powerpc/mm/4k: don't allocate larger pmd page table for 4k
[linux/fpc-iii.git] / lib / rational.c
blobf0aa21c2a762415dd07d7bd9c8432d4ebfcbfe48
1 /*
2 * rational fractions
4 * Copyright (C) 2009 emlix GmbH, Oskar Schirmer <oskar@scara.com>
6 * helper functions when coping with rational numbers
7 */
9 #include <linux/rational.h>
10 #include <linux/compiler.h>
11 #include <linux/export.h>
14 * calculate best rational approximation for a given fraction
15 * taking into account restricted register size, e.g. to find
16 * appropriate values for a pll with 5 bit denominator and
17 * 8 bit numerator register fields, trying to set up with a
18 * frequency ratio of 3.1415, one would say:
20 * rational_best_approximation(31415, 10000,
21 * (1 << 8) - 1, (1 << 5) - 1, &n, &d);
23 * you may look at given_numerator as a fixed point number,
24 * with the fractional part size described in given_denominator.
26 * for theoretical background, see:
27 * http://en.wikipedia.org/wiki/Continued_fraction
30 void rational_best_approximation(
31 unsigned long given_numerator, unsigned long given_denominator,
32 unsigned long max_numerator, unsigned long max_denominator,
33 unsigned long *best_numerator, unsigned long *best_denominator)
35 unsigned long n, d, n0, d0, n1, d1;
36 n = given_numerator;
37 d = given_denominator;
38 n0 = d1 = 0;
39 n1 = d0 = 1;
40 for (;;) {
41 unsigned long t, a;
42 if ((n1 > max_numerator) || (d1 > max_denominator)) {
43 n1 = n0;
44 d1 = d0;
45 break;
47 if (d == 0)
48 break;
49 t = d;
50 a = n / d;
51 d = n % d;
52 n = t;
53 t = n0 + a * n1;
54 n0 = n1;
55 n1 = t;
56 t = d0 + a * d1;
57 d0 = d1;
58 d1 = t;
60 *best_numerator = n1;
61 *best_denominator = d1;
64 EXPORT_SYMBOL(rational_best_approximation);