits(&cap_perms
[PCI_CAP_ID_EXP
]);
985 free_perm_bits(&cap_perms
[PCI_CAP_ID_AF
]);
987 free_perm_bits(&ecap_perms
[PCI_EXT_CAP_ID_ERR
]);
988 free_perm_bits(&ecap_perms
[PCI_EXT_CAP_ID_PWR
]);
991 int __init
vfio_pci_init_perm_bits(void)
995 /* Basic config space */
996 ret
= init_pci_cap_basic_perm(&cap_perms
[PCI_CAP_ID_BASIC
]);
999 ret
|= init_pci_cap_pm_perm(&cap_perms
[PCI_CAP_ID_PM
]);
1000 ret
|= init_pci_cap_vpd_perm(&cap_perms
[PCI_CAP_ID_VPD
]);
1001 ret
|= init_pci_cap_pcix_perm(&cap_perms
[PCI_CAP_ID_PCIX
]);
1002 cap_perms
[PCI_CAP_ID_VNDR
].writefn
= vfio_raw_config_write
;
1003 ret
|= init_pci_cap_exp_perm(&cap_perms
[PCI_CAP_ID_EXP
]);
1004 ret
|= init_pci_cap_af_perm(&cap_perms
[PCI_CAP_ID_AF
]);
1006 /* Extended capabilities */
1007 ret
|= init_pci_ext_cap_err_perm(&ecap_perms
[PCI_EXT_CAP_ID_ERR
]);
1008 ret
|= init_pci_ext_cap_pwr_perm(&ecap_perms
[PCI_EXT_CAP_ID_PWR
]);
1009 ecap_perms
[PCI_EXT_CAP_ID_VNDR
].writefn
= vfio_raw_config_write
;
1012 vfio_pci_uninit_perm_bits();
1017 static int vfio_find_cap_start(struct vfio_pci_device
*vdev
, int pos
)
1020 int base
= (pos
>= PCI_CFG_SPACE_SIZE
) ? PCI_CFG_SPACE_SIZE
:
1021 PCI_STD_HEADER_SIZEOF
;
1022 cap
= vdev
->pci_config_map
[pos
];
1024 if (cap
== PCI_CAP_ID_BASIC
)
1027 /* XXX Can we have to abutting capabilities of the same type? */
1028 while (pos
- 1 >= base
&& vdev
->pci_config_map
[pos
- 1] == cap
)
1034 static int vfio_msi_config_read(struct vfio_pci_device
*vdev
, int pos
,
1035 int count
, struct perm_bits
*perm
,
1036 int offset
, __le32
*val
)
1038 /* Update max available queue size from msi_qmax */
1039 if (offset
<= PCI_MSI_FLAGS
&& offset
+ count
>= PCI_MSI_FLAGS
) {
1043 start
= vfio_find_cap_start(vdev
, pos
);
1045 flags
= (__le16
*)&vdev
->vconfig
[start
];
1047 *flags
&= cpu_to_le16(~PCI_MSI_FLAGS_QMASK
);
1048 *flags
|= cpu_to_le16(vdev
->msi_qmax
<< 1);
1051 return vfio_default_config_read(vdev
, pos
, count
, perm
, offset
, val
);
1054 static int vfio_msi_config_write(struct vfio_pci_device
*vdev
, int pos
,
1055 int count
, struct perm_bits
*perm
,
1056 int offset
, __le32 val
)
1058 count
= vfio_default_config_write(vdev
, pos
, count
, perm
, offset
, val
);
1062 /* Fixup and write configured queue size and enable to hardware */
1063 if (offset
<= PCI_MSI_FLAGS
&& offset
+ count
>= PCI_MSI_FLAGS
) {
1068 start
= vfio_find_cap_start(vdev
, pos
);
1070 pflags
= (__le16
*)&vdev
->vconfig
[start
+ PCI_MSI_FLAGS
];
1072 flags
= le16_to_cpu(*pflags
);
1074 /* MSI is enabled via ioctl */
1076 flags
&= ~PCI_MSI_FLAGS_ENABLE
;
1078 /* Check queue size */
1079 if ((flags
& PCI_MSI_FLAGS_QSIZE
) >> 4 > vdev
->msi_qmax
) {
1080 flags
&= ~PCI_MSI_FLAGS_QSIZE
;
1081 flags
|= vdev
->msi_qmax
<< 4;
1084 /* Write back to virt and to hardware */
1085 *pflags
= cpu_to_le16(flags
);
1086 ret
= pci_user_write_config_word(vdev
->pdev
,
1087 start
+ PCI_MSI_FLAGS
,
1097 * MSI determination is per-device, so this routine gets used beyond
1098 * initialization time. Don't add __init
1100 static int init_pci_cap_msi_perm(struct perm_bits
*perm
, int len
, u16 flags
)
1102 if (alloc_perm_bits(perm
, len
))
1105 perm
->readfn
= vfio_msi_config_read
;
1106 perm
->writefn
= vfio_msi_config_write
;
1108 p_setb(perm
, PCI_CAP_LIST_NEXT
, (u8
)ALL_VIRT
, NO_WRITE
);
1111 * The upper byte of the control register is reserved,
1112 * just setup the lower byte.
1114 p_setb(perm
, PCI_MSI_FLAGS
, (u8
)ALL_VIRT
, (u8
)ALL_WRITE
);
1115 p_setd(perm
, PCI_MSI_ADDRESS_LO
, ALL_VIRT
, ALL_WRITE
);
1116 if (flags
& PCI_MSI_FLAGS_64BIT
) {
1117 p_setd(perm
, PCI_MSI_ADDRESS_HI
, ALL_VIRT
, ALL_WRITE
);
1118 p_setw(perm
, PCI_MSI_DATA_64
, (u16
)ALL_VIRT
, (u16
)ALL_WRITE
);
1119 if (flags
& PCI_MSI_FLAGS_MASKBIT
) {
1120 p_setd(perm
, PCI_MSI_MASK_64
, NO_VIRT
, ALL_WRITE
);
1121 p_setd(perm
, PCI_MSI_PENDING_64
, NO_VIRT
, ALL_WRITE
);
1124 p_setw(perm
, PCI_MSI_DATA_32
, (u16
)ALL_VIRT
, (u16
)ALL_WRITE
);
1125 if (flags
& PCI_MSI_FLAGS_MASKBIT
) {
1126 p_setd(perm
, PCI_MSI_MASK_32
, NO_VIRT
, ALL_WRITE
);
1127 p_setd(perm
, PCI_MSI_PENDING_32
, NO_VIRT
, ALL_WRITE
);
1133 /* Determine MSI CAP field length; initialize msi_perms on 1st call per vdev */
1134 static int vfio_msi_cap_len(struct vfio_pci_device
*vdev
, u8 pos
)
1136 struct pci_dev
*pdev
= vdev
->pdev
;
1140 ret
= pci_read_config_word(pdev
, pos
+ PCI_MSI_FLAGS
, &flags
);
1142 return pcibios_err_to_errno(ret
);
1144 len
= 10; /* Minimum size */
1145 if (flags
& PCI_MSI_FLAGS_64BIT
)
1147 if (flags
& PCI_MSI_FLAGS_MASKBIT
)
1153 vdev
->msi_perm
= kmalloc(sizeof(struct perm_bits
), GFP_KERNEL
);
1154 if (!vdev
->msi_perm
)
1157 ret
= init_pci_cap_msi_perm(vdev
->msi_perm
, len
, flags
);
1164 /* Determine extended capability length for VC (2 & 9) and MFVC */
1165 static int vfio_vc_cap_len(struct vfio_pci_device
*vdev
, u16 pos
)
1167 struct pci_dev
*pdev
= vdev
->pdev
;
1169 int ret
, evcc
, phases
, vc_arb
;
1170 int len
= PCI_CAP_VC_BASE_SIZEOF
;
1172 ret
= pci_read_config_dword(pdev
, pos
+ PCI_VC_PORT_CAP1
, &tmp
);
1174 return pcibios_err_to_errno(ret
);
1176 evcc
= tmp
& PCI_VC_CAP1_EVCC
; /* extended vc count */
1177 ret
= pci_read_config_dword(pdev
, pos
+ PCI_VC_PORT_CAP2
, &tmp
);
1179 return pcibios_err_to_errno(ret
);
1181 if (tmp
& PCI_VC_CAP2_128_PHASE
)
1183 else if (tmp
& PCI_VC_CAP2_64_PHASE
)
1185 else if (tmp
& PCI_VC_CAP2_32_PHASE
)
1190 vc_arb
= phases
* 4;
1193 * Port arbitration tables are root & switch only;
1194 * function arbitration tables are function 0 only.
1195 * In either case, we'll never let user write them so
1196 * we don't care how big they are
1198 len
+= (1 + evcc
) * PCI_CAP_VC_PER_VC_SIZEOF
;
1200 len
= round_up(len
, 16);
1206 static int vfio_cap_len(struct vfio_pci_device
*vdev
, u8 cap
, u8 pos
)
1208 struct pci_dev
*pdev
= vdev
->pdev
;
1215 case PCI_CAP_ID_MSI
:
1216 return vfio_msi_cap_len(vdev
, pos
);
1217 case PCI_CAP_ID_PCIX
:
1218 ret
= pci_read_config_word(pdev
, pos
+ PCI_X_CMD
, &word
);
1220 return pcibios_err_to_errno(ret
);
1222 if (PCI_X_CMD_VERSION(word
)) {
1223 if (pdev
->cfg_size
> PCI_CFG_SPACE_SIZE
) {
1224 /* Test for extended capabilities */
1225 pci_read_config_dword(pdev
, PCI_CFG_SPACE_SIZE
,
1227 vdev
->extended_caps
= (dword
!= 0);
1229 return PCI_CAP_PCIX_SIZEOF_V2
;
1231 return PCI_CAP_PCIX_SIZEOF_V0
;
1232 case PCI_CAP_ID_VNDR
:
1233 /* length follows next field */
1234 ret
= pci_read_config_byte(pdev
, pos
+ PCI_CAP_FLAGS
, &byte
);
1236 return pcibios_err_to_errno(ret
);
1239 case PCI_CAP_ID_EXP
:
1240 if (pdev
->cfg_size
> PCI_CFG_SPACE_SIZE
) {
1241 /* Test for extended capabilities */
1242 pci_read_config_dword(pdev
, PCI_CFG_SPACE_SIZE
, &dword
);
1243 vdev
->extended_caps
= (dword
!= 0);
1246 /* length based on version */
1247 if ((pcie_caps_reg(pdev
) & PCI_EXP_FLAGS_VERS
) == 1)
1248 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V1
;
1250 return PCI_CAP_EXP_ENDPOINT_SIZEOF_V2
;
1252 ret
= pci_read_config_byte(pdev
, pos
+ 3, &byte
);
1254 return pcibios_err_to_errno(ret
);
1256 return (byte
& HT_3BIT_CAP_MASK
) ?
1257 HT_CAP_SIZEOF_SHORT
: HT_CAP_SIZEOF_LONG
;
1258 case PCI_CAP_ID_SATA
:
1259 ret
= pci_read_config_byte(pdev
, pos
+ PCI_SATA_REGS
, &byte
);
1261 return pcibios_err_to_errno(ret
);
1263 byte
&= PCI_SATA_REGS_MASK
;
1264 if (byte
== PCI_SATA_REGS_INLINE
)
1265 return PCI_SATA_SIZEOF_LONG
;
1267 return PCI_SATA_SIZEOF_SHORT
;
1269 pr_warn("%s: %s unknown length for pci cap 0x%x@0x%x\n",
1270 dev_name(&pdev
->dev
), __func__
, cap
, pos
);
1276 static int vfio_ext_cap_len(struct vfio_pci_device
*vdev
, u16 ecap
, u16 epos
)
1278 struct pci_dev
*pdev
= vdev
->pdev
;
1284 case PCI_EXT_CAP_ID_VNDR
:
1285 ret
= pci_read_config_dword(pdev
, epos
+ PCI_VSEC_HDR
, &dword
);
1287 return pcibios_err_to_errno(ret
);
1289 return dword
>> PCI_VSEC_HDR_LEN_SHIFT
;
1290 case PCI_EXT_CAP_ID_VC
:
1291 case PCI_EXT_CAP_ID_VC9
:
1292 case PCI_EXT_CAP_ID_MFVC
:
1293 return vfio_vc_cap_len(vdev
, epos
);
1294 case PCI_EXT_CAP_ID_ACS
:
1295 ret
= pci_read_config_byte(pdev
, epos
+ PCI_ACS_CAP
, &byte
);
1297 return pcibios_err_to_errno(ret
);
1299 if (byte
& PCI_ACS_EC
) {
1302 ret
= pci_read_config_byte(pdev
,
1303 epos
+ PCI_ACS_EGRESS_BITS
,
1306 return pcibios_err_to_errno(ret
);
1308 bits
= byte
? round_up(byte
, 32) : 256;
1309 return 8 + (bits
/ 8);
1313 case PCI_EXT_CAP_ID_REBAR
:
1314 ret
= pci_read_config_byte(pdev
, epos
+ PCI_REBAR_CTRL
, &byte
);
1316 return pcibios_err_to_errno(ret
);
1318 byte
&= PCI_REBAR_CTRL_NBAR_MASK
;
1319 byte
>>= PCI_REBAR_CTRL_NBAR_SHIFT
;
1321 return 4 + (byte
* 8);
1322 case PCI_EXT_CAP_ID_DPA
:
1323 ret
= pci_read_config_byte(pdev
, epos
+ PCI_DPA_CAP
, &byte
);
1325 return pcibios_err_to_errno(ret
);
1327 byte
&= PCI_DPA_CAP_SUBSTATE_MASK
;
1328 return PCI_DPA_BASE_SIZEOF
+ byte
+ 1;
1329 case PCI_EXT_CAP_ID_TPH
:
1330 ret
= pci_read_config_dword(pdev
, epos
+ PCI_TPH_CAP
, &dword
);
1332 return pcibios_err_to_errno(ret
);
1334 if ((dword
& PCI_TPH_CAP_LOC_MASK
) == PCI_TPH_LOC_CAP
) {
1337 sts
= dword
& PCI_TPH_CAP_ST_MASK
;
1338 sts
>>= PCI_TPH_CAP_ST_SHIFT
;
1339 return PCI_TPH_BASE_SIZEOF
+ (sts
* 2) + 2;
1341 return PCI_TPH_BASE_SIZEOF
;
1343 pr_warn("%s: %s unknown length for pci ecap 0x%x@0x%x\n",
1344 dev_name(&pdev
->dev
), __func__
, ecap
, epos
);
1350 static int vfio_fill_vconfig_bytes(struct vfio_pci_device
*vdev
,
1351 int offset
, int size
)
1353 struct pci_dev
*pdev
= vdev
->pdev
;
1357 * We try to read physical config space in the largest chunks
1358 * we can, assuming that all of the fields support dword access.
1359 * pci_save_state() makes this same assumption and seems to do ok.
1364 if (size
>= 4 && !(offset
% 4)) {
1365 __le32
*dwordp
= (__le32
*)&vdev
->vconfig
[offset
];
1368 ret
= pci_read_config_dword(pdev
, offset
, &dword
);
1371 *dwordp
= cpu_to_le32(dword
);
1373 } else if (size
>= 2 && !(offset
% 2)) {
1374 __le16
*wordp
= (__le16
*)&vdev
->vconfig
[offset
];
1377 ret
= pci_read_config_word(pdev
, offset
, &word
);
1380 *wordp
= cpu_to_le16(word
);
1383 u8
*byte
= &vdev
->vconfig
[offset
];
1384 ret
= pci_read_config_byte(pdev
, offset
, byte
);
1397 static int vfio_cap_init(struct vfio_pci_device
*vdev
)
1399 struct pci_dev
*pdev
= vdev
->pdev
;
1400 u8
*map
= vdev
->pci_config_map
;
1403 int loops
, ret
, caps
= 0;
1405 /* Any capabilities? */
1406 ret
= pci_read_config_word(pdev
, PCI_STATUS
, &status
);
1410 if (!(status
& PCI_STATUS_CAP_LIST
))
1411 return 0; /* Done */
1413 ret
= pci_read_config_byte(pdev
, PCI_CAPABILITY_LIST
, &pos
);
1417 /* Mark the previous position in case we want to skip a capability */
1418 prev
= &vdev
->vconfig
[PCI_CAPABILITY_LIST
];
1420 /* We can bound our loop, capabilities are dword aligned */
1421 loops
= (PCI_CFG_SPACE_SIZE
- PCI_STD_HEADER_SIZEOF
) / PCI_CAP_SIZEOF
;
1422 while (pos
&& loops
--) {
1426 ret
= pci_read_config_byte(pdev
, pos
, &cap
);
1430 ret
= pci_read_config_byte(pdev
,
1431 pos
+ PCI_CAP_LIST_NEXT
, &next
);
1435 if (cap
<= PCI_CAP_ID_MAX
) {
1436 len
= pci_cap_length
[cap
];
1437 if (len
== 0xFF) { /* Variable length */
1438 len
= vfio_cap_len(vdev
, cap
, pos
);
1445 pr_info("%s: %s hiding cap 0x%x\n",
1446 __func__
, dev_name(&pdev
->dev
), cap
);
1452 /* Sanity check, do we overlap other capabilities? */
1453 for (i
= 0; i
< len
; i
++) {
1454 if (likely(map
[pos
+ i
] == PCI_CAP_ID_INVALID
))
1457 pr_warn("%s: %s pci config conflict @0x%x, was cap 0x%x now cap 0x%x\n",
1458 __func__
, dev_name(&pdev
->dev
),
1459 pos
+ i
, map
[pos
+ i
], cap
);
1462 BUILD_BUG_ON(PCI_CAP_ID_MAX
>= PCI_CAP_ID_INVALID_VIRT
);
1464 memset(map
+ pos
, cap
, len
);
1465 ret
= vfio_fill_vconfig_bytes(vdev
, pos
, len
);
1469 prev
= &vdev
->vconfig
[pos
+ PCI_CAP_LIST_NEXT
];
1474 /* If we didn't fill any capabilities, clear the status flag */
1476 __le16
*vstatus
= (__le16
*)&vdev
->vconfig
[PCI_STATUS
];
1477 *vstatus
&= ~cpu_to_le16(PCI_STATUS_CAP_LIST
);
1483 static int vfio_ecap_init(struct vfio_pci_device
*vdev
)
1485 struct pci_dev
*pdev
= vdev
->pdev
;
1486 u8
*map
= vdev
->pci_config_map
;
1488 __le32
*prev
= NULL
;
1489 int loops
, ret
, ecaps
= 0;
1491 if (!vdev
->extended_caps
)
1494 epos
= PCI_CFG_SPACE_SIZE
;
1496 loops
= (pdev
->cfg_size
- PCI_CFG_SPACE_SIZE
) / PCI_CAP_SIZEOF
;
1498 while (loops
-- && epos
>= PCI_CFG_SPACE_SIZE
) {
1502 bool hidden
= false;
1504 ret
= pci_read_config_dword(pdev
, epos
, &header
);
1508 ecap
= PCI_EXT_CAP_ID(header
);
1510 if (ecap
<= PCI_EXT_CAP_ID_MAX
) {
1511 len
= pci_ext_cap_length
[ecap
];
1513 len
= vfio_ext_cap_len(vdev
, ecap
, epos
);
1520 pr_info("%s: %s hiding ecap 0x%x@0x%x\n",
1521 __func__
, dev_name(&pdev
->dev
), ecap
, epos
);
1523 /* If not the first in the chain, we can skip over it */
1525 u32 val
= epos
= PCI_EXT_CAP_NEXT(header
);
1526 *prev
&= cpu_to_le32(~(0xffcU
<< 20));
1527 *prev
|= cpu_to_le32(val
<< 20);
1532 * Otherwise, fill in a placeholder, the direct
1533 * readfn will virtualize this automatically
1535 len
= PCI_CAP_SIZEOF
;
1539 for (i
= 0; i
< len
; i
++) {
1540 if (likely(map
[epos
+ i
] == PCI_CAP_ID_INVALID
))
1543 pr_warn("%s: %s pci config conflict @0x%x, was ecap 0x%x now ecap 0x%x\n",
1544 __func__
, dev_name(&pdev
->dev
),
1545 epos
+ i
, map
[epos
+ i
], ecap
);
1549 * Even though ecap is 2 bytes, we're currently a long way
1550 * from exceeding 1 byte capabilities. If we ever make it
1551 * up to 0xFE we'll need to up this to a two-byte, byte map.
1553 BUILD_BUG_ON(PCI_EXT_CAP_ID_MAX
>= PCI_CAP_ID_INVALID_VIRT
);
1555 memset(map
+ epos
, ecap
, len
);
1556 ret
= vfio_fill_vconfig_bytes(vdev
, epos
, len
);
1561 * If we're just using this capability to anchor the list,
1562 * hide the real ID. Only count real ecaps. XXX PCI spec
1563 * indicates to use cap id = 0, version = 0, next = 0 if
1564 * ecaps are absent, hope users check all the way to next.
1567 *(__le32
*)&vdev
->vconfig
[epos
] &=
1568 cpu_to_le32((0xffcU
<< 20));
1572 prev
= (__le32
*)&vdev
->vconfig
[epos
];
1573 epos
= PCI_EXT_CAP_NEXT(header
);
1577 *(u32
*)&vdev
->vconfig
[PCI_CFG_SPACE_SIZE
] = 0;
1583 * For each device we allocate a pci_config_map that indicates the
1584 * capability occupying each dword and thus the struct perm_bits we
1585 * use for read and write. We also allocate a virtualized config
1586 * space which tracks reads and writes to bits that we emulate for
1587 * the user. Initial values filled from device.
1589 * Using shared struct perm_bits between all vfio-pci devices saves
1590 * us from allocating cfg_size buffers for virt and write for every
1591 * device. We could remove vconfig and allocate individual buffers
1592 * for each area requiring emulated bits, but the array of pointers
1593 * would be comparable in size (at least for standard config space).
1595 int vfio_config_init(struct vfio_pci_device
*vdev
)
1597 struct pci_dev
*pdev
= vdev
->pdev
;
1602 * Config space, caps and ecaps are all dword aligned, so we could
1603 * use one byte per dword to record the type. However, there are
1604 * no requiremenst on the length of a capability, so the gap between
1605 * capabilities needs byte granularity.
1607 map
= kmalloc(pdev
->cfg_size
, GFP_KERNEL
);
1611 vconfig
= kmalloc(pdev
->cfg_size
, GFP_KERNEL
);
1617 vdev
->pci_config_map
= map
;
1618 vdev
->vconfig
= vconfig
;
1620 memset(map
, PCI_CAP_ID_BASIC
, PCI_STD_HEADER_SIZEOF
);
1621 memset(map
+ PCI_STD_HEADER_SIZEOF
, PCI_CAP_ID_INVALID
,
1622 pdev
->cfg_size
- PCI_STD_HEADER_SIZEOF
);
1624 ret
= vfio_fill_vconfig_bytes(vdev
, 0, PCI_STD_HEADER_SIZEOF
);
1628 vdev
->bardirty
= true;
1631 * XXX can we just pci_load_saved_state/pci_restore_state?
1632 * may need to rebuild vconfig after that
1635 /* For restore after reset */
1636 vdev
->rbar
[0] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_0
]);
1637 vdev
->rbar
[1] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_1
]);
1638 vdev
->rbar
[2] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_2
]);
1639 vdev
->rbar
[3] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_3
]);
1640 vdev
->rbar
[4] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_4
]);
1641 vdev
->rbar
[5] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_BASE_ADDRESS_5
]);
1642 vdev
->rbar
[6] = le32_to_cpu(*(__le32
*)&vconfig
[PCI_ROM_ADDRESS
]);
1644 if (pdev
->is_virtfn
) {
1645 *(__le16
*)&vconfig
[PCI_VENDOR_ID
] = cpu_to_le16(pdev
->vendor
);
1646 *(__le16
*)&vconfig
[PCI_DEVICE_ID
] = cpu_to_le16(pdev
->device
);
1649 if (!IS_ENABLED(CONFIG_VFIO_PCI_INTX
) || vdev
->nointx
)
1650 vconfig
[PCI_INTERRUPT_PIN
] = 0;
1652 ret
= vfio_cap_init(vdev
);
1656 ret
= vfio_ecap_init(vdev
);
1664 vdev
->pci_config_map
= NULL
;
1666 vdev
->vconfig
= NULL
;
1667 return pcibios_err_to_errno(ret
);
1670 void vfio_config_free(struct vfio_pci_device
*vdev
)
1672 kfree(vdev
->vconfig
);
1673 vdev
->vconfig
= NULL
;
1674 kfree(vdev
->pci_config_map
);
1675 vdev
->pci_config_map
= NULL
;
1676 kfree(vdev
->msi_perm
);
1677 vdev
->msi_perm
= NULL
;
1681 * Find the remaining number of bytes in a dword that match the given
1682 * position. Stop at either the end of the capability or the dword boundary.
1684 static size_t vfio_pci_cap_remaining_dword(struct vfio_pci_device
*vdev
,
1687 u8 cap
= vdev
->pci_config_map
[pos
];
1690 for (i
= 1; (pos
+ i
) % 4 && vdev
->pci_config_map
[pos
+ i
] == cap
; i
++)
1696 static ssize_t
vfio_config_do_rw(struct vfio_pci_device
*vdev
, char __user
*buf
,
1697 size_t count
, loff_t
*ppos
, bool iswrite
)
1699 struct pci_dev
*pdev
= vdev
->pdev
;
1700 struct perm_bits
*perm
;
1702 int cap_start
= 0, offset
;
1706 if (*ppos
< 0 || *ppos
>= pdev
->cfg_size
||
1707 *ppos
+ count
> pdev
->cfg_size
)
1711 * Chop accesses into aligned chunks containing no more than a
1712 * single capability. Caller increments to the next chunk.
1714 count
= min(count
, vfio_pci_cap_remaining_dword(vdev
, *ppos
));
1715 if (count
>= 4 && !(*ppos
% 4))
1717 else if (count
>= 2 && !(*ppos
% 2))
1724 cap_id
= vdev
->pci_config_map
[*ppos
];
1726 if (cap_id
== PCI_CAP_ID_INVALID
) {
1727 perm
= &unassigned_perms
;
1729 } else if (cap_id
== PCI_CAP_ID_INVALID_VIRT
) {
1733 if (*ppos
>= PCI_CFG_SPACE_SIZE
) {
1734 WARN_ON(cap_id
> PCI_EXT_CAP_ID_MAX
);
1736 perm
= &ecap_perms
[cap_id
];
1737 cap_start
= vfio_find_cap_start(vdev
, *ppos
);
1739 WARN_ON(cap_id
> PCI_CAP_ID_MAX
);
1741 perm
= &cap_perms
[cap_id
];
1743 if (cap_id
== PCI_CAP_ID_MSI
)
1744 perm
= vdev
->msi_perm
;
1746 if (cap_id
> PCI_CAP_ID_BASIC
)
1747 cap_start
= vfio_find_cap_start(vdev
, *ppos
);
1751 WARN_ON(!cap_start
&& cap_id
!= PCI_CAP_ID_BASIC
);
1752 WARN_ON(cap_start
> *ppos
);
1754 offset
= *ppos
- cap_start
;
1760 if (copy_from_user(&val
, buf
, count
))
1763 ret
= perm
->writefn(vdev
, *ppos
, count
, perm
, offset
, val
);
1766 ret
= perm
->readfn(vdev
, *ppos
, count
,
1767 perm
, offset
, &val
);
1772 if (copy_to_user(buf
, &val
, count
))
1779 ssize_t
vfio_pci_config_rw(struct vfio_pci_device
*vdev
, char __user
*buf
,
1780 size_t count
, loff_t
*ppos
, bool iswrite
)
1786 pos
&= VFIO_PCI_OFFSET_MASK
;
1789 ret
= vfio_config_do_rw(vdev
, buf
, count
, &pos
, iswrite
);