2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 #include <linux/cpu.h>
11 #include <linux/swap.h>
12 #include <linux/migrate.h>
13 #include <linux/compaction.h>
14 #include <linux/mm_inline.h>
15 #include <linux/backing-dev.h>
16 #include <linux/sysctl.h>
17 #include <linux/sysfs.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include <linux/kthread.h>
21 #include <linux/freezer.h>
22 #include <linux/page_owner.h>
25 #ifdef CONFIG_COMPACTION
26 static inline void count_compact_event(enum vm_event_item item
)
31 static inline void count_compact_events(enum vm_event_item item
, long delta
)
33 count_vm_events(item
, delta
);
36 #define count_compact_event(item) do { } while (0)
37 #define count_compact_events(item, delta) do { } while (0)
40 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
42 #define CREATE_TRACE_POINTS
43 #include <trace/events/compaction.h>
45 #define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
46 #define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
47 #define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
48 #define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
50 static unsigned long release_freepages(struct list_head
*freelist
)
52 struct page
*page
, *next
;
53 unsigned long high_pfn
= 0;
55 list_for_each_entry_safe(page
, next
, freelist
, lru
) {
56 unsigned long pfn
= page_to_pfn(page
);
66 static void map_pages(struct list_head
*list
)
68 unsigned int i
, order
, nr_pages
;
69 struct page
*page
, *next
;
72 list_for_each_entry_safe(page
, next
, list
, lru
) {
75 order
= page_private(page
);
76 nr_pages
= 1 << order
;
78 post_alloc_hook(page
, order
, __GFP_MOVABLE
);
80 split_page(page
, order
);
82 for (i
= 0; i
< nr_pages
; i
++) {
83 list_add(&page
->lru
, &tmp_list
);
88 list_splice(&tmp_list
, list
);
91 static inline bool migrate_async_suitable(int migratetype
)
93 return is_migrate_cma(migratetype
) || migratetype
== MIGRATE_MOVABLE
;
96 #ifdef CONFIG_COMPACTION
98 int PageMovable(struct page
*page
)
100 struct address_space
*mapping
;
102 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
103 if (!__PageMovable(page
))
106 mapping
= page_mapping(page
);
107 if (mapping
&& mapping
->a_ops
&& mapping
->a_ops
->isolate_page
)
112 EXPORT_SYMBOL(PageMovable
);
114 void __SetPageMovable(struct page
*page
, struct address_space
*mapping
)
116 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
117 VM_BUG_ON_PAGE((unsigned long)mapping
& PAGE_MAPPING_MOVABLE
, page
);
118 page
->mapping
= (void *)((unsigned long)mapping
| PAGE_MAPPING_MOVABLE
);
120 EXPORT_SYMBOL(__SetPageMovable
);
122 void __ClearPageMovable(struct page
*page
)
124 VM_BUG_ON_PAGE(!PageLocked(page
), page
);
125 VM_BUG_ON_PAGE(!PageMovable(page
), page
);
127 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
128 * flag so that VM can catch up released page by driver after isolation.
129 * With it, VM migration doesn't try to put it back.
131 page
->mapping
= (void *)((unsigned long)page
->mapping
&
132 PAGE_MAPPING_MOVABLE
);
134 EXPORT_SYMBOL(__ClearPageMovable
);
136 /* Do not skip compaction more than 64 times */
137 #define COMPACT_MAX_DEFER_SHIFT 6
140 * Compaction is deferred when compaction fails to result in a page
141 * allocation success. 1 << compact_defer_limit compactions are skipped up
142 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
144 void defer_compaction(struct zone
*zone
, int order
)
146 zone
->compact_considered
= 0;
147 zone
->compact_defer_shift
++;
149 if (order
< zone
->compact_order_failed
)
150 zone
->compact_order_failed
= order
;
152 if (zone
->compact_defer_shift
> COMPACT_MAX_DEFER_SHIFT
)
153 zone
->compact_defer_shift
= COMPACT_MAX_DEFER_SHIFT
;
155 trace_mm_compaction_defer_compaction(zone
, order
);
158 /* Returns true if compaction should be skipped this time */
159 bool compaction_deferred(struct zone
*zone
, int order
)
161 unsigned long defer_limit
= 1UL << zone
->compact_defer_shift
;
163 if (order
< zone
->compact_order_failed
)
166 /* Avoid possible overflow */
167 if (++zone
->compact_considered
> defer_limit
)
168 zone
->compact_considered
= defer_limit
;
170 if (zone
->compact_considered
>= defer_limit
)
173 trace_mm_compaction_deferred(zone
, order
);
179 * Update defer tracking counters after successful compaction of given order,
180 * which means an allocation either succeeded (alloc_success == true) or is
181 * expected to succeed.
183 void compaction_defer_reset(struct zone
*zone
, int order
,
187 zone
->compact_considered
= 0;
188 zone
->compact_defer_shift
= 0;
190 if (order
>= zone
->compact_order_failed
)
191 zone
->compact_order_failed
= order
+ 1;
193 trace_mm_compaction_defer_reset(zone
, order
);
196 /* Returns true if restarting compaction after many failures */
197 bool compaction_restarting(struct zone
*zone
, int order
)
199 if (order
< zone
->compact_order_failed
)
202 return zone
->compact_defer_shift
== COMPACT_MAX_DEFER_SHIFT
&&
203 zone
->compact_considered
>= 1UL << zone
->compact_defer_shift
;
206 /* Returns true if the pageblock should be scanned for pages to isolate. */
207 static inline bool isolation_suitable(struct compact_control
*cc
,
210 if (cc
->ignore_skip_hint
)
213 return !get_pageblock_skip(page
);
216 static void reset_cached_positions(struct zone
*zone
)
218 zone
->compact_cached_migrate_pfn
[0] = zone
->zone_start_pfn
;
219 zone
->compact_cached_migrate_pfn
[1] = zone
->zone_start_pfn
;
220 zone
->compact_cached_free_pfn
=
221 pageblock_start_pfn(zone_end_pfn(zone
) - 1);
225 * This function is called to clear all cached information on pageblocks that
226 * should be skipped for page isolation when the migrate and free page scanner
229 static void __reset_isolation_suitable(struct zone
*zone
)
231 unsigned long start_pfn
= zone
->zone_start_pfn
;
232 unsigned long end_pfn
= zone_end_pfn(zone
);
235 zone
->compact_blockskip_flush
= false;
237 /* Walk the zone and mark every pageblock as suitable for isolation */
238 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
246 page
= pfn_to_page(pfn
);
247 if (zone
!= page_zone(page
))
250 clear_pageblock_skip(page
);
253 reset_cached_positions(zone
);
256 void reset_isolation_suitable(pg_data_t
*pgdat
)
260 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
261 struct zone
*zone
= &pgdat
->node_zones
[zoneid
];
262 if (!populated_zone(zone
))
265 /* Only flush if a full compaction finished recently */
266 if (zone
->compact_blockskip_flush
)
267 __reset_isolation_suitable(zone
);
272 * If no pages were isolated then mark this pageblock to be skipped in the
273 * future. The information is later cleared by __reset_isolation_suitable().
275 static void update_pageblock_skip(struct compact_control
*cc
,
276 struct page
*page
, unsigned long nr_isolated
,
277 bool migrate_scanner
)
279 struct zone
*zone
= cc
->zone
;
282 if (cc
->ignore_skip_hint
)
291 set_pageblock_skip(page
);
293 pfn
= page_to_pfn(page
);
295 /* Update where async and sync compaction should restart */
296 if (migrate_scanner
) {
297 if (pfn
> zone
->compact_cached_migrate_pfn
[0])
298 zone
->compact_cached_migrate_pfn
[0] = pfn
;
299 if (cc
->mode
!= MIGRATE_ASYNC
&&
300 pfn
> zone
->compact_cached_migrate_pfn
[1])
301 zone
->compact_cached_migrate_pfn
[1] = pfn
;
303 if (pfn
< zone
->compact_cached_free_pfn
)
304 zone
->compact_cached_free_pfn
= pfn
;
308 static inline bool isolation_suitable(struct compact_control
*cc
,
314 static void update_pageblock_skip(struct compact_control
*cc
,
315 struct page
*page
, unsigned long nr_isolated
,
316 bool migrate_scanner
)
319 #endif /* CONFIG_COMPACTION */
322 * Compaction requires the taking of some coarse locks that are potentially
323 * very heavily contended. For async compaction, back out if the lock cannot
324 * be taken immediately. For sync compaction, spin on the lock if needed.
326 * Returns true if the lock is held
327 * Returns false if the lock is not held and compaction should abort
329 static bool compact_trylock_irqsave(spinlock_t
*lock
, unsigned long *flags
,
330 struct compact_control
*cc
)
332 if (cc
->mode
== MIGRATE_ASYNC
) {
333 if (!spin_trylock_irqsave(lock
, *flags
)) {
334 cc
->contended
= true;
338 spin_lock_irqsave(lock
, *flags
);
345 * Compaction requires the taking of some coarse locks that are potentially
346 * very heavily contended. The lock should be periodically unlocked to avoid
347 * having disabled IRQs for a long time, even when there is nobody waiting on
348 * the lock. It might also be that allowing the IRQs will result in
349 * need_resched() becoming true. If scheduling is needed, async compaction
350 * aborts. Sync compaction schedules.
351 * Either compaction type will also abort if a fatal signal is pending.
352 * In either case if the lock was locked, it is dropped and not regained.
354 * Returns true if compaction should abort due to fatal signal pending, or
355 * async compaction due to need_resched()
356 * Returns false when compaction can continue (sync compaction might have
359 static bool compact_unlock_should_abort(spinlock_t
*lock
,
360 unsigned long flags
, bool *locked
, struct compact_control
*cc
)
363 spin_unlock_irqrestore(lock
, flags
);
367 if (fatal_signal_pending(current
)) {
368 cc
->contended
= true;
372 if (need_resched()) {
373 if (cc
->mode
== MIGRATE_ASYNC
) {
374 cc
->contended
= true;
384 * Aside from avoiding lock contention, compaction also periodically checks
385 * need_resched() and either schedules in sync compaction or aborts async
386 * compaction. This is similar to what compact_unlock_should_abort() does, but
387 * is used where no lock is concerned.
389 * Returns false when no scheduling was needed, or sync compaction scheduled.
390 * Returns true when async compaction should abort.
392 static inline bool compact_should_abort(struct compact_control
*cc
)
394 /* async compaction aborts if contended */
395 if (need_resched()) {
396 if (cc
->mode
== MIGRATE_ASYNC
) {
397 cc
->contended
= true;
408 * Isolate free pages onto a private freelist. If @strict is true, will abort
409 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
410 * (even though it may still end up isolating some pages).
412 static unsigned long isolate_freepages_block(struct compact_control
*cc
,
413 unsigned long *start_pfn
,
414 unsigned long end_pfn
,
415 struct list_head
*freelist
,
418 int nr_scanned
= 0, total_isolated
= 0;
419 struct page
*cursor
, *valid_page
= NULL
;
420 unsigned long flags
= 0;
422 unsigned long blockpfn
= *start_pfn
;
425 cursor
= pfn_to_page(blockpfn
);
427 /* Isolate free pages. */
428 for (; blockpfn
< end_pfn
; blockpfn
++, cursor
++) {
430 struct page
*page
= cursor
;
433 * Periodically drop the lock (if held) regardless of its
434 * contention, to give chance to IRQs. Abort if fatal signal
435 * pending or async compaction detects need_resched()
437 if (!(blockpfn
% SWAP_CLUSTER_MAX
)
438 && compact_unlock_should_abort(&cc
->zone
->lock
, flags
,
443 if (!pfn_valid_within(blockpfn
))
450 * For compound pages such as THP and hugetlbfs, we can save
451 * potentially a lot of iterations if we skip them at once.
452 * The check is racy, but we can consider only valid values
453 * and the only danger is skipping too much.
455 if (PageCompound(page
)) {
456 unsigned int comp_order
= compound_order(page
);
458 if (likely(comp_order
< MAX_ORDER
)) {
459 blockpfn
+= (1UL << comp_order
) - 1;
460 cursor
+= (1UL << comp_order
) - 1;
466 if (!PageBuddy(page
))
470 * If we already hold the lock, we can skip some rechecking.
471 * Note that if we hold the lock now, checked_pageblock was
472 * already set in some previous iteration (or strict is true),
473 * so it is correct to skip the suitable migration target
478 * The zone lock must be held to isolate freepages.
479 * Unfortunately this is a very coarse lock and can be
480 * heavily contended if there are parallel allocations
481 * or parallel compactions. For async compaction do not
482 * spin on the lock and we acquire the lock as late as
485 locked
= compact_trylock_irqsave(&cc
->zone
->lock
,
490 /* Recheck this is a buddy page under lock */
491 if (!PageBuddy(page
))
495 /* Found a free page, will break it into order-0 pages */
496 order
= page_order(page
);
497 isolated
= __isolate_free_page(page
, order
);
500 set_page_private(page
, order
);
502 total_isolated
+= isolated
;
503 cc
->nr_freepages
+= isolated
;
504 list_add_tail(&page
->lru
, freelist
);
506 if (!strict
&& cc
->nr_migratepages
<= cc
->nr_freepages
) {
507 blockpfn
+= isolated
;
510 /* Advance to the end of split page */
511 blockpfn
+= isolated
- 1;
512 cursor
+= isolated
- 1;
524 spin_unlock_irqrestore(&cc
->zone
->lock
, flags
);
527 * There is a tiny chance that we have read bogus compound_order(),
528 * so be careful to not go outside of the pageblock.
530 if (unlikely(blockpfn
> end_pfn
))
533 trace_mm_compaction_isolate_freepages(*start_pfn
, blockpfn
,
534 nr_scanned
, total_isolated
);
536 /* Record how far we have got within the block */
537 *start_pfn
= blockpfn
;
540 * If strict isolation is requested by CMA then check that all the
541 * pages requested were isolated. If there were any failures, 0 is
542 * returned and CMA will fail.
544 if (strict
&& blockpfn
< end_pfn
)
547 /* Update the pageblock-skip if the whole pageblock was scanned */
548 if (blockpfn
== end_pfn
)
549 update_pageblock_skip(cc
, valid_page
, total_isolated
, false);
551 count_compact_events(COMPACTFREE_SCANNED
, nr_scanned
);
553 count_compact_events(COMPACTISOLATED
, total_isolated
);
554 return total_isolated
;
558 * isolate_freepages_range() - isolate free pages.
559 * @start_pfn: The first PFN to start isolating.
560 * @end_pfn: The one-past-last PFN.
562 * Non-free pages, invalid PFNs, or zone boundaries within the
563 * [start_pfn, end_pfn) range are considered errors, cause function to
564 * undo its actions and return zero.
566 * Otherwise, function returns one-past-the-last PFN of isolated page
567 * (which may be greater then end_pfn if end fell in a middle of
571 isolate_freepages_range(struct compact_control
*cc
,
572 unsigned long start_pfn
, unsigned long end_pfn
)
574 unsigned long isolated
, pfn
, block_start_pfn
, block_end_pfn
;
578 block_start_pfn
= pageblock_start_pfn(pfn
);
579 if (block_start_pfn
< cc
->zone
->zone_start_pfn
)
580 block_start_pfn
= cc
->zone
->zone_start_pfn
;
581 block_end_pfn
= pageblock_end_pfn(pfn
);
583 for (; pfn
< end_pfn
; pfn
+= isolated
,
584 block_start_pfn
= block_end_pfn
,
585 block_end_pfn
+= pageblock_nr_pages
) {
586 /* Protect pfn from changing by isolate_freepages_block */
587 unsigned long isolate_start_pfn
= pfn
;
589 block_end_pfn
= min(block_end_pfn
, end_pfn
);
592 * pfn could pass the block_end_pfn if isolated freepage
593 * is more than pageblock order. In this case, we adjust
594 * scanning range to right one.
596 if (pfn
>= block_end_pfn
) {
597 block_start_pfn
= pageblock_start_pfn(pfn
);
598 block_end_pfn
= pageblock_end_pfn(pfn
);
599 block_end_pfn
= min(block_end_pfn
, end_pfn
);
602 if (!pageblock_pfn_to_page(block_start_pfn
,
603 block_end_pfn
, cc
->zone
))
606 isolated
= isolate_freepages_block(cc
, &isolate_start_pfn
,
607 block_end_pfn
, &freelist
, true);
610 * In strict mode, isolate_freepages_block() returns 0 if
611 * there are any holes in the block (ie. invalid PFNs or
618 * If we managed to isolate pages, it is always (1 << n) *
619 * pageblock_nr_pages for some non-negative n. (Max order
620 * page may span two pageblocks).
624 /* __isolate_free_page() does not map the pages */
625 map_pages(&freelist
);
628 /* Loop terminated early, cleanup. */
629 release_freepages(&freelist
);
633 /* We don't use freelists for anything. */
637 /* Similar to reclaim, but different enough that they don't share logic */
638 static bool too_many_isolated(struct zone
*zone
)
640 unsigned long active
, inactive
, isolated
;
642 inactive
= node_page_state(zone
->zone_pgdat
, NR_INACTIVE_FILE
) +
643 node_page_state(zone
->zone_pgdat
, NR_INACTIVE_ANON
);
644 active
= node_page_state(zone
->zone_pgdat
, NR_ACTIVE_FILE
) +
645 node_page_state(zone
->zone_pgdat
, NR_ACTIVE_ANON
);
646 isolated
= node_page_state(zone
->zone_pgdat
, NR_ISOLATED_FILE
) +
647 node_page_state(zone
->zone_pgdat
, NR_ISOLATED_ANON
);
649 return isolated
> (inactive
+ active
) / 2;
653 * isolate_migratepages_block() - isolate all migrate-able pages within
655 * @cc: Compaction control structure.
656 * @low_pfn: The first PFN to isolate
657 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
658 * @isolate_mode: Isolation mode to be used.
660 * Isolate all pages that can be migrated from the range specified by
661 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
662 * Returns zero if there is a fatal signal pending, otherwise PFN of the
663 * first page that was not scanned (which may be both less, equal to or more
666 * The pages are isolated on cc->migratepages list (not required to be empty),
667 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
668 * is neither read nor updated.
671 isolate_migratepages_block(struct compact_control
*cc
, unsigned long low_pfn
,
672 unsigned long end_pfn
, isolate_mode_t isolate_mode
)
674 struct zone
*zone
= cc
->zone
;
675 unsigned long nr_scanned
= 0, nr_isolated
= 0;
676 struct lruvec
*lruvec
;
677 unsigned long flags
= 0;
679 struct page
*page
= NULL
, *valid_page
= NULL
;
680 unsigned long start_pfn
= low_pfn
;
681 bool skip_on_failure
= false;
682 unsigned long next_skip_pfn
= 0;
685 * Ensure that there are not too many pages isolated from the LRU
686 * list by either parallel reclaimers or compaction. If there are,
687 * delay for some time until fewer pages are isolated
689 while (unlikely(too_many_isolated(zone
))) {
690 /* async migration should just abort */
691 if (cc
->mode
== MIGRATE_ASYNC
)
694 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
696 if (fatal_signal_pending(current
))
700 if (compact_should_abort(cc
))
703 if (cc
->direct_compaction
&& (cc
->mode
== MIGRATE_ASYNC
)) {
704 skip_on_failure
= true;
705 next_skip_pfn
= block_end_pfn(low_pfn
, cc
->order
);
708 /* Time to isolate some pages for migration */
709 for (; low_pfn
< end_pfn
; low_pfn
++) {
711 if (skip_on_failure
&& low_pfn
>= next_skip_pfn
) {
713 * We have isolated all migration candidates in the
714 * previous order-aligned block, and did not skip it due
715 * to failure. We should migrate the pages now and
716 * hopefully succeed compaction.
722 * We failed to isolate in the previous order-aligned
723 * block. Set the new boundary to the end of the
724 * current block. Note we can't simply increase
725 * next_skip_pfn by 1 << order, as low_pfn might have
726 * been incremented by a higher number due to skipping
727 * a compound or a high-order buddy page in the
728 * previous loop iteration.
730 next_skip_pfn
= block_end_pfn(low_pfn
, cc
->order
);
734 * Periodically drop the lock (if held) regardless of its
735 * contention, to give chance to IRQs. Abort async compaction
738 if (!(low_pfn
% SWAP_CLUSTER_MAX
)
739 && compact_unlock_should_abort(zone_lru_lock(zone
), flags
,
743 if (!pfn_valid_within(low_pfn
))
747 page
= pfn_to_page(low_pfn
);
753 * Skip if free. We read page order here without zone lock
754 * which is generally unsafe, but the race window is small and
755 * the worst thing that can happen is that we skip some
756 * potential isolation targets.
758 if (PageBuddy(page
)) {
759 unsigned long freepage_order
= page_order_unsafe(page
);
762 * Without lock, we cannot be sure that what we got is
763 * a valid page order. Consider only values in the
764 * valid order range to prevent low_pfn overflow.
766 if (freepage_order
> 0 && freepage_order
< MAX_ORDER
)
767 low_pfn
+= (1UL << freepage_order
) - 1;
772 * Regardless of being on LRU, compound pages such as THP and
773 * hugetlbfs are not to be compacted. We can potentially save
774 * a lot of iterations if we skip them at once. The check is
775 * racy, but we can consider only valid values and the only
776 * danger is skipping too much.
778 if (PageCompound(page
)) {
779 unsigned int comp_order
= compound_order(page
);
781 if (likely(comp_order
< MAX_ORDER
))
782 low_pfn
+= (1UL << comp_order
) - 1;
788 * Check may be lockless but that's ok as we recheck later.
789 * It's possible to migrate LRU and non-lru movable pages.
790 * Skip any other type of page
792 if (!PageLRU(page
)) {
794 * __PageMovable can return false positive so we need
795 * to verify it under page_lock.
797 if (unlikely(__PageMovable(page
)) &&
798 !PageIsolated(page
)) {
800 spin_unlock_irqrestore(zone_lru_lock(zone
),
805 if (isolate_movable_page(page
, isolate_mode
))
806 goto isolate_success
;
813 * Migration will fail if an anonymous page is pinned in memory,
814 * so avoid taking lru_lock and isolating it unnecessarily in an
815 * admittedly racy check.
817 if (!page_mapping(page
) &&
818 page_count(page
) > page_mapcount(page
))
822 * Only allow to migrate anonymous pages in GFP_NOFS context
823 * because those do not depend on fs locks.
825 if (!(cc
->gfp_mask
& __GFP_FS
) && page_mapping(page
))
828 /* If we already hold the lock, we can skip some rechecking */
830 locked
= compact_trylock_irqsave(zone_lru_lock(zone
),
835 /* Recheck PageLRU and PageCompound under lock */
840 * Page become compound since the non-locked check,
841 * and it's on LRU. It can only be a THP so the order
842 * is safe to read and it's 0 for tail pages.
844 if (unlikely(PageCompound(page
))) {
845 low_pfn
+= (1UL << compound_order(page
)) - 1;
850 lruvec
= mem_cgroup_page_lruvec(page
, zone
->zone_pgdat
);
852 /* Try isolate the page */
853 if (__isolate_lru_page(page
, isolate_mode
) != 0)
856 VM_BUG_ON_PAGE(PageCompound(page
), page
);
858 /* Successfully isolated */
859 del_page_from_lru_list(page
, lruvec
, page_lru(page
));
860 inc_node_page_state(page
,
861 NR_ISOLATED_ANON
+ page_is_file_cache(page
));
864 list_add(&page
->lru
, &cc
->migratepages
);
865 cc
->nr_migratepages
++;
869 * Record where we could have freed pages by migration and not
870 * yet flushed them to buddy allocator.
871 * - this is the lowest page that was isolated and likely be
872 * then freed by migration.
874 if (!cc
->last_migrated_pfn
)
875 cc
->last_migrated_pfn
= low_pfn
;
877 /* Avoid isolating too much */
878 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
) {
885 if (!skip_on_failure
)
889 * We have isolated some pages, but then failed. Release them
890 * instead of migrating, as we cannot form the cc->order buddy
895 spin_unlock_irqrestore(zone_lru_lock(zone
), flags
);
898 putback_movable_pages(&cc
->migratepages
);
899 cc
->nr_migratepages
= 0;
900 cc
->last_migrated_pfn
= 0;
904 if (low_pfn
< next_skip_pfn
) {
905 low_pfn
= next_skip_pfn
- 1;
907 * The check near the loop beginning would have updated
908 * next_skip_pfn too, but this is a bit simpler.
910 next_skip_pfn
+= 1UL << cc
->order
;
915 * The PageBuddy() check could have potentially brought us outside
916 * the range to be scanned.
918 if (unlikely(low_pfn
> end_pfn
))
922 spin_unlock_irqrestore(zone_lru_lock(zone
), flags
);
925 * Update the pageblock-skip information and cached scanner pfn,
926 * if the whole pageblock was scanned without isolating any page.
928 if (low_pfn
== end_pfn
)
929 update_pageblock_skip(cc
, valid_page
, nr_isolated
, true);
931 trace_mm_compaction_isolate_migratepages(start_pfn
, low_pfn
,
932 nr_scanned
, nr_isolated
);
934 count_compact_events(COMPACTMIGRATE_SCANNED
, nr_scanned
);
936 count_compact_events(COMPACTISOLATED
, nr_isolated
);
942 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
943 * @cc: Compaction control structure.
944 * @start_pfn: The first PFN to start isolating.
945 * @end_pfn: The one-past-last PFN.
947 * Returns zero if isolation fails fatally due to e.g. pending signal.
948 * Otherwise, function returns one-past-the-last PFN of isolated page
949 * (which may be greater than end_pfn if end fell in a middle of a THP page).
952 isolate_migratepages_range(struct compact_control
*cc
, unsigned long start_pfn
,
953 unsigned long end_pfn
)
955 unsigned long pfn
, block_start_pfn
, block_end_pfn
;
957 /* Scan block by block. First and last block may be incomplete */
959 block_start_pfn
= pageblock_start_pfn(pfn
);
960 if (block_start_pfn
< cc
->zone
->zone_start_pfn
)
961 block_start_pfn
= cc
->zone
->zone_start_pfn
;
962 block_end_pfn
= pageblock_end_pfn(pfn
);
964 for (; pfn
< end_pfn
; pfn
= block_end_pfn
,
965 block_start_pfn
= block_end_pfn
,
966 block_end_pfn
+= pageblock_nr_pages
) {
968 block_end_pfn
= min(block_end_pfn
, end_pfn
);
970 if (!pageblock_pfn_to_page(block_start_pfn
,
971 block_end_pfn
, cc
->zone
))
974 pfn
= isolate_migratepages_block(cc
, pfn
, block_end_pfn
,
975 ISOLATE_UNEVICTABLE
);
980 if (cc
->nr_migratepages
== COMPACT_CLUSTER_MAX
)
987 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
988 #ifdef CONFIG_COMPACTION
990 /* Returns true if the page is within a block suitable for migration to */
991 static bool suitable_migration_target(struct compact_control
*cc
,
994 if (cc
->ignore_block_suitable
)
997 /* If the page is a large free page, then disallow migration */
998 if (PageBuddy(page
)) {
1000 * We are checking page_order without zone->lock taken. But
1001 * the only small danger is that we skip a potentially suitable
1002 * pageblock, so it's not worth to check order for valid range.
1004 if (page_order_unsafe(page
) >= pageblock_order
)
1008 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
1009 if (migrate_async_suitable(get_pageblock_migratetype(page
)))
1012 /* Otherwise skip the block */
1017 * Test whether the free scanner has reached the same or lower pageblock than
1018 * the migration scanner, and compaction should thus terminate.
1020 static inline bool compact_scanners_met(struct compact_control
*cc
)
1022 return (cc
->free_pfn
>> pageblock_order
)
1023 <= (cc
->migrate_pfn
>> pageblock_order
);
1027 * Based on information in the current compact_control, find blocks
1028 * suitable for isolating free pages from and then isolate them.
1030 static void isolate_freepages(struct compact_control
*cc
)
1032 struct zone
*zone
= cc
->zone
;
1034 unsigned long block_start_pfn
; /* start of current pageblock */
1035 unsigned long isolate_start_pfn
; /* exact pfn we start at */
1036 unsigned long block_end_pfn
; /* end of current pageblock */
1037 unsigned long low_pfn
; /* lowest pfn scanner is able to scan */
1038 struct list_head
*freelist
= &cc
->freepages
;
1041 * Initialise the free scanner. The starting point is where we last
1042 * successfully isolated from, zone-cached value, or the end of the
1043 * zone when isolating for the first time. For looping we also need
1044 * this pfn aligned down to the pageblock boundary, because we do
1045 * block_start_pfn -= pageblock_nr_pages in the for loop.
1046 * For ending point, take care when isolating in last pageblock of a
1047 * a zone which ends in the middle of a pageblock.
1048 * The low boundary is the end of the pageblock the migration scanner
1051 isolate_start_pfn
= cc
->free_pfn
;
1052 block_start_pfn
= pageblock_start_pfn(cc
->free_pfn
);
1053 block_end_pfn
= min(block_start_pfn
+ pageblock_nr_pages
,
1054 zone_end_pfn(zone
));
1055 low_pfn
= pageblock_end_pfn(cc
->migrate_pfn
);
1058 * Isolate free pages until enough are available to migrate the
1059 * pages on cc->migratepages. We stop searching if the migrate
1060 * and free page scanners meet or enough free pages are isolated.
1062 for (; block_start_pfn
>= low_pfn
;
1063 block_end_pfn
= block_start_pfn
,
1064 block_start_pfn
-= pageblock_nr_pages
,
1065 isolate_start_pfn
= block_start_pfn
) {
1067 * This can iterate a massively long zone without finding any
1068 * suitable migration targets, so periodically check if we need
1069 * to schedule, or even abort async compaction.
1071 if (!(block_start_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
1072 && compact_should_abort(cc
))
1075 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
1080 /* Check the block is suitable for migration */
1081 if (!suitable_migration_target(cc
, page
))
1084 /* If isolation recently failed, do not retry */
1085 if (!isolation_suitable(cc
, page
))
1088 /* Found a block suitable for isolating free pages from. */
1089 isolate_freepages_block(cc
, &isolate_start_pfn
, block_end_pfn
,
1093 * If we isolated enough freepages, or aborted due to lock
1094 * contention, terminate.
1096 if ((cc
->nr_freepages
>= cc
->nr_migratepages
)
1098 if (isolate_start_pfn
>= block_end_pfn
) {
1100 * Restart at previous pageblock if more
1101 * freepages can be isolated next time.
1104 block_start_pfn
- pageblock_nr_pages
;
1107 } else if (isolate_start_pfn
< block_end_pfn
) {
1109 * If isolation failed early, do not continue
1116 /* __isolate_free_page() does not map the pages */
1117 map_pages(freelist
);
1120 * Record where the free scanner will restart next time. Either we
1121 * broke from the loop and set isolate_start_pfn based on the last
1122 * call to isolate_freepages_block(), or we met the migration scanner
1123 * and the loop terminated due to isolate_start_pfn < low_pfn
1125 cc
->free_pfn
= isolate_start_pfn
;
1129 * This is a migrate-callback that "allocates" freepages by taking pages
1130 * from the isolated freelists in the block we are migrating to.
1132 static struct page
*compaction_alloc(struct page
*migratepage
,
1136 struct compact_control
*cc
= (struct compact_control
*)data
;
1137 struct page
*freepage
;
1140 * Isolate free pages if necessary, and if we are not aborting due to
1143 if (list_empty(&cc
->freepages
)) {
1145 isolate_freepages(cc
);
1147 if (list_empty(&cc
->freepages
))
1151 freepage
= list_entry(cc
->freepages
.next
, struct page
, lru
);
1152 list_del(&freepage
->lru
);
1159 * This is a migrate-callback that "frees" freepages back to the isolated
1160 * freelist. All pages on the freelist are from the same zone, so there is no
1161 * special handling needed for NUMA.
1163 static void compaction_free(struct page
*page
, unsigned long data
)
1165 struct compact_control
*cc
= (struct compact_control
*)data
;
1167 list_add(&page
->lru
, &cc
->freepages
);
1171 /* possible outcome of isolate_migratepages */
1173 ISOLATE_ABORT
, /* Abort compaction now */
1174 ISOLATE_NONE
, /* No pages isolated, continue scanning */
1175 ISOLATE_SUCCESS
, /* Pages isolated, migrate */
1176 } isolate_migrate_t
;
1179 * Allow userspace to control policy on scanning the unevictable LRU for
1180 * compactable pages.
1182 int sysctl_compact_unevictable_allowed __read_mostly
= 1;
1185 * Isolate all pages that can be migrated from the first suitable block,
1186 * starting at the block pointed to by the migrate scanner pfn within
1189 static isolate_migrate_t
isolate_migratepages(struct zone
*zone
,
1190 struct compact_control
*cc
)
1192 unsigned long block_start_pfn
;
1193 unsigned long block_end_pfn
;
1194 unsigned long low_pfn
;
1196 const isolate_mode_t isolate_mode
=
1197 (sysctl_compact_unevictable_allowed
? ISOLATE_UNEVICTABLE
: 0) |
1198 (cc
->mode
!= MIGRATE_SYNC
? ISOLATE_ASYNC_MIGRATE
: 0);
1201 * Start at where we last stopped, or beginning of the zone as
1202 * initialized by compact_zone()
1204 low_pfn
= cc
->migrate_pfn
;
1205 block_start_pfn
= pageblock_start_pfn(low_pfn
);
1206 if (block_start_pfn
< zone
->zone_start_pfn
)
1207 block_start_pfn
= zone
->zone_start_pfn
;
1209 /* Only scan within a pageblock boundary */
1210 block_end_pfn
= pageblock_end_pfn(low_pfn
);
1213 * Iterate over whole pageblocks until we find the first suitable.
1214 * Do not cross the free scanner.
1216 for (; block_end_pfn
<= cc
->free_pfn
;
1217 low_pfn
= block_end_pfn
,
1218 block_start_pfn
= block_end_pfn
,
1219 block_end_pfn
+= pageblock_nr_pages
) {
1222 * This can potentially iterate a massively long zone with
1223 * many pageblocks unsuitable, so periodically check if we
1224 * need to schedule, or even abort async compaction.
1226 if (!(low_pfn
% (SWAP_CLUSTER_MAX
* pageblock_nr_pages
))
1227 && compact_should_abort(cc
))
1230 page
= pageblock_pfn_to_page(block_start_pfn
, block_end_pfn
,
1235 /* If isolation recently failed, do not retry */
1236 if (!isolation_suitable(cc
, page
))
1240 * For async compaction, also only scan in MOVABLE blocks.
1241 * Async compaction is optimistic to see if the minimum amount
1242 * of work satisfies the allocation.
1244 if (cc
->mode
== MIGRATE_ASYNC
&&
1245 !migrate_async_suitable(get_pageblock_migratetype(page
)))
1248 /* Perform the isolation */
1249 low_pfn
= isolate_migratepages_block(cc
, low_pfn
,
1250 block_end_pfn
, isolate_mode
);
1252 if (!low_pfn
|| cc
->contended
)
1253 return ISOLATE_ABORT
;
1256 * Either we isolated something and proceed with migration. Or
1257 * we failed and compact_zone should decide if we should
1263 /* Record where migration scanner will be restarted. */
1264 cc
->migrate_pfn
= low_pfn
;
1266 return cc
->nr_migratepages
? ISOLATE_SUCCESS
: ISOLATE_NONE
;
1270 * order == -1 is expected when compacting via
1271 * /proc/sys/vm/compact_memory
1273 static inline bool is_via_compact_memory(int order
)
1278 static enum compact_result
__compact_finished(struct zone
*zone
, struct compact_control
*cc
,
1279 const int migratetype
)
1282 unsigned long watermark
;
1284 if (cc
->contended
|| fatal_signal_pending(current
))
1285 return COMPACT_CONTENDED
;
1287 /* Compaction run completes if the migrate and free scanner meet */
1288 if (compact_scanners_met(cc
)) {
1289 /* Let the next compaction start anew. */
1290 reset_cached_positions(zone
);
1293 * Mark that the PG_migrate_skip information should be cleared
1294 * by kswapd when it goes to sleep. kcompactd does not set the
1295 * flag itself as the decision to be clear should be directly
1296 * based on an allocation request.
1298 if (cc
->direct_compaction
)
1299 zone
->compact_blockskip_flush
= true;
1302 return COMPACT_COMPLETE
;
1304 return COMPACT_PARTIAL_SKIPPED
;
1307 if (is_via_compact_memory(cc
->order
))
1308 return COMPACT_CONTINUE
;
1310 /* Compaction run is not finished if the watermark is not met */
1311 watermark
= zone
->watermark
[cc
->alloc_flags
& ALLOC_WMARK_MASK
];
1313 if (!zone_watermark_ok(zone
, cc
->order
, watermark
, cc
->classzone_idx
,
1315 return COMPACT_CONTINUE
;
1317 /* Direct compactor: Is a suitable page free? */
1318 for (order
= cc
->order
; order
< MAX_ORDER
; order
++) {
1319 struct free_area
*area
= &zone
->free_area
[order
];
1322 /* Job done if page is free of the right migratetype */
1323 if (!list_empty(&area
->free_list
[migratetype
]))
1324 return COMPACT_SUCCESS
;
1327 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1328 if (migratetype
== MIGRATE_MOVABLE
&&
1329 !list_empty(&area
->free_list
[MIGRATE_CMA
]))
1330 return COMPACT_SUCCESS
;
1333 * Job done if allocation would steal freepages from
1334 * other migratetype buddy lists.
1336 if (find_suitable_fallback(area
, order
, migratetype
,
1337 true, &can_steal
) != -1)
1338 return COMPACT_SUCCESS
;
1341 return COMPACT_NO_SUITABLE_PAGE
;
1344 static enum compact_result
compact_finished(struct zone
*zone
,
1345 struct compact_control
*cc
,
1346 const int migratetype
)
1350 ret
= __compact_finished(zone
, cc
, migratetype
);
1351 trace_mm_compaction_finished(zone
, cc
->order
, ret
);
1352 if (ret
== COMPACT_NO_SUITABLE_PAGE
)
1353 ret
= COMPACT_CONTINUE
;
1359 * compaction_suitable: Is this suitable to run compaction on this zone now?
1361 * COMPACT_SKIPPED - If there are too few free pages for compaction
1362 * COMPACT_SUCCESS - If the allocation would succeed without compaction
1363 * COMPACT_CONTINUE - If compaction should run now
1365 static enum compact_result
__compaction_suitable(struct zone
*zone
, int order
,
1366 unsigned int alloc_flags
,
1368 unsigned long wmark_target
)
1370 unsigned long watermark
;
1372 if (is_via_compact_memory(order
))
1373 return COMPACT_CONTINUE
;
1375 watermark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1377 * If watermarks for high-order allocation are already met, there
1378 * should be no need for compaction at all.
1380 if (zone_watermark_ok(zone
, order
, watermark
, classzone_idx
,
1382 return COMPACT_SUCCESS
;
1385 * Watermarks for order-0 must be met for compaction to be able to
1386 * isolate free pages for migration targets. This means that the
1387 * watermark and alloc_flags have to match, or be more pessimistic than
1388 * the check in __isolate_free_page(). We don't use the direct
1389 * compactor's alloc_flags, as they are not relevant for freepage
1390 * isolation. We however do use the direct compactor's classzone_idx to
1391 * skip over zones where lowmem reserves would prevent allocation even
1392 * if compaction succeeds.
1393 * For costly orders, we require low watermark instead of min for
1394 * compaction to proceed to increase its chances.
1395 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1396 * suitable migration targets
1398 watermark
= (order
> PAGE_ALLOC_COSTLY_ORDER
) ?
1399 low_wmark_pages(zone
) : min_wmark_pages(zone
);
1400 watermark
+= compact_gap(order
);
1401 if (!__zone_watermark_ok(zone
, 0, watermark
, classzone_idx
,
1402 ALLOC_CMA
, wmark_target
))
1403 return COMPACT_SKIPPED
;
1405 return COMPACT_CONTINUE
;
1408 enum compact_result
compaction_suitable(struct zone
*zone
, int order
,
1409 unsigned int alloc_flags
,
1412 enum compact_result ret
;
1415 ret
= __compaction_suitable(zone
, order
, alloc_flags
, classzone_idx
,
1416 zone_page_state(zone
, NR_FREE_PAGES
));
1418 * fragmentation index determines if allocation failures are due to
1419 * low memory or external fragmentation
1421 * index of -1000 would imply allocations might succeed depending on
1422 * watermarks, but we already failed the high-order watermark check
1423 * index towards 0 implies failure is due to lack of memory
1424 * index towards 1000 implies failure is due to fragmentation
1426 * Only compact if a failure would be due to fragmentation. Also
1427 * ignore fragindex for non-costly orders where the alternative to
1428 * a successful reclaim/compaction is OOM. Fragindex and the
1429 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1430 * excessive compaction for costly orders, but it should not be at the
1431 * expense of system stability.
1433 if (ret
== COMPACT_CONTINUE
&& (order
> PAGE_ALLOC_COSTLY_ORDER
)) {
1434 fragindex
= fragmentation_index(zone
, order
);
1435 if (fragindex
>= 0 && fragindex
<= sysctl_extfrag_threshold
)
1436 ret
= COMPACT_NOT_SUITABLE_ZONE
;
1439 trace_mm_compaction_suitable(zone
, order
, ret
);
1440 if (ret
== COMPACT_NOT_SUITABLE_ZONE
)
1441 ret
= COMPACT_SKIPPED
;
1446 bool compaction_zonelist_suitable(struct alloc_context
*ac
, int order
,
1453 * Make sure at least one zone would pass __compaction_suitable if we continue
1454 * retrying the reclaim.
1456 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
1458 unsigned long available
;
1459 enum compact_result compact_result
;
1462 * Do not consider all the reclaimable memory because we do not
1463 * want to trash just for a single high order allocation which
1464 * is even not guaranteed to appear even if __compaction_suitable
1465 * is happy about the watermark check.
1467 available
= zone_reclaimable_pages(zone
) / order
;
1468 available
+= zone_page_state_snapshot(zone
, NR_FREE_PAGES
);
1469 compact_result
= __compaction_suitable(zone
, order
, alloc_flags
,
1470 ac_classzone_idx(ac
), available
);
1471 if (compact_result
!= COMPACT_SKIPPED
)
1478 static enum compact_result
compact_zone(struct zone
*zone
, struct compact_control
*cc
)
1480 enum compact_result ret
;
1481 unsigned long start_pfn
= zone
->zone_start_pfn
;
1482 unsigned long end_pfn
= zone_end_pfn(zone
);
1483 const int migratetype
= gfpflags_to_migratetype(cc
->gfp_mask
);
1484 const bool sync
= cc
->mode
!= MIGRATE_ASYNC
;
1486 ret
= compaction_suitable(zone
, cc
->order
, cc
->alloc_flags
,
1488 /* Compaction is likely to fail */
1489 if (ret
== COMPACT_SUCCESS
|| ret
== COMPACT_SKIPPED
)
1492 /* huh, compaction_suitable is returning something unexpected */
1493 VM_BUG_ON(ret
!= COMPACT_CONTINUE
);
1496 * Clear pageblock skip if there were failures recently and compaction
1497 * is about to be retried after being deferred.
1499 if (compaction_restarting(zone
, cc
->order
))
1500 __reset_isolation_suitable(zone
);
1503 * Setup to move all movable pages to the end of the zone. Used cached
1504 * information on where the scanners should start (unless we explicitly
1505 * want to compact the whole zone), but check that it is initialised
1506 * by ensuring the values are within zone boundaries.
1508 if (cc
->whole_zone
) {
1509 cc
->migrate_pfn
= start_pfn
;
1510 cc
->free_pfn
= pageblock_start_pfn(end_pfn
- 1);
1512 cc
->migrate_pfn
= zone
->compact_cached_migrate_pfn
[sync
];
1513 cc
->free_pfn
= zone
->compact_cached_free_pfn
;
1514 if (cc
->free_pfn
< start_pfn
|| cc
->free_pfn
>= end_pfn
) {
1515 cc
->free_pfn
= pageblock_start_pfn(end_pfn
- 1);
1516 zone
->compact_cached_free_pfn
= cc
->free_pfn
;
1518 if (cc
->migrate_pfn
< start_pfn
|| cc
->migrate_pfn
>= end_pfn
) {
1519 cc
->migrate_pfn
= start_pfn
;
1520 zone
->compact_cached_migrate_pfn
[0] = cc
->migrate_pfn
;
1521 zone
->compact_cached_migrate_pfn
[1] = cc
->migrate_pfn
;
1524 if (cc
->migrate_pfn
== start_pfn
)
1525 cc
->whole_zone
= true;
1528 cc
->last_migrated_pfn
= 0;
1530 trace_mm_compaction_begin(start_pfn
, cc
->migrate_pfn
,
1531 cc
->free_pfn
, end_pfn
, sync
);
1533 migrate_prep_local();
1535 while ((ret
= compact_finished(zone
, cc
, migratetype
)) ==
1539 switch (isolate_migratepages(zone
, cc
)) {
1541 ret
= COMPACT_CONTENDED
;
1542 putback_movable_pages(&cc
->migratepages
);
1543 cc
->nr_migratepages
= 0;
1547 * We haven't isolated and migrated anything, but
1548 * there might still be unflushed migrations from
1549 * previous cc->order aligned block.
1552 case ISOLATE_SUCCESS
:
1556 err
= migrate_pages(&cc
->migratepages
, compaction_alloc
,
1557 compaction_free
, (unsigned long)cc
, cc
->mode
,
1560 trace_mm_compaction_migratepages(cc
->nr_migratepages
, err
,
1563 /* All pages were either migrated or will be released */
1564 cc
->nr_migratepages
= 0;
1566 putback_movable_pages(&cc
->migratepages
);
1568 * migrate_pages() may return -ENOMEM when scanners meet
1569 * and we want compact_finished() to detect it
1571 if (err
== -ENOMEM
&& !compact_scanners_met(cc
)) {
1572 ret
= COMPACT_CONTENDED
;
1576 * We failed to migrate at least one page in the current
1577 * order-aligned block, so skip the rest of it.
1579 if (cc
->direct_compaction
&&
1580 (cc
->mode
== MIGRATE_ASYNC
)) {
1581 cc
->migrate_pfn
= block_end_pfn(
1582 cc
->migrate_pfn
- 1, cc
->order
);
1583 /* Draining pcplists is useless in this case */
1584 cc
->last_migrated_pfn
= 0;
1591 * Has the migration scanner moved away from the previous
1592 * cc->order aligned block where we migrated from? If yes,
1593 * flush the pages that were freed, so that they can merge and
1594 * compact_finished() can detect immediately if allocation
1597 if (cc
->order
> 0 && cc
->last_migrated_pfn
) {
1599 unsigned long current_block_start
=
1600 block_start_pfn(cc
->migrate_pfn
, cc
->order
);
1602 if (cc
->last_migrated_pfn
< current_block_start
) {
1604 lru_add_drain_cpu(cpu
);
1605 drain_local_pages(zone
);
1607 /* No more flushing until we migrate again */
1608 cc
->last_migrated_pfn
= 0;
1616 * Release free pages and update where the free scanner should restart,
1617 * so we don't leave any returned pages behind in the next attempt.
1619 if (cc
->nr_freepages
> 0) {
1620 unsigned long free_pfn
= release_freepages(&cc
->freepages
);
1622 cc
->nr_freepages
= 0;
1623 VM_BUG_ON(free_pfn
== 0);
1624 /* The cached pfn is always the first in a pageblock */
1625 free_pfn
= pageblock_start_pfn(free_pfn
);
1627 * Only go back, not forward. The cached pfn might have been
1628 * already reset to zone end in compact_finished()
1630 if (free_pfn
> zone
->compact_cached_free_pfn
)
1631 zone
->compact_cached_free_pfn
= free_pfn
;
1634 trace_mm_compaction_end(start_pfn
, cc
->migrate_pfn
,
1635 cc
->free_pfn
, end_pfn
, sync
, ret
);
1640 static enum compact_result
compact_zone_order(struct zone
*zone
, int order
,
1641 gfp_t gfp_mask
, enum compact_priority prio
,
1642 unsigned int alloc_flags
, int classzone_idx
)
1644 enum compact_result ret
;
1645 struct compact_control cc
= {
1647 .nr_migratepages
= 0,
1649 .gfp_mask
= gfp_mask
,
1651 .mode
= (prio
== COMPACT_PRIO_ASYNC
) ?
1652 MIGRATE_ASYNC
: MIGRATE_SYNC_LIGHT
,
1653 .alloc_flags
= alloc_flags
,
1654 .classzone_idx
= classzone_idx
,
1655 .direct_compaction
= true,
1656 .whole_zone
= (prio
== MIN_COMPACT_PRIORITY
),
1657 .ignore_skip_hint
= (prio
== MIN_COMPACT_PRIORITY
),
1658 .ignore_block_suitable
= (prio
== MIN_COMPACT_PRIORITY
)
1660 INIT_LIST_HEAD(&cc
.freepages
);
1661 INIT_LIST_HEAD(&cc
.migratepages
);
1663 ret
= compact_zone(zone
, &cc
);
1665 VM_BUG_ON(!list_empty(&cc
.freepages
));
1666 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1671 int sysctl_extfrag_threshold
= 500;
1674 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1675 * @gfp_mask: The GFP mask of the current allocation
1676 * @order: The order of the current allocation
1677 * @alloc_flags: The allocation flags of the current allocation
1678 * @ac: The context of current allocation
1679 * @mode: The migration mode for async, sync light, or sync migration
1681 * This is the main entry point for direct page compaction.
1683 enum compact_result
try_to_compact_pages(gfp_t gfp_mask
, unsigned int order
,
1684 unsigned int alloc_flags
, const struct alloc_context
*ac
,
1685 enum compact_priority prio
)
1687 int may_perform_io
= gfp_mask
& __GFP_IO
;
1690 enum compact_result rc
= COMPACT_SKIPPED
;
1693 * Check if the GFP flags allow compaction - GFP_NOIO is really
1694 * tricky context because the migration might require IO
1696 if (!may_perform_io
)
1697 return COMPACT_SKIPPED
;
1699 trace_mm_compaction_try_to_compact_pages(order
, gfp_mask
, prio
);
1701 /* Compact each zone in the list */
1702 for_each_zone_zonelist_nodemask(zone
, z
, ac
->zonelist
, ac
->high_zoneidx
,
1704 enum compact_result status
;
1706 if (prio
> MIN_COMPACT_PRIORITY
1707 && compaction_deferred(zone
, order
)) {
1708 rc
= max_t(enum compact_result
, COMPACT_DEFERRED
, rc
);
1712 status
= compact_zone_order(zone
, order
, gfp_mask
, prio
,
1713 alloc_flags
, ac_classzone_idx(ac
));
1714 rc
= max(status
, rc
);
1716 /* The allocation should succeed, stop compacting */
1717 if (status
== COMPACT_SUCCESS
) {
1719 * We think the allocation will succeed in this zone,
1720 * but it is not certain, hence the false. The caller
1721 * will repeat this with true if allocation indeed
1722 * succeeds in this zone.
1724 compaction_defer_reset(zone
, order
, false);
1729 if (prio
!= COMPACT_PRIO_ASYNC
&& (status
== COMPACT_COMPLETE
||
1730 status
== COMPACT_PARTIAL_SKIPPED
))
1732 * We think that allocation won't succeed in this zone
1733 * so we defer compaction there. If it ends up
1734 * succeeding after all, it will be reset.
1736 defer_compaction(zone
, order
);
1739 * We might have stopped compacting due to need_resched() in
1740 * async compaction, or due to a fatal signal detected. In that
1741 * case do not try further zones
1743 if ((prio
== COMPACT_PRIO_ASYNC
&& need_resched())
1744 || fatal_signal_pending(current
))
1752 /* Compact all zones within a node */
1753 static void compact_node(int nid
)
1755 pg_data_t
*pgdat
= NODE_DATA(nid
);
1758 struct compact_control cc
= {
1760 .mode
= MIGRATE_SYNC
,
1761 .ignore_skip_hint
= true,
1763 .gfp_mask
= GFP_KERNEL
,
1767 for (zoneid
= 0; zoneid
< MAX_NR_ZONES
; zoneid
++) {
1769 zone
= &pgdat
->node_zones
[zoneid
];
1770 if (!populated_zone(zone
))
1773 cc
.nr_freepages
= 0;
1774 cc
.nr_migratepages
= 0;
1776 INIT_LIST_HEAD(&cc
.freepages
);
1777 INIT_LIST_HEAD(&cc
.migratepages
);
1779 compact_zone(zone
, &cc
);
1781 VM_BUG_ON(!list_empty(&cc
.freepages
));
1782 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1786 /* Compact all nodes in the system */
1787 static void compact_nodes(void)
1791 /* Flush pending updates to the LRU lists */
1792 lru_add_drain_all();
1794 for_each_online_node(nid
)
1798 /* The written value is actually unused, all memory is compacted */
1799 int sysctl_compact_memory
;
1802 * This is the entry point for compacting all nodes via
1803 * /proc/sys/vm/compact_memory
1805 int sysctl_compaction_handler(struct ctl_table
*table
, int write
,
1806 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1814 int sysctl_extfrag_handler(struct ctl_table
*table
, int write
,
1815 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
1817 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
1822 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1823 static ssize_t
sysfs_compact_node(struct device
*dev
,
1824 struct device_attribute
*attr
,
1825 const char *buf
, size_t count
)
1829 if (nid
>= 0 && nid
< nr_node_ids
&& node_online(nid
)) {
1830 /* Flush pending updates to the LRU lists */
1831 lru_add_drain_all();
1838 static DEVICE_ATTR(compact
, S_IWUSR
, NULL
, sysfs_compact_node
);
1840 int compaction_register_node(struct node
*node
)
1842 return device_create_file(&node
->dev
, &dev_attr_compact
);
1845 void compaction_unregister_node(struct node
*node
)
1847 return device_remove_file(&node
->dev
, &dev_attr_compact
);
1849 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1851 static inline bool kcompactd_work_requested(pg_data_t
*pgdat
)
1853 return pgdat
->kcompactd_max_order
> 0 || kthread_should_stop();
1856 static bool kcompactd_node_suitable(pg_data_t
*pgdat
)
1860 enum zone_type classzone_idx
= pgdat
->kcompactd_classzone_idx
;
1862 for (zoneid
= 0; zoneid
<= classzone_idx
; zoneid
++) {
1863 zone
= &pgdat
->node_zones
[zoneid
];
1865 if (!populated_zone(zone
))
1868 if (compaction_suitable(zone
, pgdat
->kcompactd_max_order
, 0,
1869 classzone_idx
) == COMPACT_CONTINUE
)
1876 static void kcompactd_do_work(pg_data_t
*pgdat
)
1879 * With no special task, compact all zones so that a page of requested
1880 * order is allocatable.
1884 struct compact_control cc
= {
1885 .order
= pgdat
->kcompactd_max_order
,
1886 .classzone_idx
= pgdat
->kcompactd_classzone_idx
,
1887 .mode
= MIGRATE_SYNC_LIGHT
,
1888 .ignore_skip_hint
= true,
1889 .gfp_mask
= GFP_KERNEL
,
1892 trace_mm_compaction_kcompactd_wake(pgdat
->node_id
, cc
.order
,
1894 count_vm_event(KCOMPACTD_WAKE
);
1896 for (zoneid
= 0; zoneid
<= cc
.classzone_idx
; zoneid
++) {
1899 zone
= &pgdat
->node_zones
[zoneid
];
1900 if (!populated_zone(zone
))
1903 if (compaction_deferred(zone
, cc
.order
))
1906 if (compaction_suitable(zone
, cc
.order
, 0, zoneid
) !=
1910 cc
.nr_freepages
= 0;
1911 cc
.nr_migratepages
= 0;
1913 INIT_LIST_HEAD(&cc
.freepages
);
1914 INIT_LIST_HEAD(&cc
.migratepages
);
1916 if (kthread_should_stop())
1918 status
= compact_zone(zone
, &cc
);
1920 if (status
== COMPACT_SUCCESS
) {
1921 compaction_defer_reset(zone
, cc
.order
, false);
1922 } else if (status
== COMPACT_PARTIAL_SKIPPED
|| status
== COMPACT_COMPLETE
) {
1924 * We use sync migration mode here, so we defer like
1925 * sync direct compaction does.
1927 defer_compaction(zone
, cc
.order
);
1930 VM_BUG_ON(!list_empty(&cc
.freepages
));
1931 VM_BUG_ON(!list_empty(&cc
.migratepages
));
1935 * Regardless of success, we are done until woken up next. But remember
1936 * the requested order/classzone_idx in case it was higher/tighter than
1939 if (pgdat
->kcompactd_max_order
<= cc
.order
)
1940 pgdat
->kcompactd_max_order
= 0;
1941 if (pgdat
->kcompactd_classzone_idx
>= cc
.classzone_idx
)
1942 pgdat
->kcompactd_classzone_idx
= pgdat
->nr_zones
- 1;
1945 void wakeup_kcompactd(pg_data_t
*pgdat
, int order
, int classzone_idx
)
1950 if (pgdat
->kcompactd_max_order
< order
)
1951 pgdat
->kcompactd_max_order
= order
;
1953 if (pgdat
->kcompactd_classzone_idx
> classzone_idx
)
1954 pgdat
->kcompactd_classzone_idx
= classzone_idx
;
1956 if (!waitqueue_active(&pgdat
->kcompactd_wait
))
1959 if (!kcompactd_node_suitable(pgdat
))
1962 trace_mm_compaction_wakeup_kcompactd(pgdat
->node_id
, order
,
1964 wake_up_interruptible(&pgdat
->kcompactd_wait
);
1968 * The background compaction daemon, started as a kernel thread
1969 * from the init process.
1971 static int kcompactd(void *p
)
1973 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1974 struct task_struct
*tsk
= current
;
1976 const struct cpumask
*cpumask
= cpumask_of_node(pgdat
->node_id
);
1978 if (!cpumask_empty(cpumask
))
1979 set_cpus_allowed_ptr(tsk
, cpumask
);
1983 pgdat
->kcompactd_max_order
= 0;
1984 pgdat
->kcompactd_classzone_idx
= pgdat
->nr_zones
- 1;
1986 while (!kthread_should_stop()) {
1987 trace_mm_compaction_kcompactd_sleep(pgdat
->node_id
);
1988 wait_event_freezable(pgdat
->kcompactd_wait
,
1989 kcompactd_work_requested(pgdat
));
1991 kcompactd_do_work(pgdat
);
1998 * This kcompactd start function will be called by init and node-hot-add.
1999 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2001 int kcompactd_run(int nid
)
2003 pg_data_t
*pgdat
= NODE_DATA(nid
);
2006 if (pgdat
->kcompactd
)
2009 pgdat
->kcompactd
= kthread_run(kcompactd
, pgdat
, "kcompactd%d", nid
);
2010 if (IS_ERR(pgdat
->kcompactd
)) {
2011 pr_err("Failed to start kcompactd on node %d\n", nid
);
2012 ret
= PTR_ERR(pgdat
->kcompactd
);
2013 pgdat
->kcompactd
= NULL
;
2019 * Called by memory hotplug when all memory in a node is offlined. Caller must
2020 * hold mem_hotplug_begin/end().
2022 void kcompactd_stop(int nid
)
2024 struct task_struct
*kcompactd
= NODE_DATA(nid
)->kcompactd
;
2027 kthread_stop(kcompactd
);
2028 NODE_DATA(nid
)->kcompactd
= NULL
;
2033 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2034 * not required for correctness. So if the last cpu in a node goes
2035 * away, we get changed to run anywhere: as the first one comes back,
2036 * restore their cpu bindings.
2038 static int kcompactd_cpu_online(unsigned int cpu
)
2042 for_each_node_state(nid
, N_MEMORY
) {
2043 pg_data_t
*pgdat
= NODE_DATA(nid
);
2044 const struct cpumask
*mask
;
2046 mask
= cpumask_of_node(pgdat
->node_id
);
2048 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2049 /* One of our CPUs online: restore mask */
2050 set_cpus_allowed_ptr(pgdat
->kcompactd
, mask
);
2055 static int __init
kcompactd_init(void)
2060 ret
= cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN
,
2061 "mm/compaction:online",
2062 kcompactd_cpu_online
, NULL
);
2064 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2068 for_each_node_state(nid
, N_MEMORY
)
2072 subsys_initcall(kcompactd_init
)
2074 #endif /* CONFIG_COMPACTION */