2 * Slab allocator functions that are independent of the allocator strategy
4 * (C) 2012 Christoph Lameter <cl@linux.com>
6 #include <linux/slab.h>
9 #include <linux/poison.h>
10 #include <linux/interrupt.h>
11 #include <linux/memory.h>
12 #include <linux/compiler.h>
13 #include <linux/module.h>
14 #include <linux/cpu.h>
15 #include <linux/uaccess.h>
16 #include <linux/seq_file.h>
17 #include <linux/proc_fs.h>
18 #include <asm/cacheflush.h>
19 #include <asm/tlbflush.h>
21 #include <linux/memcontrol.h>
23 #define CREATE_TRACE_POINTS
24 #include <trace/events/kmem.h>
28 enum slab_state slab_state
;
29 LIST_HEAD(slab_caches
);
30 DEFINE_MUTEX(slab_mutex
);
31 struct kmem_cache
*kmem_cache
;
34 * Set of flags that will prevent slab merging
36 #define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
38 SLAB_FAILSLAB | SLAB_KASAN)
40 #define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | \
41 SLAB_NOTRACK | SLAB_ACCOUNT)
44 * Merge control. If this is set then no merging of slab caches will occur.
45 * (Could be removed. This was introduced to pacify the merge skeptics.)
47 static int slab_nomerge
;
49 static int __init
setup_slab_nomerge(char *str
)
56 __setup_param("slub_nomerge", slub_nomerge
, setup_slab_nomerge
, 0);
59 __setup("slab_nomerge", setup_slab_nomerge
);
62 * Determine the size of a slab object
64 unsigned int kmem_cache_size(struct kmem_cache
*s
)
66 return s
->object_size
;
68 EXPORT_SYMBOL(kmem_cache_size
);
70 #ifdef CONFIG_DEBUG_VM
71 static int kmem_cache_sanity_check(const char *name
, size_t size
)
73 struct kmem_cache
*s
= NULL
;
75 if (!name
|| in_interrupt() || size
< sizeof(void *) ||
76 size
> KMALLOC_MAX_SIZE
) {
77 pr_err("kmem_cache_create(%s) integrity check failed\n", name
);
81 list_for_each_entry(s
, &slab_caches
, list
) {
86 * This happens when the module gets unloaded and doesn't
87 * destroy its slab cache and no-one else reuses the vmalloc
88 * area of the module. Print a warning.
90 res
= probe_kernel_address(s
->name
, tmp
);
92 pr_err("Slab cache with size %d has lost its name\n",
98 WARN_ON(strchr(name
, ' ')); /* It confuses parsers */
102 static inline int kmem_cache_sanity_check(const char *name
, size_t size
)
108 void __kmem_cache_free_bulk(struct kmem_cache
*s
, size_t nr
, void **p
)
112 for (i
= 0; i
< nr
; i
++) {
114 kmem_cache_free(s
, p
[i
]);
120 int __kmem_cache_alloc_bulk(struct kmem_cache
*s
, gfp_t flags
, size_t nr
,
125 for (i
= 0; i
< nr
; i
++) {
126 void *x
= p
[i
] = kmem_cache_alloc(s
, flags
);
128 __kmem_cache_free_bulk(s
, i
, p
);
135 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
136 void slab_init_memcg_params(struct kmem_cache
*s
)
138 s
->memcg_params
.is_root_cache
= true;
139 INIT_LIST_HEAD(&s
->memcg_params
.list
);
140 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, NULL
);
143 static int init_memcg_params(struct kmem_cache
*s
,
144 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
146 struct memcg_cache_array
*arr
;
149 s
->memcg_params
.is_root_cache
= false;
150 s
->memcg_params
.memcg
= memcg
;
151 s
->memcg_params
.root_cache
= root_cache
;
155 slab_init_memcg_params(s
);
157 if (!memcg_nr_cache_ids
)
160 arr
= kzalloc(sizeof(struct memcg_cache_array
) +
161 memcg_nr_cache_ids
* sizeof(void *),
166 RCU_INIT_POINTER(s
->memcg_params
.memcg_caches
, arr
);
170 static void destroy_memcg_params(struct kmem_cache
*s
)
172 if (is_root_cache(s
))
173 kfree(rcu_access_pointer(s
->memcg_params
.memcg_caches
));
176 static int update_memcg_params(struct kmem_cache
*s
, int new_array_size
)
178 struct memcg_cache_array
*old
, *new;
180 if (!is_root_cache(s
))
183 new = kzalloc(sizeof(struct memcg_cache_array
) +
184 new_array_size
* sizeof(void *), GFP_KERNEL
);
188 old
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
189 lockdep_is_held(&slab_mutex
));
191 memcpy(new->entries
, old
->entries
,
192 memcg_nr_cache_ids
* sizeof(void *));
194 rcu_assign_pointer(s
->memcg_params
.memcg_caches
, new);
200 int memcg_update_all_caches(int num_memcgs
)
202 struct kmem_cache
*s
;
205 mutex_lock(&slab_mutex
);
206 list_for_each_entry(s
, &slab_caches
, list
) {
207 ret
= update_memcg_params(s
, num_memcgs
);
209 * Instead of freeing the memory, we'll just leave the caches
210 * up to this point in an updated state.
215 mutex_unlock(&slab_mutex
);
219 static inline int init_memcg_params(struct kmem_cache
*s
,
220 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
225 static inline void destroy_memcg_params(struct kmem_cache
*s
)
228 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
231 * Find a mergeable slab cache
233 int slab_unmergeable(struct kmem_cache
*s
)
235 if (slab_nomerge
|| (s
->flags
& SLAB_NEVER_MERGE
))
238 if (!is_root_cache(s
))
245 * We may have set a slab to be unmergeable during bootstrap.
253 struct kmem_cache
*find_mergeable(size_t size
, size_t align
,
254 unsigned long flags
, const char *name
, void (*ctor
)(void *))
256 struct kmem_cache
*s
;
258 if (slab_nomerge
|| (flags
& SLAB_NEVER_MERGE
))
264 size
= ALIGN(size
, sizeof(void *));
265 align
= calculate_alignment(flags
, align
, size
);
266 size
= ALIGN(size
, align
);
267 flags
= kmem_cache_flags(size
, flags
, name
, NULL
);
269 list_for_each_entry_reverse(s
, &slab_caches
, list
) {
270 if (slab_unmergeable(s
))
276 if ((flags
& SLAB_MERGE_SAME
) != (s
->flags
& SLAB_MERGE_SAME
))
279 * Check if alignment is compatible.
280 * Courtesy of Adrian Drzewiecki
282 if ((s
->size
& ~(align
- 1)) != s
->size
)
285 if (s
->size
- size
>= sizeof(void *))
288 if (IS_ENABLED(CONFIG_SLAB
) && align
&&
289 (align
> s
->align
|| s
->align
% align
))
298 * Figure out what the alignment of the objects will be given a set of
299 * flags, a user specified alignment and the size of the objects.
301 unsigned long calculate_alignment(unsigned long flags
,
302 unsigned long align
, unsigned long size
)
305 * If the user wants hardware cache aligned objects then follow that
306 * suggestion if the object is sufficiently large.
308 * The hardware cache alignment cannot override the specified
309 * alignment though. If that is greater then use it.
311 if (flags
& SLAB_HWCACHE_ALIGN
) {
312 unsigned long ralign
= cache_line_size();
313 while (size
<= ralign
/ 2)
315 align
= max(align
, ralign
);
318 if (align
< ARCH_SLAB_MINALIGN
)
319 align
= ARCH_SLAB_MINALIGN
;
321 return ALIGN(align
, sizeof(void *));
324 static struct kmem_cache
*create_cache(const char *name
,
325 size_t object_size
, size_t size
, size_t align
,
326 unsigned long flags
, void (*ctor
)(void *),
327 struct mem_cgroup
*memcg
, struct kmem_cache
*root_cache
)
329 struct kmem_cache
*s
;
333 s
= kmem_cache_zalloc(kmem_cache
, GFP_KERNEL
);
338 s
->object_size
= object_size
;
343 err
= init_memcg_params(s
, memcg
, root_cache
);
347 err
= __kmem_cache_create(s
, flags
);
352 list_add(&s
->list
, &slab_caches
);
359 destroy_memcg_params(s
);
360 kmem_cache_free(kmem_cache
, s
);
365 * kmem_cache_create - Create a cache.
366 * @name: A string which is used in /proc/slabinfo to identify this cache.
367 * @size: The size of objects to be created in this cache.
368 * @align: The required alignment for the objects.
370 * @ctor: A constructor for the objects.
372 * Returns a ptr to the cache on success, NULL on failure.
373 * Cannot be called within a interrupt, but can be interrupted.
374 * The @ctor is run when new pages are allocated by the cache.
378 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
379 * to catch references to uninitialised memory.
381 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
382 * for buffer overruns.
384 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
385 * cacheline. This can be beneficial if you're counting cycles as closely
389 kmem_cache_create(const char *name
, size_t size
, size_t align
,
390 unsigned long flags
, void (*ctor
)(void *))
392 struct kmem_cache
*s
= NULL
;
393 const char *cache_name
;
398 memcg_get_cache_ids();
400 mutex_lock(&slab_mutex
);
402 err
= kmem_cache_sanity_check(name
, size
);
407 /* Refuse requests with allocator specific flags */
408 if (flags
& ~SLAB_FLAGS_PERMITTED
) {
414 * Some allocators will constraint the set of valid flags to a subset
415 * of all flags. We expect them to define CACHE_CREATE_MASK in this
416 * case, and we'll just provide them with a sanitized version of the
419 flags
&= CACHE_CREATE_MASK
;
421 s
= __kmem_cache_alias(name
, size
, align
, flags
, ctor
);
425 cache_name
= kstrdup_const(name
, GFP_KERNEL
);
431 s
= create_cache(cache_name
, size
, size
,
432 calculate_alignment(flags
, align
, size
),
433 flags
, ctor
, NULL
, NULL
);
436 kfree_const(cache_name
);
440 mutex_unlock(&slab_mutex
);
442 memcg_put_cache_ids();
447 if (flags
& SLAB_PANIC
)
448 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
451 pr_warn("kmem_cache_create(%s) failed with error %d\n",
459 EXPORT_SYMBOL(kmem_cache_create
);
461 static int shutdown_cache(struct kmem_cache
*s
,
462 struct list_head
*release
, bool *need_rcu_barrier
)
464 if (__kmem_cache_shutdown(s
) != 0)
467 if (s
->flags
& SLAB_DESTROY_BY_RCU
)
468 *need_rcu_barrier
= true;
470 list_move(&s
->list
, release
);
474 static void release_caches(struct list_head
*release
, bool need_rcu_barrier
)
476 struct kmem_cache
*s
, *s2
;
478 if (need_rcu_barrier
)
481 list_for_each_entry_safe(s
, s2
, release
, list
) {
482 #ifdef SLAB_SUPPORTS_SYSFS
483 sysfs_slab_remove(s
);
485 slab_kmem_cache_release(s
);
490 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
492 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
493 * @memcg: The memory cgroup the new cache is for.
494 * @root_cache: The parent of the new cache.
496 * This function attempts to create a kmem cache that will serve allocation
497 * requests going from @memcg to @root_cache. The new cache inherits properties
500 void memcg_create_kmem_cache(struct mem_cgroup
*memcg
,
501 struct kmem_cache
*root_cache
)
503 static char memcg_name_buf
[NAME_MAX
+ 1]; /* protected by slab_mutex */
504 struct cgroup_subsys_state
*css
= &memcg
->css
;
505 struct memcg_cache_array
*arr
;
506 struct kmem_cache
*s
= NULL
;
513 mutex_lock(&slab_mutex
);
516 * The memory cgroup could have been offlined while the cache
517 * creation work was pending.
519 if (memcg
->kmem_state
!= KMEM_ONLINE
)
522 idx
= memcg_cache_id(memcg
);
523 arr
= rcu_dereference_protected(root_cache
->memcg_params
.memcg_caches
,
524 lockdep_is_held(&slab_mutex
));
527 * Since per-memcg caches are created asynchronously on first
528 * allocation (see memcg_kmem_get_cache()), several threads can try to
529 * create the same cache, but only one of them may succeed.
531 if (arr
->entries
[idx
])
534 cgroup_name(css
->cgroup
, memcg_name_buf
, sizeof(memcg_name_buf
));
535 cache_name
= kasprintf(GFP_KERNEL
, "%s(%llu:%s)", root_cache
->name
,
536 css
->serial_nr
, memcg_name_buf
);
540 s
= create_cache(cache_name
, root_cache
->object_size
,
541 root_cache
->size
, root_cache
->align
,
542 root_cache
->flags
& CACHE_CREATE_MASK
,
543 root_cache
->ctor
, memcg
, root_cache
);
545 * If we could not create a memcg cache, do not complain, because
546 * that's not critical at all as we can always proceed with the root
554 list_add(&s
->memcg_params
.list
, &root_cache
->memcg_params
.list
);
557 * Since readers won't lock (see cache_from_memcg_idx()), we need a
558 * barrier here to ensure nobody will see the kmem_cache partially
562 arr
->entries
[idx
] = s
;
565 mutex_unlock(&slab_mutex
);
571 void memcg_deactivate_kmem_caches(struct mem_cgroup
*memcg
)
574 struct memcg_cache_array
*arr
;
575 struct kmem_cache
*s
, *c
;
577 idx
= memcg_cache_id(memcg
);
584 * In case of SLUB, we need to disable empty slab caching to
585 * avoid pinning the offline memory cgroup by freeable kmem
586 * pages charged to it. SLAB doesn't need this, as it
587 * periodically purges unused slabs.
589 mutex_lock(&slab_mutex
);
590 list_for_each_entry(s
, &slab_caches
, list
) {
591 c
= is_root_cache(s
) ? cache_from_memcg_idx(s
, idx
) : NULL
;
597 mutex_unlock(&slab_mutex
);
599 * kmem_cache->cpu_partial is checked locklessly (see
600 * put_cpu_partial()). Make sure the change is visible.
605 mutex_lock(&slab_mutex
);
606 list_for_each_entry(s
, &slab_caches
, list
) {
607 if (!is_root_cache(s
))
610 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
611 lockdep_is_held(&slab_mutex
));
612 c
= arr
->entries
[idx
];
616 __kmem_cache_shrink(c
);
617 arr
->entries
[idx
] = NULL
;
619 mutex_unlock(&slab_mutex
);
625 static int __shutdown_memcg_cache(struct kmem_cache
*s
,
626 struct list_head
*release
, bool *need_rcu_barrier
)
628 BUG_ON(is_root_cache(s
));
630 if (shutdown_cache(s
, release
, need_rcu_barrier
))
633 list_del(&s
->memcg_params
.list
);
637 void memcg_destroy_kmem_caches(struct mem_cgroup
*memcg
)
640 bool need_rcu_barrier
= false;
641 struct kmem_cache
*s
, *s2
;
646 mutex_lock(&slab_mutex
);
647 list_for_each_entry_safe(s
, s2
, &slab_caches
, list
) {
648 if (is_root_cache(s
) || s
->memcg_params
.memcg
!= memcg
)
651 * The cgroup is about to be freed and therefore has no charges
652 * left. Hence, all its caches must be empty by now.
654 BUG_ON(__shutdown_memcg_cache(s
, &release
, &need_rcu_barrier
));
656 mutex_unlock(&slab_mutex
);
661 release_caches(&release
, need_rcu_barrier
);
664 static int shutdown_memcg_caches(struct kmem_cache
*s
,
665 struct list_head
*release
, bool *need_rcu_barrier
)
667 struct memcg_cache_array
*arr
;
668 struct kmem_cache
*c
, *c2
;
672 BUG_ON(!is_root_cache(s
));
675 * First, shutdown active caches, i.e. caches that belong to online
678 arr
= rcu_dereference_protected(s
->memcg_params
.memcg_caches
,
679 lockdep_is_held(&slab_mutex
));
680 for_each_memcg_cache_index(i
) {
684 if (__shutdown_memcg_cache(c
, release
, need_rcu_barrier
))
686 * The cache still has objects. Move it to a temporary
687 * list so as not to try to destroy it for a second
688 * time while iterating over inactive caches below.
690 list_move(&c
->memcg_params
.list
, &busy
);
693 * The cache is empty and will be destroyed soon. Clear
694 * the pointer to it in the memcg_caches array so that
695 * it will never be accessed even if the root cache
698 arr
->entries
[i
] = NULL
;
702 * Second, shutdown all caches left from memory cgroups that are now
705 list_for_each_entry_safe(c
, c2
, &s
->memcg_params
.list
,
707 __shutdown_memcg_cache(c
, release
, need_rcu_barrier
);
709 list_splice(&busy
, &s
->memcg_params
.list
);
712 * A cache being destroyed must be empty. In particular, this means
713 * that all per memcg caches attached to it must be empty too.
715 if (!list_empty(&s
->memcg_params
.list
))
720 static inline int shutdown_memcg_caches(struct kmem_cache
*s
,
721 struct list_head
*release
, bool *need_rcu_barrier
)
725 #endif /* CONFIG_MEMCG && !CONFIG_SLOB */
727 void slab_kmem_cache_release(struct kmem_cache
*s
)
729 __kmem_cache_release(s
);
730 destroy_memcg_params(s
);
731 kfree_const(s
->name
);
732 kmem_cache_free(kmem_cache
, s
);
735 void kmem_cache_destroy(struct kmem_cache
*s
)
738 bool need_rcu_barrier
= false;
747 kasan_cache_destroy(s
);
748 mutex_lock(&slab_mutex
);
754 err
= shutdown_memcg_caches(s
, &release
, &need_rcu_barrier
);
756 err
= shutdown_cache(s
, &release
, &need_rcu_barrier
);
759 pr_err("kmem_cache_destroy %s: Slab cache still has objects\n",
764 mutex_unlock(&slab_mutex
);
769 release_caches(&release
, need_rcu_barrier
);
771 EXPORT_SYMBOL(kmem_cache_destroy
);
774 * kmem_cache_shrink - Shrink a cache.
775 * @cachep: The cache to shrink.
777 * Releases as many slabs as possible for a cache.
778 * To help debugging, a zero exit status indicates all slabs were released.
780 int kmem_cache_shrink(struct kmem_cache
*cachep
)
786 kasan_cache_shrink(cachep
);
787 ret
= __kmem_cache_shrink(cachep
);
792 EXPORT_SYMBOL(kmem_cache_shrink
);
794 bool slab_is_available(void)
796 return slab_state
>= UP
;
800 /* Create a cache during boot when no slab services are available yet */
801 void __init
create_boot_cache(struct kmem_cache
*s
, const char *name
, size_t size
,
807 s
->size
= s
->object_size
= size
;
808 s
->align
= calculate_alignment(flags
, ARCH_KMALLOC_MINALIGN
, size
);
810 slab_init_memcg_params(s
);
812 err
= __kmem_cache_create(s
, flags
);
815 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
818 s
->refcount
= -1; /* Exempt from merging for now */
821 struct kmem_cache
*__init
create_kmalloc_cache(const char *name
, size_t size
,
824 struct kmem_cache
*s
= kmem_cache_zalloc(kmem_cache
, GFP_NOWAIT
);
827 panic("Out of memory when creating slab %s\n", name
);
829 create_boot_cache(s
, name
, size
, flags
);
830 list_add(&s
->list
, &slab_caches
);
835 struct kmem_cache
*kmalloc_caches
[KMALLOC_SHIFT_HIGH
+ 1];
836 EXPORT_SYMBOL(kmalloc_caches
);
838 #ifdef CONFIG_ZONE_DMA
839 struct kmem_cache
*kmalloc_dma_caches
[KMALLOC_SHIFT_HIGH
+ 1];
840 EXPORT_SYMBOL(kmalloc_dma_caches
);
844 * Conversion table for small slabs sizes / 8 to the index in the
845 * kmalloc array. This is necessary for slabs < 192 since we have non power
846 * of two cache sizes there. The size of larger slabs can be determined using
849 static s8 size_index
[24] = {
876 static inline int size_index_elem(size_t bytes
)
878 return (bytes
- 1) / 8;
882 * Find the kmem_cache structure that serves a given size of
885 struct kmem_cache
*kmalloc_slab(size_t size
, gfp_t flags
)
889 if (unlikely(size
> KMALLOC_MAX_SIZE
)) {
890 WARN_ON_ONCE(!(flags
& __GFP_NOWARN
));
896 return ZERO_SIZE_PTR
;
898 index
= size_index
[size_index_elem(size
)];
900 index
= fls(size
- 1);
902 #ifdef CONFIG_ZONE_DMA
903 if (unlikely((flags
& GFP_DMA
)))
904 return kmalloc_dma_caches
[index
];
907 return kmalloc_caches
[index
];
911 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
912 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
918 } const kmalloc_info
[] __initconst
= {
919 {NULL
, 0}, {"kmalloc-96", 96},
920 {"kmalloc-192", 192}, {"kmalloc-8", 8},
921 {"kmalloc-16", 16}, {"kmalloc-32", 32},
922 {"kmalloc-64", 64}, {"kmalloc-128", 128},
923 {"kmalloc-256", 256}, {"kmalloc-512", 512},
924 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
925 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
926 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
927 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
928 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
929 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
930 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
931 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
932 {"kmalloc-67108864", 67108864}
936 * Patch up the size_index table if we have strange large alignment
937 * requirements for the kmalloc array. This is only the case for
938 * MIPS it seems. The standard arches will not generate any code here.
940 * Largest permitted alignment is 256 bytes due to the way we
941 * handle the index determination for the smaller caches.
943 * Make sure that nothing crazy happens if someone starts tinkering
944 * around with ARCH_KMALLOC_MINALIGN
946 void __init
setup_kmalloc_cache_index_table(void)
950 BUILD_BUG_ON(KMALLOC_MIN_SIZE
> 256 ||
951 (KMALLOC_MIN_SIZE
& (KMALLOC_MIN_SIZE
- 1)));
953 for (i
= 8; i
< KMALLOC_MIN_SIZE
; i
+= 8) {
954 int elem
= size_index_elem(i
);
956 if (elem
>= ARRAY_SIZE(size_index
))
958 size_index
[elem
] = KMALLOC_SHIFT_LOW
;
961 if (KMALLOC_MIN_SIZE
>= 64) {
963 * The 96 byte size cache is not used if the alignment
966 for (i
= 64 + 8; i
<= 96; i
+= 8)
967 size_index
[size_index_elem(i
)] = 7;
971 if (KMALLOC_MIN_SIZE
>= 128) {
973 * The 192 byte sized cache is not used if the alignment
974 * is 128 byte. Redirect kmalloc to use the 256 byte cache
977 for (i
= 128 + 8; i
<= 192; i
+= 8)
978 size_index
[size_index_elem(i
)] = 8;
982 static void __init
new_kmalloc_cache(int idx
, unsigned long flags
)
984 kmalloc_caches
[idx
] = create_kmalloc_cache(kmalloc_info
[idx
].name
,
985 kmalloc_info
[idx
].size
, flags
);
989 * Create the kmalloc array. Some of the regular kmalloc arrays
990 * may already have been created because they were needed to
991 * enable allocations for slab creation.
993 void __init
create_kmalloc_caches(unsigned long flags
)
997 for (i
= KMALLOC_SHIFT_LOW
; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
998 if (!kmalloc_caches
[i
])
999 new_kmalloc_cache(i
, flags
);
1002 * Caches that are not of the two-to-the-power-of size.
1003 * These have to be created immediately after the
1004 * earlier power of two caches
1006 if (KMALLOC_MIN_SIZE
<= 32 && !kmalloc_caches
[1] && i
== 6)
1007 new_kmalloc_cache(1, flags
);
1008 if (KMALLOC_MIN_SIZE
<= 64 && !kmalloc_caches
[2] && i
== 7)
1009 new_kmalloc_cache(2, flags
);
1012 /* Kmalloc array is now usable */
1015 #ifdef CONFIG_ZONE_DMA
1016 for (i
= 0; i
<= KMALLOC_SHIFT_HIGH
; i
++) {
1017 struct kmem_cache
*s
= kmalloc_caches
[i
];
1020 int size
= kmalloc_size(i
);
1021 char *n
= kasprintf(GFP_NOWAIT
,
1022 "dma-kmalloc-%d", size
);
1025 kmalloc_dma_caches
[i
] = create_kmalloc_cache(n
,
1026 size
, SLAB_CACHE_DMA
| flags
);
1031 #endif /* !CONFIG_SLOB */
1034 * To avoid unnecessary overhead, we pass through large allocation requests
1035 * directly to the page allocator. We use __GFP_COMP, because we will need to
1036 * know the allocation order to free the pages properly in kfree.
1038 void *kmalloc_order(size_t size
, gfp_t flags
, unsigned int order
)
1043 flags
|= __GFP_COMP
;
1044 page
= alloc_pages(flags
, order
);
1045 ret
= page
? page_address(page
) : NULL
;
1046 kmemleak_alloc(ret
, size
, 1, flags
);
1047 kasan_kmalloc_large(ret
, size
, flags
);
1050 EXPORT_SYMBOL(kmalloc_order
);
1052 #ifdef CONFIG_TRACING
1053 void *kmalloc_order_trace(size_t size
, gfp_t flags
, unsigned int order
)
1055 void *ret
= kmalloc_order(size
, flags
, order
);
1056 trace_kmalloc(_RET_IP_
, ret
, size
, PAGE_SIZE
<< order
, flags
);
1059 EXPORT_SYMBOL(kmalloc_order_trace
);
1062 #ifdef CONFIG_SLAB_FREELIST_RANDOM
1063 /* Randomize a generic freelist */
1064 static void freelist_randomize(struct rnd_state
*state
, unsigned int *list
,
1070 for (i
= 0; i
< count
; i
++)
1073 /* Fisher-Yates shuffle */
1074 for (i
= count
- 1; i
> 0; i
--) {
1075 rand
= prandom_u32_state(state
);
1077 swap(list
[i
], list
[rand
]);
1081 /* Create a random sequence per cache */
1082 int cache_random_seq_create(struct kmem_cache
*cachep
, unsigned int count
,
1085 struct rnd_state state
;
1087 if (count
< 2 || cachep
->random_seq
)
1090 cachep
->random_seq
= kcalloc(count
, sizeof(unsigned int), gfp
);
1091 if (!cachep
->random_seq
)
1094 /* Get best entropy at this stage of boot */
1095 prandom_seed_state(&state
, get_random_long());
1097 freelist_randomize(&state
, cachep
->random_seq
, count
);
1101 /* Destroy the per-cache random freelist sequence */
1102 void cache_random_seq_destroy(struct kmem_cache
*cachep
)
1104 kfree(cachep
->random_seq
);
1105 cachep
->random_seq
= NULL
;
1107 #endif /* CONFIG_SLAB_FREELIST_RANDOM */
1109 #ifdef CONFIG_SLABINFO
1112 #define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1114 #define SLABINFO_RIGHTS S_IRUSR
1117 static void print_slabinfo_header(struct seq_file
*m
)
1120 * Output format version, so at least we can change it
1121 * without _too_ many complaints.
1123 #ifdef CONFIG_DEBUG_SLAB
1124 seq_puts(m
, "slabinfo - version: 2.1 (statistics)\n");
1126 seq_puts(m
, "slabinfo - version: 2.1\n");
1128 seq_puts(m
, "# name <active_objs> <num_objs> <objsize> <objperslab> <pagesperslab>");
1129 seq_puts(m
, " : tunables <limit> <batchcount> <sharedfactor>");
1130 seq_puts(m
, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1131 #ifdef CONFIG_DEBUG_SLAB
1132 seq_puts(m
, " : globalstat <listallocs> <maxobjs> <grown> <reaped> <error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1133 seq_puts(m
, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1138 void *slab_start(struct seq_file
*m
, loff_t
*pos
)
1140 mutex_lock(&slab_mutex
);
1141 return seq_list_start(&slab_caches
, *pos
);
1144 void *slab_next(struct seq_file
*m
, void *p
, loff_t
*pos
)
1146 return seq_list_next(p
, &slab_caches
, pos
);
1149 void slab_stop(struct seq_file
*m
, void *p
)
1151 mutex_unlock(&slab_mutex
);
1155 memcg_accumulate_slabinfo(struct kmem_cache
*s
, struct slabinfo
*info
)
1157 struct kmem_cache
*c
;
1158 struct slabinfo sinfo
;
1160 if (!is_root_cache(s
))
1163 for_each_memcg_cache(c
, s
) {
1164 memset(&sinfo
, 0, sizeof(sinfo
));
1165 get_slabinfo(c
, &sinfo
);
1167 info
->active_slabs
+= sinfo
.active_slabs
;
1168 info
->num_slabs
+= sinfo
.num_slabs
;
1169 info
->shared_avail
+= sinfo
.shared_avail
;
1170 info
->active_objs
+= sinfo
.active_objs
;
1171 info
->num_objs
+= sinfo
.num_objs
;
1175 static void cache_show(struct kmem_cache
*s
, struct seq_file
*m
)
1177 struct slabinfo sinfo
;
1179 memset(&sinfo
, 0, sizeof(sinfo
));
1180 get_slabinfo(s
, &sinfo
);
1182 memcg_accumulate_slabinfo(s
, &sinfo
);
1184 seq_printf(m
, "%-17s %6lu %6lu %6u %4u %4d",
1185 cache_name(s
), sinfo
.active_objs
, sinfo
.num_objs
, s
->size
,
1186 sinfo
.objects_per_slab
, (1 << sinfo
.cache_order
));
1188 seq_printf(m
, " : tunables %4u %4u %4u",
1189 sinfo
.limit
, sinfo
.batchcount
, sinfo
.shared
);
1190 seq_printf(m
, " : slabdata %6lu %6lu %6lu",
1191 sinfo
.active_slabs
, sinfo
.num_slabs
, sinfo
.shared_avail
);
1192 slabinfo_show_stats(m
, s
);
1196 static int slab_show(struct seq_file
*m
, void *p
)
1198 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
, list
);
1200 if (p
== slab_caches
.next
)
1201 print_slabinfo_header(m
);
1202 if (is_root_cache(s
))
1207 #if defined(CONFIG_MEMCG) && !defined(CONFIG_SLOB)
1208 int memcg_slab_show(struct seq_file
*m
, void *p
)
1210 struct kmem_cache
*s
= list_entry(p
, struct kmem_cache
, list
);
1211 struct mem_cgroup
*memcg
= mem_cgroup_from_css(seq_css(m
));
1213 if (p
== slab_caches
.next
)
1214 print_slabinfo_header(m
);
1215 if (!is_root_cache(s
) && s
->memcg_params
.memcg
== memcg
)
1222 * slabinfo_op - iterator that generates /proc/slabinfo
1231 * num-pages-per-slab
1232 * + further values on SMP and with statistics enabled
1234 static const struct seq_operations slabinfo_op
= {
1235 .start
= slab_start
,
1241 static int slabinfo_open(struct inode
*inode
, struct file
*file
)
1243 return seq_open(file
, &slabinfo_op
);
1246 static const struct file_operations proc_slabinfo_operations
= {
1247 .open
= slabinfo_open
,
1249 .write
= slabinfo_write
,
1250 .llseek
= seq_lseek
,
1251 .release
= seq_release
,
1254 static int __init
slab_proc_init(void)
1256 proc_create("slabinfo", SLABINFO_RIGHTS
, NULL
,
1257 &proc_slabinfo_operations
);
1260 module_init(slab_proc_init
);
1261 #endif /* CONFIG_SLABINFO */
1263 static __always_inline
void *__do_krealloc(const void *p
, size_t new_size
,
1272 if (ks
>= new_size
) {
1273 kasan_krealloc((void *)p
, new_size
, flags
);
1277 ret
= kmalloc_track_caller(new_size
, flags
);
1285 * __krealloc - like krealloc() but don't free @p.
1286 * @p: object to reallocate memory for.
1287 * @new_size: how many bytes of memory are required.
1288 * @flags: the type of memory to allocate.
1290 * This function is like krealloc() except it never frees the originally
1291 * allocated buffer. Use this if you don't want to free the buffer immediately
1292 * like, for example, with RCU.
1294 void *__krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1296 if (unlikely(!new_size
))
1297 return ZERO_SIZE_PTR
;
1299 return __do_krealloc(p
, new_size
, flags
);
1302 EXPORT_SYMBOL(__krealloc
);
1305 * krealloc - reallocate memory. The contents will remain unchanged.
1306 * @p: object to reallocate memory for.
1307 * @new_size: how many bytes of memory are required.
1308 * @flags: the type of memory to allocate.
1310 * The contents of the object pointed to are preserved up to the
1311 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1312 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1313 * %NULL pointer, the object pointed to is freed.
1315 void *krealloc(const void *p
, size_t new_size
, gfp_t flags
)
1319 if (unlikely(!new_size
)) {
1321 return ZERO_SIZE_PTR
;
1324 ret
= __do_krealloc(p
, new_size
, flags
);
1325 if (ret
&& p
!= ret
)
1330 EXPORT_SYMBOL(krealloc
);
1333 * kzfree - like kfree but zero memory
1334 * @p: object to free memory of
1336 * The memory of the object @p points to is zeroed before freed.
1337 * If @p is %NULL, kzfree() does nothing.
1339 * Note: this function zeroes the whole allocated buffer which can be a good
1340 * deal bigger than the requested buffer size passed to kmalloc(). So be
1341 * careful when using this function in performance sensitive code.
1343 void kzfree(const void *p
)
1346 void *mem
= (void *)p
;
1348 if (unlikely(ZERO_OR_NULL_PTR(mem
)))
1354 EXPORT_SYMBOL(kzfree
);
1356 /* Tracepoints definitions. */
1357 EXPORT_TRACEPOINT_SYMBOL(kmalloc
);
1358 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc
);
1359 EXPORT_TRACEPOINT_SYMBOL(kmalloc_node
);
1360 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node
);
1361 EXPORT_TRACEPOINT_SYMBOL(kfree
);
1362 EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free
);