powerpc/mm/4k: don't allocate larger pmd page table for 4k
[linux/fpc-iii.git] / security / keys / key.c
blob346fbf201c22e37e67dc58b5684c868e79ad9af5
1 /* Basic authentication token and access key management
3 * Copyright (C) 2004-2008 Red Hat, Inc. All Rights Reserved.
4 * Written by David Howells (dhowells@redhat.com)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/poison.h>
15 #include <linux/sched.h>
16 #include <linux/slab.h>
17 #include <linux/security.h>
18 #include <linux/workqueue.h>
19 #include <linux/random.h>
20 #include <linux/err.h>
21 #include "internal.h"
23 struct kmem_cache *key_jar;
24 struct rb_root key_serial_tree; /* tree of keys indexed by serial */
25 DEFINE_SPINLOCK(key_serial_lock);
27 struct rb_root key_user_tree; /* tree of quota records indexed by UID */
28 DEFINE_SPINLOCK(key_user_lock);
30 unsigned int key_quota_root_maxkeys = 1000000; /* root's key count quota */
31 unsigned int key_quota_root_maxbytes = 25000000; /* root's key space quota */
32 unsigned int key_quota_maxkeys = 200; /* general key count quota */
33 unsigned int key_quota_maxbytes = 20000; /* general key space quota */
35 static LIST_HEAD(key_types_list);
36 static DECLARE_RWSEM(key_types_sem);
38 /* We serialise key instantiation and link */
39 DEFINE_MUTEX(key_construction_mutex);
41 #ifdef KEY_DEBUGGING
42 void __key_check(const struct key *key)
44 printk("__key_check: key %p {%08x} should be {%08x}\n",
45 key, key->magic, KEY_DEBUG_MAGIC);
46 BUG();
48 #endif
51 * Get the key quota record for a user, allocating a new record if one doesn't
52 * already exist.
54 struct key_user *key_user_lookup(kuid_t uid)
56 struct key_user *candidate = NULL, *user;
57 struct rb_node *parent = NULL;
58 struct rb_node **p;
60 try_again:
61 p = &key_user_tree.rb_node;
62 spin_lock(&key_user_lock);
64 /* search the tree for a user record with a matching UID */
65 while (*p) {
66 parent = *p;
67 user = rb_entry(parent, struct key_user, node);
69 if (uid_lt(uid, user->uid))
70 p = &(*p)->rb_left;
71 else if (uid_gt(uid, user->uid))
72 p = &(*p)->rb_right;
73 else
74 goto found;
77 /* if we get here, we failed to find a match in the tree */
78 if (!candidate) {
79 /* allocate a candidate user record if we don't already have
80 * one */
81 spin_unlock(&key_user_lock);
83 user = NULL;
84 candidate = kmalloc(sizeof(struct key_user), GFP_KERNEL);
85 if (unlikely(!candidate))
86 goto out;
88 /* the allocation may have scheduled, so we need to repeat the
89 * search lest someone else added the record whilst we were
90 * asleep */
91 goto try_again;
94 /* if we get here, then the user record still hadn't appeared on the
95 * second pass - so we use the candidate record */
96 atomic_set(&candidate->usage, 1);
97 atomic_set(&candidate->nkeys, 0);
98 atomic_set(&candidate->nikeys, 0);
99 candidate->uid = uid;
100 candidate->qnkeys = 0;
101 candidate->qnbytes = 0;
102 spin_lock_init(&candidate->lock);
103 mutex_init(&candidate->cons_lock);
105 rb_link_node(&candidate->node, parent, p);
106 rb_insert_color(&candidate->node, &key_user_tree);
107 spin_unlock(&key_user_lock);
108 user = candidate;
109 goto out;
111 /* okay - we found a user record for this UID */
112 found:
113 atomic_inc(&user->usage);
114 spin_unlock(&key_user_lock);
115 kfree(candidate);
116 out:
117 return user;
121 * Dispose of a user structure
123 void key_user_put(struct key_user *user)
125 if (atomic_dec_and_lock(&user->usage, &key_user_lock)) {
126 rb_erase(&user->node, &key_user_tree);
127 spin_unlock(&key_user_lock);
129 kfree(user);
134 * Allocate a serial number for a key. These are assigned randomly to avoid
135 * security issues through covert channel problems.
137 static inline void key_alloc_serial(struct key *key)
139 struct rb_node *parent, **p;
140 struct key *xkey;
142 /* propose a random serial number and look for a hole for it in the
143 * serial number tree */
144 do {
145 get_random_bytes(&key->serial, sizeof(key->serial));
147 key->serial >>= 1; /* negative numbers are not permitted */
148 } while (key->serial < 3);
150 spin_lock(&key_serial_lock);
152 attempt_insertion:
153 parent = NULL;
154 p = &key_serial_tree.rb_node;
156 while (*p) {
157 parent = *p;
158 xkey = rb_entry(parent, struct key, serial_node);
160 if (key->serial < xkey->serial)
161 p = &(*p)->rb_left;
162 else if (key->serial > xkey->serial)
163 p = &(*p)->rb_right;
164 else
165 goto serial_exists;
168 /* we've found a suitable hole - arrange for this key to occupy it */
169 rb_link_node(&key->serial_node, parent, p);
170 rb_insert_color(&key->serial_node, &key_serial_tree);
172 spin_unlock(&key_serial_lock);
173 return;
175 /* we found a key with the proposed serial number - walk the tree from
176 * that point looking for the next unused serial number */
177 serial_exists:
178 for (;;) {
179 key->serial++;
180 if (key->serial < 3) {
181 key->serial = 3;
182 goto attempt_insertion;
185 parent = rb_next(parent);
186 if (!parent)
187 goto attempt_insertion;
189 xkey = rb_entry(parent, struct key, serial_node);
190 if (key->serial < xkey->serial)
191 goto attempt_insertion;
196 * key_alloc - Allocate a key of the specified type.
197 * @type: The type of key to allocate.
198 * @desc: The key description to allow the key to be searched out.
199 * @uid: The owner of the new key.
200 * @gid: The group ID for the new key's group permissions.
201 * @cred: The credentials specifying UID namespace.
202 * @perm: The permissions mask of the new key.
203 * @flags: Flags specifying quota properties.
204 * @restrict_link: Optional link restriction method for new keyrings.
206 * Allocate a key of the specified type with the attributes given. The key is
207 * returned in an uninstantiated state and the caller needs to instantiate the
208 * key before returning.
210 * The user's key count quota is updated to reflect the creation of the key and
211 * the user's key data quota has the default for the key type reserved. The
212 * instantiation function should amend this as necessary. If insufficient
213 * quota is available, -EDQUOT will be returned.
215 * The LSM security modules can prevent a key being created, in which case
216 * -EACCES will be returned.
218 * Returns a pointer to the new key if successful and an error code otherwise.
220 * Note that the caller needs to ensure the key type isn't uninstantiated.
221 * Internally this can be done by locking key_types_sem. Externally, this can
222 * be done by either never unregistering the key type, or making sure
223 * key_alloc() calls don't race with module unloading.
225 struct key *key_alloc(struct key_type *type, const char *desc,
226 kuid_t uid, kgid_t gid, const struct cred *cred,
227 key_perm_t perm, unsigned long flags,
228 int (*restrict_link)(struct key *,
229 const struct key_type *,
230 const union key_payload *))
232 struct key_user *user = NULL;
233 struct key *key;
234 size_t desclen, quotalen;
235 int ret;
237 key = ERR_PTR(-EINVAL);
238 if (!desc || !*desc)
239 goto error;
241 if (type->vet_description) {
242 ret = type->vet_description(desc);
243 if (ret < 0) {
244 key = ERR_PTR(ret);
245 goto error;
249 desclen = strlen(desc);
250 quotalen = desclen + 1 + type->def_datalen;
252 /* get hold of the key tracking for this user */
253 user = key_user_lookup(uid);
254 if (!user)
255 goto no_memory_1;
257 /* check that the user's quota permits allocation of another key and
258 * its description */
259 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
260 unsigned maxkeys = uid_eq(uid, GLOBAL_ROOT_UID) ?
261 key_quota_root_maxkeys : key_quota_maxkeys;
262 unsigned maxbytes = uid_eq(uid, GLOBAL_ROOT_UID) ?
263 key_quota_root_maxbytes : key_quota_maxbytes;
265 spin_lock(&user->lock);
266 if (!(flags & KEY_ALLOC_QUOTA_OVERRUN)) {
267 if (user->qnkeys + 1 >= maxkeys ||
268 user->qnbytes + quotalen >= maxbytes ||
269 user->qnbytes + quotalen < user->qnbytes)
270 goto no_quota;
273 user->qnkeys++;
274 user->qnbytes += quotalen;
275 spin_unlock(&user->lock);
278 /* allocate and initialise the key and its description */
279 key = kmem_cache_zalloc(key_jar, GFP_KERNEL);
280 if (!key)
281 goto no_memory_2;
283 key->index_key.desc_len = desclen;
284 key->index_key.description = kmemdup(desc, desclen + 1, GFP_KERNEL);
285 if (!key->index_key.description)
286 goto no_memory_3;
288 atomic_set(&key->usage, 1);
289 init_rwsem(&key->sem);
290 lockdep_set_class(&key->sem, &type->lock_class);
291 key->index_key.type = type;
292 key->user = user;
293 key->quotalen = quotalen;
294 key->datalen = type->def_datalen;
295 key->uid = uid;
296 key->gid = gid;
297 key->perm = perm;
298 key->restrict_link = restrict_link;
300 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA))
301 key->flags |= 1 << KEY_FLAG_IN_QUOTA;
302 if (flags & KEY_ALLOC_BUILT_IN)
303 key->flags |= 1 << KEY_FLAG_BUILTIN;
305 #ifdef KEY_DEBUGGING
306 key->magic = KEY_DEBUG_MAGIC;
307 #endif
309 /* let the security module know about the key */
310 ret = security_key_alloc(key, cred, flags);
311 if (ret < 0)
312 goto security_error;
314 /* publish the key by giving it a serial number */
315 atomic_inc(&user->nkeys);
316 key_alloc_serial(key);
318 error:
319 return key;
321 security_error:
322 kfree(key->description);
323 kmem_cache_free(key_jar, key);
324 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
325 spin_lock(&user->lock);
326 user->qnkeys--;
327 user->qnbytes -= quotalen;
328 spin_unlock(&user->lock);
330 key_user_put(user);
331 key = ERR_PTR(ret);
332 goto error;
334 no_memory_3:
335 kmem_cache_free(key_jar, key);
336 no_memory_2:
337 if (!(flags & KEY_ALLOC_NOT_IN_QUOTA)) {
338 spin_lock(&user->lock);
339 user->qnkeys--;
340 user->qnbytes -= quotalen;
341 spin_unlock(&user->lock);
343 key_user_put(user);
344 no_memory_1:
345 key = ERR_PTR(-ENOMEM);
346 goto error;
348 no_quota:
349 spin_unlock(&user->lock);
350 key_user_put(user);
351 key = ERR_PTR(-EDQUOT);
352 goto error;
354 EXPORT_SYMBOL(key_alloc);
357 * key_payload_reserve - Adjust data quota reservation for the key's payload
358 * @key: The key to make the reservation for.
359 * @datalen: The amount of data payload the caller now wants.
361 * Adjust the amount of the owning user's key data quota that a key reserves.
362 * If the amount is increased, then -EDQUOT may be returned if there isn't
363 * enough free quota available.
365 * If successful, 0 is returned.
367 int key_payload_reserve(struct key *key, size_t datalen)
369 int delta = (int)datalen - key->datalen;
370 int ret = 0;
372 key_check(key);
374 /* contemplate the quota adjustment */
375 if (delta != 0 && test_bit(KEY_FLAG_IN_QUOTA, &key->flags)) {
376 unsigned maxbytes = uid_eq(key->user->uid, GLOBAL_ROOT_UID) ?
377 key_quota_root_maxbytes : key_quota_maxbytes;
379 spin_lock(&key->user->lock);
381 if (delta > 0 &&
382 (key->user->qnbytes + delta >= maxbytes ||
383 key->user->qnbytes + delta < key->user->qnbytes)) {
384 ret = -EDQUOT;
386 else {
387 key->user->qnbytes += delta;
388 key->quotalen += delta;
390 spin_unlock(&key->user->lock);
393 /* change the recorded data length if that didn't generate an error */
394 if (ret == 0)
395 key->datalen = datalen;
397 return ret;
399 EXPORT_SYMBOL(key_payload_reserve);
402 * Instantiate a key and link it into the target keyring atomically. Must be
403 * called with the target keyring's semaphore writelocked. The target key's
404 * semaphore need not be locked as instantiation is serialised by
405 * key_construction_mutex.
407 static int __key_instantiate_and_link(struct key *key,
408 struct key_preparsed_payload *prep,
409 struct key *keyring,
410 struct key *authkey,
411 struct assoc_array_edit **_edit)
413 int ret, awaken;
415 key_check(key);
416 key_check(keyring);
418 awaken = 0;
419 ret = -EBUSY;
421 mutex_lock(&key_construction_mutex);
423 /* can't instantiate twice */
424 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
425 /* instantiate the key */
426 ret = key->type->instantiate(key, prep);
428 if (ret == 0) {
429 /* mark the key as being instantiated */
430 atomic_inc(&key->user->nikeys);
431 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
433 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
434 awaken = 1;
436 /* and link it into the destination keyring */
437 if (keyring) {
438 if (test_bit(KEY_FLAG_KEEP, &keyring->flags))
439 set_bit(KEY_FLAG_KEEP, &key->flags);
441 __key_link(key, _edit);
444 /* disable the authorisation key */
445 if (authkey)
446 key_revoke(authkey);
448 if (prep->expiry != TIME_T_MAX) {
449 key->expiry = prep->expiry;
450 key_schedule_gc(prep->expiry + key_gc_delay);
455 mutex_unlock(&key_construction_mutex);
457 /* wake up anyone waiting for a key to be constructed */
458 if (awaken)
459 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
461 return ret;
465 * key_instantiate_and_link - Instantiate a key and link it into the keyring.
466 * @key: The key to instantiate.
467 * @data: The data to use to instantiate the keyring.
468 * @datalen: The length of @data.
469 * @keyring: Keyring to create a link in on success (or NULL).
470 * @authkey: The authorisation token permitting instantiation.
472 * Instantiate a key that's in the uninstantiated state using the provided data
473 * and, if successful, link it in to the destination keyring if one is
474 * supplied.
476 * If successful, 0 is returned, the authorisation token is revoked and anyone
477 * waiting for the key is woken up. If the key was already instantiated,
478 * -EBUSY will be returned.
480 int key_instantiate_and_link(struct key *key,
481 const void *data,
482 size_t datalen,
483 struct key *keyring,
484 struct key *authkey)
486 struct key_preparsed_payload prep;
487 struct assoc_array_edit *edit;
488 int ret;
490 memset(&prep, 0, sizeof(prep));
491 prep.data = data;
492 prep.datalen = datalen;
493 prep.quotalen = key->type->def_datalen;
494 prep.expiry = TIME_T_MAX;
495 if (key->type->preparse) {
496 ret = key->type->preparse(&prep);
497 if (ret < 0)
498 goto error;
501 if (keyring) {
502 if (keyring->restrict_link) {
503 ret = keyring->restrict_link(keyring, key->type,
504 &prep.payload);
505 if (ret < 0)
506 goto error;
508 ret = __key_link_begin(keyring, &key->index_key, &edit);
509 if (ret < 0)
510 goto error;
513 ret = __key_instantiate_and_link(key, &prep, keyring, authkey, &edit);
515 if (keyring)
516 __key_link_end(keyring, &key->index_key, edit);
518 error:
519 if (key->type->preparse)
520 key->type->free_preparse(&prep);
521 return ret;
524 EXPORT_SYMBOL(key_instantiate_and_link);
527 * key_reject_and_link - Negatively instantiate a key and link it into the keyring.
528 * @key: The key to instantiate.
529 * @timeout: The timeout on the negative key.
530 * @error: The error to return when the key is hit.
531 * @keyring: Keyring to create a link in on success (or NULL).
532 * @authkey: The authorisation token permitting instantiation.
534 * Negatively instantiate a key that's in the uninstantiated state and, if
535 * successful, set its timeout and stored error and link it in to the
536 * destination keyring if one is supplied. The key and any links to the key
537 * will be automatically garbage collected after the timeout expires.
539 * Negative keys are used to rate limit repeated request_key() calls by causing
540 * them to return the stored error code (typically ENOKEY) until the negative
541 * key expires.
543 * If successful, 0 is returned, the authorisation token is revoked and anyone
544 * waiting for the key is woken up. If the key was already instantiated,
545 * -EBUSY will be returned.
547 int key_reject_and_link(struct key *key,
548 unsigned timeout,
549 unsigned error,
550 struct key *keyring,
551 struct key *authkey)
553 struct assoc_array_edit *edit;
554 struct timespec now;
555 int ret, awaken, link_ret = 0;
557 key_check(key);
558 key_check(keyring);
560 awaken = 0;
561 ret = -EBUSY;
563 if (keyring) {
564 if (keyring->restrict_link)
565 return -EPERM;
567 link_ret = __key_link_begin(keyring, &key->index_key, &edit);
570 mutex_lock(&key_construction_mutex);
572 /* can't instantiate twice */
573 if (!test_bit(KEY_FLAG_INSTANTIATED, &key->flags)) {
574 /* mark the key as being negatively instantiated */
575 atomic_inc(&key->user->nikeys);
576 key->reject_error = -error;
577 smp_wmb();
578 set_bit(KEY_FLAG_NEGATIVE, &key->flags);
579 set_bit(KEY_FLAG_INSTANTIATED, &key->flags);
580 now = current_kernel_time();
581 key->expiry = now.tv_sec + timeout;
582 key_schedule_gc(key->expiry + key_gc_delay);
584 if (test_and_clear_bit(KEY_FLAG_USER_CONSTRUCT, &key->flags))
585 awaken = 1;
587 ret = 0;
589 /* and link it into the destination keyring */
590 if (keyring && link_ret == 0)
591 __key_link(key, &edit);
593 /* disable the authorisation key */
594 if (authkey)
595 key_revoke(authkey);
598 mutex_unlock(&key_construction_mutex);
600 if (keyring && link_ret == 0)
601 __key_link_end(keyring, &key->index_key, edit);
603 /* wake up anyone waiting for a key to be constructed */
604 if (awaken)
605 wake_up_bit(&key->flags, KEY_FLAG_USER_CONSTRUCT);
607 return ret == 0 ? link_ret : ret;
609 EXPORT_SYMBOL(key_reject_and_link);
612 * key_put - Discard a reference to a key.
613 * @key: The key to discard a reference from.
615 * Discard a reference to a key, and when all the references are gone, we
616 * schedule the cleanup task to come and pull it out of the tree in process
617 * context at some later time.
619 void key_put(struct key *key)
621 if (key) {
622 key_check(key);
624 if (atomic_dec_and_test(&key->usage))
625 schedule_work(&key_gc_work);
628 EXPORT_SYMBOL(key_put);
631 * Find a key by its serial number.
633 struct key *key_lookup(key_serial_t id)
635 struct rb_node *n;
636 struct key *key;
638 spin_lock(&key_serial_lock);
640 /* search the tree for the specified key */
641 n = key_serial_tree.rb_node;
642 while (n) {
643 key = rb_entry(n, struct key, serial_node);
645 if (id < key->serial)
646 n = n->rb_left;
647 else if (id > key->serial)
648 n = n->rb_right;
649 else
650 goto found;
653 not_found:
654 key = ERR_PTR(-ENOKEY);
655 goto error;
657 found:
658 /* pretend it doesn't exist if it is awaiting deletion */
659 if (atomic_read(&key->usage) == 0)
660 goto not_found;
662 /* this races with key_put(), but that doesn't matter since key_put()
663 * doesn't actually change the key
665 __key_get(key);
667 error:
668 spin_unlock(&key_serial_lock);
669 return key;
673 * Find and lock the specified key type against removal.
675 * We return with the sem read-locked if successful. If the type wasn't
676 * available -ENOKEY is returned instead.
678 struct key_type *key_type_lookup(const char *type)
680 struct key_type *ktype;
682 down_read(&key_types_sem);
684 /* look up the key type to see if it's one of the registered kernel
685 * types */
686 list_for_each_entry(ktype, &key_types_list, link) {
687 if (strcmp(ktype->name, type) == 0)
688 goto found_kernel_type;
691 up_read(&key_types_sem);
692 ktype = ERR_PTR(-ENOKEY);
694 found_kernel_type:
695 return ktype;
698 void key_set_timeout(struct key *key, unsigned timeout)
700 struct timespec now;
701 time_t expiry = 0;
703 /* make the changes with the locks held to prevent races */
704 down_write(&key->sem);
706 if (timeout > 0) {
707 now = current_kernel_time();
708 expiry = now.tv_sec + timeout;
711 key->expiry = expiry;
712 key_schedule_gc(key->expiry + key_gc_delay);
714 up_write(&key->sem);
716 EXPORT_SYMBOL_GPL(key_set_timeout);
719 * Unlock a key type locked by key_type_lookup().
721 void key_type_put(struct key_type *ktype)
723 up_read(&key_types_sem);
727 * Attempt to update an existing key.
729 * The key is given to us with an incremented refcount that we need to discard
730 * if we get an error.
732 static inline key_ref_t __key_update(key_ref_t key_ref,
733 struct key_preparsed_payload *prep)
735 struct key *key = key_ref_to_ptr(key_ref);
736 int ret;
738 /* need write permission on the key to update it */
739 ret = key_permission(key_ref, KEY_NEED_WRITE);
740 if (ret < 0)
741 goto error;
743 ret = -EEXIST;
744 if (!key->type->update)
745 goto error;
747 down_write(&key->sem);
749 ret = key->type->update(key, prep);
750 if (ret == 0)
751 /* updating a negative key instantiates it */
752 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
754 up_write(&key->sem);
756 if (ret < 0)
757 goto error;
758 out:
759 return key_ref;
761 error:
762 key_put(key);
763 key_ref = ERR_PTR(ret);
764 goto out;
768 * key_create_or_update - Update or create and instantiate a key.
769 * @keyring_ref: A pointer to the destination keyring with possession flag.
770 * @type: The type of key.
771 * @description: The searchable description for the key.
772 * @payload: The data to use to instantiate or update the key.
773 * @plen: The length of @payload.
774 * @perm: The permissions mask for a new key.
775 * @flags: The quota flags for a new key.
777 * Search the destination keyring for a key of the same description and if one
778 * is found, update it, otherwise create and instantiate a new one and create a
779 * link to it from that keyring.
781 * If perm is KEY_PERM_UNDEF then an appropriate key permissions mask will be
782 * concocted.
784 * Returns a pointer to the new key if successful, -ENODEV if the key type
785 * wasn't available, -ENOTDIR if the keyring wasn't a keyring, -EACCES if the
786 * caller isn't permitted to modify the keyring or the LSM did not permit
787 * creation of the key.
789 * On success, the possession flag from the keyring ref will be tacked on to
790 * the key ref before it is returned.
792 key_ref_t key_create_or_update(key_ref_t keyring_ref,
793 const char *type,
794 const char *description,
795 const void *payload,
796 size_t plen,
797 key_perm_t perm,
798 unsigned long flags)
800 struct keyring_index_key index_key = {
801 .description = description,
803 struct key_preparsed_payload prep;
804 struct assoc_array_edit *edit;
805 const struct cred *cred = current_cred();
806 struct key *keyring, *key = NULL;
807 key_ref_t key_ref;
808 int ret;
809 int (*restrict_link)(struct key *,
810 const struct key_type *,
811 const union key_payload *) = NULL;
813 /* look up the key type to see if it's one of the registered kernel
814 * types */
815 index_key.type = key_type_lookup(type);
816 if (IS_ERR(index_key.type)) {
817 key_ref = ERR_PTR(-ENODEV);
818 goto error;
821 key_ref = ERR_PTR(-EINVAL);
822 if (!index_key.type->instantiate ||
823 (!index_key.description && !index_key.type->preparse))
824 goto error_put_type;
826 keyring = key_ref_to_ptr(keyring_ref);
828 key_check(keyring);
830 key_ref = ERR_PTR(-EPERM);
831 if (!(flags & KEY_ALLOC_BYPASS_RESTRICTION))
832 restrict_link = keyring->restrict_link;
834 key_ref = ERR_PTR(-ENOTDIR);
835 if (keyring->type != &key_type_keyring)
836 goto error_put_type;
838 memset(&prep, 0, sizeof(prep));
839 prep.data = payload;
840 prep.datalen = plen;
841 prep.quotalen = index_key.type->def_datalen;
842 prep.expiry = TIME_T_MAX;
843 if (index_key.type->preparse) {
844 ret = index_key.type->preparse(&prep);
845 if (ret < 0) {
846 key_ref = ERR_PTR(ret);
847 goto error_free_prep;
849 if (!index_key.description)
850 index_key.description = prep.description;
851 key_ref = ERR_PTR(-EINVAL);
852 if (!index_key.description)
853 goto error_free_prep;
855 index_key.desc_len = strlen(index_key.description);
857 if (restrict_link) {
858 ret = restrict_link(keyring, index_key.type, &prep.payload);
859 if (ret < 0) {
860 key_ref = ERR_PTR(ret);
861 goto error_free_prep;
865 ret = __key_link_begin(keyring, &index_key, &edit);
866 if (ret < 0) {
867 key_ref = ERR_PTR(ret);
868 goto error_free_prep;
871 /* if we're going to allocate a new key, we're going to have
872 * to modify the keyring */
873 ret = key_permission(keyring_ref, KEY_NEED_WRITE);
874 if (ret < 0) {
875 key_ref = ERR_PTR(ret);
876 goto error_link_end;
879 /* if it's possible to update this type of key, search for an existing
880 * key of the same type and description in the destination keyring and
881 * update that instead if possible
883 if (index_key.type->update) {
884 key_ref = find_key_to_update(keyring_ref, &index_key);
885 if (key_ref)
886 goto found_matching_key;
889 /* if the client doesn't provide, decide on the permissions we want */
890 if (perm == KEY_PERM_UNDEF) {
891 perm = KEY_POS_VIEW | KEY_POS_SEARCH | KEY_POS_LINK | KEY_POS_SETATTR;
892 perm |= KEY_USR_VIEW;
894 if (index_key.type->read)
895 perm |= KEY_POS_READ;
897 if (index_key.type == &key_type_keyring ||
898 index_key.type->update)
899 perm |= KEY_POS_WRITE;
902 /* allocate a new key */
903 key = key_alloc(index_key.type, index_key.description,
904 cred->fsuid, cred->fsgid, cred, perm, flags, NULL);
905 if (IS_ERR(key)) {
906 key_ref = ERR_CAST(key);
907 goto error_link_end;
910 /* instantiate it and link it into the target keyring */
911 ret = __key_instantiate_and_link(key, &prep, keyring, NULL, &edit);
912 if (ret < 0) {
913 key_put(key);
914 key_ref = ERR_PTR(ret);
915 goto error_link_end;
918 key_ref = make_key_ref(key, is_key_possessed(keyring_ref));
920 error_link_end:
921 __key_link_end(keyring, &index_key, edit);
922 error_free_prep:
923 if (index_key.type->preparse)
924 index_key.type->free_preparse(&prep);
925 error_put_type:
926 key_type_put(index_key.type);
927 error:
928 return key_ref;
930 found_matching_key:
931 /* we found a matching key, so we're going to try to update it
932 * - we can drop the locks first as we have the key pinned
934 __key_link_end(keyring, &index_key, edit);
936 key_ref = __key_update(key_ref, &prep);
937 goto error_free_prep;
939 EXPORT_SYMBOL(key_create_or_update);
942 * key_update - Update a key's contents.
943 * @key_ref: The pointer (plus possession flag) to the key.
944 * @payload: The data to be used to update the key.
945 * @plen: The length of @payload.
947 * Attempt to update the contents of a key with the given payload data. The
948 * caller must be granted Write permission on the key. Negative keys can be
949 * instantiated by this method.
951 * Returns 0 on success, -EACCES if not permitted and -EOPNOTSUPP if the key
952 * type does not support updating. The key type may return other errors.
954 int key_update(key_ref_t key_ref, const void *payload, size_t plen)
956 struct key_preparsed_payload prep;
957 struct key *key = key_ref_to_ptr(key_ref);
958 int ret;
960 key_check(key);
962 /* the key must be writable */
963 ret = key_permission(key_ref, KEY_NEED_WRITE);
964 if (ret < 0)
965 goto error;
967 /* attempt to update it if supported */
968 ret = -EOPNOTSUPP;
969 if (!key->type->update)
970 goto error;
972 memset(&prep, 0, sizeof(prep));
973 prep.data = payload;
974 prep.datalen = plen;
975 prep.quotalen = key->type->def_datalen;
976 prep.expiry = TIME_T_MAX;
977 if (key->type->preparse) {
978 ret = key->type->preparse(&prep);
979 if (ret < 0)
980 goto error;
983 down_write(&key->sem);
985 ret = key->type->update(key, &prep);
986 if (ret == 0)
987 /* updating a negative key instantiates it */
988 clear_bit(KEY_FLAG_NEGATIVE, &key->flags);
990 up_write(&key->sem);
992 error:
993 if (key->type->preparse)
994 key->type->free_preparse(&prep);
995 return ret;
997 EXPORT_SYMBOL(key_update);
1000 * key_revoke - Revoke a key.
1001 * @key: The key to be revoked.
1003 * Mark a key as being revoked and ask the type to free up its resources. The
1004 * revocation timeout is set and the key and all its links will be
1005 * automatically garbage collected after key_gc_delay amount of time if they
1006 * are not manually dealt with first.
1008 void key_revoke(struct key *key)
1010 struct timespec now;
1011 time_t time;
1013 key_check(key);
1015 /* make sure no one's trying to change or use the key when we mark it
1016 * - we tell lockdep that we might nest because we might be revoking an
1017 * authorisation key whilst holding the sem on a key we've just
1018 * instantiated
1020 down_write_nested(&key->sem, 1);
1021 if (!test_and_set_bit(KEY_FLAG_REVOKED, &key->flags) &&
1022 key->type->revoke)
1023 key->type->revoke(key);
1025 /* set the death time to no more than the expiry time */
1026 now = current_kernel_time();
1027 time = now.tv_sec;
1028 if (key->revoked_at == 0 || key->revoked_at > time) {
1029 key->revoked_at = time;
1030 key_schedule_gc(key->revoked_at + key_gc_delay);
1033 up_write(&key->sem);
1035 EXPORT_SYMBOL(key_revoke);
1038 * key_invalidate - Invalidate a key.
1039 * @key: The key to be invalidated.
1041 * Mark a key as being invalidated and have it cleaned up immediately. The key
1042 * is ignored by all searches and other operations from this point.
1044 void key_invalidate(struct key *key)
1046 kenter("%d", key_serial(key));
1048 key_check(key);
1050 if (!test_bit(KEY_FLAG_INVALIDATED, &key->flags)) {
1051 down_write_nested(&key->sem, 1);
1052 if (!test_and_set_bit(KEY_FLAG_INVALIDATED, &key->flags))
1053 key_schedule_gc_links();
1054 up_write(&key->sem);
1057 EXPORT_SYMBOL(key_invalidate);
1060 * generic_key_instantiate - Simple instantiation of a key from preparsed data
1061 * @key: The key to be instantiated
1062 * @prep: The preparsed data to load.
1064 * Instantiate a key from preparsed data. We assume we can just copy the data
1065 * in directly and clear the old pointers.
1067 * This can be pointed to directly by the key type instantiate op pointer.
1069 int generic_key_instantiate(struct key *key, struct key_preparsed_payload *prep)
1071 int ret;
1073 pr_devel("==>%s()\n", __func__);
1075 ret = key_payload_reserve(key, prep->quotalen);
1076 if (ret == 0) {
1077 rcu_assign_keypointer(key, prep->payload.data[0]);
1078 key->payload.data[1] = prep->payload.data[1];
1079 key->payload.data[2] = prep->payload.data[2];
1080 key->payload.data[3] = prep->payload.data[3];
1081 prep->payload.data[0] = NULL;
1082 prep->payload.data[1] = NULL;
1083 prep->payload.data[2] = NULL;
1084 prep->payload.data[3] = NULL;
1086 pr_devel("<==%s() = %d\n", __func__, ret);
1087 return ret;
1089 EXPORT_SYMBOL(generic_key_instantiate);
1092 * register_key_type - Register a type of key.
1093 * @ktype: The new key type.
1095 * Register a new key type.
1097 * Returns 0 on success or -EEXIST if a type of this name already exists.
1099 int register_key_type(struct key_type *ktype)
1101 struct key_type *p;
1102 int ret;
1104 memset(&ktype->lock_class, 0, sizeof(ktype->lock_class));
1106 ret = -EEXIST;
1107 down_write(&key_types_sem);
1109 /* disallow key types with the same name */
1110 list_for_each_entry(p, &key_types_list, link) {
1111 if (strcmp(p->name, ktype->name) == 0)
1112 goto out;
1115 /* store the type */
1116 list_add(&ktype->link, &key_types_list);
1118 pr_notice("Key type %s registered\n", ktype->name);
1119 ret = 0;
1121 out:
1122 up_write(&key_types_sem);
1123 return ret;
1125 EXPORT_SYMBOL(register_key_type);
1128 * unregister_key_type - Unregister a type of key.
1129 * @ktype: The key type.
1131 * Unregister a key type and mark all the extant keys of this type as dead.
1132 * Those keys of this type are then destroyed to get rid of their payloads and
1133 * they and their links will be garbage collected as soon as possible.
1135 void unregister_key_type(struct key_type *ktype)
1137 down_write(&key_types_sem);
1138 list_del_init(&ktype->link);
1139 downgrade_write(&key_types_sem);
1140 key_gc_keytype(ktype);
1141 pr_notice("Key type %s unregistered\n", ktype->name);
1142 up_read(&key_types_sem);
1144 EXPORT_SYMBOL(unregister_key_type);
1147 * Initialise the key management state.
1149 void __init key_init(void)
1151 /* allocate a slab in which we can store keys */
1152 key_jar = kmem_cache_create("key_jar", sizeof(struct key),
1153 0, SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1155 /* add the special key types */
1156 list_add_tail(&key_type_keyring.link, &key_types_list);
1157 list_add_tail(&key_type_dead.link, &key_types_list);
1158 list_add_tail(&key_type_user.link, &key_types_list);
1159 list_add_tail(&key_type_logon.link, &key_types_list);
1161 /* record the root user tracking */
1162 rb_link_node(&root_key_user.node,
1163 NULL,
1164 &key_user_tree.rb_node);
1166 rb_insert_color(&root_key_user.node,
1167 &key_user_tree);