Linux 5.0.7
[linux/fpc-iii.git] / block / blk-mq.c
blobb9283b63d116e637a46336b63668907b34e28cf4
1 /*
2 * Block multiqueue core code
4 * Copyright (C) 2013-2014 Jens Axboe
5 * Copyright (C) 2013-2014 Christoph Hellwig
6 */
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/backing-dev.h>
10 #include <linux/bio.h>
11 #include <linux/blkdev.h>
12 #include <linux/kmemleak.h>
13 #include <linux/mm.h>
14 #include <linux/init.h>
15 #include <linux/slab.h>
16 #include <linux/workqueue.h>
17 #include <linux/smp.h>
18 #include <linux/llist.h>
19 #include <linux/list_sort.h>
20 #include <linux/cpu.h>
21 #include <linux/cache.h>
22 #include <linux/sched/sysctl.h>
23 #include <linux/sched/topology.h>
24 #include <linux/sched/signal.h>
25 #include <linux/delay.h>
26 #include <linux/crash_dump.h>
27 #include <linux/prefetch.h>
29 #include <trace/events/block.h>
31 #include <linux/blk-mq.h>
32 #include "blk.h"
33 #include "blk-mq.h"
34 #include "blk-mq-debugfs.h"
35 #include "blk-mq-tag.h"
36 #include "blk-pm.h"
37 #include "blk-stat.h"
38 #include "blk-mq-sched.h"
39 #include "blk-rq-qos.h"
41 static void blk_mq_poll_stats_start(struct request_queue *q);
42 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
44 static int blk_mq_poll_stats_bkt(const struct request *rq)
46 int ddir, bytes, bucket;
48 ddir = rq_data_dir(rq);
49 bytes = blk_rq_bytes(rq);
51 bucket = ddir + 2*(ilog2(bytes) - 9);
53 if (bucket < 0)
54 return -1;
55 else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
56 return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
58 return bucket;
62 * Check if any of the ctx's have pending work in this hardware queue
64 static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
66 return !list_empty_careful(&hctx->dispatch) ||
67 sbitmap_any_bit_set(&hctx->ctx_map) ||
68 blk_mq_sched_has_work(hctx);
72 * Mark this ctx as having pending work in this hardware queue
74 static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
75 struct blk_mq_ctx *ctx)
77 const int bit = ctx->index_hw[hctx->type];
79 if (!sbitmap_test_bit(&hctx->ctx_map, bit))
80 sbitmap_set_bit(&hctx->ctx_map, bit);
83 static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
84 struct blk_mq_ctx *ctx)
86 const int bit = ctx->index_hw[hctx->type];
88 sbitmap_clear_bit(&hctx->ctx_map, bit);
91 struct mq_inflight {
92 struct hd_struct *part;
93 unsigned int *inflight;
96 static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
97 struct request *rq, void *priv,
98 bool reserved)
100 struct mq_inflight *mi = priv;
103 * index[0] counts the specific partition that was asked for.
105 if (rq->part == mi->part)
106 mi->inflight[0]++;
108 return true;
111 unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
113 unsigned inflight[2];
114 struct mq_inflight mi = { .part = part, .inflight = inflight, };
116 inflight[0] = inflight[1] = 0;
117 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
119 return inflight[0];
122 static bool blk_mq_check_inflight_rw(struct blk_mq_hw_ctx *hctx,
123 struct request *rq, void *priv,
124 bool reserved)
126 struct mq_inflight *mi = priv;
128 if (rq->part == mi->part)
129 mi->inflight[rq_data_dir(rq)]++;
131 return true;
134 void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
135 unsigned int inflight[2])
137 struct mq_inflight mi = { .part = part, .inflight = inflight, };
139 inflight[0] = inflight[1] = 0;
140 blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight_rw, &mi);
143 void blk_freeze_queue_start(struct request_queue *q)
145 int freeze_depth;
147 freeze_depth = atomic_inc_return(&q->mq_freeze_depth);
148 if (freeze_depth == 1) {
149 percpu_ref_kill(&q->q_usage_counter);
150 if (queue_is_mq(q))
151 blk_mq_run_hw_queues(q, false);
154 EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
156 void blk_mq_freeze_queue_wait(struct request_queue *q)
158 wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
160 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
162 int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
163 unsigned long timeout)
165 return wait_event_timeout(q->mq_freeze_wq,
166 percpu_ref_is_zero(&q->q_usage_counter),
167 timeout);
169 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
172 * Guarantee no request is in use, so we can change any data structure of
173 * the queue afterward.
175 void blk_freeze_queue(struct request_queue *q)
178 * In the !blk_mq case we are only calling this to kill the
179 * q_usage_counter, otherwise this increases the freeze depth
180 * and waits for it to return to zero. For this reason there is
181 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
182 * exported to drivers as the only user for unfreeze is blk_mq.
184 blk_freeze_queue_start(q);
185 blk_mq_freeze_queue_wait(q);
188 void blk_mq_freeze_queue(struct request_queue *q)
191 * ...just an alias to keep freeze and unfreeze actions balanced
192 * in the blk_mq_* namespace
194 blk_freeze_queue(q);
196 EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
198 void blk_mq_unfreeze_queue(struct request_queue *q)
200 int freeze_depth;
202 freeze_depth = atomic_dec_return(&q->mq_freeze_depth);
203 WARN_ON_ONCE(freeze_depth < 0);
204 if (!freeze_depth) {
205 percpu_ref_resurrect(&q->q_usage_counter);
206 wake_up_all(&q->mq_freeze_wq);
209 EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
212 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
213 * mpt3sas driver such that this function can be removed.
215 void blk_mq_quiesce_queue_nowait(struct request_queue *q)
217 blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
219 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
222 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
223 * @q: request queue.
225 * Note: this function does not prevent that the struct request end_io()
226 * callback function is invoked. Once this function is returned, we make
227 * sure no dispatch can happen until the queue is unquiesced via
228 * blk_mq_unquiesce_queue().
230 void blk_mq_quiesce_queue(struct request_queue *q)
232 struct blk_mq_hw_ctx *hctx;
233 unsigned int i;
234 bool rcu = false;
236 blk_mq_quiesce_queue_nowait(q);
238 queue_for_each_hw_ctx(q, hctx, i) {
239 if (hctx->flags & BLK_MQ_F_BLOCKING)
240 synchronize_srcu(hctx->srcu);
241 else
242 rcu = true;
244 if (rcu)
245 synchronize_rcu();
247 EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
250 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
251 * @q: request queue.
253 * This function recovers queue into the state before quiescing
254 * which is done by blk_mq_quiesce_queue.
256 void blk_mq_unquiesce_queue(struct request_queue *q)
258 blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
260 /* dispatch requests which are inserted during quiescing */
261 blk_mq_run_hw_queues(q, true);
263 EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
265 void blk_mq_wake_waiters(struct request_queue *q)
267 struct blk_mq_hw_ctx *hctx;
268 unsigned int i;
270 queue_for_each_hw_ctx(q, hctx, i)
271 if (blk_mq_hw_queue_mapped(hctx))
272 blk_mq_tag_wakeup_all(hctx->tags, true);
275 bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
277 return blk_mq_has_free_tags(hctx->tags);
279 EXPORT_SYMBOL(blk_mq_can_queue);
282 * Only need start/end time stamping if we have stats enabled, or using
283 * an IO scheduler.
285 static inline bool blk_mq_need_time_stamp(struct request *rq)
287 return (rq->rq_flags & RQF_IO_STAT) || rq->q->elevator;
290 static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
291 unsigned int tag, unsigned int op)
293 struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
294 struct request *rq = tags->static_rqs[tag];
295 req_flags_t rq_flags = 0;
297 if (data->flags & BLK_MQ_REQ_INTERNAL) {
298 rq->tag = -1;
299 rq->internal_tag = tag;
300 } else {
301 if (data->hctx->flags & BLK_MQ_F_TAG_SHARED) {
302 rq_flags = RQF_MQ_INFLIGHT;
303 atomic_inc(&data->hctx->nr_active);
305 rq->tag = tag;
306 rq->internal_tag = -1;
307 data->hctx->tags->rqs[rq->tag] = rq;
310 /* csd/requeue_work/fifo_time is initialized before use */
311 rq->q = data->q;
312 rq->mq_ctx = data->ctx;
313 rq->mq_hctx = data->hctx;
314 rq->rq_flags = rq_flags;
315 rq->cmd_flags = op;
316 if (data->flags & BLK_MQ_REQ_PREEMPT)
317 rq->rq_flags |= RQF_PREEMPT;
318 if (blk_queue_io_stat(data->q))
319 rq->rq_flags |= RQF_IO_STAT;
320 INIT_LIST_HEAD(&rq->queuelist);
321 INIT_HLIST_NODE(&rq->hash);
322 RB_CLEAR_NODE(&rq->rb_node);
323 rq->rq_disk = NULL;
324 rq->part = NULL;
325 if (blk_mq_need_time_stamp(rq))
326 rq->start_time_ns = ktime_get_ns();
327 else
328 rq->start_time_ns = 0;
329 rq->io_start_time_ns = 0;
330 rq->nr_phys_segments = 0;
331 #if defined(CONFIG_BLK_DEV_INTEGRITY)
332 rq->nr_integrity_segments = 0;
333 #endif
334 rq->special = NULL;
335 /* tag was already set */
336 rq->extra_len = 0;
337 WRITE_ONCE(rq->deadline, 0);
339 rq->timeout = 0;
341 rq->end_io = NULL;
342 rq->end_io_data = NULL;
343 rq->next_rq = NULL;
345 data->ctx->rq_dispatched[op_is_sync(op)]++;
346 refcount_set(&rq->ref, 1);
347 return rq;
350 static struct request *blk_mq_get_request(struct request_queue *q,
351 struct bio *bio,
352 struct blk_mq_alloc_data *data)
354 struct elevator_queue *e = q->elevator;
355 struct request *rq;
356 unsigned int tag;
357 bool put_ctx_on_error = false;
359 blk_queue_enter_live(q);
360 data->q = q;
361 if (likely(!data->ctx)) {
362 data->ctx = blk_mq_get_ctx(q);
363 put_ctx_on_error = true;
365 if (likely(!data->hctx))
366 data->hctx = blk_mq_map_queue(q, data->cmd_flags,
367 data->ctx->cpu);
368 if (data->cmd_flags & REQ_NOWAIT)
369 data->flags |= BLK_MQ_REQ_NOWAIT;
371 if (e) {
372 data->flags |= BLK_MQ_REQ_INTERNAL;
375 * Flush requests are special and go directly to the
376 * dispatch list. Don't include reserved tags in the
377 * limiting, as it isn't useful.
379 if (!op_is_flush(data->cmd_flags) &&
380 e->type->ops.limit_depth &&
381 !(data->flags & BLK_MQ_REQ_RESERVED))
382 e->type->ops.limit_depth(data->cmd_flags, data);
383 } else {
384 blk_mq_tag_busy(data->hctx);
387 tag = blk_mq_get_tag(data);
388 if (tag == BLK_MQ_TAG_FAIL) {
389 if (put_ctx_on_error) {
390 blk_mq_put_ctx(data->ctx);
391 data->ctx = NULL;
393 blk_queue_exit(q);
394 return NULL;
397 rq = blk_mq_rq_ctx_init(data, tag, data->cmd_flags);
398 if (!op_is_flush(data->cmd_flags)) {
399 rq->elv.icq = NULL;
400 if (e && e->type->ops.prepare_request) {
401 if (e->type->icq_cache)
402 blk_mq_sched_assign_ioc(rq);
404 e->type->ops.prepare_request(rq, bio);
405 rq->rq_flags |= RQF_ELVPRIV;
408 data->hctx->queued++;
409 return rq;
412 struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
413 blk_mq_req_flags_t flags)
415 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
416 struct request *rq;
417 int ret;
419 ret = blk_queue_enter(q, flags);
420 if (ret)
421 return ERR_PTR(ret);
423 rq = blk_mq_get_request(q, NULL, &alloc_data);
424 blk_queue_exit(q);
426 if (!rq)
427 return ERR_PTR(-EWOULDBLOCK);
429 blk_mq_put_ctx(alloc_data.ctx);
431 rq->__data_len = 0;
432 rq->__sector = (sector_t) -1;
433 rq->bio = rq->biotail = NULL;
434 return rq;
436 EXPORT_SYMBOL(blk_mq_alloc_request);
438 struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
439 unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
441 struct blk_mq_alloc_data alloc_data = { .flags = flags, .cmd_flags = op };
442 struct request *rq;
443 unsigned int cpu;
444 int ret;
447 * If the tag allocator sleeps we could get an allocation for a
448 * different hardware context. No need to complicate the low level
449 * allocator for this for the rare use case of a command tied to
450 * a specific queue.
452 if (WARN_ON_ONCE(!(flags & BLK_MQ_REQ_NOWAIT)))
453 return ERR_PTR(-EINVAL);
455 if (hctx_idx >= q->nr_hw_queues)
456 return ERR_PTR(-EIO);
458 ret = blk_queue_enter(q, flags);
459 if (ret)
460 return ERR_PTR(ret);
463 * Check if the hardware context is actually mapped to anything.
464 * If not tell the caller that it should skip this queue.
466 alloc_data.hctx = q->queue_hw_ctx[hctx_idx];
467 if (!blk_mq_hw_queue_mapped(alloc_data.hctx)) {
468 blk_queue_exit(q);
469 return ERR_PTR(-EXDEV);
471 cpu = cpumask_first_and(alloc_data.hctx->cpumask, cpu_online_mask);
472 alloc_data.ctx = __blk_mq_get_ctx(q, cpu);
474 rq = blk_mq_get_request(q, NULL, &alloc_data);
475 blk_queue_exit(q);
477 if (!rq)
478 return ERR_PTR(-EWOULDBLOCK);
480 return rq;
482 EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
484 static void __blk_mq_free_request(struct request *rq)
486 struct request_queue *q = rq->q;
487 struct blk_mq_ctx *ctx = rq->mq_ctx;
488 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
489 const int sched_tag = rq->internal_tag;
491 blk_pm_mark_last_busy(rq);
492 rq->mq_hctx = NULL;
493 if (rq->tag != -1)
494 blk_mq_put_tag(hctx, hctx->tags, ctx, rq->tag);
495 if (sched_tag != -1)
496 blk_mq_put_tag(hctx, hctx->sched_tags, ctx, sched_tag);
497 blk_mq_sched_restart(hctx);
498 blk_queue_exit(q);
501 void blk_mq_free_request(struct request *rq)
503 struct request_queue *q = rq->q;
504 struct elevator_queue *e = q->elevator;
505 struct blk_mq_ctx *ctx = rq->mq_ctx;
506 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
508 if (rq->rq_flags & RQF_ELVPRIV) {
509 if (e && e->type->ops.finish_request)
510 e->type->ops.finish_request(rq);
511 if (rq->elv.icq) {
512 put_io_context(rq->elv.icq->ioc);
513 rq->elv.icq = NULL;
517 ctx->rq_completed[rq_is_sync(rq)]++;
518 if (rq->rq_flags & RQF_MQ_INFLIGHT)
519 atomic_dec(&hctx->nr_active);
521 if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
522 laptop_io_completion(q->backing_dev_info);
524 rq_qos_done(q, rq);
526 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
527 if (refcount_dec_and_test(&rq->ref))
528 __blk_mq_free_request(rq);
530 EXPORT_SYMBOL_GPL(blk_mq_free_request);
532 inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
534 u64 now = 0;
536 if (blk_mq_need_time_stamp(rq))
537 now = ktime_get_ns();
539 if (rq->rq_flags & RQF_STATS) {
540 blk_mq_poll_stats_start(rq->q);
541 blk_stat_add(rq, now);
544 if (rq->internal_tag != -1)
545 blk_mq_sched_completed_request(rq, now);
547 blk_account_io_done(rq, now);
549 if (rq->end_io) {
550 rq_qos_done(rq->q, rq);
551 rq->end_io(rq, error);
552 } else {
553 if (unlikely(blk_bidi_rq(rq)))
554 blk_mq_free_request(rq->next_rq);
555 blk_mq_free_request(rq);
558 EXPORT_SYMBOL(__blk_mq_end_request);
560 void blk_mq_end_request(struct request *rq, blk_status_t error)
562 if (blk_update_request(rq, error, blk_rq_bytes(rq)))
563 BUG();
564 __blk_mq_end_request(rq, error);
566 EXPORT_SYMBOL(blk_mq_end_request);
568 static void __blk_mq_complete_request_remote(void *data)
570 struct request *rq = data;
571 struct request_queue *q = rq->q;
573 q->mq_ops->complete(rq);
576 static void __blk_mq_complete_request(struct request *rq)
578 struct blk_mq_ctx *ctx = rq->mq_ctx;
579 struct request_queue *q = rq->q;
580 bool shared = false;
581 int cpu;
583 WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
585 * Most of single queue controllers, there is only one irq vector
586 * for handling IO completion, and the only irq's affinity is set
587 * as all possible CPUs. On most of ARCHs, this affinity means the
588 * irq is handled on one specific CPU.
590 * So complete IO reqeust in softirq context in case of single queue
591 * for not degrading IO performance by irqsoff latency.
593 if (q->nr_hw_queues == 1) {
594 __blk_complete_request(rq);
595 return;
599 * For a polled request, always complete locallly, it's pointless
600 * to redirect the completion.
602 if ((rq->cmd_flags & REQ_HIPRI) ||
603 !test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags)) {
604 q->mq_ops->complete(rq);
605 return;
608 cpu = get_cpu();
609 if (!test_bit(QUEUE_FLAG_SAME_FORCE, &q->queue_flags))
610 shared = cpus_share_cache(cpu, ctx->cpu);
612 if (cpu != ctx->cpu && !shared && cpu_online(ctx->cpu)) {
613 rq->csd.func = __blk_mq_complete_request_remote;
614 rq->csd.info = rq;
615 rq->csd.flags = 0;
616 smp_call_function_single_async(ctx->cpu, &rq->csd);
617 } else {
618 q->mq_ops->complete(rq);
620 put_cpu();
623 static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
624 __releases(hctx->srcu)
626 if (!(hctx->flags & BLK_MQ_F_BLOCKING))
627 rcu_read_unlock();
628 else
629 srcu_read_unlock(hctx->srcu, srcu_idx);
632 static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
633 __acquires(hctx->srcu)
635 if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
636 /* shut up gcc false positive */
637 *srcu_idx = 0;
638 rcu_read_lock();
639 } else
640 *srcu_idx = srcu_read_lock(hctx->srcu);
644 * blk_mq_complete_request - end I/O on a request
645 * @rq: the request being processed
647 * Description:
648 * Ends all I/O on a request. It does not handle partial completions.
649 * The actual completion happens out-of-order, through a IPI handler.
651 bool blk_mq_complete_request(struct request *rq)
653 if (unlikely(blk_should_fake_timeout(rq->q)))
654 return false;
655 __blk_mq_complete_request(rq);
656 return true;
658 EXPORT_SYMBOL(blk_mq_complete_request);
660 int blk_mq_request_started(struct request *rq)
662 return blk_mq_rq_state(rq) != MQ_RQ_IDLE;
664 EXPORT_SYMBOL_GPL(blk_mq_request_started);
666 void blk_mq_start_request(struct request *rq)
668 struct request_queue *q = rq->q;
670 blk_mq_sched_started_request(rq);
672 trace_block_rq_issue(q, rq);
674 if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
675 rq->io_start_time_ns = ktime_get_ns();
676 #ifdef CONFIG_BLK_DEV_THROTTLING_LOW
677 rq->throtl_size = blk_rq_sectors(rq);
678 #endif
679 rq->rq_flags |= RQF_STATS;
680 rq_qos_issue(q, rq);
683 WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
685 blk_add_timer(rq);
686 WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
688 if (q->dma_drain_size && blk_rq_bytes(rq)) {
690 * Make sure space for the drain appears. We know we can do
691 * this because max_hw_segments has been adjusted to be one
692 * fewer than the device can handle.
694 rq->nr_phys_segments++;
697 EXPORT_SYMBOL(blk_mq_start_request);
699 static void __blk_mq_requeue_request(struct request *rq)
701 struct request_queue *q = rq->q;
703 blk_mq_put_driver_tag(rq);
705 trace_block_rq_requeue(q, rq);
706 rq_qos_requeue(q, rq);
708 if (blk_mq_request_started(rq)) {
709 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
710 rq->rq_flags &= ~RQF_TIMED_OUT;
711 if (q->dma_drain_size && blk_rq_bytes(rq))
712 rq->nr_phys_segments--;
716 void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
718 __blk_mq_requeue_request(rq);
720 /* this request will be re-inserted to io scheduler queue */
721 blk_mq_sched_requeue_request(rq);
723 BUG_ON(!list_empty(&rq->queuelist));
724 blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
726 EXPORT_SYMBOL(blk_mq_requeue_request);
728 static void blk_mq_requeue_work(struct work_struct *work)
730 struct request_queue *q =
731 container_of(work, struct request_queue, requeue_work.work);
732 LIST_HEAD(rq_list);
733 struct request *rq, *next;
735 spin_lock_irq(&q->requeue_lock);
736 list_splice_init(&q->requeue_list, &rq_list);
737 spin_unlock_irq(&q->requeue_lock);
739 list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
740 if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
741 continue;
743 rq->rq_flags &= ~RQF_SOFTBARRIER;
744 list_del_init(&rq->queuelist);
746 * If RQF_DONTPREP, rq has contained some driver specific
747 * data, so insert it to hctx dispatch list to avoid any
748 * merge.
750 if (rq->rq_flags & RQF_DONTPREP)
751 blk_mq_request_bypass_insert(rq, false);
752 else
753 blk_mq_sched_insert_request(rq, true, false, false);
756 while (!list_empty(&rq_list)) {
757 rq = list_entry(rq_list.next, struct request, queuelist);
758 list_del_init(&rq->queuelist);
759 blk_mq_sched_insert_request(rq, false, false, false);
762 blk_mq_run_hw_queues(q, false);
765 void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
766 bool kick_requeue_list)
768 struct request_queue *q = rq->q;
769 unsigned long flags;
772 * We abuse this flag that is otherwise used by the I/O scheduler to
773 * request head insertion from the workqueue.
775 BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
777 spin_lock_irqsave(&q->requeue_lock, flags);
778 if (at_head) {
779 rq->rq_flags |= RQF_SOFTBARRIER;
780 list_add(&rq->queuelist, &q->requeue_list);
781 } else {
782 list_add_tail(&rq->queuelist, &q->requeue_list);
784 spin_unlock_irqrestore(&q->requeue_lock, flags);
786 if (kick_requeue_list)
787 blk_mq_kick_requeue_list(q);
789 EXPORT_SYMBOL(blk_mq_add_to_requeue_list);
791 void blk_mq_kick_requeue_list(struct request_queue *q)
793 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
795 EXPORT_SYMBOL(blk_mq_kick_requeue_list);
797 void blk_mq_delay_kick_requeue_list(struct request_queue *q,
798 unsigned long msecs)
800 kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
801 msecs_to_jiffies(msecs));
803 EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
805 struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
807 if (tag < tags->nr_tags) {
808 prefetch(tags->rqs[tag]);
809 return tags->rqs[tag];
812 return NULL;
814 EXPORT_SYMBOL(blk_mq_tag_to_rq);
816 static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
817 void *priv, bool reserved)
820 * If we find a request that is inflight and the queue matches,
821 * we know the queue is busy. Return false to stop the iteration.
823 if (rq->state == MQ_RQ_IN_FLIGHT && rq->q == hctx->queue) {
824 bool *busy = priv;
826 *busy = true;
827 return false;
830 return true;
833 bool blk_mq_queue_inflight(struct request_queue *q)
835 bool busy = false;
837 blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
838 return busy;
840 EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
842 static void blk_mq_rq_timed_out(struct request *req, bool reserved)
844 req->rq_flags |= RQF_TIMED_OUT;
845 if (req->q->mq_ops->timeout) {
846 enum blk_eh_timer_return ret;
848 ret = req->q->mq_ops->timeout(req, reserved);
849 if (ret == BLK_EH_DONE)
850 return;
851 WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
854 blk_add_timer(req);
857 static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
859 unsigned long deadline;
861 if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
862 return false;
863 if (rq->rq_flags & RQF_TIMED_OUT)
864 return false;
866 deadline = READ_ONCE(rq->deadline);
867 if (time_after_eq(jiffies, deadline))
868 return true;
870 if (*next == 0)
871 *next = deadline;
872 else if (time_after(*next, deadline))
873 *next = deadline;
874 return false;
877 static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
878 struct request *rq, void *priv, bool reserved)
880 unsigned long *next = priv;
883 * Just do a quick check if it is expired before locking the request in
884 * so we're not unnecessarilly synchronizing across CPUs.
886 if (!blk_mq_req_expired(rq, next))
887 return true;
890 * We have reason to believe the request may be expired. Take a
891 * reference on the request to lock this request lifetime into its
892 * currently allocated context to prevent it from being reallocated in
893 * the event the completion by-passes this timeout handler.
895 * If the reference was already released, then the driver beat the
896 * timeout handler to posting a natural completion.
898 if (!refcount_inc_not_zero(&rq->ref))
899 return true;
902 * The request is now locked and cannot be reallocated underneath the
903 * timeout handler's processing. Re-verify this exact request is truly
904 * expired; if it is not expired, then the request was completed and
905 * reallocated as a new request.
907 if (blk_mq_req_expired(rq, next))
908 blk_mq_rq_timed_out(rq, reserved);
909 if (refcount_dec_and_test(&rq->ref))
910 __blk_mq_free_request(rq);
912 return true;
915 static void blk_mq_timeout_work(struct work_struct *work)
917 struct request_queue *q =
918 container_of(work, struct request_queue, timeout_work);
919 unsigned long next = 0;
920 struct blk_mq_hw_ctx *hctx;
921 int i;
923 /* A deadlock might occur if a request is stuck requiring a
924 * timeout at the same time a queue freeze is waiting
925 * completion, since the timeout code would not be able to
926 * acquire the queue reference here.
928 * That's why we don't use blk_queue_enter here; instead, we use
929 * percpu_ref_tryget directly, because we need to be able to
930 * obtain a reference even in the short window between the queue
931 * starting to freeze, by dropping the first reference in
932 * blk_freeze_queue_start, and the moment the last request is
933 * consumed, marked by the instant q_usage_counter reaches
934 * zero.
936 if (!percpu_ref_tryget(&q->q_usage_counter))
937 return;
939 blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
941 if (next != 0) {
942 mod_timer(&q->timeout, next);
943 } else {
945 * Request timeouts are handled as a forward rolling timer. If
946 * we end up here it means that no requests are pending and
947 * also that no request has been pending for a while. Mark
948 * each hctx as idle.
950 queue_for_each_hw_ctx(q, hctx, i) {
951 /* the hctx may be unmapped, so check it here */
952 if (blk_mq_hw_queue_mapped(hctx))
953 blk_mq_tag_idle(hctx);
956 blk_queue_exit(q);
959 struct flush_busy_ctx_data {
960 struct blk_mq_hw_ctx *hctx;
961 struct list_head *list;
964 static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
966 struct flush_busy_ctx_data *flush_data = data;
967 struct blk_mq_hw_ctx *hctx = flush_data->hctx;
968 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
969 enum hctx_type type = hctx->type;
971 spin_lock(&ctx->lock);
972 list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
973 sbitmap_clear_bit(sb, bitnr);
974 spin_unlock(&ctx->lock);
975 return true;
979 * Process software queues that have been marked busy, splicing them
980 * to the for-dispatch
982 void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
984 struct flush_busy_ctx_data data = {
985 .hctx = hctx,
986 .list = list,
989 sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
991 EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
993 struct dispatch_rq_data {
994 struct blk_mq_hw_ctx *hctx;
995 struct request *rq;
998 static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
999 void *data)
1001 struct dispatch_rq_data *dispatch_data = data;
1002 struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1003 struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1004 enum hctx_type type = hctx->type;
1006 spin_lock(&ctx->lock);
1007 if (!list_empty(&ctx->rq_lists[type])) {
1008 dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1009 list_del_init(&dispatch_data->rq->queuelist);
1010 if (list_empty(&ctx->rq_lists[type]))
1011 sbitmap_clear_bit(sb, bitnr);
1013 spin_unlock(&ctx->lock);
1015 return !dispatch_data->rq;
1018 struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1019 struct blk_mq_ctx *start)
1021 unsigned off = start ? start->index_hw[hctx->type] : 0;
1022 struct dispatch_rq_data data = {
1023 .hctx = hctx,
1024 .rq = NULL,
1027 __sbitmap_for_each_set(&hctx->ctx_map, off,
1028 dispatch_rq_from_ctx, &data);
1030 return data.rq;
1033 static inline unsigned int queued_to_index(unsigned int queued)
1035 if (!queued)
1036 return 0;
1038 return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1041 bool blk_mq_get_driver_tag(struct request *rq)
1043 struct blk_mq_alloc_data data = {
1044 .q = rq->q,
1045 .hctx = rq->mq_hctx,
1046 .flags = BLK_MQ_REQ_NOWAIT,
1047 .cmd_flags = rq->cmd_flags,
1049 bool shared;
1051 if (rq->tag != -1)
1052 goto done;
1054 if (blk_mq_tag_is_reserved(data.hctx->sched_tags, rq->internal_tag))
1055 data.flags |= BLK_MQ_REQ_RESERVED;
1057 shared = blk_mq_tag_busy(data.hctx);
1058 rq->tag = blk_mq_get_tag(&data);
1059 if (rq->tag >= 0) {
1060 if (shared) {
1061 rq->rq_flags |= RQF_MQ_INFLIGHT;
1062 atomic_inc(&data.hctx->nr_active);
1064 data.hctx->tags->rqs[rq->tag] = rq;
1067 done:
1068 return rq->tag != -1;
1071 static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1072 int flags, void *key)
1074 struct blk_mq_hw_ctx *hctx;
1076 hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1078 spin_lock(&hctx->dispatch_wait_lock);
1079 if (!list_empty(&wait->entry)) {
1080 struct sbitmap_queue *sbq;
1082 list_del_init(&wait->entry);
1083 sbq = &hctx->tags->bitmap_tags;
1084 atomic_dec(&sbq->ws_active);
1086 spin_unlock(&hctx->dispatch_wait_lock);
1088 blk_mq_run_hw_queue(hctx, true);
1089 return 1;
1093 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1094 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1095 * restart. For both cases, take care to check the condition again after
1096 * marking us as waiting.
1098 static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1099 struct request *rq)
1101 struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1102 struct wait_queue_head *wq;
1103 wait_queue_entry_t *wait;
1104 bool ret;
1106 if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1107 if (!test_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state))
1108 set_bit(BLK_MQ_S_SCHED_RESTART, &hctx->state);
1111 * It's possible that a tag was freed in the window between the
1112 * allocation failure and adding the hardware queue to the wait
1113 * queue.
1115 * Don't clear RESTART here, someone else could have set it.
1116 * At most this will cost an extra queue run.
1118 return blk_mq_get_driver_tag(rq);
1121 wait = &hctx->dispatch_wait;
1122 if (!list_empty_careful(&wait->entry))
1123 return false;
1125 wq = &bt_wait_ptr(sbq, hctx)->wait;
1127 spin_lock_irq(&wq->lock);
1128 spin_lock(&hctx->dispatch_wait_lock);
1129 if (!list_empty(&wait->entry)) {
1130 spin_unlock(&hctx->dispatch_wait_lock);
1131 spin_unlock_irq(&wq->lock);
1132 return false;
1135 atomic_inc(&sbq->ws_active);
1136 wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1137 __add_wait_queue(wq, wait);
1140 * It's possible that a tag was freed in the window between the
1141 * allocation failure and adding the hardware queue to the wait
1142 * queue.
1144 ret = blk_mq_get_driver_tag(rq);
1145 if (!ret) {
1146 spin_unlock(&hctx->dispatch_wait_lock);
1147 spin_unlock_irq(&wq->lock);
1148 return false;
1152 * We got a tag, remove ourselves from the wait queue to ensure
1153 * someone else gets the wakeup.
1155 list_del_init(&wait->entry);
1156 atomic_dec(&sbq->ws_active);
1157 spin_unlock(&hctx->dispatch_wait_lock);
1158 spin_unlock_irq(&wq->lock);
1160 return true;
1163 #define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT 8
1164 #define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR 4
1166 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1167 * - EWMA is one simple way to compute running average value
1168 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1169 * - take 4 as factor for avoiding to get too small(0) result, and this
1170 * factor doesn't matter because EWMA decreases exponentially
1172 static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1174 unsigned int ewma;
1176 if (hctx->queue->elevator)
1177 return;
1179 ewma = hctx->dispatch_busy;
1181 if (!ewma && !busy)
1182 return;
1184 ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1185 if (busy)
1186 ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1187 ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1189 hctx->dispatch_busy = ewma;
1192 #define BLK_MQ_RESOURCE_DELAY 3 /* ms units */
1195 * Returns true if we did some work AND can potentially do more.
1197 bool blk_mq_dispatch_rq_list(struct request_queue *q, struct list_head *list,
1198 bool got_budget)
1200 struct blk_mq_hw_ctx *hctx;
1201 struct request *rq, *nxt;
1202 bool no_tag = false;
1203 int errors, queued;
1204 blk_status_t ret = BLK_STS_OK;
1206 if (list_empty(list))
1207 return false;
1209 WARN_ON(!list_is_singular(list) && got_budget);
1212 * Now process all the entries, sending them to the driver.
1214 errors = queued = 0;
1215 do {
1216 struct blk_mq_queue_data bd;
1218 rq = list_first_entry(list, struct request, queuelist);
1220 hctx = rq->mq_hctx;
1221 if (!got_budget && !blk_mq_get_dispatch_budget(hctx))
1222 break;
1224 if (!blk_mq_get_driver_tag(rq)) {
1226 * The initial allocation attempt failed, so we need to
1227 * rerun the hardware queue when a tag is freed. The
1228 * waitqueue takes care of that. If the queue is run
1229 * before we add this entry back on the dispatch list,
1230 * we'll re-run it below.
1232 if (!blk_mq_mark_tag_wait(hctx, rq)) {
1233 blk_mq_put_dispatch_budget(hctx);
1235 * For non-shared tags, the RESTART check
1236 * will suffice.
1238 if (hctx->flags & BLK_MQ_F_TAG_SHARED)
1239 no_tag = true;
1240 break;
1244 list_del_init(&rq->queuelist);
1246 bd.rq = rq;
1249 * Flag last if we have no more requests, or if we have more
1250 * but can't assign a driver tag to it.
1252 if (list_empty(list))
1253 bd.last = true;
1254 else {
1255 nxt = list_first_entry(list, struct request, queuelist);
1256 bd.last = !blk_mq_get_driver_tag(nxt);
1259 ret = q->mq_ops->queue_rq(hctx, &bd);
1260 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE) {
1262 * If an I/O scheduler has been configured and we got a
1263 * driver tag for the next request already, free it
1264 * again.
1266 if (!list_empty(list)) {
1267 nxt = list_first_entry(list, struct request, queuelist);
1268 blk_mq_put_driver_tag(nxt);
1270 list_add(&rq->queuelist, list);
1271 __blk_mq_requeue_request(rq);
1272 break;
1275 if (unlikely(ret != BLK_STS_OK)) {
1276 errors++;
1277 blk_mq_end_request(rq, BLK_STS_IOERR);
1278 continue;
1281 queued++;
1282 } while (!list_empty(list));
1284 hctx->dispatched[queued_to_index(queued)]++;
1287 * Any items that need requeuing? Stuff them into hctx->dispatch,
1288 * that is where we will continue on next queue run.
1290 if (!list_empty(list)) {
1291 bool needs_restart;
1294 * If we didn't flush the entire list, we could have told
1295 * the driver there was more coming, but that turned out to
1296 * be a lie.
1298 if (q->mq_ops->commit_rqs)
1299 q->mq_ops->commit_rqs(hctx);
1301 spin_lock(&hctx->lock);
1302 list_splice_init(list, &hctx->dispatch);
1303 spin_unlock(&hctx->lock);
1306 * If SCHED_RESTART was set by the caller of this function and
1307 * it is no longer set that means that it was cleared by another
1308 * thread and hence that a queue rerun is needed.
1310 * If 'no_tag' is set, that means that we failed getting
1311 * a driver tag with an I/O scheduler attached. If our dispatch
1312 * waitqueue is no longer active, ensure that we run the queue
1313 * AFTER adding our entries back to the list.
1315 * If no I/O scheduler has been configured it is possible that
1316 * the hardware queue got stopped and restarted before requests
1317 * were pushed back onto the dispatch list. Rerun the queue to
1318 * avoid starvation. Notes:
1319 * - blk_mq_run_hw_queue() checks whether or not a queue has
1320 * been stopped before rerunning a queue.
1321 * - Some but not all block drivers stop a queue before
1322 * returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1323 * and dm-rq.
1325 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1326 * bit is set, run queue after a delay to avoid IO stalls
1327 * that could otherwise occur if the queue is idle.
1329 needs_restart = blk_mq_sched_needs_restart(hctx);
1330 if (!needs_restart ||
1331 (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1332 blk_mq_run_hw_queue(hctx, true);
1333 else if (needs_restart && (ret == BLK_STS_RESOURCE))
1334 blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1336 blk_mq_update_dispatch_busy(hctx, true);
1337 return false;
1338 } else
1339 blk_mq_update_dispatch_busy(hctx, false);
1342 * If the host/device is unable to accept more work, inform the
1343 * caller of that.
1345 if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
1346 return false;
1348 return (queued + errors) != 0;
1351 static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1353 int srcu_idx;
1356 * We should be running this queue from one of the CPUs that
1357 * are mapped to it.
1359 * There are at least two related races now between setting
1360 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1361 * __blk_mq_run_hw_queue():
1363 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1364 * but later it becomes online, then this warning is harmless
1365 * at all
1367 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1368 * but later it becomes offline, then the warning can't be
1369 * triggered, and we depend on blk-mq timeout handler to
1370 * handle dispatched requests to this hctx
1372 if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1373 cpu_online(hctx->next_cpu)) {
1374 printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1375 raw_smp_processor_id(),
1376 cpumask_empty(hctx->cpumask) ? "inactive": "active");
1377 dump_stack();
1381 * We can't run the queue inline with ints disabled. Ensure that
1382 * we catch bad users of this early.
1384 WARN_ON_ONCE(in_interrupt());
1386 might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1388 hctx_lock(hctx, &srcu_idx);
1389 blk_mq_sched_dispatch_requests(hctx);
1390 hctx_unlock(hctx, srcu_idx);
1393 static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1395 int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1397 if (cpu >= nr_cpu_ids)
1398 cpu = cpumask_first(hctx->cpumask);
1399 return cpu;
1403 * It'd be great if the workqueue API had a way to pass
1404 * in a mask and had some smarts for more clever placement.
1405 * For now we just round-robin here, switching for every
1406 * BLK_MQ_CPU_WORK_BATCH queued items.
1408 static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1410 bool tried = false;
1411 int next_cpu = hctx->next_cpu;
1413 if (hctx->queue->nr_hw_queues == 1)
1414 return WORK_CPU_UNBOUND;
1416 if (--hctx->next_cpu_batch <= 0) {
1417 select_cpu:
1418 next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1419 cpu_online_mask);
1420 if (next_cpu >= nr_cpu_ids)
1421 next_cpu = blk_mq_first_mapped_cpu(hctx);
1422 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1426 * Do unbound schedule if we can't find a online CPU for this hctx,
1427 * and it should only happen in the path of handling CPU DEAD.
1429 if (!cpu_online(next_cpu)) {
1430 if (!tried) {
1431 tried = true;
1432 goto select_cpu;
1436 * Make sure to re-select CPU next time once after CPUs
1437 * in hctx->cpumask become online again.
1439 hctx->next_cpu = next_cpu;
1440 hctx->next_cpu_batch = 1;
1441 return WORK_CPU_UNBOUND;
1444 hctx->next_cpu = next_cpu;
1445 return next_cpu;
1448 static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1449 unsigned long msecs)
1451 if (unlikely(blk_mq_hctx_stopped(hctx)))
1452 return;
1454 if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1455 int cpu = get_cpu();
1456 if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1457 __blk_mq_run_hw_queue(hctx);
1458 put_cpu();
1459 return;
1462 put_cpu();
1465 kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1466 msecs_to_jiffies(msecs));
1469 void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1471 __blk_mq_delay_run_hw_queue(hctx, true, msecs);
1473 EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1475 bool blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1477 int srcu_idx;
1478 bool need_run;
1481 * When queue is quiesced, we may be switching io scheduler, or
1482 * updating nr_hw_queues, or other things, and we can't run queue
1483 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1485 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1486 * quiesced.
1488 hctx_lock(hctx, &srcu_idx);
1489 need_run = !blk_queue_quiesced(hctx->queue) &&
1490 blk_mq_hctx_has_pending(hctx);
1491 hctx_unlock(hctx, srcu_idx);
1493 if (need_run) {
1494 __blk_mq_delay_run_hw_queue(hctx, async, 0);
1495 return true;
1498 return false;
1500 EXPORT_SYMBOL(blk_mq_run_hw_queue);
1502 void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1504 struct blk_mq_hw_ctx *hctx;
1505 int i;
1507 queue_for_each_hw_ctx(q, hctx, i) {
1508 if (blk_mq_hctx_stopped(hctx))
1509 continue;
1511 blk_mq_run_hw_queue(hctx, async);
1514 EXPORT_SYMBOL(blk_mq_run_hw_queues);
1517 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1518 * @q: request queue.
1520 * The caller is responsible for serializing this function against
1521 * blk_mq_{start,stop}_hw_queue().
1523 bool blk_mq_queue_stopped(struct request_queue *q)
1525 struct blk_mq_hw_ctx *hctx;
1526 int i;
1528 queue_for_each_hw_ctx(q, hctx, i)
1529 if (blk_mq_hctx_stopped(hctx))
1530 return true;
1532 return false;
1534 EXPORT_SYMBOL(blk_mq_queue_stopped);
1537 * This function is often used for pausing .queue_rq() by driver when
1538 * there isn't enough resource or some conditions aren't satisfied, and
1539 * BLK_STS_RESOURCE is usually returned.
1541 * We do not guarantee that dispatch can be drained or blocked
1542 * after blk_mq_stop_hw_queue() returns. Please use
1543 * blk_mq_quiesce_queue() for that requirement.
1545 void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1547 cancel_delayed_work(&hctx->run_work);
1549 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1551 EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1554 * This function is often used for pausing .queue_rq() by driver when
1555 * there isn't enough resource or some conditions aren't satisfied, and
1556 * BLK_STS_RESOURCE is usually returned.
1558 * We do not guarantee that dispatch can be drained or blocked
1559 * after blk_mq_stop_hw_queues() returns. Please use
1560 * blk_mq_quiesce_queue() for that requirement.
1562 void blk_mq_stop_hw_queues(struct request_queue *q)
1564 struct blk_mq_hw_ctx *hctx;
1565 int i;
1567 queue_for_each_hw_ctx(q, hctx, i)
1568 blk_mq_stop_hw_queue(hctx);
1570 EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1572 void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1574 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1576 blk_mq_run_hw_queue(hctx, false);
1578 EXPORT_SYMBOL(blk_mq_start_hw_queue);
1580 void blk_mq_start_hw_queues(struct request_queue *q)
1582 struct blk_mq_hw_ctx *hctx;
1583 int i;
1585 queue_for_each_hw_ctx(q, hctx, i)
1586 blk_mq_start_hw_queue(hctx);
1588 EXPORT_SYMBOL(blk_mq_start_hw_queues);
1590 void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1592 if (!blk_mq_hctx_stopped(hctx))
1593 return;
1595 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1596 blk_mq_run_hw_queue(hctx, async);
1598 EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1600 void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1602 struct blk_mq_hw_ctx *hctx;
1603 int i;
1605 queue_for_each_hw_ctx(q, hctx, i)
1606 blk_mq_start_stopped_hw_queue(hctx, async);
1608 EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1610 static void blk_mq_run_work_fn(struct work_struct *work)
1612 struct blk_mq_hw_ctx *hctx;
1614 hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1617 * If we are stopped, don't run the queue.
1619 if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1620 return;
1622 __blk_mq_run_hw_queue(hctx);
1625 static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1626 struct request *rq,
1627 bool at_head)
1629 struct blk_mq_ctx *ctx = rq->mq_ctx;
1630 enum hctx_type type = hctx->type;
1632 lockdep_assert_held(&ctx->lock);
1634 trace_block_rq_insert(hctx->queue, rq);
1636 if (at_head)
1637 list_add(&rq->queuelist, &ctx->rq_lists[type]);
1638 else
1639 list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
1642 void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1643 bool at_head)
1645 struct blk_mq_ctx *ctx = rq->mq_ctx;
1647 lockdep_assert_held(&ctx->lock);
1649 __blk_mq_insert_req_list(hctx, rq, at_head);
1650 blk_mq_hctx_mark_pending(hctx, ctx);
1654 * Should only be used carefully, when the caller knows we want to
1655 * bypass a potential IO scheduler on the target device.
1657 void blk_mq_request_bypass_insert(struct request *rq, bool run_queue)
1659 struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1661 spin_lock(&hctx->lock);
1662 list_add_tail(&rq->queuelist, &hctx->dispatch);
1663 spin_unlock(&hctx->lock);
1665 if (run_queue)
1666 blk_mq_run_hw_queue(hctx, false);
1669 void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1670 struct list_head *list)
1673 struct request *rq;
1674 enum hctx_type type = hctx->type;
1677 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1678 * offline now
1680 list_for_each_entry(rq, list, queuelist) {
1681 BUG_ON(rq->mq_ctx != ctx);
1682 trace_block_rq_insert(hctx->queue, rq);
1685 spin_lock(&ctx->lock);
1686 list_splice_tail_init(list, &ctx->rq_lists[type]);
1687 blk_mq_hctx_mark_pending(hctx, ctx);
1688 spin_unlock(&ctx->lock);
1691 static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1693 struct request *rqa = container_of(a, struct request, queuelist);
1694 struct request *rqb = container_of(b, struct request, queuelist);
1696 if (rqa->mq_ctx < rqb->mq_ctx)
1697 return -1;
1698 else if (rqa->mq_ctx > rqb->mq_ctx)
1699 return 1;
1700 else if (rqa->mq_hctx < rqb->mq_hctx)
1701 return -1;
1702 else if (rqa->mq_hctx > rqb->mq_hctx)
1703 return 1;
1705 return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1708 void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1710 struct blk_mq_hw_ctx *this_hctx;
1711 struct blk_mq_ctx *this_ctx;
1712 struct request_queue *this_q;
1713 struct request *rq;
1714 LIST_HEAD(list);
1715 LIST_HEAD(rq_list);
1716 unsigned int depth;
1718 list_splice_init(&plug->mq_list, &list);
1719 plug->rq_count = 0;
1721 if (plug->rq_count > 2 && plug->multiple_queues)
1722 list_sort(NULL, &list, plug_rq_cmp);
1724 this_q = NULL;
1725 this_hctx = NULL;
1726 this_ctx = NULL;
1727 depth = 0;
1729 while (!list_empty(&list)) {
1730 rq = list_entry_rq(list.next);
1731 list_del_init(&rq->queuelist);
1732 BUG_ON(!rq->q);
1733 if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx) {
1734 if (this_hctx) {
1735 trace_block_unplug(this_q, depth, !from_schedule);
1736 blk_mq_sched_insert_requests(this_hctx, this_ctx,
1737 &rq_list,
1738 from_schedule);
1741 this_q = rq->q;
1742 this_ctx = rq->mq_ctx;
1743 this_hctx = rq->mq_hctx;
1744 depth = 0;
1747 depth++;
1748 list_add_tail(&rq->queuelist, &rq_list);
1752 * If 'this_hctx' is set, we know we have entries to complete
1753 * on 'rq_list'. Do those.
1755 if (this_hctx) {
1756 trace_block_unplug(this_q, depth, !from_schedule);
1757 blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1758 from_schedule);
1762 static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
1764 blk_init_request_from_bio(rq, bio);
1766 blk_account_io_start(rq, true);
1769 static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1770 struct request *rq,
1771 blk_qc_t *cookie, bool last)
1773 struct request_queue *q = rq->q;
1774 struct blk_mq_queue_data bd = {
1775 .rq = rq,
1776 .last = last,
1778 blk_qc_t new_cookie;
1779 blk_status_t ret;
1781 new_cookie = request_to_qc_t(hctx, rq);
1784 * For OK queue, we are done. For error, caller may kill it.
1785 * Any other error (busy), just add it to our list as we
1786 * previously would have done.
1788 ret = q->mq_ops->queue_rq(hctx, &bd);
1789 switch (ret) {
1790 case BLK_STS_OK:
1791 blk_mq_update_dispatch_busy(hctx, false);
1792 *cookie = new_cookie;
1793 break;
1794 case BLK_STS_RESOURCE:
1795 case BLK_STS_DEV_RESOURCE:
1796 blk_mq_update_dispatch_busy(hctx, true);
1797 __blk_mq_requeue_request(rq);
1798 break;
1799 default:
1800 blk_mq_update_dispatch_busy(hctx, false);
1801 *cookie = BLK_QC_T_NONE;
1802 break;
1805 return ret;
1808 blk_status_t blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1809 struct request *rq,
1810 blk_qc_t *cookie,
1811 bool bypass, bool last)
1813 struct request_queue *q = rq->q;
1814 bool run_queue = true;
1815 blk_status_t ret = BLK_STS_RESOURCE;
1816 int srcu_idx;
1817 bool force = false;
1819 hctx_lock(hctx, &srcu_idx);
1821 * hctx_lock is needed before checking quiesced flag.
1823 * When queue is stopped or quiesced, ignore 'bypass', insert
1824 * and return BLK_STS_OK to caller, and avoid driver to try to
1825 * dispatch again.
1827 if (unlikely(blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q))) {
1828 run_queue = false;
1829 bypass = false;
1830 goto out_unlock;
1833 if (unlikely(q->elevator && !bypass))
1834 goto out_unlock;
1836 if (!blk_mq_get_dispatch_budget(hctx))
1837 goto out_unlock;
1839 if (!blk_mq_get_driver_tag(rq)) {
1840 blk_mq_put_dispatch_budget(hctx);
1841 goto out_unlock;
1845 * Always add a request that has been through
1846 *.queue_rq() to the hardware dispatch list.
1848 force = true;
1849 ret = __blk_mq_issue_directly(hctx, rq, cookie, last);
1850 out_unlock:
1851 hctx_unlock(hctx, srcu_idx);
1852 switch (ret) {
1853 case BLK_STS_OK:
1854 break;
1855 case BLK_STS_DEV_RESOURCE:
1856 case BLK_STS_RESOURCE:
1857 if (force) {
1858 blk_mq_request_bypass_insert(rq, run_queue);
1860 * We have to return BLK_STS_OK for the DM
1861 * to avoid livelock. Otherwise, we return
1862 * the real result to indicate whether the
1863 * request is direct-issued successfully.
1865 ret = bypass ? BLK_STS_OK : ret;
1866 } else if (!bypass) {
1867 blk_mq_sched_insert_request(rq, false,
1868 run_queue, false);
1870 break;
1871 default:
1872 if (!bypass)
1873 blk_mq_end_request(rq, ret);
1874 break;
1877 return ret;
1880 void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
1881 struct list_head *list)
1883 blk_qc_t unused;
1884 blk_status_t ret = BLK_STS_OK;
1886 while (!list_empty(list)) {
1887 struct request *rq = list_first_entry(list, struct request,
1888 queuelist);
1890 list_del_init(&rq->queuelist);
1891 if (ret == BLK_STS_OK)
1892 ret = blk_mq_try_issue_directly(hctx, rq, &unused,
1893 false,
1894 list_empty(list));
1895 else
1896 blk_mq_sched_insert_request(rq, false, true, false);
1900 * If we didn't flush the entire list, we could have told
1901 * the driver there was more coming, but that turned out to
1902 * be a lie.
1904 if (ret != BLK_STS_OK && hctx->queue->mq_ops->commit_rqs)
1905 hctx->queue->mq_ops->commit_rqs(hctx);
1908 static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
1910 list_add_tail(&rq->queuelist, &plug->mq_list);
1911 plug->rq_count++;
1912 if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
1913 struct request *tmp;
1915 tmp = list_first_entry(&plug->mq_list, struct request,
1916 queuelist);
1917 if (tmp->q != rq->q)
1918 plug->multiple_queues = true;
1922 static blk_qc_t blk_mq_make_request(struct request_queue *q, struct bio *bio)
1924 const int is_sync = op_is_sync(bio->bi_opf);
1925 const int is_flush_fua = op_is_flush(bio->bi_opf);
1926 struct blk_mq_alloc_data data = { .flags = 0};
1927 struct request *rq;
1928 struct blk_plug *plug;
1929 struct request *same_queue_rq = NULL;
1930 blk_qc_t cookie;
1932 blk_queue_bounce(q, &bio);
1934 blk_queue_split(q, &bio);
1936 if (!bio_integrity_prep(bio))
1937 return BLK_QC_T_NONE;
1939 if (!is_flush_fua && !blk_queue_nomerges(q) &&
1940 blk_attempt_plug_merge(q, bio, &same_queue_rq))
1941 return BLK_QC_T_NONE;
1943 if (blk_mq_sched_bio_merge(q, bio))
1944 return BLK_QC_T_NONE;
1946 rq_qos_throttle(q, bio);
1948 data.cmd_flags = bio->bi_opf;
1949 rq = blk_mq_get_request(q, bio, &data);
1950 if (unlikely(!rq)) {
1951 rq_qos_cleanup(q, bio);
1952 if (bio->bi_opf & REQ_NOWAIT)
1953 bio_wouldblock_error(bio);
1954 return BLK_QC_T_NONE;
1957 trace_block_getrq(q, bio, bio->bi_opf);
1959 rq_qos_track(q, rq, bio);
1961 cookie = request_to_qc_t(data.hctx, rq);
1963 plug = current->plug;
1964 if (unlikely(is_flush_fua)) {
1965 blk_mq_put_ctx(data.ctx);
1966 blk_mq_bio_to_request(rq, bio);
1968 /* bypass scheduler for flush rq */
1969 blk_insert_flush(rq);
1970 blk_mq_run_hw_queue(data.hctx, true);
1971 } else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs)) {
1973 * Use plugging if we have a ->commit_rqs() hook as well, as
1974 * we know the driver uses bd->last in a smart fashion.
1976 unsigned int request_count = plug->rq_count;
1977 struct request *last = NULL;
1979 blk_mq_put_ctx(data.ctx);
1980 blk_mq_bio_to_request(rq, bio);
1982 if (!request_count)
1983 trace_block_plug(q);
1984 else
1985 last = list_entry_rq(plug->mq_list.prev);
1987 if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
1988 blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
1989 blk_flush_plug_list(plug, false);
1990 trace_block_plug(q);
1993 blk_add_rq_to_plug(plug, rq);
1994 } else if (plug && !blk_queue_nomerges(q)) {
1995 blk_mq_bio_to_request(rq, bio);
1998 * We do limited plugging. If the bio can be merged, do that.
1999 * Otherwise the existing request in the plug list will be
2000 * issued. So the plug list will have one request at most
2001 * The plug list might get flushed before this. If that happens,
2002 * the plug list is empty, and same_queue_rq is invalid.
2004 if (list_empty(&plug->mq_list))
2005 same_queue_rq = NULL;
2006 if (same_queue_rq) {
2007 list_del_init(&same_queue_rq->queuelist);
2008 plug->rq_count--;
2010 blk_add_rq_to_plug(plug, rq);
2012 blk_mq_put_ctx(data.ctx);
2014 if (same_queue_rq) {
2015 data.hctx = same_queue_rq->mq_hctx;
2016 blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2017 &cookie, false, true);
2019 } else if ((q->nr_hw_queues > 1 && is_sync) || (!q->elevator &&
2020 !data.hctx->dispatch_busy)) {
2021 blk_mq_put_ctx(data.ctx);
2022 blk_mq_bio_to_request(rq, bio);
2023 blk_mq_try_issue_directly(data.hctx, rq, &cookie, false, true);
2024 } else {
2025 blk_mq_put_ctx(data.ctx);
2026 blk_mq_bio_to_request(rq, bio);
2027 blk_mq_sched_insert_request(rq, false, true, true);
2030 return cookie;
2033 void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2034 unsigned int hctx_idx)
2036 struct page *page;
2038 if (tags->rqs && set->ops->exit_request) {
2039 int i;
2041 for (i = 0; i < tags->nr_tags; i++) {
2042 struct request *rq = tags->static_rqs[i];
2044 if (!rq)
2045 continue;
2046 set->ops->exit_request(set, rq, hctx_idx);
2047 tags->static_rqs[i] = NULL;
2051 while (!list_empty(&tags->page_list)) {
2052 page = list_first_entry(&tags->page_list, struct page, lru);
2053 list_del_init(&page->lru);
2055 * Remove kmemleak object previously allocated in
2056 * blk_mq_init_rq_map().
2058 kmemleak_free(page_address(page));
2059 __free_pages(page, page->private);
2063 void blk_mq_free_rq_map(struct blk_mq_tags *tags)
2065 kfree(tags->rqs);
2066 tags->rqs = NULL;
2067 kfree(tags->static_rqs);
2068 tags->static_rqs = NULL;
2070 blk_mq_free_tags(tags);
2073 struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2074 unsigned int hctx_idx,
2075 unsigned int nr_tags,
2076 unsigned int reserved_tags)
2078 struct blk_mq_tags *tags;
2079 int node;
2081 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2082 if (node == NUMA_NO_NODE)
2083 node = set->numa_node;
2085 tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2086 BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2087 if (!tags)
2088 return NULL;
2090 tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2091 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2092 node);
2093 if (!tags->rqs) {
2094 blk_mq_free_tags(tags);
2095 return NULL;
2098 tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2099 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2100 node);
2101 if (!tags->static_rqs) {
2102 kfree(tags->rqs);
2103 blk_mq_free_tags(tags);
2104 return NULL;
2107 return tags;
2110 static size_t order_to_size(unsigned int order)
2112 return (size_t)PAGE_SIZE << order;
2115 static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2116 unsigned int hctx_idx, int node)
2118 int ret;
2120 if (set->ops->init_request) {
2121 ret = set->ops->init_request(set, rq, hctx_idx, node);
2122 if (ret)
2123 return ret;
2126 WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2127 return 0;
2130 int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2131 unsigned int hctx_idx, unsigned int depth)
2133 unsigned int i, j, entries_per_page, max_order = 4;
2134 size_t rq_size, left;
2135 int node;
2137 node = blk_mq_hw_queue_to_node(&set->map[0], hctx_idx);
2138 if (node == NUMA_NO_NODE)
2139 node = set->numa_node;
2141 INIT_LIST_HEAD(&tags->page_list);
2144 * rq_size is the size of the request plus driver payload, rounded
2145 * to the cacheline size
2147 rq_size = round_up(sizeof(struct request) + set->cmd_size,
2148 cache_line_size());
2149 left = rq_size * depth;
2151 for (i = 0; i < depth; ) {
2152 int this_order = max_order;
2153 struct page *page;
2154 int to_do;
2155 void *p;
2157 while (this_order && left < order_to_size(this_order - 1))
2158 this_order--;
2160 do {
2161 page = alloc_pages_node(node,
2162 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2163 this_order);
2164 if (page)
2165 break;
2166 if (!this_order--)
2167 break;
2168 if (order_to_size(this_order) < rq_size)
2169 break;
2170 } while (1);
2172 if (!page)
2173 goto fail;
2175 page->private = this_order;
2176 list_add_tail(&page->lru, &tags->page_list);
2178 p = page_address(page);
2180 * Allow kmemleak to scan these pages as they contain pointers
2181 * to additional allocations like via ops->init_request().
2183 kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2184 entries_per_page = order_to_size(this_order) / rq_size;
2185 to_do = min(entries_per_page, depth - i);
2186 left -= to_do * rq_size;
2187 for (j = 0; j < to_do; j++) {
2188 struct request *rq = p;
2190 tags->static_rqs[i] = rq;
2191 if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2192 tags->static_rqs[i] = NULL;
2193 goto fail;
2196 p += rq_size;
2197 i++;
2200 return 0;
2202 fail:
2203 blk_mq_free_rqs(set, tags, hctx_idx);
2204 return -ENOMEM;
2208 * 'cpu' is going away. splice any existing rq_list entries from this
2209 * software queue to the hw queue dispatch list, and ensure that it
2210 * gets run.
2212 static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2214 struct blk_mq_hw_ctx *hctx;
2215 struct blk_mq_ctx *ctx;
2216 LIST_HEAD(tmp);
2217 enum hctx_type type;
2219 hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2220 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2221 type = hctx->type;
2223 spin_lock(&ctx->lock);
2224 if (!list_empty(&ctx->rq_lists[type])) {
2225 list_splice_init(&ctx->rq_lists[type], &tmp);
2226 blk_mq_hctx_clear_pending(hctx, ctx);
2228 spin_unlock(&ctx->lock);
2230 if (list_empty(&tmp))
2231 return 0;
2233 spin_lock(&hctx->lock);
2234 list_splice_tail_init(&tmp, &hctx->dispatch);
2235 spin_unlock(&hctx->lock);
2237 blk_mq_run_hw_queue(hctx, true);
2238 return 0;
2241 static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2243 cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2244 &hctx->cpuhp_dead);
2247 /* hctx->ctxs will be freed in queue's release handler */
2248 static void blk_mq_exit_hctx(struct request_queue *q,
2249 struct blk_mq_tag_set *set,
2250 struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2252 if (blk_mq_hw_queue_mapped(hctx))
2253 blk_mq_tag_idle(hctx);
2255 if (set->ops->exit_request)
2256 set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2258 if (set->ops->exit_hctx)
2259 set->ops->exit_hctx(hctx, hctx_idx);
2261 if (hctx->flags & BLK_MQ_F_BLOCKING)
2262 cleanup_srcu_struct(hctx->srcu);
2264 blk_mq_remove_cpuhp(hctx);
2265 blk_free_flush_queue(hctx->fq);
2266 sbitmap_free(&hctx->ctx_map);
2269 static void blk_mq_exit_hw_queues(struct request_queue *q,
2270 struct blk_mq_tag_set *set, int nr_queue)
2272 struct blk_mq_hw_ctx *hctx;
2273 unsigned int i;
2275 queue_for_each_hw_ctx(q, hctx, i) {
2276 if (i == nr_queue)
2277 break;
2278 blk_mq_debugfs_unregister_hctx(hctx);
2279 blk_mq_exit_hctx(q, set, hctx, i);
2283 static int blk_mq_init_hctx(struct request_queue *q,
2284 struct blk_mq_tag_set *set,
2285 struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2287 int node;
2289 node = hctx->numa_node;
2290 if (node == NUMA_NO_NODE)
2291 node = hctx->numa_node = set->numa_node;
2293 INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2294 spin_lock_init(&hctx->lock);
2295 INIT_LIST_HEAD(&hctx->dispatch);
2296 hctx->queue = q;
2297 hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2299 cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2301 hctx->tags = set->tags[hctx_idx];
2304 * Allocate space for all possible cpus to avoid allocation at
2305 * runtime
2307 hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2308 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node);
2309 if (!hctx->ctxs)
2310 goto unregister_cpu_notifier;
2312 if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2313 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY, node))
2314 goto free_ctxs;
2316 hctx->nr_ctx = 0;
2318 spin_lock_init(&hctx->dispatch_wait_lock);
2319 init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2320 INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2322 if (set->ops->init_hctx &&
2323 set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2324 goto free_bitmap;
2326 hctx->fq = blk_alloc_flush_queue(q, hctx->numa_node, set->cmd_size,
2327 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
2328 if (!hctx->fq)
2329 goto exit_hctx;
2331 if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx, node))
2332 goto free_fq;
2334 if (hctx->flags & BLK_MQ_F_BLOCKING)
2335 init_srcu_struct(hctx->srcu);
2337 return 0;
2339 free_fq:
2340 kfree(hctx->fq);
2341 exit_hctx:
2342 if (set->ops->exit_hctx)
2343 set->ops->exit_hctx(hctx, hctx_idx);
2344 free_bitmap:
2345 sbitmap_free(&hctx->ctx_map);
2346 free_ctxs:
2347 kfree(hctx->ctxs);
2348 unregister_cpu_notifier:
2349 blk_mq_remove_cpuhp(hctx);
2350 return -1;
2353 static void blk_mq_init_cpu_queues(struct request_queue *q,
2354 unsigned int nr_hw_queues)
2356 struct blk_mq_tag_set *set = q->tag_set;
2357 unsigned int i, j;
2359 for_each_possible_cpu(i) {
2360 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2361 struct blk_mq_hw_ctx *hctx;
2362 int k;
2364 __ctx->cpu = i;
2365 spin_lock_init(&__ctx->lock);
2366 for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2367 INIT_LIST_HEAD(&__ctx->rq_lists[k]);
2369 __ctx->queue = q;
2372 * Set local node, IFF we have more than one hw queue. If
2373 * not, we remain on the home node of the device
2375 for (j = 0; j < set->nr_maps; j++) {
2376 hctx = blk_mq_map_queue_type(q, j, i);
2377 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2378 hctx->numa_node = local_memory_node(cpu_to_node(i));
2383 static bool __blk_mq_alloc_rq_map(struct blk_mq_tag_set *set, int hctx_idx)
2385 int ret = 0;
2387 set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2388 set->queue_depth, set->reserved_tags);
2389 if (!set->tags[hctx_idx])
2390 return false;
2392 ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2393 set->queue_depth);
2394 if (!ret)
2395 return true;
2397 blk_mq_free_rq_map(set->tags[hctx_idx]);
2398 set->tags[hctx_idx] = NULL;
2399 return false;
2402 static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2403 unsigned int hctx_idx)
2405 if (set->tags && set->tags[hctx_idx]) {
2406 blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2407 blk_mq_free_rq_map(set->tags[hctx_idx]);
2408 set->tags[hctx_idx] = NULL;
2412 static void blk_mq_map_swqueue(struct request_queue *q)
2414 unsigned int i, j, hctx_idx;
2415 struct blk_mq_hw_ctx *hctx;
2416 struct blk_mq_ctx *ctx;
2417 struct blk_mq_tag_set *set = q->tag_set;
2420 * Avoid others reading imcomplete hctx->cpumask through sysfs
2422 mutex_lock(&q->sysfs_lock);
2424 queue_for_each_hw_ctx(q, hctx, i) {
2425 cpumask_clear(hctx->cpumask);
2426 hctx->nr_ctx = 0;
2427 hctx->dispatch_from = NULL;
2431 * Map software to hardware queues.
2433 * If the cpu isn't present, the cpu is mapped to first hctx.
2435 for_each_possible_cpu(i) {
2436 hctx_idx = set->map[0].mq_map[i];
2437 /* unmapped hw queue can be remapped after CPU topo changed */
2438 if (!set->tags[hctx_idx] &&
2439 !__blk_mq_alloc_rq_map(set, hctx_idx)) {
2441 * If tags initialization fail for some hctx,
2442 * that hctx won't be brought online. In this
2443 * case, remap the current ctx to hctx[0] which
2444 * is guaranteed to always have tags allocated
2446 set->map[0].mq_map[i] = 0;
2449 ctx = per_cpu_ptr(q->queue_ctx, i);
2450 for (j = 0; j < set->nr_maps; j++) {
2451 if (!set->map[j].nr_queues)
2452 continue;
2454 hctx = blk_mq_map_queue_type(q, j, i);
2457 * If the CPU is already set in the mask, then we've
2458 * mapped this one already. This can happen if
2459 * devices share queues across queue maps.
2461 if (cpumask_test_cpu(i, hctx->cpumask))
2462 continue;
2464 cpumask_set_cpu(i, hctx->cpumask);
2465 hctx->type = j;
2466 ctx->index_hw[hctx->type] = hctx->nr_ctx;
2467 hctx->ctxs[hctx->nr_ctx++] = ctx;
2470 * If the nr_ctx type overflows, we have exceeded the
2471 * amount of sw queues we can support.
2473 BUG_ON(!hctx->nr_ctx);
2477 mutex_unlock(&q->sysfs_lock);
2479 queue_for_each_hw_ctx(q, hctx, i) {
2481 * If no software queues are mapped to this hardware queue,
2482 * disable it and free the request entries.
2484 if (!hctx->nr_ctx) {
2485 /* Never unmap queue 0. We need it as a
2486 * fallback in case of a new remap fails
2487 * allocation
2489 if (i && set->tags[i])
2490 blk_mq_free_map_and_requests(set, i);
2492 hctx->tags = NULL;
2493 continue;
2496 hctx->tags = set->tags[i];
2497 WARN_ON(!hctx->tags);
2500 * Set the map size to the number of mapped software queues.
2501 * This is more accurate and more efficient than looping
2502 * over all possibly mapped software queues.
2504 sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2507 * Initialize batch roundrobin counts
2509 hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2510 hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2515 * Caller needs to ensure that we're either frozen/quiesced, or that
2516 * the queue isn't live yet.
2518 static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2520 struct blk_mq_hw_ctx *hctx;
2521 int i;
2523 queue_for_each_hw_ctx(q, hctx, i) {
2524 if (shared)
2525 hctx->flags |= BLK_MQ_F_TAG_SHARED;
2526 else
2527 hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2531 static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2532 bool shared)
2534 struct request_queue *q;
2536 lockdep_assert_held(&set->tag_list_lock);
2538 list_for_each_entry(q, &set->tag_list, tag_set_list) {
2539 blk_mq_freeze_queue(q);
2540 queue_set_hctx_shared(q, shared);
2541 blk_mq_unfreeze_queue(q);
2545 static void blk_mq_del_queue_tag_set(struct request_queue *q)
2547 struct blk_mq_tag_set *set = q->tag_set;
2549 mutex_lock(&set->tag_list_lock);
2550 list_del_rcu(&q->tag_set_list);
2551 if (list_is_singular(&set->tag_list)) {
2552 /* just transitioned to unshared */
2553 set->flags &= ~BLK_MQ_F_TAG_SHARED;
2554 /* update existing queue */
2555 blk_mq_update_tag_set_depth(set, false);
2557 mutex_unlock(&set->tag_list_lock);
2558 INIT_LIST_HEAD(&q->tag_set_list);
2561 static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2562 struct request_queue *q)
2564 mutex_lock(&set->tag_list_lock);
2567 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2569 if (!list_empty(&set->tag_list) &&
2570 !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2571 set->flags |= BLK_MQ_F_TAG_SHARED;
2572 /* update existing queue */
2573 blk_mq_update_tag_set_depth(set, true);
2575 if (set->flags & BLK_MQ_F_TAG_SHARED)
2576 queue_set_hctx_shared(q, true);
2577 list_add_tail_rcu(&q->tag_set_list, &set->tag_list);
2579 mutex_unlock(&set->tag_list_lock);
2582 /* All allocations will be freed in release handler of q->mq_kobj */
2583 static int blk_mq_alloc_ctxs(struct request_queue *q)
2585 struct blk_mq_ctxs *ctxs;
2586 int cpu;
2588 ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2589 if (!ctxs)
2590 return -ENOMEM;
2592 ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2593 if (!ctxs->queue_ctx)
2594 goto fail;
2596 for_each_possible_cpu(cpu) {
2597 struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2598 ctx->ctxs = ctxs;
2601 q->mq_kobj = &ctxs->kobj;
2602 q->queue_ctx = ctxs->queue_ctx;
2604 return 0;
2605 fail:
2606 kfree(ctxs);
2607 return -ENOMEM;
2611 * It is the actual release handler for mq, but we do it from
2612 * request queue's release handler for avoiding use-after-free
2613 * and headache because q->mq_kobj shouldn't have been introduced,
2614 * but we can't group ctx/kctx kobj without it.
2616 void blk_mq_release(struct request_queue *q)
2618 struct blk_mq_hw_ctx *hctx;
2619 unsigned int i;
2621 /* hctx kobj stays in hctx */
2622 queue_for_each_hw_ctx(q, hctx, i) {
2623 if (!hctx)
2624 continue;
2625 kobject_put(&hctx->kobj);
2628 kfree(q->queue_hw_ctx);
2631 * release .mq_kobj and sw queue's kobject now because
2632 * both share lifetime with request queue.
2634 blk_mq_sysfs_deinit(q);
2637 struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
2639 struct request_queue *uninit_q, *q;
2641 uninit_q = blk_alloc_queue_node(GFP_KERNEL, set->numa_node);
2642 if (!uninit_q)
2643 return ERR_PTR(-ENOMEM);
2645 q = blk_mq_init_allocated_queue(set, uninit_q);
2646 if (IS_ERR(q))
2647 blk_cleanup_queue(uninit_q);
2649 return q;
2651 EXPORT_SYMBOL(blk_mq_init_queue);
2654 * Helper for setting up a queue with mq ops, given queue depth, and
2655 * the passed in mq ops flags.
2657 struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
2658 const struct blk_mq_ops *ops,
2659 unsigned int queue_depth,
2660 unsigned int set_flags)
2662 struct request_queue *q;
2663 int ret;
2665 memset(set, 0, sizeof(*set));
2666 set->ops = ops;
2667 set->nr_hw_queues = 1;
2668 set->nr_maps = 1;
2669 set->queue_depth = queue_depth;
2670 set->numa_node = NUMA_NO_NODE;
2671 set->flags = set_flags;
2673 ret = blk_mq_alloc_tag_set(set);
2674 if (ret)
2675 return ERR_PTR(ret);
2677 q = blk_mq_init_queue(set);
2678 if (IS_ERR(q)) {
2679 blk_mq_free_tag_set(set);
2680 return q;
2683 return q;
2685 EXPORT_SYMBOL(blk_mq_init_sq_queue);
2687 static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2689 int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2691 BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2692 __alignof__(struct blk_mq_hw_ctx)) !=
2693 sizeof(struct blk_mq_hw_ctx));
2695 if (tag_set->flags & BLK_MQ_F_BLOCKING)
2696 hw_ctx_size += sizeof(struct srcu_struct);
2698 return hw_ctx_size;
2701 static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
2702 struct blk_mq_tag_set *set, struct request_queue *q,
2703 int hctx_idx, int node)
2705 struct blk_mq_hw_ctx *hctx;
2707 hctx = kzalloc_node(blk_mq_hw_ctx_size(set),
2708 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2709 node);
2710 if (!hctx)
2711 return NULL;
2713 if (!zalloc_cpumask_var_node(&hctx->cpumask,
2714 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2715 node)) {
2716 kfree(hctx);
2717 return NULL;
2720 atomic_set(&hctx->nr_active, 0);
2721 hctx->numa_node = node;
2722 hctx->queue_num = hctx_idx;
2724 if (blk_mq_init_hctx(q, set, hctx, hctx_idx)) {
2725 free_cpumask_var(hctx->cpumask);
2726 kfree(hctx);
2727 return NULL;
2729 blk_mq_hctx_kobj_init(hctx);
2731 return hctx;
2734 static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
2735 struct request_queue *q)
2737 int i, j, end;
2738 struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
2740 /* protect against switching io scheduler */
2741 mutex_lock(&q->sysfs_lock);
2742 for (i = 0; i < set->nr_hw_queues; i++) {
2743 int node;
2744 struct blk_mq_hw_ctx *hctx;
2746 node = blk_mq_hw_queue_to_node(&set->map[0], i);
2748 * If the hw queue has been mapped to another numa node,
2749 * we need to realloc the hctx. If allocation fails, fallback
2750 * to use the previous one.
2752 if (hctxs[i] && (hctxs[i]->numa_node == node))
2753 continue;
2755 hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
2756 if (hctx) {
2757 if (hctxs[i]) {
2758 blk_mq_exit_hctx(q, set, hctxs[i], i);
2759 kobject_put(&hctxs[i]->kobj);
2761 hctxs[i] = hctx;
2762 } else {
2763 if (hctxs[i])
2764 pr_warn("Allocate new hctx on node %d fails,\
2765 fallback to previous one on node %d\n",
2766 node, hctxs[i]->numa_node);
2767 else
2768 break;
2772 * Increasing nr_hw_queues fails. Free the newly allocated
2773 * hctxs and keep the previous q->nr_hw_queues.
2775 if (i != set->nr_hw_queues) {
2776 j = q->nr_hw_queues;
2777 end = i;
2778 } else {
2779 j = i;
2780 end = q->nr_hw_queues;
2781 q->nr_hw_queues = set->nr_hw_queues;
2784 for (; j < end; j++) {
2785 struct blk_mq_hw_ctx *hctx = hctxs[j];
2787 if (hctx) {
2788 if (hctx->tags)
2789 blk_mq_free_map_and_requests(set, j);
2790 blk_mq_exit_hctx(q, set, hctx, j);
2791 kobject_put(&hctx->kobj);
2792 hctxs[j] = NULL;
2796 mutex_unlock(&q->sysfs_lock);
2800 * Maximum number of hardware queues we support. For single sets, we'll never
2801 * have more than the CPUs (software queues). For multiple sets, the tag_set
2802 * user may have set ->nr_hw_queues larger.
2804 static unsigned int nr_hw_queues(struct blk_mq_tag_set *set)
2806 if (set->nr_maps == 1)
2807 return nr_cpu_ids;
2809 return max(set->nr_hw_queues, nr_cpu_ids);
2812 struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
2813 struct request_queue *q)
2815 /* mark the queue as mq asap */
2816 q->mq_ops = set->ops;
2818 q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
2819 blk_mq_poll_stats_bkt,
2820 BLK_MQ_POLL_STATS_BKTS, q);
2821 if (!q->poll_cb)
2822 goto err_exit;
2824 if (blk_mq_alloc_ctxs(q))
2825 goto err_exit;
2827 /* init q->mq_kobj and sw queues' kobjects */
2828 blk_mq_sysfs_init(q);
2830 q->nr_queues = nr_hw_queues(set);
2831 q->queue_hw_ctx = kcalloc_node(q->nr_queues, sizeof(*(q->queue_hw_ctx)),
2832 GFP_KERNEL, set->numa_node);
2833 if (!q->queue_hw_ctx)
2834 goto err_sys_init;
2836 blk_mq_realloc_hw_ctxs(set, q);
2837 if (!q->nr_hw_queues)
2838 goto err_hctxs;
2840 INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
2841 blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
2843 q->tag_set = set;
2845 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
2846 if (set->nr_maps > HCTX_TYPE_POLL &&
2847 set->map[HCTX_TYPE_POLL].nr_queues)
2848 blk_queue_flag_set(QUEUE_FLAG_POLL, q);
2850 if (!(set->flags & BLK_MQ_F_SG_MERGE))
2851 blk_queue_flag_set(QUEUE_FLAG_NO_SG_MERGE, q);
2853 q->sg_reserved_size = INT_MAX;
2855 INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
2856 INIT_LIST_HEAD(&q->requeue_list);
2857 spin_lock_init(&q->requeue_lock);
2859 blk_queue_make_request(q, blk_mq_make_request);
2862 * Do this after blk_queue_make_request() overrides it...
2864 q->nr_requests = set->queue_depth;
2867 * Default to classic polling
2869 q->poll_nsec = -1;
2871 blk_mq_init_cpu_queues(q, set->nr_hw_queues);
2872 blk_mq_add_queue_tag_set(set, q);
2873 blk_mq_map_swqueue(q);
2875 if (!(set->flags & BLK_MQ_F_NO_SCHED)) {
2876 int ret;
2878 ret = elevator_init_mq(q);
2879 if (ret)
2880 return ERR_PTR(ret);
2883 return q;
2885 err_hctxs:
2886 kfree(q->queue_hw_ctx);
2887 err_sys_init:
2888 blk_mq_sysfs_deinit(q);
2889 err_exit:
2890 q->mq_ops = NULL;
2891 return ERR_PTR(-ENOMEM);
2893 EXPORT_SYMBOL(blk_mq_init_allocated_queue);
2895 void blk_mq_free_queue(struct request_queue *q)
2897 struct blk_mq_tag_set *set = q->tag_set;
2899 blk_mq_del_queue_tag_set(q);
2900 blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
2903 static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2905 int i;
2907 for (i = 0; i < set->nr_hw_queues; i++)
2908 if (!__blk_mq_alloc_rq_map(set, i))
2909 goto out_unwind;
2911 return 0;
2913 out_unwind:
2914 while (--i >= 0)
2915 blk_mq_free_rq_map(set->tags[i]);
2917 return -ENOMEM;
2921 * Allocate the request maps associated with this tag_set. Note that this
2922 * may reduce the depth asked for, if memory is tight. set->queue_depth
2923 * will be updated to reflect the allocated depth.
2925 static int blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
2927 unsigned int depth;
2928 int err;
2930 depth = set->queue_depth;
2931 do {
2932 err = __blk_mq_alloc_rq_maps(set);
2933 if (!err)
2934 break;
2936 set->queue_depth >>= 1;
2937 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
2938 err = -ENOMEM;
2939 break;
2941 } while (set->queue_depth);
2943 if (!set->queue_depth || err) {
2944 pr_err("blk-mq: failed to allocate request map\n");
2945 return -ENOMEM;
2948 if (depth != set->queue_depth)
2949 pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
2950 depth, set->queue_depth);
2952 return 0;
2955 static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
2957 if (set->ops->map_queues && !is_kdump_kernel()) {
2958 int i;
2961 * transport .map_queues is usually done in the following
2962 * way:
2964 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
2965 * mask = get_cpu_mask(queue)
2966 * for_each_cpu(cpu, mask)
2967 * set->map[x].mq_map[cpu] = queue;
2970 * When we need to remap, the table has to be cleared for
2971 * killing stale mapping since one CPU may not be mapped
2972 * to any hw queue.
2974 for (i = 0; i < set->nr_maps; i++)
2975 blk_mq_clear_mq_map(&set->map[i]);
2977 return set->ops->map_queues(set);
2978 } else {
2979 BUG_ON(set->nr_maps > 1);
2980 return blk_mq_map_queues(&set->map[0]);
2985 * Alloc a tag set to be associated with one or more request queues.
2986 * May fail with EINVAL for various error conditions. May adjust the
2987 * requested depth down, if it's too large. In that case, the set
2988 * value will be stored in set->queue_depth.
2990 int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
2992 int i, ret;
2994 BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
2996 if (!set->nr_hw_queues)
2997 return -EINVAL;
2998 if (!set->queue_depth)
2999 return -EINVAL;
3000 if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3001 return -EINVAL;
3003 if (!set->ops->queue_rq)
3004 return -EINVAL;
3006 if (!set->ops->get_budget ^ !set->ops->put_budget)
3007 return -EINVAL;
3009 if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3010 pr_info("blk-mq: reduced tag depth to %u\n",
3011 BLK_MQ_MAX_DEPTH);
3012 set->queue_depth = BLK_MQ_MAX_DEPTH;
3015 if (!set->nr_maps)
3016 set->nr_maps = 1;
3017 else if (set->nr_maps > HCTX_MAX_TYPES)
3018 return -EINVAL;
3021 * If a crashdump is active, then we are potentially in a very
3022 * memory constrained environment. Limit us to 1 queue and
3023 * 64 tags to prevent using too much memory.
3025 if (is_kdump_kernel()) {
3026 set->nr_hw_queues = 1;
3027 set->nr_maps = 1;
3028 set->queue_depth = min(64U, set->queue_depth);
3031 * There is no use for more h/w queues than cpus if we just have
3032 * a single map
3034 if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3035 set->nr_hw_queues = nr_cpu_ids;
3037 set->tags = kcalloc_node(nr_hw_queues(set), sizeof(struct blk_mq_tags *),
3038 GFP_KERNEL, set->numa_node);
3039 if (!set->tags)
3040 return -ENOMEM;
3042 ret = -ENOMEM;
3043 for (i = 0; i < set->nr_maps; i++) {
3044 set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3045 sizeof(set->map[i].mq_map[0]),
3046 GFP_KERNEL, set->numa_node);
3047 if (!set->map[i].mq_map)
3048 goto out_free_mq_map;
3049 set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3052 ret = blk_mq_update_queue_map(set);
3053 if (ret)
3054 goto out_free_mq_map;
3056 ret = blk_mq_alloc_rq_maps(set);
3057 if (ret)
3058 goto out_free_mq_map;
3060 mutex_init(&set->tag_list_lock);
3061 INIT_LIST_HEAD(&set->tag_list);
3063 return 0;
3065 out_free_mq_map:
3066 for (i = 0; i < set->nr_maps; i++) {
3067 kfree(set->map[i].mq_map);
3068 set->map[i].mq_map = NULL;
3070 kfree(set->tags);
3071 set->tags = NULL;
3072 return ret;
3074 EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3076 void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3078 int i, j;
3080 for (i = 0; i < nr_hw_queues(set); i++)
3081 blk_mq_free_map_and_requests(set, i);
3083 for (j = 0; j < set->nr_maps; j++) {
3084 kfree(set->map[j].mq_map);
3085 set->map[j].mq_map = NULL;
3088 kfree(set->tags);
3089 set->tags = NULL;
3091 EXPORT_SYMBOL(blk_mq_free_tag_set);
3093 int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3095 struct blk_mq_tag_set *set = q->tag_set;
3096 struct blk_mq_hw_ctx *hctx;
3097 int i, ret;
3099 if (!set)
3100 return -EINVAL;
3102 blk_mq_freeze_queue(q);
3103 blk_mq_quiesce_queue(q);
3105 ret = 0;
3106 queue_for_each_hw_ctx(q, hctx, i) {
3107 if (!hctx->tags)
3108 continue;
3110 * If we're using an MQ scheduler, just update the scheduler
3111 * queue depth. This is similar to what the old code would do.
3113 if (!hctx->sched_tags) {
3114 ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3115 false);
3116 } else {
3117 ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3118 nr, true);
3120 if (ret)
3121 break;
3124 if (!ret)
3125 q->nr_requests = nr;
3127 blk_mq_unquiesce_queue(q);
3128 blk_mq_unfreeze_queue(q);
3130 return ret;
3134 * request_queue and elevator_type pair.
3135 * It is just used by __blk_mq_update_nr_hw_queues to cache
3136 * the elevator_type associated with a request_queue.
3138 struct blk_mq_qe_pair {
3139 struct list_head node;
3140 struct request_queue *q;
3141 struct elevator_type *type;
3145 * Cache the elevator_type in qe pair list and switch the
3146 * io scheduler to 'none'
3148 static bool blk_mq_elv_switch_none(struct list_head *head,
3149 struct request_queue *q)
3151 struct blk_mq_qe_pair *qe;
3153 if (!q->elevator)
3154 return true;
3156 qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3157 if (!qe)
3158 return false;
3160 INIT_LIST_HEAD(&qe->node);
3161 qe->q = q;
3162 qe->type = q->elevator->type;
3163 list_add(&qe->node, head);
3165 mutex_lock(&q->sysfs_lock);
3167 * After elevator_switch_mq, the previous elevator_queue will be
3168 * released by elevator_release. The reference of the io scheduler
3169 * module get by elevator_get will also be put. So we need to get
3170 * a reference of the io scheduler module here to prevent it to be
3171 * removed.
3173 __module_get(qe->type->elevator_owner);
3174 elevator_switch_mq(q, NULL);
3175 mutex_unlock(&q->sysfs_lock);
3177 return true;
3180 static void blk_mq_elv_switch_back(struct list_head *head,
3181 struct request_queue *q)
3183 struct blk_mq_qe_pair *qe;
3184 struct elevator_type *t = NULL;
3186 list_for_each_entry(qe, head, node)
3187 if (qe->q == q) {
3188 t = qe->type;
3189 break;
3192 if (!t)
3193 return;
3195 list_del(&qe->node);
3196 kfree(qe);
3198 mutex_lock(&q->sysfs_lock);
3199 elevator_switch_mq(q, t);
3200 mutex_unlock(&q->sysfs_lock);
3203 static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3204 int nr_hw_queues)
3206 struct request_queue *q;
3207 LIST_HEAD(head);
3208 int prev_nr_hw_queues;
3210 lockdep_assert_held(&set->tag_list_lock);
3212 if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3213 nr_hw_queues = nr_cpu_ids;
3214 if (nr_hw_queues < 1 || nr_hw_queues == set->nr_hw_queues)
3215 return;
3217 list_for_each_entry(q, &set->tag_list, tag_set_list)
3218 blk_mq_freeze_queue(q);
3220 * Sync with blk_mq_queue_tag_busy_iter.
3222 synchronize_rcu();
3224 * Switch IO scheduler to 'none', cleaning up the data associated
3225 * with the previous scheduler. We will switch back once we are done
3226 * updating the new sw to hw queue mappings.
3228 list_for_each_entry(q, &set->tag_list, tag_set_list)
3229 if (!blk_mq_elv_switch_none(&head, q))
3230 goto switch_back;
3232 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3233 blk_mq_debugfs_unregister_hctxs(q);
3234 blk_mq_sysfs_unregister(q);
3237 prev_nr_hw_queues = set->nr_hw_queues;
3238 set->nr_hw_queues = nr_hw_queues;
3239 blk_mq_update_queue_map(set);
3240 fallback:
3241 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3242 blk_mq_realloc_hw_ctxs(set, q);
3243 if (q->nr_hw_queues != set->nr_hw_queues) {
3244 pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3245 nr_hw_queues, prev_nr_hw_queues);
3246 set->nr_hw_queues = prev_nr_hw_queues;
3247 blk_mq_map_queues(&set->map[0]);
3248 goto fallback;
3250 blk_mq_map_swqueue(q);
3253 list_for_each_entry(q, &set->tag_list, tag_set_list) {
3254 blk_mq_sysfs_register(q);
3255 blk_mq_debugfs_register_hctxs(q);
3258 switch_back:
3259 list_for_each_entry(q, &set->tag_list, tag_set_list)
3260 blk_mq_elv_switch_back(&head, q);
3262 list_for_each_entry(q, &set->tag_list, tag_set_list)
3263 blk_mq_unfreeze_queue(q);
3266 void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3268 mutex_lock(&set->tag_list_lock);
3269 __blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3270 mutex_unlock(&set->tag_list_lock);
3272 EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3274 /* Enable polling stats and return whether they were already enabled. */
3275 static bool blk_poll_stats_enable(struct request_queue *q)
3277 if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3278 blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3279 return true;
3280 blk_stat_add_callback(q, q->poll_cb);
3281 return false;
3284 static void blk_mq_poll_stats_start(struct request_queue *q)
3287 * We don't arm the callback if polling stats are not enabled or the
3288 * callback is already active.
3290 if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3291 blk_stat_is_active(q->poll_cb))
3292 return;
3294 blk_stat_activate_msecs(q->poll_cb, 100);
3297 static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3299 struct request_queue *q = cb->data;
3300 int bucket;
3302 for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3303 if (cb->stat[bucket].nr_samples)
3304 q->poll_stat[bucket] = cb->stat[bucket];
3308 static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3309 struct blk_mq_hw_ctx *hctx,
3310 struct request *rq)
3312 unsigned long ret = 0;
3313 int bucket;
3316 * If stats collection isn't on, don't sleep but turn it on for
3317 * future users
3319 if (!blk_poll_stats_enable(q))
3320 return 0;
3323 * As an optimistic guess, use half of the mean service time
3324 * for this type of request. We can (and should) make this smarter.
3325 * For instance, if the completion latencies are tight, we can
3326 * get closer than just half the mean. This is especially
3327 * important on devices where the completion latencies are longer
3328 * than ~10 usec. We do use the stats for the relevant IO size
3329 * if available which does lead to better estimates.
3331 bucket = blk_mq_poll_stats_bkt(rq);
3332 if (bucket < 0)
3333 return ret;
3335 if (q->poll_stat[bucket].nr_samples)
3336 ret = (q->poll_stat[bucket].mean + 1) / 2;
3338 return ret;
3341 static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3342 struct blk_mq_hw_ctx *hctx,
3343 struct request *rq)
3345 struct hrtimer_sleeper hs;
3346 enum hrtimer_mode mode;
3347 unsigned int nsecs;
3348 ktime_t kt;
3350 if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3351 return false;
3354 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3356 * 0: use half of prev avg
3357 * >0: use this specific value
3359 if (q->poll_nsec > 0)
3360 nsecs = q->poll_nsec;
3361 else
3362 nsecs = blk_mq_poll_nsecs(q, hctx, rq);
3364 if (!nsecs)
3365 return false;
3367 rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3370 * This will be replaced with the stats tracking code, using
3371 * 'avg_completion_time / 2' as the pre-sleep target.
3373 kt = nsecs;
3375 mode = HRTIMER_MODE_REL;
3376 hrtimer_init_on_stack(&hs.timer, CLOCK_MONOTONIC, mode);
3377 hrtimer_set_expires(&hs.timer, kt);
3379 hrtimer_init_sleeper(&hs, current);
3380 do {
3381 if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3382 break;
3383 set_current_state(TASK_UNINTERRUPTIBLE);
3384 hrtimer_start_expires(&hs.timer, mode);
3385 if (hs.task)
3386 io_schedule();
3387 hrtimer_cancel(&hs.timer);
3388 mode = HRTIMER_MODE_ABS;
3389 } while (hs.task && !signal_pending(current));
3391 __set_current_state(TASK_RUNNING);
3392 destroy_hrtimer_on_stack(&hs.timer);
3393 return true;
3396 static bool blk_mq_poll_hybrid(struct request_queue *q,
3397 struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3399 struct request *rq;
3401 if (q->poll_nsec == -1)
3402 return false;
3404 if (!blk_qc_t_is_internal(cookie))
3405 rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3406 else {
3407 rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3409 * With scheduling, if the request has completed, we'll
3410 * get a NULL return here, as we clear the sched tag when
3411 * that happens. The request still remains valid, like always,
3412 * so we should be safe with just the NULL check.
3414 if (!rq)
3415 return false;
3418 return blk_mq_poll_hybrid_sleep(q, hctx, rq);
3422 * blk_poll - poll for IO completions
3423 * @q: the queue
3424 * @cookie: cookie passed back at IO submission time
3425 * @spin: whether to spin for completions
3427 * Description:
3428 * Poll for completions on the passed in queue. Returns number of
3429 * completed entries found. If @spin is true, then blk_poll will continue
3430 * looping until at least one completion is found, unless the task is
3431 * otherwise marked running (or we need to reschedule).
3433 int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3435 struct blk_mq_hw_ctx *hctx;
3436 long state;
3438 if (!blk_qc_t_valid(cookie) ||
3439 !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3440 return 0;
3442 if (current->plug)
3443 blk_flush_plug_list(current->plug, false);
3445 hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3448 * If we sleep, have the caller restart the poll loop to reset
3449 * the state. Like for the other success return cases, the
3450 * caller is responsible for checking if the IO completed. If
3451 * the IO isn't complete, we'll get called again and will go
3452 * straight to the busy poll loop.
3454 if (blk_mq_poll_hybrid(q, hctx, cookie))
3455 return 1;
3457 hctx->poll_considered++;
3459 state = current->state;
3460 do {
3461 int ret;
3463 hctx->poll_invoked++;
3465 ret = q->mq_ops->poll(hctx);
3466 if (ret > 0) {
3467 hctx->poll_success++;
3468 __set_current_state(TASK_RUNNING);
3469 return ret;
3472 if (signal_pending_state(state, current))
3473 __set_current_state(TASK_RUNNING);
3475 if (current->state == TASK_RUNNING)
3476 return 1;
3477 if (ret < 0 || !spin)
3478 break;
3479 cpu_relax();
3480 } while (!need_resched());
3482 __set_current_state(TASK_RUNNING);
3483 return 0;
3485 EXPORT_SYMBOL_GPL(blk_poll);
3487 unsigned int blk_mq_rq_cpu(struct request *rq)
3489 return rq->mq_ctx->cpu;
3491 EXPORT_SYMBOL(blk_mq_rq_cpu);
3493 static int __init blk_mq_init(void)
3495 cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3496 blk_mq_hctx_notify_dead);
3497 return 0;
3499 subsys_initcall(blk_mq_init);