1 /* include/asm-generic/tlb.h
3 * Generic TLB shootdown code
5 * Copyright 2001 Red Hat, Inc.
6 * Based on code from mm/memory.c Copyright Linus Torvalds and others.
8 * Copyright 2011 Red Hat, Inc., Peter Zijlstra
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License
12 * as published by the Free Software Foundation; either version
13 * 2 of the License, or (at your option) any later version.
15 #ifndef _ASM_GENERIC__TLB_H
16 #define _ASM_GENERIC__TLB_H
18 #include <linux/swap.h>
19 #include <asm/pgalloc.h>
20 #include <asm/tlbflush.h>
22 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
24 * Semi RCU freeing of the page directories.
26 * This is needed by some architectures to implement software pagetable walkers.
28 * gup_fast() and other software pagetable walkers do a lockless page-table
29 * walk and therefore needs some synchronization with the freeing of the page
30 * directories. The chosen means to accomplish that is by disabling IRQs over
33 * Architectures that use IPIs to flush TLBs will then automagically DTRT,
34 * since we unlink the page, flush TLBs, free the page. Since the disabling of
35 * IRQs delays the completion of the TLB flush we can never observe an already
38 * Architectures that do not have this (PPC) need to delay the freeing by some
39 * other means, this is that means.
41 * What we do is batch the freed directory pages (tables) and RCU free them.
42 * We use the sched RCU variant, as that guarantees that IRQ/preempt disabling
43 * holds off grace periods.
45 * However, in order to batch these pages we need to allocate storage, this
46 * allocation is deep inside the MM code and can thus easily fail on memory
47 * pressure. To guarantee progress we fall back to single table freeing, see
48 * the implementation of tlb_remove_table_one().
51 struct mmu_table_batch
{
57 #define MAX_TABLE_BATCH \
58 ((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
60 extern void tlb_table_flush(struct mmu_gather
*tlb
);
61 extern void tlb_remove_table(struct mmu_gather
*tlb
, void *table
);
66 * If we can't allocate a page to make a big batch of page pointers
67 * to work on, then just handle a few from the on-stack structure.
69 #define MMU_GATHER_BUNDLE 8
71 struct mmu_gather_batch
{
72 struct mmu_gather_batch
*next
;
75 struct page
*pages
[0];
78 #define MAX_GATHER_BATCH \
79 ((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
82 * Limit the maximum number of mmu_gather batches to reduce a risk of soft
83 * lockups for non-preemptible kernels on huge machines when a lot of memory
84 * is zapped during unmapping.
85 * 10K pages freed at once should be safe even without a preemption point.
87 #define MAX_GATHER_BATCH_COUNT (10000UL/MAX_GATHER_BATCH)
89 /* struct mmu_gather is an opaque type used by the mm code for passing around
90 * any data needed by arch specific code for tlb_remove_page.
94 #ifdef CONFIG_HAVE_RCU_TABLE_FREE
95 struct mmu_table_batch
*batch
;
99 /* we are in the middle of an operation to clear
100 * a full mm and can make some optimizations */
101 unsigned int fullmm
: 1,
102 /* we have performed an operation which
103 * requires a complete flush of the tlb */
106 struct mmu_gather_batch
*active
;
107 struct mmu_gather_batch local
;
108 struct page
*__pages
[MMU_GATHER_BUNDLE
];
109 unsigned int batch_count
;
113 #define HAVE_GENERIC_MMU_GATHER
115 void tlb_gather_mmu(struct mmu_gather
*tlb
, struct mm_struct
*mm
, unsigned long start
, unsigned long end
);
116 void tlb_flush_mmu(struct mmu_gather
*tlb
);
117 void tlb_finish_mmu(struct mmu_gather
*tlb
, unsigned long start
,
119 extern bool __tlb_remove_page_size(struct mmu_gather
*tlb
, struct page
*page
,
122 static inline void __tlb_adjust_range(struct mmu_gather
*tlb
,
123 unsigned long address
,
124 unsigned int range_size
)
126 tlb
->start
= min(tlb
->start
, address
);
127 tlb
->end
= max(tlb
->end
, address
+ range_size
);
130 static inline void __tlb_reset_range(struct mmu_gather
*tlb
)
133 tlb
->start
= tlb
->end
= ~0;
135 tlb
->start
= TASK_SIZE
;
140 static inline void tlb_remove_page_size(struct mmu_gather
*tlb
,
141 struct page
*page
, int page_size
)
143 if (__tlb_remove_page_size(tlb
, page
, page_size
))
147 static inline bool __tlb_remove_page(struct mmu_gather
*tlb
, struct page
*page
)
149 return __tlb_remove_page_size(tlb
, page
, PAGE_SIZE
);
153 * Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
156 static inline void tlb_remove_page(struct mmu_gather
*tlb
, struct page
*page
)
158 return tlb_remove_page_size(tlb
, page
, PAGE_SIZE
);
161 #ifndef tlb_remove_check_page_size_change
162 #define tlb_remove_check_page_size_change tlb_remove_check_page_size_change
163 static inline void tlb_remove_check_page_size_change(struct mmu_gather
*tlb
,
164 unsigned int page_size
)
167 * We don't care about page size change, just update
168 * mmu_gather page size here so that debug checks
169 * doesn't throw false warning.
171 #ifdef CONFIG_DEBUG_VM
172 tlb
->page_size
= page_size
;
178 * In the case of tlb vma handling, we can optimise these away in the
179 * case where we're doing a full MM flush. When we're doing a munmap,
180 * the vmas are adjusted to only cover the region to be torn down.
182 #ifndef tlb_start_vma
183 #define tlb_start_vma(tlb, vma) do { } while (0)
186 #define __tlb_end_vma(tlb, vma) \
188 if (!tlb->fullmm && tlb->end) { \
190 __tlb_reset_range(tlb); \
195 #define tlb_end_vma __tlb_end_vma
198 #ifndef __tlb_remove_tlb_entry
199 #define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
203 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
205 * Record the fact that pte's were really unmapped by updating the range,
206 * so we can later optimise away the tlb invalidate. This helps when
207 * userspace is unmapping already-unmapped pages, which happens quite a lot.
209 #define tlb_remove_tlb_entry(tlb, ptep, address) \
211 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
212 __tlb_remove_tlb_entry(tlb, ptep, address); \
215 #define tlb_remove_huge_tlb_entry(h, tlb, ptep, address) \
217 __tlb_adjust_range(tlb, address, huge_page_size(h)); \
218 __tlb_remove_tlb_entry(tlb, ptep, address); \
222 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
223 * This is a nop so far, because only x86 needs it.
225 #ifndef __tlb_remove_pmd_tlb_entry
226 #define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
229 #define tlb_remove_pmd_tlb_entry(tlb, pmdp, address) \
231 __tlb_adjust_range(tlb, address, HPAGE_PMD_SIZE); \
232 __tlb_remove_pmd_tlb_entry(tlb, pmdp, address); \
236 * For things like page tables caches (ie caching addresses "inside" the
237 * page tables, like x86 does), for legacy reasons, flushing an
238 * individual page had better flush the page table caches behind it. This
239 * is definitely how x86 works, for example. And if you have an
240 * architected non-legacy page table cache (which I'm not aware of
241 * anybody actually doing), you're going to have some architecturally
242 * explicit flushing for that, likely *separate* from a regular TLB entry
243 * flush, and thus you'd need more than just some range expansion..
245 * So if we ever find an architecture
246 * that would want something that odd, I think it is up to that
247 * architecture to do its own odd thing, not cause pain for others
248 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
250 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
253 #define pte_free_tlb(tlb, ptep, address) \
255 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
256 __pte_free_tlb(tlb, ptep, address); \
259 #ifndef __ARCH_HAS_4LEVEL_HACK
260 #define pud_free_tlb(tlb, pudp, address) \
262 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
263 __pud_free_tlb(tlb, pudp, address); \
267 #define pmd_free_tlb(tlb, pmdp, address) \
269 __tlb_adjust_range(tlb, address, PAGE_SIZE); \
270 __pmd_free_tlb(tlb, pmdp, address); \
273 #define tlb_migrate_finish(mm) do {} while (0)
275 #endif /* _ASM_GENERIC__TLB_H */