scsi: cxlflash: Reset command ioasc
[linux/fpc-iii.git] / ipc / sem.c
blob87bd38f38dc328529ef2f6854a7a3d1e945bd9a0
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/ipc/sem.c
4 * Copyright (C) 1992 Krishna Balasubramanian
5 * Copyright (C) 1995 Eric Schenk, Bruno Haible
7 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
9 * SMP-threaded, sysctl's added
10 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
11 * Enforced range limit on SEM_UNDO
12 * (c) 2001 Red Hat Inc
13 * Lockless wakeup
14 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
15 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
16 * Further wakeup optimizations, documentation
17 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
19 * support for audit of ipc object properties and permission changes
20 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
22 * namespaces support
23 * OpenVZ, SWsoft Inc.
24 * Pavel Emelianov <xemul@openvz.org>
26 * Implementation notes: (May 2010)
27 * This file implements System V semaphores.
29 * User space visible behavior:
30 * - FIFO ordering for semop() operations (just FIFO, not starvation
31 * protection)
32 * - multiple semaphore operations that alter the same semaphore in
33 * one semop() are handled.
34 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
35 * SETALL calls.
36 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
37 * - undo adjustments at process exit are limited to 0..SEMVMX.
38 * - namespace are supported.
39 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
40 * to /proc/sys/kernel/sem.
41 * - statistics about the usage are reported in /proc/sysvipc/sem.
43 * Internals:
44 * - scalability:
45 * - all global variables are read-mostly.
46 * - semop() calls and semctl(RMID) are synchronized by RCU.
47 * - most operations do write operations (actually: spin_lock calls) to
48 * the per-semaphore array structure.
49 * Thus: Perfect SMP scaling between independent semaphore arrays.
50 * If multiple semaphores in one array are used, then cache line
51 * trashing on the semaphore array spinlock will limit the scaling.
52 * - semncnt and semzcnt are calculated on demand in count_semcnt()
53 * - the task that performs a successful semop() scans the list of all
54 * sleeping tasks and completes any pending operations that can be fulfilled.
55 * Semaphores are actively given to waiting tasks (necessary for FIFO).
56 * (see update_queue())
57 * - To improve the scalability, the actual wake-up calls are performed after
58 * dropping all locks. (see wake_up_sem_queue_prepare())
59 * - All work is done by the waker, the woken up task does not have to do
60 * anything - not even acquiring a lock or dropping a refcount.
61 * - A woken up task may not even touch the semaphore array anymore, it may
62 * have been destroyed already by a semctl(RMID).
63 * - UNDO values are stored in an array (one per process and per
64 * semaphore array, lazily allocated). For backwards compatibility, multiple
65 * modes for the UNDO variables are supported (per process, per thread)
66 * (see copy_semundo, CLONE_SYSVSEM)
67 * - There are two lists of the pending operations: a per-array list
68 * and per-semaphore list (stored in the array). This allows to achieve FIFO
69 * ordering without always scanning all pending operations.
70 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
73 #include <linux/slab.h>
74 #include <linux/spinlock.h>
75 #include <linux/init.h>
76 #include <linux/proc_fs.h>
77 #include <linux/time.h>
78 #include <linux/security.h>
79 #include <linux/syscalls.h>
80 #include <linux/audit.h>
81 #include <linux/capability.h>
82 #include <linux/seq_file.h>
83 #include <linux/rwsem.h>
84 #include <linux/nsproxy.h>
85 #include <linux/ipc_namespace.h>
86 #include <linux/sched/wake_q.h>
88 #include <linux/uaccess.h>
89 #include "util.h"
92 /* One queue for each sleeping process in the system. */
93 struct sem_queue {
94 struct list_head list; /* queue of pending operations */
95 struct task_struct *sleeper; /* this process */
96 struct sem_undo *undo; /* undo structure */
97 int pid; /* process id of requesting process */
98 int status; /* completion status of operation */
99 struct sembuf *sops; /* array of pending operations */
100 struct sembuf *blocking; /* the operation that blocked */
101 int nsops; /* number of operations */
102 bool alter; /* does *sops alter the array? */
103 bool dupsop; /* sops on more than one sem_num */
106 /* Each task has a list of undo requests. They are executed automatically
107 * when the process exits.
109 struct sem_undo {
110 struct list_head list_proc; /* per-process list: *
111 * all undos from one process
112 * rcu protected */
113 struct rcu_head rcu; /* rcu struct for sem_undo */
114 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
115 struct list_head list_id; /* per semaphore array list:
116 * all undos for one array */
117 int semid; /* semaphore set identifier */
118 short *semadj; /* array of adjustments */
119 /* one per semaphore */
122 /* sem_undo_list controls shared access to the list of sem_undo structures
123 * that may be shared among all a CLONE_SYSVSEM task group.
125 struct sem_undo_list {
126 refcount_t refcnt;
127 spinlock_t lock;
128 struct list_head list_proc;
132 #define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
134 static int newary(struct ipc_namespace *, struct ipc_params *);
135 static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
136 #ifdef CONFIG_PROC_FS
137 static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
138 #endif
140 #define SEMMSL_FAST 256 /* 512 bytes on stack */
141 #define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
144 * Switching from the mode suitable for simple ops
145 * to the mode for complex ops is costly. Therefore:
146 * use some hysteresis
148 #define USE_GLOBAL_LOCK_HYSTERESIS 10
151 * Locking:
152 * a) global sem_lock() for read/write
153 * sem_undo.id_next,
154 * sem_array.complex_count,
155 * sem_array.pending{_alter,_const},
156 * sem_array.sem_undo
158 * b) global or semaphore sem_lock() for read/write:
159 * sem_array.sems[i].pending_{const,alter}:
161 * c) special:
162 * sem_undo_list.list_proc:
163 * * undo_list->lock for write
164 * * rcu for read
165 * use_global_lock:
166 * * global sem_lock() for write
167 * * either local or global sem_lock() for read.
169 * Memory ordering:
170 * Most ordering is enforced by using spin_lock() and spin_unlock().
171 * The special case is use_global_lock:
172 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
173 * using smp_store_release().
174 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
175 * smp_load_acquire().
176 * Setting it from 0 to non-zero must be ordered with regards to
177 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
178 * is inside a spin_lock() and after a write from 0 to non-zero a
179 * spin_lock()+spin_unlock() is done.
182 #define sc_semmsl sem_ctls[0]
183 #define sc_semmns sem_ctls[1]
184 #define sc_semopm sem_ctls[2]
185 #define sc_semmni sem_ctls[3]
187 int sem_init_ns(struct ipc_namespace *ns)
189 ns->sc_semmsl = SEMMSL;
190 ns->sc_semmns = SEMMNS;
191 ns->sc_semopm = SEMOPM;
192 ns->sc_semmni = SEMMNI;
193 ns->used_sems = 0;
194 return ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
197 #ifdef CONFIG_IPC_NS
198 void sem_exit_ns(struct ipc_namespace *ns)
200 free_ipcs(ns, &sem_ids(ns), freeary);
201 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
202 rhashtable_destroy(&ns->ids[IPC_SEM_IDS].key_ht);
204 #endif
206 int __init sem_init(void)
208 const int err = sem_init_ns(&init_ipc_ns);
210 ipc_init_proc_interface("sysvipc/sem",
211 " key semid perms nsems uid gid cuid cgid otime ctime\n",
212 IPC_SEM_IDS, sysvipc_sem_proc_show);
213 return err;
217 * unmerge_queues - unmerge queues, if possible.
218 * @sma: semaphore array
220 * The function unmerges the wait queues if complex_count is 0.
221 * It must be called prior to dropping the global semaphore array lock.
223 static void unmerge_queues(struct sem_array *sma)
225 struct sem_queue *q, *tq;
227 /* complex operations still around? */
228 if (sma->complex_count)
229 return;
231 * We will switch back to simple mode.
232 * Move all pending operation back into the per-semaphore
233 * queues.
235 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
236 struct sem *curr;
237 curr = &sma->sems[q->sops[0].sem_num];
239 list_add_tail(&q->list, &curr->pending_alter);
241 INIT_LIST_HEAD(&sma->pending_alter);
245 * merge_queues - merge single semop queues into global queue
246 * @sma: semaphore array
248 * This function merges all per-semaphore queues into the global queue.
249 * It is necessary to achieve FIFO ordering for the pending single-sop
250 * operations when a multi-semop operation must sleep.
251 * Only the alter operations must be moved, the const operations can stay.
253 static void merge_queues(struct sem_array *sma)
255 int i;
256 for (i = 0; i < sma->sem_nsems; i++) {
257 struct sem *sem = &sma->sems[i];
259 list_splice_init(&sem->pending_alter, &sma->pending_alter);
263 static void sem_rcu_free(struct rcu_head *head)
265 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
266 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
268 security_sem_free(sma);
269 kvfree(sma);
273 * Enter the mode suitable for non-simple operations:
274 * Caller must own sem_perm.lock.
276 static void complexmode_enter(struct sem_array *sma)
278 int i;
279 struct sem *sem;
281 if (sma->use_global_lock > 0) {
283 * We are already in global lock mode.
284 * Nothing to do, just reset the
285 * counter until we return to simple mode.
287 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
288 return;
290 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
292 for (i = 0; i < sma->sem_nsems; i++) {
293 sem = &sma->sems[i];
294 spin_lock(&sem->lock);
295 spin_unlock(&sem->lock);
300 * Try to leave the mode that disallows simple operations:
301 * Caller must own sem_perm.lock.
303 static void complexmode_tryleave(struct sem_array *sma)
305 if (sma->complex_count) {
306 /* Complex ops are sleeping.
307 * We must stay in complex mode
309 return;
311 if (sma->use_global_lock == 1) {
313 * Immediately after setting use_global_lock to 0,
314 * a simple op can start. Thus: all memory writes
315 * performed by the current operation must be visible
316 * before we set use_global_lock to 0.
318 smp_store_release(&sma->use_global_lock, 0);
319 } else {
320 sma->use_global_lock--;
324 #define SEM_GLOBAL_LOCK (-1)
326 * If the request contains only one semaphore operation, and there are
327 * no complex transactions pending, lock only the semaphore involved.
328 * Otherwise, lock the entire semaphore array, since we either have
329 * multiple semaphores in our own semops, or we need to look at
330 * semaphores from other pending complex operations.
332 static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
333 int nsops)
335 struct sem *sem;
337 if (nsops != 1) {
338 /* Complex operation - acquire a full lock */
339 ipc_lock_object(&sma->sem_perm);
341 /* Prevent parallel simple ops */
342 complexmode_enter(sma);
343 return SEM_GLOBAL_LOCK;
347 * Only one semaphore affected - try to optimize locking.
348 * Optimized locking is possible if no complex operation
349 * is either enqueued or processed right now.
351 * Both facts are tracked by use_global_mode.
353 sem = &sma->sems[sops->sem_num];
356 * Initial check for use_global_lock. Just an optimization,
357 * no locking, no memory barrier.
359 if (!sma->use_global_lock) {
361 * It appears that no complex operation is around.
362 * Acquire the per-semaphore lock.
364 spin_lock(&sem->lock);
366 /* pairs with smp_store_release() */
367 if (!smp_load_acquire(&sma->use_global_lock)) {
368 /* fast path successful! */
369 return sops->sem_num;
371 spin_unlock(&sem->lock);
374 /* slow path: acquire the full lock */
375 ipc_lock_object(&sma->sem_perm);
377 if (sma->use_global_lock == 0) {
379 * The use_global_lock mode ended while we waited for
380 * sma->sem_perm.lock. Thus we must switch to locking
381 * with sem->lock.
382 * Unlike in the fast path, there is no need to recheck
383 * sma->use_global_lock after we have acquired sem->lock:
384 * We own sma->sem_perm.lock, thus use_global_lock cannot
385 * change.
387 spin_lock(&sem->lock);
389 ipc_unlock_object(&sma->sem_perm);
390 return sops->sem_num;
391 } else {
393 * Not a false alarm, thus continue to use the global lock
394 * mode. No need for complexmode_enter(), this was done by
395 * the caller that has set use_global_mode to non-zero.
397 return SEM_GLOBAL_LOCK;
401 static inline void sem_unlock(struct sem_array *sma, int locknum)
403 if (locknum == SEM_GLOBAL_LOCK) {
404 unmerge_queues(sma);
405 complexmode_tryleave(sma);
406 ipc_unlock_object(&sma->sem_perm);
407 } else {
408 struct sem *sem = &sma->sems[locknum];
409 spin_unlock(&sem->lock);
414 * sem_lock_(check_) routines are called in the paths where the rwsem
415 * is not held.
417 * The caller holds the RCU read lock.
419 static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
421 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
423 if (IS_ERR(ipcp))
424 return ERR_CAST(ipcp);
426 return container_of(ipcp, struct sem_array, sem_perm);
429 static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
430 int id)
432 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
434 if (IS_ERR(ipcp))
435 return ERR_CAST(ipcp);
437 return container_of(ipcp, struct sem_array, sem_perm);
440 static inline void sem_lock_and_putref(struct sem_array *sma)
442 sem_lock(sma, NULL, -1);
443 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
446 static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
448 ipc_rmid(&sem_ids(ns), &s->sem_perm);
451 static struct sem_array *sem_alloc(size_t nsems)
453 struct sem_array *sma;
454 size_t size;
456 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
457 return NULL;
459 size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
460 sma = kvmalloc(size, GFP_KERNEL);
461 if (unlikely(!sma))
462 return NULL;
464 memset(sma, 0, size);
466 return sma;
470 * newary - Create a new semaphore set
471 * @ns: namespace
472 * @params: ptr to the structure that contains key, semflg and nsems
474 * Called with sem_ids.rwsem held (as a writer)
476 static int newary(struct ipc_namespace *ns, struct ipc_params *params)
478 int retval;
479 struct sem_array *sma;
480 key_t key = params->key;
481 int nsems = params->u.nsems;
482 int semflg = params->flg;
483 int i;
485 if (!nsems)
486 return -EINVAL;
487 if (ns->used_sems + nsems > ns->sc_semmns)
488 return -ENOSPC;
490 sma = sem_alloc(nsems);
491 if (!sma)
492 return -ENOMEM;
494 sma->sem_perm.mode = (semflg & S_IRWXUGO);
495 sma->sem_perm.key = key;
497 sma->sem_perm.security = NULL;
498 retval = security_sem_alloc(sma);
499 if (retval) {
500 kvfree(sma);
501 return retval;
504 for (i = 0; i < nsems; i++) {
505 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
506 INIT_LIST_HEAD(&sma->sems[i].pending_const);
507 spin_lock_init(&sma->sems[i].lock);
510 sma->complex_count = 0;
511 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
512 INIT_LIST_HEAD(&sma->pending_alter);
513 INIT_LIST_HEAD(&sma->pending_const);
514 INIT_LIST_HEAD(&sma->list_id);
515 sma->sem_nsems = nsems;
516 sma->sem_ctime = ktime_get_real_seconds();
518 /* ipc_addid() locks sma upon success. */
519 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
520 if (retval < 0) {
521 call_rcu(&sma->sem_perm.rcu, sem_rcu_free);
522 return retval;
524 ns->used_sems += nsems;
526 sem_unlock(sma, -1);
527 rcu_read_unlock();
529 return sma->sem_perm.id;
534 * Called with sem_ids.rwsem and ipcp locked.
536 static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
538 struct sem_array *sma;
540 sma = container_of(ipcp, struct sem_array, sem_perm);
541 return security_sem_associate(sma, semflg);
545 * Called with sem_ids.rwsem and ipcp locked.
547 static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
548 struct ipc_params *params)
550 struct sem_array *sma;
552 sma = container_of(ipcp, struct sem_array, sem_perm);
553 if (params->u.nsems > sma->sem_nsems)
554 return -EINVAL;
556 return 0;
559 SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
561 struct ipc_namespace *ns;
562 static const struct ipc_ops sem_ops = {
563 .getnew = newary,
564 .associate = sem_security,
565 .more_checks = sem_more_checks,
567 struct ipc_params sem_params;
569 ns = current->nsproxy->ipc_ns;
571 if (nsems < 0 || nsems > ns->sc_semmsl)
572 return -EINVAL;
574 sem_params.key = key;
575 sem_params.flg = semflg;
576 sem_params.u.nsems = nsems;
578 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
582 * perform_atomic_semop[_slow] - Attempt to perform semaphore
583 * operations on a given array.
584 * @sma: semaphore array
585 * @q: struct sem_queue that describes the operation
587 * Caller blocking are as follows, based the value
588 * indicated by the semaphore operation (sem_op):
590 * (1) >0 never blocks.
591 * (2) 0 (wait-for-zero operation): semval is non-zero.
592 * (3) <0 attempting to decrement semval to a value smaller than zero.
594 * Returns 0 if the operation was possible.
595 * Returns 1 if the operation is impossible, the caller must sleep.
596 * Returns <0 for error codes.
598 static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
600 int result, sem_op, nsops, pid;
601 struct sembuf *sop;
602 struct sem *curr;
603 struct sembuf *sops;
604 struct sem_undo *un;
606 sops = q->sops;
607 nsops = q->nsops;
608 un = q->undo;
610 for (sop = sops; sop < sops + nsops; sop++) {
611 curr = &sma->sems[sop->sem_num];
612 sem_op = sop->sem_op;
613 result = curr->semval;
615 if (!sem_op && result)
616 goto would_block;
618 result += sem_op;
619 if (result < 0)
620 goto would_block;
621 if (result > SEMVMX)
622 goto out_of_range;
624 if (sop->sem_flg & SEM_UNDO) {
625 int undo = un->semadj[sop->sem_num] - sem_op;
626 /* Exceeding the undo range is an error. */
627 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
628 goto out_of_range;
629 un->semadj[sop->sem_num] = undo;
632 curr->semval = result;
635 sop--;
636 pid = q->pid;
637 while (sop >= sops) {
638 sma->sems[sop->sem_num].sempid = pid;
639 sop--;
642 return 0;
644 out_of_range:
645 result = -ERANGE;
646 goto undo;
648 would_block:
649 q->blocking = sop;
651 if (sop->sem_flg & IPC_NOWAIT)
652 result = -EAGAIN;
653 else
654 result = 1;
656 undo:
657 sop--;
658 while (sop >= sops) {
659 sem_op = sop->sem_op;
660 sma->sems[sop->sem_num].semval -= sem_op;
661 if (sop->sem_flg & SEM_UNDO)
662 un->semadj[sop->sem_num] += sem_op;
663 sop--;
666 return result;
669 static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
671 int result, sem_op, nsops;
672 struct sembuf *sop;
673 struct sem *curr;
674 struct sembuf *sops;
675 struct sem_undo *un;
677 sops = q->sops;
678 nsops = q->nsops;
679 un = q->undo;
681 if (unlikely(q->dupsop))
682 return perform_atomic_semop_slow(sma, q);
685 * We scan the semaphore set twice, first to ensure that the entire
686 * operation can succeed, therefore avoiding any pointless writes
687 * to shared memory and having to undo such changes in order to block
688 * until the operations can go through.
690 for (sop = sops; sop < sops + nsops; sop++) {
691 curr = &sma->sems[sop->sem_num];
692 sem_op = sop->sem_op;
693 result = curr->semval;
695 if (!sem_op && result)
696 goto would_block; /* wait-for-zero */
698 result += sem_op;
699 if (result < 0)
700 goto would_block;
702 if (result > SEMVMX)
703 return -ERANGE;
705 if (sop->sem_flg & SEM_UNDO) {
706 int undo = un->semadj[sop->sem_num] - sem_op;
708 /* Exceeding the undo range is an error. */
709 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
710 return -ERANGE;
714 for (sop = sops; sop < sops + nsops; sop++) {
715 curr = &sma->sems[sop->sem_num];
716 sem_op = sop->sem_op;
717 result = curr->semval;
719 if (sop->sem_flg & SEM_UNDO) {
720 int undo = un->semadj[sop->sem_num] - sem_op;
722 un->semadj[sop->sem_num] = undo;
724 curr->semval += sem_op;
725 curr->sempid = q->pid;
728 return 0;
730 would_block:
731 q->blocking = sop;
732 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
735 static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
736 struct wake_q_head *wake_q)
738 wake_q_add(wake_q, q->sleeper);
740 * Rely on the above implicit barrier, such that we can
741 * ensure that we hold reference to the task before setting
742 * q->status. Otherwise we could race with do_exit if the
743 * task is awoken by an external event before calling
744 * wake_up_process().
746 WRITE_ONCE(q->status, error);
749 static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
751 list_del(&q->list);
752 if (q->nsops > 1)
753 sma->complex_count--;
756 /** check_restart(sma, q)
757 * @sma: semaphore array
758 * @q: the operation that just completed
760 * update_queue is O(N^2) when it restarts scanning the whole queue of
761 * waiting operations. Therefore this function checks if the restart is
762 * really necessary. It is called after a previously waiting operation
763 * modified the array.
764 * Note that wait-for-zero operations are handled without restart.
766 static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
768 /* pending complex alter operations are too difficult to analyse */
769 if (!list_empty(&sma->pending_alter))
770 return 1;
772 /* we were a sleeping complex operation. Too difficult */
773 if (q->nsops > 1)
774 return 1;
776 /* It is impossible that someone waits for the new value:
777 * - complex operations always restart.
778 * - wait-for-zero are handled seperately.
779 * - q is a previously sleeping simple operation that
780 * altered the array. It must be a decrement, because
781 * simple increments never sleep.
782 * - If there are older (higher priority) decrements
783 * in the queue, then they have observed the original
784 * semval value and couldn't proceed. The operation
785 * decremented to value - thus they won't proceed either.
787 return 0;
791 * wake_const_ops - wake up non-alter tasks
792 * @sma: semaphore array.
793 * @semnum: semaphore that was modified.
794 * @wake_q: lockless wake-queue head.
796 * wake_const_ops must be called after a semaphore in a semaphore array
797 * was set to 0. If complex const operations are pending, wake_const_ops must
798 * be called with semnum = -1, as well as with the number of each modified
799 * semaphore.
800 * The tasks that must be woken up are added to @wake_q. The return code
801 * is stored in q->pid.
802 * The function returns 1 if at least one operation was completed successfully.
804 static int wake_const_ops(struct sem_array *sma, int semnum,
805 struct wake_q_head *wake_q)
807 struct sem_queue *q, *tmp;
808 struct list_head *pending_list;
809 int semop_completed = 0;
811 if (semnum == -1)
812 pending_list = &sma->pending_const;
813 else
814 pending_list = &sma->sems[semnum].pending_const;
816 list_for_each_entry_safe(q, tmp, pending_list, list) {
817 int error = perform_atomic_semop(sma, q);
819 if (error > 0)
820 continue;
821 /* operation completed, remove from queue & wakeup */
822 unlink_queue(sma, q);
824 wake_up_sem_queue_prepare(q, error, wake_q);
825 if (error == 0)
826 semop_completed = 1;
829 return semop_completed;
833 * do_smart_wakeup_zero - wakeup all wait for zero tasks
834 * @sma: semaphore array
835 * @sops: operations that were performed
836 * @nsops: number of operations
837 * @wake_q: lockless wake-queue head
839 * Checks all required queue for wait-for-zero operations, based
840 * on the actual changes that were performed on the semaphore array.
841 * The function returns 1 if at least one operation was completed successfully.
843 static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
844 int nsops, struct wake_q_head *wake_q)
846 int i;
847 int semop_completed = 0;
848 int got_zero = 0;
850 /* first: the per-semaphore queues, if known */
851 if (sops) {
852 for (i = 0; i < nsops; i++) {
853 int num = sops[i].sem_num;
855 if (sma->sems[num].semval == 0) {
856 got_zero = 1;
857 semop_completed |= wake_const_ops(sma, num, wake_q);
860 } else {
862 * No sops means modified semaphores not known.
863 * Assume all were changed.
865 for (i = 0; i < sma->sem_nsems; i++) {
866 if (sma->sems[i].semval == 0) {
867 got_zero = 1;
868 semop_completed |= wake_const_ops(sma, i, wake_q);
873 * If one of the modified semaphores got 0,
874 * then check the global queue, too.
876 if (got_zero)
877 semop_completed |= wake_const_ops(sma, -1, wake_q);
879 return semop_completed;
884 * update_queue - look for tasks that can be completed.
885 * @sma: semaphore array.
886 * @semnum: semaphore that was modified.
887 * @wake_q: lockless wake-queue head.
889 * update_queue must be called after a semaphore in a semaphore array
890 * was modified. If multiple semaphores were modified, update_queue must
891 * be called with semnum = -1, as well as with the number of each modified
892 * semaphore.
893 * The tasks that must be woken up are added to @wake_q. The return code
894 * is stored in q->pid.
895 * The function internally checks if const operations can now succeed.
897 * The function return 1 if at least one semop was completed successfully.
899 static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
901 struct sem_queue *q, *tmp;
902 struct list_head *pending_list;
903 int semop_completed = 0;
905 if (semnum == -1)
906 pending_list = &sma->pending_alter;
907 else
908 pending_list = &sma->sems[semnum].pending_alter;
910 again:
911 list_for_each_entry_safe(q, tmp, pending_list, list) {
912 int error, restart;
914 /* If we are scanning the single sop, per-semaphore list of
915 * one semaphore and that semaphore is 0, then it is not
916 * necessary to scan further: simple increments
917 * that affect only one entry succeed immediately and cannot
918 * be in the per semaphore pending queue, and decrements
919 * cannot be successful if the value is already 0.
921 if (semnum != -1 && sma->sems[semnum].semval == 0)
922 break;
924 error = perform_atomic_semop(sma, q);
926 /* Does q->sleeper still need to sleep? */
927 if (error > 0)
928 continue;
930 unlink_queue(sma, q);
932 if (error) {
933 restart = 0;
934 } else {
935 semop_completed = 1;
936 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
937 restart = check_restart(sma, q);
940 wake_up_sem_queue_prepare(q, error, wake_q);
941 if (restart)
942 goto again;
944 return semop_completed;
948 * set_semotime - set sem_otime
949 * @sma: semaphore array
950 * @sops: operations that modified the array, may be NULL
952 * sem_otime is replicated to avoid cache line trashing.
953 * This function sets one instance to the current time.
955 static void set_semotime(struct sem_array *sma, struct sembuf *sops)
957 if (sops == NULL) {
958 sma->sems[0].sem_otime = get_seconds();
959 } else {
960 sma->sems[sops[0].sem_num].sem_otime =
961 get_seconds();
966 * do_smart_update - optimized update_queue
967 * @sma: semaphore array
968 * @sops: operations that were performed
969 * @nsops: number of operations
970 * @otime: force setting otime
971 * @wake_q: lockless wake-queue head
973 * do_smart_update() does the required calls to update_queue and wakeup_zero,
974 * based on the actual changes that were performed on the semaphore array.
975 * Note that the function does not do the actual wake-up: the caller is
976 * responsible for calling wake_up_q().
977 * It is safe to perform this call after dropping all locks.
979 static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
980 int otime, struct wake_q_head *wake_q)
982 int i;
984 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
986 if (!list_empty(&sma->pending_alter)) {
987 /* semaphore array uses the global queue - just process it. */
988 otime |= update_queue(sma, -1, wake_q);
989 } else {
990 if (!sops) {
992 * No sops, thus the modified semaphores are not
993 * known. Check all.
995 for (i = 0; i < sma->sem_nsems; i++)
996 otime |= update_queue(sma, i, wake_q);
997 } else {
999 * Check the semaphores that were increased:
1000 * - No complex ops, thus all sleeping ops are
1001 * decrease.
1002 * - if we decreased the value, then any sleeping
1003 * semaphore ops wont be able to run: If the
1004 * previous value was too small, then the new
1005 * value will be too small, too.
1007 for (i = 0; i < nsops; i++) {
1008 if (sops[i].sem_op > 0) {
1009 otime |= update_queue(sma,
1010 sops[i].sem_num, wake_q);
1015 if (otime)
1016 set_semotime(sma, sops);
1020 * check_qop: Test if a queued operation sleeps on the semaphore semnum
1022 static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1023 bool count_zero)
1025 struct sembuf *sop = q->blocking;
1028 * Linux always (since 0.99.10) reported a task as sleeping on all
1029 * semaphores. This violates SUS, therefore it was changed to the
1030 * standard compliant behavior.
1031 * Give the administrators a chance to notice that an application
1032 * might misbehave because it relies on the Linux behavior.
1034 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1035 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1036 current->comm, task_pid_nr(current));
1038 if (sop->sem_num != semnum)
1039 return 0;
1041 if (count_zero && sop->sem_op == 0)
1042 return 1;
1043 if (!count_zero && sop->sem_op < 0)
1044 return 1;
1046 return 0;
1049 /* The following counts are associated to each semaphore:
1050 * semncnt number of tasks waiting on semval being nonzero
1051 * semzcnt number of tasks waiting on semval being zero
1053 * Per definition, a task waits only on the semaphore of the first semop
1054 * that cannot proceed, even if additional operation would block, too.
1056 static int count_semcnt(struct sem_array *sma, ushort semnum,
1057 bool count_zero)
1059 struct list_head *l;
1060 struct sem_queue *q;
1061 int semcnt;
1063 semcnt = 0;
1064 /* First: check the simple operations. They are easy to evaluate */
1065 if (count_zero)
1066 l = &sma->sems[semnum].pending_const;
1067 else
1068 l = &sma->sems[semnum].pending_alter;
1070 list_for_each_entry(q, l, list) {
1071 /* all task on a per-semaphore list sleep on exactly
1072 * that semaphore
1074 semcnt++;
1077 /* Then: check the complex operations. */
1078 list_for_each_entry(q, &sma->pending_alter, list) {
1079 semcnt += check_qop(sma, semnum, q, count_zero);
1081 if (count_zero) {
1082 list_for_each_entry(q, &sma->pending_const, list) {
1083 semcnt += check_qop(sma, semnum, q, count_zero);
1086 return semcnt;
1089 /* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1090 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
1091 * remains locked on exit.
1093 static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1095 struct sem_undo *un, *tu;
1096 struct sem_queue *q, *tq;
1097 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
1098 int i;
1099 DEFINE_WAKE_Q(wake_q);
1101 /* Free the existing undo structures for this semaphore set. */
1102 ipc_assert_locked_object(&sma->sem_perm);
1103 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1104 list_del(&un->list_id);
1105 spin_lock(&un->ulp->lock);
1106 un->semid = -1;
1107 list_del_rcu(&un->list_proc);
1108 spin_unlock(&un->ulp->lock);
1109 kfree_rcu(un, rcu);
1112 /* Wake up all pending processes and let them fail with EIDRM. */
1113 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1114 unlink_queue(sma, q);
1115 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1118 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
1119 unlink_queue(sma, q);
1120 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1122 for (i = 0; i < sma->sem_nsems; i++) {
1123 struct sem *sem = &sma->sems[i];
1124 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1125 unlink_queue(sma, q);
1126 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1128 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
1129 unlink_queue(sma, q);
1130 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1134 /* Remove the semaphore set from the IDR */
1135 sem_rmid(ns, sma);
1136 sem_unlock(sma, -1);
1137 rcu_read_unlock();
1139 wake_up_q(&wake_q);
1140 ns->used_sems -= sma->sem_nsems;
1141 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1144 static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1146 switch (version) {
1147 case IPC_64:
1148 return copy_to_user(buf, in, sizeof(*in));
1149 case IPC_OLD:
1151 struct semid_ds out;
1153 memset(&out, 0, sizeof(out));
1155 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1157 out.sem_otime = in->sem_otime;
1158 out.sem_ctime = in->sem_ctime;
1159 out.sem_nsems = in->sem_nsems;
1161 return copy_to_user(buf, &out, sizeof(out));
1163 default:
1164 return -EINVAL;
1168 static time64_t get_semotime(struct sem_array *sma)
1170 int i;
1171 time64_t res;
1173 res = sma->sems[0].sem_otime;
1174 for (i = 1; i < sma->sem_nsems; i++) {
1175 time64_t to = sma->sems[i].sem_otime;
1177 if (to > res)
1178 res = to;
1180 return res;
1183 static int semctl_stat(struct ipc_namespace *ns, int semid,
1184 int cmd, struct semid64_ds *semid64)
1186 struct sem_array *sma;
1187 int id = 0;
1188 int err;
1190 memset(semid64, 0, sizeof(*semid64));
1192 rcu_read_lock();
1193 if (cmd == SEM_STAT) {
1194 sma = sem_obtain_object(ns, semid);
1195 if (IS_ERR(sma)) {
1196 err = PTR_ERR(sma);
1197 goto out_unlock;
1199 id = sma->sem_perm.id;
1200 } else {
1201 sma = sem_obtain_object_check(ns, semid);
1202 if (IS_ERR(sma)) {
1203 err = PTR_ERR(sma);
1204 goto out_unlock;
1208 err = -EACCES;
1209 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1210 goto out_unlock;
1212 err = security_sem_semctl(sma, cmd);
1213 if (err)
1214 goto out_unlock;
1216 kernel_to_ipc64_perm(&sma->sem_perm, &semid64->sem_perm);
1217 semid64->sem_otime = get_semotime(sma);
1218 semid64->sem_ctime = sma->sem_ctime;
1219 semid64->sem_nsems = sma->sem_nsems;
1220 rcu_read_unlock();
1221 return id;
1223 out_unlock:
1224 rcu_read_unlock();
1225 return err;
1228 static int semctl_info(struct ipc_namespace *ns, int semid,
1229 int cmd, void __user *p)
1231 struct seminfo seminfo;
1232 int max_id;
1233 int err;
1235 err = security_sem_semctl(NULL, cmd);
1236 if (err)
1237 return err;
1239 memset(&seminfo, 0, sizeof(seminfo));
1240 seminfo.semmni = ns->sc_semmni;
1241 seminfo.semmns = ns->sc_semmns;
1242 seminfo.semmsl = ns->sc_semmsl;
1243 seminfo.semopm = ns->sc_semopm;
1244 seminfo.semvmx = SEMVMX;
1245 seminfo.semmnu = SEMMNU;
1246 seminfo.semmap = SEMMAP;
1247 seminfo.semume = SEMUME;
1248 down_read(&sem_ids(ns).rwsem);
1249 if (cmd == SEM_INFO) {
1250 seminfo.semusz = sem_ids(ns).in_use;
1251 seminfo.semaem = ns->used_sems;
1252 } else {
1253 seminfo.semusz = SEMUSZ;
1254 seminfo.semaem = SEMAEM;
1256 max_id = ipc_get_maxid(&sem_ids(ns));
1257 up_read(&sem_ids(ns).rwsem);
1258 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1259 return -EFAULT;
1260 return (max_id < 0) ? 0 : max_id;
1263 static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1264 int val)
1266 struct sem_undo *un;
1267 struct sem_array *sma;
1268 struct sem *curr;
1269 int err;
1270 DEFINE_WAKE_Q(wake_q);
1272 if (val > SEMVMX || val < 0)
1273 return -ERANGE;
1275 rcu_read_lock();
1276 sma = sem_obtain_object_check(ns, semid);
1277 if (IS_ERR(sma)) {
1278 rcu_read_unlock();
1279 return PTR_ERR(sma);
1282 if (semnum < 0 || semnum >= sma->sem_nsems) {
1283 rcu_read_unlock();
1284 return -EINVAL;
1288 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1289 rcu_read_unlock();
1290 return -EACCES;
1293 err = security_sem_semctl(sma, SETVAL);
1294 if (err) {
1295 rcu_read_unlock();
1296 return -EACCES;
1299 sem_lock(sma, NULL, -1);
1301 if (!ipc_valid_object(&sma->sem_perm)) {
1302 sem_unlock(sma, -1);
1303 rcu_read_unlock();
1304 return -EIDRM;
1307 curr = &sma->sems[semnum];
1309 ipc_assert_locked_object(&sma->sem_perm);
1310 list_for_each_entry(un, &sma->list_id, list_id)
1311 un->semadj[semnum] = 0;
1313 curr->semval = val;
1314 curr->sempid = task_tgid_vnr(current);
1315 sma->sem_ctime = ktime_get_real_seconds();
1316 /* maybe some queued-up processes were waiting for this */
1317 do_smart_update(sma, NULL, 0, 0, &wake_q);
1318 sem_unlock(sma, -1);
1319 rcu_read_unlock();
1320 wake_up_q(&wake_q);
1321 return 0;
1324 static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
1325 int cmd, void __user *p)
1327 struct sem_array *sma;
1328 struct sem *curr;
1329 int err, nsems;
1330 ushort fast_sem_io[SEMMSL_FAST];
1331 ushort *sem_io = fast_sem_io;
1332 DEFINE_WAKE_Q(wake_q);
1334 rcu_read_lock();
1335 sma = sem_obtain_object_check(ns, semid);
1336 if (IS_ERR(sma)) {
1337 rcu_read_unlock();
1338 return PTR_ERR(sma);
1341 nsems = sma->sem_nsems;
1343 err = -EACCES;
1344 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1345 goto out_rcu_wakeup;
1347 err = security_sem_semctl(sma, cmd);
1348 if (err)
1349 goto out_rcu_wakeup;
1351 err = -EACCES;
1352 switch (cmd) {
1353 case GETALL:
1355 ushort __user *array = p;
1356 int i;
1358 sem_lock(sma, NULL, -1);
1359 if (!ipc_valid_object(&sma->sem_perm)) {
1360 err = -EIDRM;
1361 goto out_unlock;
1363 if (nsems > SEMMSL_FAST) {
1364 if (!ipc_rcu_getref(&sma->sem_perm)) {
1365 err = -EIDRM;
1366 goto out_unlock;
1368 sem_unlock(sma, -1);
1369 rcu_read_unlock();
1370 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1371 GFP_KERNEL);
1372 if (sem_io == NULL) {
1373 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1374 return -ENOMEM;
1377 rcu_read_lock();
1378 sem_lock_and_putref(sma);
1379 if (!ipc_valid_object(&sma->sem_perm)) {
1380 err = -EIDRM;
1381 goto out_unlock;
1384 for (i = 0; i < sma->sem_nsems; i++)
1385 sem_io[i] = sma->sems[i].semval;
1386 sem_unlock(sma, -1);
1387 rcu_read_unlock();
1388 err = 0;
1389 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1390 err = -EFAULT;
1391 goto out_free;
1393 case SETALL:
1395 int i;
1396 struct sem_undo *un;
1398 if (!ipc_rcu_getref(&sma->sem_perm)) {
1399 err = -EIDRM;
1400 goto out_rcu_wakeup;
1402 rcu_read_unlock();
1404 if (nsems > SEMMSL_FAST) {
1405 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1406 GFP_KERNEL);
1407 if (sem_io == NULL) {
1408 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1409 return -ENOMEM;
1413 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
1414 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1415 err = -EFAULT;
1416 goto out_free;
1419 for (i = 0; i < nsems; i++) {
1420 if (sem_io[i] > SEMVMX) {
1421 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1422 err = -ERANGE;
1423 goto out_free;
1426 rcu_read_lock();
1427 sem_lock_and_putref(sma);
1428 if (!ipc_valid_object(&sma->sem_perm)) {
1429 err = -EIDRM;
1430 goto out_unlock;
1433 for (i = 0; i < nsems; i++) {
1434 sma->sems[i].semval = sem_io[i];
1435 sma->sems[i].sempid = task_tgid_vnr(current);
1438 ipc_assert_locked_object(&sma->sem_perm);
1439 list_for_each_entry(un, &sma->list_id, list_id) {
1440 for (i = 0; i < nsems; i++)
1441 un->semadj[i] = 0;
1443 sma->sem_ctime = ktime_get_real_seconds();
1444 /* maybe some queued-up processes were waiting for this */
1445 do_smart_update(sma, NULL, 0, 0, &wake_q);
1446 err = 0;
1447 goto out_unlock;
1449 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1451 err = -EINVAL;
1452 if (semnum < 0 || semnum >= nsems)
1453 goto out_rcu_wakeup;
1455 sem_lock(sma, NULL, -1);
1456 if (!ipc_valid_object(&sma->sem_perm)) {
1457 err = -EIDRM;
1458 goto out_unlock;
1460 curr = &sma->sems[semnum];
1462 switch (cmd) {
1463 case GETVAL:
1464 err = curr->semval;
1465 goto out_unlock;
1466 case GETPID:
1467 err = curr->sempid;
1468 goto out_unlock;
1469 case GETNCNT:
1470 err = count_semcnt(sma, semnum, 0);
1471 goto out_unlock;
1472 case GETZCNT:
1473 err = count_semcnt(sma, semnum, 1);
1474 goto out_unlock;
1477 out_unlock:
1478 sem_unlock(sma, -1);
1479 out_rcu_wakeup:
1480 rcu_read_unlock();
1481 wake_up_q(&wake_q);
1482 out_free:
1483 if (sem_io != fast_sem_io)
1484 kvfree(sem_io);
1485 return err;
1488 static inline unsigned long
1489 copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1491 switch (version) {
1492 case IPC_64:
1493 if (copy_from_user(out, buf, sizeof(*out)))
1494 return -EFAULT;
1495 return 0;
1496 case IPC_OLD:
1498 struct semid_ds tbuf_old;
1500 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1501 return -EFAULT;
1503 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1504 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1505 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1507 return 0;
1509 default:
1510 return -EINVAL;
1515 * This function handles some semctl commands which require the rwsem
1516 * to be held in write mode.
1517 * NOTE: no locks must be held, the rwsem is taken inside this function.
1519 static int semctl_down(struct ipc_namespace *ns, int semid,
1520 int cmd, struct semid64_ds *semid64)
1522 struct sem_array *sma;
1523 int err;
1524 struct kern_ipc_perm *ipcp;
1526 down_write(&sem_ids(ns).rwsem);
1527 rcu_read_lock();
1529 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1530 &semid64->sem_perm, 0);
1531 if (IS_ERR(ipcp)) {
1532 err = PTR_ERR(ipcp);
1533 goto out_unlock1;
1536 sma = container_of(ipcp, struct sem_array, sem_perm);
1538 err = security_sem_semctl(sma, cmd);
1539 if (err)
1540 goto out_unlock1;
1542 switch (cmd) {
1543 case IPC_RMID:
1544 sem_lock(sma, NULL, -1);
1545 /* freeary unlocks the ipc object and rcu */
1546 freeary(ns, ipcp);
1547 goto out_up;
1548 case IPC_SET:
1549 sem_lock(sma, NULL, -1);
1550 err = ipc_update_perm(&semid64->sem_perm, ipcp);
1551 if (err)
1552 goto out_unlock0;
1553 sma->sem_ctime = ktime_get_real_seconds();
1554 break;
1555 default:
1556 err = -EINVAL;
1557 goto out_unlock1;
1560 out_unlock0:
1561 sem_unlock(sma, -1);
1562 out_unlock1:
1563 rcu_read_unlock();
1564 out_up:
1565 up_write(&sem_ids(ns).rwsem);
1566 return err;
1569 SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1571 int version;
1572 struct ipc_namespace *ns;
1573 void __user *p = (void __user *)arg;
1574 struct semid64_ds semid64;
1575 int err;
1577 if (semid < 0)
1578 return -EINVAL;
1580 version = ipc_parse_version(&cmd);
1581 ns = current->nsproxy->ipc_ns;
1583 switch (cmd) {
1584 case IPC_INFO:
1585 case SEM_INFO:
1586 return semctl_info(ns, semid, cmd, p);
1587 case IPC_STAT:
1588 case SEM_STAT:
1589 err = semctl_stat(ns, semid, cmd, &semid64);
1590 if (err < 0)
1591 return err;
1592 if (copy_semid_to_user(p, &semid64, version))
1593 err = -EFAULT;
1594 return err;
1595 case GETALL:
1596 case GETVAL:
1597 case GETPID:
1598 case GETNCNT:
1599 case GETZCNT:
1600 case SETALL:
1601 return semctl_main(ns, semid, semnum, cmd, p);
1602 case SETVAL: {
1603 int val;
1604 #if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1605 /* big-endian 64bit */
1606 val = arg >> 32;
1607 #else
1608 /* 32bit or little-endian 64bit */
1609 val = arg;
1610 #endif
1611 return semctl_setval(ns, semid, semnum, val);
1613 case IPC_SET:
1614 if (copy_semid_from_user(&semid64, p, version))
1615 return -EFAULT;
1616 case IPC_RMID:
1617 return semctl_down(ns, semid, cmd, &semid64);
1618 default:
1619 return -EINVAL;
1623 #ifdef CONFIG_COMPAT
1625 struct compat_semid_ds {
1626 struct compat_ipc_perm sem_perm;
1627 compat_time_t sem_otime;
1628 compat_time_t sem_ctime;
1629 compat_uptr_t sem_base;
1630 compat_uptr_t sem_pending;
1631 compat_uptr_t sem_pending_last;
1632 compat_uptr_t undo;
1633 unsigned short sem_nsems;
1636 static int copy_compat_semid_from_user(struct semid64_ds *out, void __user *buf,
1637 int version)
1639 memset(out, 0, sizeof(*out));
1640 if (version == IPC_64) {
1641 struct compat_semid64_ds __user *p = buf;
1642 return get_compat_ipc64_perm(&out->sem_perm, &p->sem_perm);
1643 } else {
1644 struct compat_semid_ds __user *p = buf;
1645 return get_compat_ipc_perm(&out->sem_perm, &p->sem_perm);
1649 static int copy_compat_semid_to_user(void __user *buf, struct semid64_ds *in,
1650 int version)
1652 if (version == IPC_64) {
1653 struct compat_semid64_ds v;
1654 memset(&v, 0, sizeof(v));
1655 to_compat_ipc64_perm(&v.sem_perm, &in->sem_perm);
1656 v.sem_otime = in->sem_otime;
1657 v.sem_ctime = in->sem_ctime;
1658 v.sem_nsems = in->sem_nsems;
1659 return copy_to_user(buf, &v, sizeof(v));
1660 } else {
1661 struct compat_semid_ds v;
1662 memset(&v, 0, sizeof(v));
1663 to_compat_ipc_perm(&v.sem_perm, &in->sem_perm);
1664 v.sem_otime = in->sem_otime;
1665 v.sem_ctime = in->sem_ctime;
1666 v.sem_nsems = in->sem_nsems;
1667 return copy_to_user(buf, &v, sizeof(v));
1671 COMPAT_SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, int, arg)
1673 void __user *p = compat_ptr(arg);
1674 struct ipc_namespace *ns;
1675 struct semid64_ds semid64;
1676 int version = compat_ipc_parse_version(&cmd);
1677 int err;
1679 ns = current->nsproxy->ipc_ns;
1681 if (semid < 0)
1682 return -EINVAL;
1684 switch (cmd & (~IPC_64)) {
1685 case IPC_INFO:
1686 case SEM_INFO:
1687 return semctl_info(ns, semid, cmd, p);
1688 case IPC_STAT:
1689 case SEM_STAT:
1690 err = semctl_stat(ns, semid, cmd, &semid64);
1691 if (err < 0)
1692 return err;
1693 if (copy_compat_semid_to_user(p, &semid64, version))
1694 err = -EFAULT;
1695 return err;
1696 case GETVAL:
1697 case GETPID:
1698 case GETNCNT:
1699 case GETZCNT:
1700 case GETALL:
1701 case SETALL:
1702 return semctl_main(ns, semid, semnum, cmd, p);
1703 case SETVAL:
1704 return semctl_setval(ns, semid, semnum, arg);
1705 case IPC_SET:
1706 if (copy_compat_semid_from_user(&semid64, p, version))
1707 return -EFAULT;
1708 /* fallthru */
1709 case IPC_RMID:
1710 return semctl_down(ns, semid, cmd, &semid64);
1711 default:
1712 return -EINVAL;
1715 #endif
1717 /* If the task doesn't already have a undo_list, then allocate one
1718 * here. We guarantee there is only one thread using this undo list,
1719 * and current is THE ONE
1721 * If this allocation and assignment succeeds, but later
1722 * portions of this code fail, there is no need to free the sem_undo_list.
1723 * Just let it stay associated with the task, and it'll be freed later
1724 * at exit time.
1726 * This can block, so callers must hold no locks.
1728 static inline int get_undo_list(struct sem_undo_list **undo_listp)
1730 struct sem_undo_list *undo_list;
1732 undo_list = current->sysvsem.undo_list;
1733 if (!undo_list) {
1734 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1735 if (undo_list == NULL)
1736 return -ENOMEM;
1737 spin_lock_init(&undo_list->lock);
1738 refcount_set(&undo_list->refcnt, 1);
1739 INIT_LIST_HEAD(&undo_list->list_proc);
1741 current->sysvsem.undo_list = undo_list;
1743 *undo_listp = undo_list;
1744 return 0;
1747 static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1749 struct sem_undo *un;
1751 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1752 if (un->semid == semid)
1753 return un;
1755 return NULL;
1758 static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1760 struct sem_undo *un;
1762 assert_spin_locked(&ulp->lock);
1764 un = __lookup_undo(ulp, semid);
1765 if (un) {
1766 list_del_rcu(&un->list_proc);
1767 list_add_rcu(&un->list_proc, &ulp->list_proc);
1769 return un;
1773 * find_alloc_undo - lookup (and if not present create) undo array
1774 * @ns: namespace
1775 * @semid: semaphore array id
1777 * The function looks up (and if not present creates) the undo structure.
1778 * The size of the undo structure depends on the size of the semaphore
1779 * array, thus the alloc path is not that straightforward.
1780 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1781 * performs a rcu_read_lock().
1783 static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1785 struct sem_array *sma;
1786 struct sem_undo_list *ulp;
1787 struct sem_undo *un, *new;
1788 int nsems, error;
1790 error = get_undo_list(&ulp);
1791 if (error)
1792 return ERR_PTR(error);
1794 rcu_read_lock();
1795 spin_lock(&ulp->lock);
1796 un = lookup_undo(ulp, semid);
1797 spin_unlock(&ulp->lock);
1798 if (likely(un != NULL))
1799 goto out;
1801 /* no undo structure around - allocate one. */
1802 /* step 1: figure out the size of the semaphore array */
1803 sma = sem_obtain_object_check(ns, semid);
1804 if (IS_ERR(sma)) {
1805 rcu_read_unlock();
1806 return ERR_CAST(sma);
1809 nsems = sma->sem_nsems;
1810 if (!ipc_rcu_getref(&sma->sem_perm)) {
1811 rcu_read_unlock();
1812 un = ERR_PTR(-EIDRM);
1813 goto out;
1815 rcu_read_unlock();
1817 /* step 2: allocate new undo structure */
1818 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1819 if (!new) {
1820 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1821 return ERR_PTR(-ENOMEM);
1824 /* step 3: Acquire the lock on semaphore array */
1825 rcu_read_lock();
1826 sem_lock_and_putref(sma);
1827 if (!ipc_valid_object(&sma->sem_perm)) {
1828 sem_unlock(sma, -1);
1829 rcu_read_unlock();
1830 kfree(new);
1831 un = ERR_PTR(-EIDRM);
1832 goto out;
1834 spin_lock(&ulp->lock);
1837 * step 4: check for races: did someone else allocate the undo struct?
1839 un = lookup_undo(ulp, semid);
1840 if (un) {
1841 kfree(new);
1842 goto success;
1844 /* step 5: initialize & link new undo structure */
1845 new->semadj = (short *) &new[1];
1846 new->ulp = ulp;
1847 new->semid = semid;
1848 assert_spin_locked(&ulp->lock);
1849 list_add_rcu(&new->list_proc, &ulp->list_proc);
1850 ipc_assert_locked_object(&sma->sem_perm);
1851 list_add(&new->list_id, &sma->list_id);
1852 un = new;
1854 success:
1855 spin_unlock(&ulp->lock);
1856 sem_unlock(sma, -1);
1857 out:
1858 return un;
1861 static long do_semtimedop(int semid, struct sembuf __user *tsops,
1862 unsigned nsops, const struct timespec64 *timeout)
1864 int error = -EINVAL;
1865 struct sem_array *sma;
1866 struct sembuf fast_sops[SEMOPM_FAST];
1867 struct sembuf *sops = fast_sops, *sop;
1868 struct sem_undo *un;
1869 int max, locknum;
1870 bool undos = false, alter = false, dupsop = false;
1871 struct sem_queue queue;
1872 unsigned long dup = 0, jiffies_left = 0;
1873 struct ipc_namespace *ns;
1875 ns = current->nsproxy->ipc_ns;
1877 if (nsops < 1 || semid < 0)
1878 return -EINVAL;
1879 if (nsops > ns->sc_semopm)
1880 return -E2BIG;
1881 if (nsops > SEMOPM_FAST) {
1882 sops = kvmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1883 if (sops == NULL)
1884 return -ENOMEM;
1887 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1888 error = -EFAULT;
1889 goto out_free;
1892 if (timeout) {
1893 if (timeout->tv_sec < 0 || timeout->tv_nsec < 0 ||
1894 timeout->tv_nsec >= 1000000000L) {
1895 error = -EINVAL;
1896 goto out_free;
1898 jiffies_left = timespec64_to_jiffies(timeout);
1901 max = 0;
1902 for (sop = sops; sop < sops + nsops; sop++) {
1903 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1905 if (sop->sem_num >= max)
1906 max = sop->sem_num;
1907 if (sop->sem_flg & SEM_UNDO)
1908 undos = true;
1909 if (dup & mask) {
1911 * There was a previous alter access that appears
1912 * to have accessed the same semaphore, thus use
1913 * the dupsop logic. "appears", because the detection
1914 * can only check % BITS_PER_LONG.
1916 dupsop = true;
1918 if (sop->sem_op != 0) {
1919 alter = true;
1920 dup |= mask;
1924 if (undos) {
1925 /* On success, find_alloc_undo takes the rcu_read_lock */
1926 un = find_alloc_undo(ns, semid);
1927 if (IS_ERR(un)) {
1928 error = PTR_ERR(un);
1929 goto out_free;
1931 } else {
1932 un = NULL;
1933 rcu_read_lock();
1936 sma = sem_obtain_object_check(ns, semid);
1937 if (IS_ERR(sma)) {
1938 rcu_read_unlock();
1939 error = PTR_ERR(sma);
1940 goto out_free;
1943 error = -EFBIG;
1944 if (max >= sma->sem_nsems) {
1945 rcu_read_unlock();
1946 goto out_free;
1949 error = -EACCES;
1950 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
1951 rcu_read_unlock();
1952 goto out_free;
1955 error = security_sem_semop(sma, sops, nsops, alter);
1956 if (error) {
1957 rcu_read_unlock();
1958 goto out_free;
1961 error = -EIDRM;
1962 locknum = sem_lock(sma, sops, nsops);
1964 * We eventually might perform the following check in a lockless
1965 * fashion, considering ipc_valid_object() locking constraints.
1966 * If nsops == 1 and there is no contention for sem_perm.lock, then
1967 * only a per-semaphore lock is held and it's OK to proceed with the
1968 * check below. More details on the fine grained locking scheme
1969 * entangled here and why it's RMID race safe on comments at sem_lock()
1971 if (!ipc_valid_object(&sma->sem_perm))
1972 goto out_unlock_free;
1974 * semid identifiers are not unique - find_alloc_undo may have
1975 * allocated an undo structure, it was invalidated by an RMID
1976 * and now a new array with received the same id. Check and fail.
1977 * This case can be detected checking un->semid. The existence of
1978 * "un" itself is guaranteed by rcu.
1980 if (un && un->semid == -1)
1981 goto out_unlock_free;
1983 queue.sops = sops;
1984 queue.nsops = nsops;
1985 queue.undo = un;
1986 queue.pid = task_tgid_vnr(current);
1987 queue.alter = alter;
1988 queue.dupsop = dupsop;
1990 error = perform_atomic_semop(sma, &queue);
1991 if (error == 0) { /* non-blocking succesfull path */
1992 DEFINE_WAKE_Q(wake_q);
1995 * If the operation was successful, then do
1996 * the required updates.
1998 if (alter)
1999 do_smart_update(sma, sops, nsops, 1, &wake_q);
2000 else
2001 set_semotime(sma, sops);
2003 sem_unlock(sma, locknum);
2004 rcu_read_unlock();
2005 wake_up_q(&wake_q);
2007 goto out_free;
2009 if (error < 0) /* non-blocking error path */
2010 goto out_unlock_free;
2013 * We need to sleep on this operation, so we put the current
2014 * task into the pending queue and go to sleep.
2016 if (nsops == 1) {
2017 struct sem *curr;
2018 curr = &sma->sems[sops->sem_num];
2020 if (alter) {
2021 if (sma->complex_count) {
2022 list_add_tail(&queue.list,
2023 &sma->pending_alter);
2024 } else {
2026 list_add_tail(&queue.list,
2027 &curr->pending_alter);
2029 } else {
2030 list_add_tail(&queue.list, &curr->pending_const);
2032 } else {
2033 if (!sma->complex_count)
2034 merge_queues(sma);
2036 if (alter)
2037 list_add_tail(&queue.list, &sma->pending_alter);
2038 else
2039 list_add_tail(&queue.list, &sma->pending_const);
2041 sma->complex_count++;
2044 do {
2045 queue.status = -EINTR;
2046 queue.sleeper = current;
2048 __set_current_state(TASK_INTERRUPTIBLE);
2049 sem_unlock(sma, locknum);
2050 rcu_read_unlock();
2052 if (timeout)
2053 jiffies_left = schedule_timeout(jiffies_left);
2054 else
2055 schedule();
2058 * fastpath: the semop has completed, either successfully or
2059 * not, from the syscall pov, is quite irrelevant to us at this
2060 * point; we're done.
2062 * We _do_ care, nonetheless, about being awoken by a signal or
2063 * spuriously. The queue.status is checked again in the
2064 * slowpath (aka after taking sem_lock), such that we can detect
2065 * scenarios where we were awakened externally, during the
2066 * window between wake_q_add() and wake_up_q().
2068 error = READ_ONCE(queue.status);
2069 if (error != -EINTR) {
2071 * User space could assume that semop() is a memory
2072 * barrier: Without the mb(), the cpu could
2073 * speculatively read in userspace stale data that was
2074 * overwritten by the previous owner of the semaphore.
2076 smp_mb();
2077 goto out_free;
2080 rcu_read_lock();
2081 locknum = sem_lock(sma, sops, nsops);
2083 if (!ipc_valid_object(&sma->sem_perm))
2084 goto out_unlock_free;
2086 error = READ_ONCE(queue.status);
2089 * If queue.status != -EINTR we are woken up by another process.
2090 * Leave without unlink_queue(), but with sem_unlock().
2092 if (error != -EINTR)
2093 goto out_unlock_free;
2096 * If an interrupt occurred we have to clean up the queue.
2098 if (timeout && jiffies_left == 0)
2099 error = -EAGAIN;
2100 } while (error == -EINTR && !signal_pending(current)); /* spurious */
2102 unlink_queue(sma, &queue);
2104 out_unlock_free:
2105 sem_unlock(sma, locknum);
2106 rcu_read_unlock();
2107 out_free:
2108 if (sops != fast_sops)
2109 kvfree(sops);
2110 return error;
2113 SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
2114 unsigned, nsops, const struct timespec __user *, timeout)
2116 if (timeout) {
2117 struct timespec64 ts;
2118 if (get_timespec64(&ts, timeout))
2119 return -EFAULT;
2120 return do_semtimedop(semid, tsops, nsops, &ts);
2122 return do_semtimedop(semid, tsops, nsops, NULL);
2125 #ifdef CONFIG_COMPAT
2126 COMPAT_SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsems,
2127 unsigned, nsops,
2128 const struct compat_timespec __user *, timeout)
2130 if (timeout) {
2131 struct timespec64 ts;
2132 if (compat_get_timespec64(&ts, timeout))
2133 return -EFAULT;
2134 return do_semtimedop(semid, tsems, nsops, &ts);
2136 return do_semtimedop(semid, tsems, nsops, NULL);
2138 #endif
2140 SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2141 unsigned, nsops)
2143 return do_semtimedop(semid, tsops, nsops, NULL);
2146 /* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2147 * parent and child tasks.
2150 int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2152 struct sem_undo_list *undo_list;
2153 int error;
2155 if (clone_flags & CLONE_SYSVSEM) {
2156 error = get_undo_list(&undo_list);
2157 if (error)
2158 return error;
2159 refcount_inc(&undo_list->refcnt);
2160 tsk->sysvsem.undo_list = undo_list;
2161 } else
2162 tsk->sysvsem.undo_list = NULL;
2164 return 0;
2168 * add semadj values to semaphores, free undo structures.
2169 * undo structures are not freed when semaphore arrays are destroyed
2170 * so some of them may be out of date.
2171 * IMPLEMENTATION NOTE: There is some confusion over whether the
2172 * set of adjustments that needs to be done should be done in an atomic
2173 * manner or not. That is, if we are attempting to decrement the semval
2174 * should we queue up and wait until we can do so legally?
2175 * The original implementation attempted to do this (queue and wait).
2176 * The current implementation does not do so. The POSIX standard
2177 * and SVID should be consulted to determine what behavior is mandated.
2179 void exit_sem(struct task_struct *tsk)
2181 struct sem_undo_list *ulp;
2183 ulp = tsk->sysvsem.undo_list;
2184 if (!ulp)
2185 return;
2186 tsk->sysvsem.undo_list = NULL;
2188 if (!refcount_dec_and_test(&ulp->refcnt))
2189 return;
2191 for (;;) {
2192 struct sem_array *sma;
2193 struct sem_undo *un;
2194 int semid, i;
2195 DEFINE_WAKE_Q(wake_q);
2197 cond_resched();
2199 rcu_read_lock();
2200 un = list_entry_rcu(ulp->list_proc.next,
2201 struct sem_undo, list_proc);
2202 if (&un->list_proc == &ulp->list_proc) {
2204 * We must wait for freeary() before freeing this ulp,
2205 * in case we raced with last sem_undo. There is a small
2206 * possibility where we exit while freeary() didn't
2207 * finish unlocking sem_undo_list.
2209 spin_lock(&ulp->lock);
2210 spin_unlock(&ulp->lock);
2211 rcu_read_unlock();
2212 break;
2214 spin_lock(&ulp->lock);
2215 semid = un->semid;
2216 spin_unlock(&ulp->lock);
2218 /* exit_sem raced with IPC_RMID, nothing to do */
2219 if (semid == -1) {
2220 rcu_read_unlock();
2221 continue;
2224 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
2225 /* exit_sem raced with IPC_RMID, nothing to do */
2226 if (IS_ERR(sma)) {
2227 rcu_read_unlock();
2228 continue;
2231 sem_lock(sma, NULL, -1);
2232 /* exit_sem raced with IPC_RMID, nothing to do */
2233 if (!ipc_valid_object(&sma->sem_perm)) {
2234 sem_unlock(sma, -1);
2235 rcu_read_unlock();
2236 continue;
2238 un = __lookup_undo(ulp, semid);
2239 if (un == NULL) {
2240 /* exit_sem raced with IPC_RMID+semget() that created
2241 * exactly the same semid. Nothing to do.
2243 sem_unlock(sma, -1);
2244 rcu_read_unlock();
2245 continue;
2248 /* remove un from the linked lists */
2249 ipc_assert_locked_object(&sma->sem_perm);
2250 list_del(&un->list_id);
2252 /* we are the last process using this ulp, acquiring ulp->lock
2253 * isn't required. Besides that, we are also protected against
2254 * IPC_RMID as we hold sma->sem_perm lock now
2256 list_del_rcu(&un->list_proc);
2258 /* perform adjustments registered in un */
2259 for (i = 0; i < sma->sem_nsems; i++) {
2260 struct sem *semaphore = &sma->sems[i];
2261 if (un->semadj[i]) {
2262 semaphore->semval += un->semadj[i];
2264 * Range checks of the new semaphore value,
2265 * not defined by sus:
2266 * - Some unices ignore the undo entirely
2267 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2268 * - some cap the value (e.g. FreeBSD caps
2269 * at 0, but doesn't enforce SEMVMX)
2271 * Linux caps the semaphore value, both at 0
2272 * and at SEMVMX.
2274 * Manfred <manfred@colorfullife.com>
2276 if (semaphore->semval < 0)
2277 semaphore->semval = 0;
2278 if (semaphore->semval > SEMVMX)
2279 semaphore->semval = SEMVMX;
2280 semaphore->sempid = task_tgid_vnr(current);
2283 /* maybe some queued-up processes were waiting for this */
2284 do_smart_update(sma, NULL, 0, 1, &wake_q);
2285 sem_unlock(sma, -1);
2286 rcu_read_unlock();
2287 wake_up_q(&wake_q);
2289 kfree_rcu(un, rcu);
2291 kfree(ulp);
2294 #ifdef CONFIG_PROC_FS
2295 static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
2297 struct user_namespace *user_ns = seq_user_ns(s);
2298 struct kern_ipc_perm *ipcp = it;
2299 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
2300 time64_t sem_otime;
2303 * The proc interface isn't aware of sem_lock(), it calls
2304 * ipc_lock_object() directly (in sysvipc_find_ipc).
2305 * In order to stay compatible with sem_lock(), we must
2306 * enter / leave complex_mode.
2308 complexmode_enter(sma);
2310 sem_otime = get_semotime(sma);
2312 seq_printf(s,
2313 "%10d %10d %4o %10u %5u %5u %5u %5u %10llu %10llu\n",
2314 sma->sem_perm.key,
2315 sma->sem_perm.id,
2316 sma->sem_perm.mode,
2317 sma->sem_nsems,
2318 from_kuid_munged(user_ns, sma->sem_perm.uid),
2319 from_kgid_munged(user_ns, sma->sem_perm.gid),
2320 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2321 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2322 sem_otime,
2323 sma->sem_ctime);
2325 complexmode_tryleave(sma);
2327 return 0;
2329 #endif