1 // SPDX-License-Identifier: GPL-2.0+
3 // drivers/dma/imx-sdma.c
5 // This file contains a driver for the Freescale Smart DMA engine
7 // Copyright 2010 Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>
9 // Based on code from Freescale:
11 // Copyright 2004-2009 Freescale Semiconductor, Inc. All Rights Reserved.
13 #include <linux/init.h>
14 #include <linux/iopoll.h>
15 #include <linux/module.h>
16 #include <linux/types.h>
17 #include <linux/bitops.h>
19 #include <linux/interrupt.h>
20 #include <linux/clk.h>
21 #include <linux/delay.h>
22 #include <linux/sched.h>
23 #include <linux/semaphore.h>
24 #include <linux/spinlock.h>
25 #include <linux/device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/firmware.h>
28 #include <linux/slab.h>
29 #include <linux/platform_device.h>
30 #include <linux/dmaengine.h>
32 #include <linux/of_address.h>
33 #include <linux/of_device.h>
34 #include <linux/of_dma.h>
35 #include <linux/workqueue.h>
38 #include <linux/platform_data/dma-imx-sdma.h>
39 #include <linux/platform_data/dma-imx.h>
40 #include <linux/regmap.h>
41 #include <linux/mfd/syscon.h>
42 #include <linux/mfd/syscon/imx6q-iomuxc-gpr.h>
44 #include "dmaengine.h"
48 #define SDMA_H_C0PTR 0x000
49 #define SDMA_H_INTR 0x004
50 #define SDMA_H_STATSTOP 0x008
51 #define SDMA_H_START 0x00c
52 #define SDMA_H_EVTOVR 0x010
53 #define SDMA_H_DSPOVR 0x014
54 #define SDMA_H_HOSTOVR 0x018
55 #define SDMA_H_EVTPEND 0x01c
56 #define SDMA_H_DSPENBL 0x020
57 #define SDMA_H_RESET 0x024
58 #define SDMA_H_EVTERR 0x028
59 #define SDMA_H_INTRMSK 0x02c
60 #define SDMA_H_PSW 0x030
61 #define SDMA_H_EVTERRDBG 0x034
62 #define SDMA_H_CONFIG 0x038
63 #define SDMA_ONCE_ENB 0x040
64 #define SDMA_ONCE_DATA 0x044
65 #define SDMA_ONCE_INSTR 0x048
66 #define SDMA_ONCE_STAT 0x04c
67 #define SDMA_ONCE_CMD 0x050
68 #define SDMA_EVT_MIRROR 0x054
69 #define SDMA_ILLINSTADDR 0x058
70 #define SDMA_CHN0ADDR 0x05c
71 #define SDMA_ONCE_RTB 0x060
72 #define SDMA_XTRIG_CONF1 0x070
73 #define SDMA_XTRIG_CONF2 0x074
74 #define SDMA_CHNENBL0_IMX35 0x200
75 #define SDMA_CHNENBL0_IMX31 0x080
76 #define SDMA_CHNPRI_0 0x100
79 * Buffer descriptor status values.
90 * Data Node descriptor status values.
92 #define DND_END_OF_FRAME 0x80
93 #define DND_END_OF_XFER 0x40
95 #define DND_UNUSED 0x01
98 * IPCV2 descriptor status values.
100 #define BD_IPCV2_END_OF_FRAME 0x40
102 #define IPCV2_MAX_NODES 50
104 * Error bit set in the CCB status field by the SDMA,
105 * in setbd routine, in case of a transfer error
107 #define DATA_ERROR 0x10000000
110 * Buffer descriptor commands.
115 #define C0_SETCTX 0x07
116 #define C0_GETCTX 0x03
117 #define C0_SETDM 0x01
118 #define C0_SETPM 0x04
119 #define C0_GETDM 0x02
120 #define C0_GETPM 0x08
122 * Change endianness indicator in the BD command field
124 #define CHANGE_ENDIANNESS 0x80
127 * p_2_p watermark_level description
128 * Bits Name Description
129 * 0-7 Lower WML Lower watermark level
130 * 8 PS 1: Pad Swallowing
131 * 0: No Pad Swallowing
134 * 10 SPDIF If this bit is set both source
135 * and destination are on SPBA
136 * 11 Source Bit(SP) 1: Source on SPBA
138 * 12 Destination Bit(DP) 1: Destination on SPBA
139 * 0: Destination on AIPS
140 * 13-15 --------- MUST BE 0
141 * 16-23 Higher WML HWML
142 * 24-27 N Total number of samples after
143 * which Pad adding/Swallowing
144 * must be done. It must be odd.
145 * 28 Lower WML Event(LWE) SDMA events reg to check for
147 * 0: LWE in EVENTS register
148 * 1: LWE in EVENTS2 register
149 * 29 Higher WML Event(HWE) SDMA events reg to check for
151 * 0: HWE in EVENTS register
152 * 1: HWE in EVENTS2 register
153 * 30 --------- MUST BE 0
154 * 31 CONT 1: Amount of samples to be
155 * transferred is unknown and
156 * script will keep on
157 * transferring samples as long as
158 * both events are detected and
159 * script must be manually stopped
161 * 0: The amount of samples to be
162 * transferred is equal to the
163 * count field of mode word
165 #define SDMA_WATERMARK_LEVEL_LWML 0xFF
166 #define SDMA_WATERMARK_LEVEL_PS BIT(8)
167 #define SDMA_WATERMARK_LEVEL_PA BIT(9)
168 #define SDMA_WATERMARK_LEVEL_SPDIF BIT(10)
169 #define SDMA_WATERMARK_LEVEL_SP BIT(11)
170 #define SDMA_WATERMARK_LEVEL_DP BIT(12)
171 #define SDMA_WATERMARK_LEVEL_HWML (0xFF << 16)
172 #define SDMA_WATERMARK_LEVEL_LWE BIT(28)
173 #define SDMA_WATERMARK_LEVEL_HWE BIT(29)
174 #define SDMA_WATERMARK_LEVEL_CONT BIT(31)
176 #define SDMA_DMA_BUSWIDTHS (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
177 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
178 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
180 #define SDMA_DMA_DIRECTIONS (BIT(DMA_DEV_TO_MEM) | \
181 BIT(DMA_MEM_TO_DEV) | \
185 * Mode/Count of data node descriptors - IPCv2
187 struct sdma_mode_count
{
188 #define SDMA_BD_MAX_CNT 0xffff
189 u32 count
: 16; /* size of the buffer pointed by this BD */
190 u32 status
: 8; /* E,R,I,C,W,D status bits stored here */
191 u32 command
: 8; /* command mostly used for channel 0 */
197 struct sdma_buffer_descriptor
{
198 struct sdma_mode_count mode
;
199 u32 buffer_addr
; /* address of the buffer described */
200 u32 ext_buffer_addr
; /* extended buffer address */
201 } __attribute__ ((packed
));
204 * struct sdma_channel_control - Channel control Block
206 * @current_bd_ptr: current buffer descriptor processed
207 * @base_bd_ptr: first element of buffer descriptor array
208 * @unused: padding. The SDMA engine expects an array of 128 byte
211 struct sdma_channel_control
{
215 } __attribute__ ((packed
));
218 * struct sdma_state_registers - SDMA context for a channel
220 * @pc: program counter
222 * @t: test bit: status of arithmetic & test instruction
223 * @rpc: return program counter
225 * @sf: source fault while loading data
226 * @spc: loop start program counter
228 * @df: destination fault while storing data
229 * @epc: loop end program counter
232 struct sdma_state_registers
{
244 } __attribute__ ((packed
));
247 * struct sdma_context_data - sdma context specific to a channel
249 * @channel_state: channel state bits
250 * @gReg: general registers
251 * @mda: burst dma destination address register
252 * @msa: burst dma source address register
253 * @ms: burst dma status register
254 * @md: burst dma data register
255 * @pda: peripheral dma destination address register
256 * @psa: peripheral dma source address register
257 * @ps: peripheral dma status register
258 * @pd: peripheral dma data register
259 * @ca: CRC polynomial register
260 * @cs: CRC accumulator register
261 * @dda: dedicated core destination address register
262 * @dsa: dedicated core source address register
263 * @ds: dedicated core status register
264 * @dd: dedicated core data register
265 * @scratch0: 1st word of dedicated ram for context switch
266 * @scratch1: 2nd word of dedicated ram for context switch
267 * @scratch2: 3rd word of dedicated ram for context switch
268 * @scratch3: 4th word of dedicated ram for context switch
269 * @scratch4: 5th word of dedicated ram for context switch
270 * @scratch5: 6th word of dedicated ram for context switch
271 * @scratch6: 7th word of dedicated ram for context switch
272 * @scratch7: 8th word of dedicated ram for context switch
274 struct sdma_context_data
{
275 struct sdma_state_registers channel_state
;
299 } __attribute__ ((packed
));
305 * struct sdma_desc - descriptor structor for one transfer
306 * @vd: descriptor for virt dma
307 * @num_bd: number of descriptors currently handling
308 * @bd_phys: physical address of bd
309 * @buf_tail: ID of the buffer that was processed
310 * @buf_ptail: ID of the previous buffer that was processed
311 * @period_len: period length, used in cyclic.
312 * @chn_real_count: the real count updated from bd->mode.count
313 * @chn_count: the transfer count set
314 * @sdmac: sdma_channel pointer
315 * @bd: pointer of allocate bd
318 struct virt_dma_desc vd
;
321 unsigned int buf_tail
;
322 unsigned int buf_ptail
;
323 unsigned int period_len
;
324 unsigned int chn_real_count
;
325 unsigned int chn_count
;
326 struct sdma_channel
*sdmac
;
327 struct sdma_buffer_descriptor
*bd
;
331 * struct sdma_channel - housekeeping for a SDMA channel
333 * @vc: virt_dma base structure
334 * @desc: sdma description including vd and other special member
335 * @sdma: pointer to the SDMA engine for this channel
336 * @channel: the channel number, matches dmaengine chan_id + 1
337 * @direction: transfer type. Needed for setting SDMA script
338 * @slave_config Slave configuration
339 * @peripheral_type: Peripheral type. Needed for setting SDMA script
340 * @event_id0: aka dma request line
341 * @event_id1: for channels that use 2 events
342 * @word_size: peripheral access size
343 * @pc_from_device: script address for those device_2_memory
344 * @pc_to_device: script address for those memory_2_device
345 * @device_to_device: script address for those device_2_device
346 * @pc_to_pc: script address for those memory_2_memory
347 * @flags: loop mode or not
348 * @per_address: peripheral source or destination address in common case
349 * destination address in p_2_p case
350 * @per_address2: peripheral source address in p_2_p case
351 * @event_mask: event mask used in p_2_p script
352 * @watermark_level: value for gReg[7], some script will extend it from
353 * basic watermark such as p_2_p
354 * @shp_addr: value for gReg[6]
355 * @per_addr: value for gReg[2]
356 * @status: status of dma channel
357 * @data: specific sdma interface structure
358 * @bd_pool: dma_pool for bd
360 struct sdma_channel
{
361 struct virt_dma_chan vc
;
362 struct sdma_desc
*desc
;
363 struct sdma_engine
*sdma
;
364 unsigned int channel
;
365 enum dma_transfer_direction direction
;
366 struct dma_slave_config slave_config
;
367 enum sdma_peripheral_type peripheral_type
;
368 unsigned int event_id0
;
369 unsigned int event_id1
;
370 enum dma_slave_buswidth word_size
;
371 unsigned int pc_from_device
, pc_to_device
;
372 unsigned int device_to_device
;
373 unsigned int pc_to_pc
;
375 dma_addr_t per_address
, per_address2
;
376 unsigned long event_mask
[2];
377 unsigned long watermark_level
;
378 u32 shp_addr
, per_addr
;
379 enum dma_status status
;
381 struct imx_dma_data data
;
382 struct work_struct terminate_worker
;
385 #define IMX_DMA_SG_LOOP BIT(0)
387 #define MAX_DMA_CHANNELS 32
388 #define MXC_SDMA_DEFAULT_PRIORITY 1
389 #define MXC_SDMA_MIN_PRIORITY 1
390 #define MXC_SDMA_MAX_PRIORITY 7
392 #define SDMA_FIRMWARE_MAGIC 0x414d4453
395 * struct sdma_firmware_header - Layout of the firmware image
398 * @version_major: increased whenever layout of struct
399 * sdma_script_start_addrs changes.
400 * @version_minor: firmware minor version (for binary compatible changes)
401 * @script_addrs_start: offset of struct sdma_script_start_addrs in this image
402 * @num_script_addrs: Number of script addresses in this image
403 * @ram_code_start: offset of SDMA ram image in this firmware image
404 * @ram_code_size: size of SDMA ram image
405 * @script_addrs: Stores the start address of the SDMA scripts
406 * (in SDMA memory space)
408 struct sdma_firmware_header
{
412 u32 script_addrs_start
;
413 u32 num_script_addrs
;
418 struct sdma_driver_data
{
421 struct sdma_script_start_addrs
*script_addrs
;
427 struct device_dma_parameters dma_parms
;
428 struct sdma_channel channel
[MAX_DMA_CHANNELS
];
429 struct sdma_channel_control
*channel_control
;
431 struct sdma_context_data
*context
;
432 dma_addr_t context_phys
;
433 struct dma_device dma_device
;
436 spinlock_t channel_0_lock
;
438 struct sdma_script_start_addrs
*script_addrs
;
439 const struct sdma_driver_data
*drvdata
;
444 struct sdma_buffer_descriptor
*bd0
;
445 /* clock ratio for AHB:SDMA core. 1:1 is 1, 2:1 is 0*/
449 static int sdma_config_write(struct dma_chan
*chan
,
450 struct dma_slave_config
*dmaengine_cfg
,
451 enum dma_transfer_direction direction
);
453 static struct sdma_driver_data sdma_imx31
= {
454 .chnenbl0
= SDMA_CHNENBL0_IMX31
,
458 static struct sdma_script_start_addrs sdma_script_imx25
= {
460 .uart_2_mcu_addr
= 904,
461 .per_2_app_addr
= 1255,
462 .mcu_2_app_addr
= 834,
463 .uartsh_2_mcu_addr
= 1120,
464 .per_2_shp_addr
= 1329,
465 .mcu_2_shp_addr
= 1048,
466 .ata_2_mcu_addr
= 1560,
467 .mcu_2_ata_addr
= 1479,
468 .app_2_per_addr
= 1189,
469 .app_2_mcu_addr
= 770,
470 .shp_2_per_addr
= 1407,
471 .shp_2_mcu_addr
= 979,
474 static struct sdma_driver_data sdma_imx25
= {
475 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
477 .script_addrs
= &sdma_script_imx25
,
480 static struct sdma_driver_data sdma_imx35
= {
481 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
485 static struct sdma_script_start_addrs sdma_script_imx51
= {
487 .uart_2_mcu_addr
= 817,
488 .mcu_2_app_addr
= 747,
489 .mcu_2_shp_addr
= 961,
490 .ata_2_mcu_addr
= 1473,
491 .mcu_2_ata_addr
= 1392,
492 .app_2_per_addr
= 1033,
493 .app_2_mcu_addr
= 683,
494 .shp_2_per_addr
= 1251,
495 .shp_2_mcu_addr
= 892,
498 static struct sdma_driver_data sdma_imx51
= {
499 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
501 .script_addrs
= &sdma_script_imx51
,
504 static struct sdma_script_start_addrs sdma_script_imx53
= {
506 .app_2_mcu_addr
= 683,
507 .mcu_2_app_addr
= 747,
508 .uart_2_mcu_addr
= 817,
509 .shp_2_mcu_addr
= 891,
510 .mcu_2_shp_addr
= 960,
511 .uartsh_2_mcu_addr
= 1032,
512 .spdif_2_mcu_addr
= 1100,
513 .mcu_2_spdif_addr
= 1134,
514 .firi_2_mcu_addr
= 1193,
515 .mcu_2_firi_addr
= 1290,
518 static struct sdma_driver_data sdma_imx53
= {
519 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
521 .script_addrs
= &sdma_script_imx53
,
524 static struct sdma_script_start_addrs sdma_script_imx6q
= {
526 .uart_2_mcu_addr
= 817,
527 .mcu_2_app_addr
= 747,
528 .per_2_per_addr
= 6331,
529 .uartsh_2_mcu_addr
= 1032,
530 .mcu_2_shp_addr
= 960,
531 .app_2_mcu_addr
= 683,
532 .shp_2_mcu_addr
= 891,
533 .spdif_2_mcu_addr
= 1100,
534 .mcu_2_spdif_addr
= 1134,
537 static struct sdma_driver_data sdma_imx6q
= {
538 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
540 .script_addrs
= &sdma_script_imx6q
,
543 static struct sdma_script_start_addrs sdma_script_imx7d
= {
545 .uart_2_mcu_addr
= 819,
546 .mcu_2_app_addr
= 749,
547 .uartsh_2_mcu_addr
= 1034,
548 .mcu_2_shp_addr
= 962,
549 .app_2_mcu_addr
= 685,
550 .shp_2_mcu_addr
= 893,
551 .spdif_2_mcu_addr
= 1102,
552 .mcu_2_spdif_addr
= 1136,
555 static struct sdma_driver_data sdma_imx7d
= {
556 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
558 .script_addrs
= &sdma_script_imx7d
,
561 static struct sdma_driver_data sdma_imx8mq
= {
562 .chnenbl0
= SDMA_CHNENBL0_IMX35
,
564 .script_addrs
= &sdma_script_imx7d
,
568 static const struct platform_device_id sdma_devtypes
[] = {
570 .name
= "imx25-sdma",
571 .driver_data
= (unsigned long)&sdma_imx25
,
573 .name
= "imx31-sdma",
574 .driver_data
= (unsigned long)&sdma_imx31
,
576 .name
= "imx35-sdma",
577 .driver_data
= (unsigned long)&sdma_imx35
,
579 .name
= "imx51-sdma",
580 .driver_data
= (unsigned long)&sdma_imx51
,
582 .name
= "imx53-sdma",
583 .driver_data
= (unsigned long)&sdma_imx53
,
585 .name
= "imx6q-sdma",
586 .driver_data
= (unsigned long)&sdma_imx6q
,
588 .name
= "imx7d-sdma",
589 .driver_data
= (unsigned long)&sdma_imx7d
,
591 .name
= "imx8mq-sdma",
592 .driver_data
= (unsigned long)&sdma_imx8mq
,
597 MODULE_DEVICE_TABLE(platform
, sdma_devtypes
);
599 static const struct of_device_id sdma_dt_ids
[] = {
600 { .compatible
= "fsl,imx6q-sdma", .data
= &sdma_imx6q
, },
601 { .compatible
= "fsl,imx53-sdma", .data
= &sdma_imx53
, },
602 { .compatible
= "fsl,imx51-sdma", .data
= &sdma_imx51
, },
603 { .compatible
= "fsl,imx35-sdma", .data
= &sdma_imx35
, },
604 { .compatible
= "fsl,imx31-sdma", .data
= &sdma_imx31
, },
605 { .compatible
= "fsl,imx25-sdma", .data
= &sdma_imx25
, },
606 { .compatible
= "fsl,imx7d-sdma", .data
= &sdma_imx7d
, },
607 { .compatible
= "fsl,imx8mq-sdma", .data
= &sdma_imx8mq
, },
610 MODULE_DEVICE_TABLE(of
, sdma_dt_ids
);
612 #define SDMA_H_CONFIG_DSPDMA BIT(12) /* indicates if the DSPDMA is used */
613 #define SDMA_H_CONFIG_RTD_PINS BIT(11) /* indicates if Real-Time Debug pins are enabled */
614 #define SDMA_H_CONFIG_ACR BIT(4) /* indicates if AHB freq /core freq = 2 or 1 */
615 #define SDMA_H_CONFIG_CSM (3) /* indicates which context switch mode is selected*/
617 static inline u32
chnenbl_ofs(struct sdma_engine
*sdma
, unsigned int event
)
619 u32 chnenbl0
= sdma
->drvdata
->chnenbl0
;
620 return chnenbl0
+ event
* 4;
623 static int sdma_config_ownership(struct sdma_channel
*sdmac
,
624 bool event_override
, bool mcu_override
, bool dsp_override
)
626 struct sdma_engine
*sdma
= sdmac
->sdma
;
627 int channel
= sdmac
->channel
;
628 unsigned long evt
, mcu
, dsp
;
630 if (event_override
&& mcu_override
&& dsp_override
)
633 evt
= readl_relaxed(sdma
->regs
+ SDMA_H_EVTOVR
);
634 mcu
= readl_relaxed(sdma
->regs
+ SDMA_H_HOSTOVR
);
635 dsp
= readl_relaxed(sdma
->regs
+ SDMA_H_DSPOVR
);
638 __clear_bit(channel
, &dsp
);
640 __set_bit(channel
, &dsp
);
643 __clear_bit(channel
, &evt
);
645 __set_bit(channel
, &evt
);
648 __clear_bit(channel
, &mcu
);
650 __set_bit(channel
, &mcu
);
652 writel_relaxed(evt
, sdma
->regs
+ SDMA_H_EVTOVR
);
653 writel_relaxed(mcu
, sdma
->regs
+ SDMA_H_HOSTOVR
);
654 writel_relaxed(dsp
, sdma
->regs
+ SDMA_H_DSPOVR
);
659 static void sdma_enable_channel(struct sdma_engine
*sdma
, int channel
)
661 writel(BIT(channel
), sdma
->regs
+ SDMA_H_START
);
665 * sdma_run_channel0 - run a channel and wait till it's done
667 static int sdma_run_channel0(struct sdma_engine
*sdma
)
672 sdma_enable_channel(sdma
, 0);
674 ret
= readl_relaxed_poll_timeout_atomic(sdma
->regs
+ SDMA_H_STATSTOP
,
675 reg
, !(reg
& 1), 1, 500);
677 dev_err(sdma
->dev
, "Timeout waiting for CH0 ready\n");
679 /* Set bits of CONFIG register with dynamic context switching */
680 reg
= readl(sdma
->regs
+ SDMA_H_CONFIG
);
681 if ((reg
& SDMA_H_CONFIG_CSM
) == 0) {
682 reg
|= SDMA_H_CONFIG_CSM
;
683 writel_relaxed(reg
, sdma
->regs
+ SDMA_H_CONFIG
);
689 static int sdma_load_script(struct sdma_engine
*sdma
, void *buf
, int size
,
692 struct sdma_buffer_descriptor
*bd0
= sdma
->bd0
;
698 buf_virt
= dma_alloc_coherent(sdma
->dev
, size
, &buf_phys
, GFP_KERNEL
);
703 spin_lock_irqsave(&sdma
->channel_0_lock
, flags
);
705 bd0
->mode
.command
= C0_SETPM
;
706 bd0
->mode
.status
= BD_DONE
| BD_WRAP
| BD_EXTD
;
707 bd0
->mode
.count
= size
/ 2;
708 bd0
->buffer_addr
= buf_phys
;
709 bd0
->ext_buffer_addr
= address
;
711 memcpy(buf_virt
, buf
, size
);
713 ret
= sdma_run_channel0(sdma
);
715 spin_unlock_irqrestore(&sdma
->channel_0_lock
, flags
);
717 dma_free_coherent(sdma
->dev
, size
, buf_virt
, buf_phys
);
722 static void sdma_event_enable(struct sdma_channel
*sdmac
, unsigned int event
)
724 struct sdma_engine
*sdma
= sdmac
->sdma
;
725 int channel
= sdmac
->channel
;
727 u32 chnenbl
= chnenbl_ofs(sdma
, event
);
729 val
= readl_relaxed(sdma
->regs
+ chnenbl
);
730 __set_bit(channel
, &val
);
731 writel_relaxed(val
, sdma
->regs
+ chnenbl
);
734 static void sdma_event_disable(struct sdma_channel
*sdmac
, unsigned int event
)
736 struct sdma_engine
*sdma
= sdmac
->sdma
;
737 int channel
= sdmac
->channel
;
738 u32 chnenbl
= chnenbl_ofs(sdma
, event
);
741 val
= readl_relaxed(sdma
->regs
+ chnenbl
);
742 __clear_bit(channel
, &val
);
743 writel_relaxed(val
, sdma
->regs
+ chnenbl
);
746 static struct sdma_desc
*to_sdma_desc(struct dma_async_tx_descriptor
*t
)
748 return container_of(t
, struct sdma_desc
, vd
.tx
);
751 static void sdma_start_desc(struct sdma_channel
*sdmac
)
753 struct virt_dma_desc
*vd
= vchan_next_desc(&sdmac
->vc
);
754 struct sdma_desc
*desc
;
755 struct sdma_engine
*sdma
= sdmac
->sdma
;
756 int channel
= sdmac
->channel
;
762 sdmac
->desc
= desc
= to_sdma_desc(&vd
->tx
);
766 sdma
->channel_control
[channel
].base_bd_ptr
= desc
->bd_phys
;
767 sdma
->channel_control
[channel
].current_bd_ptr
= desc
->bd_phys
;
768 sdma_enable_channel(sdma
, sdmac
->channel
);
771 static void sdma_update_channel_loop(struct sdma_channel
*sdmac
)
773 struct sdma_buffer_descriptor
*bd
;
775 enum dma_status old_status
= sdmac
->status
;
778 * loop mode. Iterate over descriptors, re-setup them and
779 * call callback function.
781 while (sdmac
->desc
) {
782 struct sdma_desc
*desc
= sdmac
->desc
;
784 bd
= &desc
->bd
[desc
->buf_tail
];
786 if (bd
->mode
.status
& BD_DONE
)
789 if (bd
->mode
.status
& BD_RROR
) {
790 bd
->mode
.status
&= ~BD_RROR
;
791 sdmac
->status
= DMA_ERROR
;
796 * We use bd->mode.count to calculate the residue, since contains
797 * the number of bytes present in the current buffer descriptor.
800 desc
->chn_real_count
= bd
->mode
.count
;
801 bd
->mode
.status
|= BD_DONE
;
802 bd
->mode
.count
= desc
->period_len
;
803 desc
->buf_ptail
= desc
->buf_tail
;
804 desc
->buf_tail
= (desc
->buf_tail
+ 1) % desc
->num_bd
;
807 * The callback is called from the interrupt context in order
808 * to reduce latency and to avoid the risk of altering the
809 * SDMA transaction status by the time the client tasklet is
812 spin_unlock(&sdmac
->vc
.lock
);
813 dmaengine_desc_get_callback_invoke(&desc
->vd
.tx
, NULL
);
814 spin_lock(&sdmac
->vc
.lock
);
817 sdmac
->status
= old_status
;
821 static void mxc_sdma_handle_channel_normal(struct sdma_channel
*data
)
823 struct sdma_channel
*sdmac
= (struct sdma_channel
*) data
;
824 struct sdma_buffer_descriptor
*bd
;
827 sdmac
->desc
->chn_real_count
= 0;
829 * non loop mode. Iterate over all descriptors, collect
830 * errors and call callback function
832 for (i
= 0; i
< sdmac
->desc
->num_bd
; i
++) {
833 bd
= &sdmac
->desc
->bd
[i
];
835 if (bd
->mode
.status
& (BD_DONE
| BD_RROR
))
837 sdmac
->desc
->chn_real_count
+= bd
->mode
.count
;
841 sdmac
->status
= DMA_ERROR
;
843 sdmac
->status
= DMA_COMPLETE
;
846 static irqreturn_t
sdma_int_handler(int irq
, void *dev_id
)
848 struct sdma_engine
*sdma
= dev_id
;
851 stat
= readl_relaxed(sdma
->regs
+ SDMA_H_INTR
);
852 writel_relaxed(stat
, sdma
->regs
+ SDMA_H_INTR
);
853 /* channel 0 is special and not handled here, see run_channel0() */
857 int channel
= fls(stat
) - 1;
858 struct sdma_channel
*sdmac
= &sdma
->channel
[channel
];
859 struct sdma_desc
*desc
;
861 spin_lock(&sdmac
->vc
.lock
);
864 if (sdmac
->flags
& IMX_DMA_SG_LOOP
) {
865 sdma_update_channel_loop(sdmac
);
867 mxc_sdma_handle_channel_normal(sdmac
);
868 vchan_cookie_complete(&desc
->vd
);
869 sdma_start_desc(sdmac
);
873 spin_unlock(&sdmac
->vc
.lock
);
874 __clear_bit(channel
, &stat
);
881 * sets the pc of SDMA script according to the peripheral type
883 static void sdma_get_pc(struct sdma_channel
*sdmac
,
884 enum sdma_peripheral_type peripheral_type
)
886 struct sdma_engine
*sdma
= sdmac
->sdma
;
887 int per_2_emi
= 0, emi_2_per
= 0;
889 * These are needed once we start to support transfers between
890 * two peripherals or memory-to-memory transfers
892 int per_2_per
= 0, emi_2_emi
= 0;
894 sdmac
->pc_from_device
= 0;
895 sdmac
->pc_to_device
= 0;
896 sdmac
->device_to_device
= 0;
899 switch (peripheral_type
) {
900 case IMX_DMATYPE_MEMORY
:
901 emi_2_emi
= sdma
->script_addrs
->ap_2_ap_addr
;
903 case IMX_DMATYPE_DSP
:
904 emi_2_per
= sdma
->script_addrs
->bp_2_ap_addr
;
905 per_2_emi
= sdma
->script_addrs
->ap_2_bp_addr
;
907 case IMX_DMATYPE_FIRI
:
908 per_2_emi
= sdma
->script_addrs
->firi_2_mcu_addr
;
909 emi_2_per
= sdma
->script_addrs
->mcu_2_firi_addr
;
911 case IMX_DMATYPE_UART
:
912 per_2_emi
= sdma
->script_addrs
->uart_2_mcu_addr
;
913 emi_2_per
= sdma
->script_addrs
->mcu_2_app_addr
;
915 case IMX_DMATYPE_UART_SP
:
916 per_2_emi
= sdma
->script_addrs
->uartsh_2_mcu_addr
;
917 emi_2_per
= sdma
->script_addrs
->mcu_2_shp_addr
;
919 case IMX_DMATYPE_ATA
:
920 per_2_emi
= sdma
->script_addrs
->ata_2_mcu_addr
;
921 emi_2_per
= sdma
->script_addrs
->mcu_2_ata_addr
;
923 case IMX_DMATYPE_CSPI
:
924 case IMX_DMATYPE_EXT
:
925 case IMX_DMATYPE_SSI
:
926 case IMX_DMATYPE_SAI
:
927 per_2_emi
= sdma
->script_addrs
->app_2_mcu_addr
;
928 emi_2_per
= sdma
->script_addrs
->mcu_2_app_addr
;
930 case IMX_DMATYPE_SSI_DUAL
:
931 per_2_emi
= sdma
->script_addrs
->ssish_2_mcu_addr
;
932 emi_2_per
= sdma
->script_addrs
->mcu_2_ssish_addr
;
934 case IMX_DMATYPE_SSI_SP
:
935 case IMX_DMATYPE_MMC
:
936 case IMX_DMATYPE_SDHC
:
937 case IMX_DMATYPE_CSPI_SP
:
938 case IMX_DMATYPE_ESAI
:
939 case IMX_DMATYPE_MSHC_SP
:
940 per_2_emi
= sdma
->script_addrs
->shp_2_mcu_addr
;
941 emi_2_per
= sdma
->script_addrs
->mcu_2_shp_addr
;
943 case IMX_DMATYPE_ASRC
:
944 per_2_emi
= sdma
->script_addrs
->asrc_2_mcu_addr
;
945 emi_2_per
= sdma
->script_addrs
->asrc_2_mcu_addr
;
946 per_2_per
= sdma
->script_addrs
->per_2_per_addr
;
948 case IMX_DMATYPE_ASRC_SP
:
949 per_2_emi
= sdma
->script_addrs
->shp_2_mcu_addr
;
950 emi_2_per
= sdma
->script_addrs
->mcu_2_shp_addr
;
951 per_2_per
= sdma
->script_addrs
->per_2_per_addr
;
953 case IMX_DMATYPE_MSHC
:
954 per_2_emi
= sdma
->script_addrs
->mshc_2_mcu_addr
;
955 emi_2_per
= sdma
->script_addrs
->mcu_2_mshc_addr
;
957 case IMX_DMATYPE_CCM
:
958 per_2_emi
= sdma
->script_addrs
->dptc_dvfs_addr
;
960 case IMX_DMATYPE_SPDIF
:
961 per_2_emi
= sdma
->script_addrs
->spdif_2_mcu_addr
;
962 emi_2_per
= sdma
->script_addrs
->mcu_2_spdif_addr
;
964 case IMX_DMATYPE_IPU_MEMORY
:
965 emi_2_per
= sdma
->script_addrs
->ext_mem_2_ipu_addr
;
971 sdmac
->pc_from_device
= per_2_emi
;
972 sdmac
->pc_to_device
= emi_2_per
;
973 sdmac
->device_to_device
= per_2_per
;
974 sdmac
->pc_to_pc
= emi_2_emi
;
977 static int sdma_load_context(struct sdma_channel
*sdmac
)
979 struct sdma_engine
*sdma
= sdmac
->sdma
;
980 int channel
= sdmac
->channel
;
982 struct sdma_context_data
*context
= sdma
->context
;
983 struct sdma_buffer_descriptor
*bd0
= sdma
->bd0
;
987 if (sdmac
->context_loaded
)
990 if (sdmac
->direction
== DMA_DEV_TO_MEM
)
991 load_address
= sdmac
->pc_from_device
;
992 else if (sdmac
->direction
== DMA_DEV_TO_DEV
)
993 load_address
= sdmac
->device_to_device
;
994 else if (sdmac
->direction
== DMA_MEM_TO_MEM
)
995 load_address
= sdmac
->pc_to_pc
;
997 load_address
= sdmac
->pc_to_device
;
999 if (load_address
< 0)
1000 return load_address
;
1002 dev_dbg(sdma
->dev
, "load_address = %d\n", load_address
);
1003 dev_dbg(sdma
->dev
, "wml = 0x%08x\n", (u32
)sdmac
->watermark_level
);
1004 dev_dbg(sdma
->dev
, "shp_addr = 0x%08x\n", sdmac
->shp_addr
);
1005 dev_dbg(sdma
->dev
, "per_addr = 0x%08x\n", sdmac
->per_addr
);
1006 dev_dbg(sdma
->dev
, "event_mask0 = 0x%08x\n", (u32
)sdmac
->event_mask
[0]);
1007 dev_dbg(sdma
->dev
, "event_mask1 = 0x%08x\n", (u32
)sdmac
->event_mask
[1]);
1009 spin_lock_irqsave(&sdma
->channel_0_lock
, flags
);
1011 memset(context
, 0, sizeof(*context
));
1012 context
->channel_state
.pc
= load_address
;
1014 /* Send by context the event mask,base address for peripheral
1015 * and watermark level
1017 context
->gReg
[0] = sdmac
->event_mask
[1];
1018 context
->gReg
[1] = sdmac
->event_mask
[0];
1019 context
->gReg
[2] = sdmac
->per_addr
;
1020 context
->gReg
[6] = sdmac
->shp_addr
;
1021 context
->gReg
[7] = sdmac
->watermark_level
;
1023 bd0
->mode
.command
= C0_SETDM
;
1024 bd0
->mode
.status
= BD_DONE
| BD_WRAP
| BD_EXTD
;
1025 bd0
->mode
.count
= sizeof(*context
) / 4;
1026 bd0
->buffer_addr
= sdma
->context_phys
;
1027 bd0
->ext_buffer_addr
= 2048 + (sizeof(*context
) / 4) * channel
;
1028 ret
= sdma_run_channel0(sdma
);
1030 spin_unlock_irqrestore(&sdma
->channel_0_lock
, flags
);
1032 sdmac
->context_loaded
= true;
1037 static struct sdma_channel
*to_sdma_chan(struct dma_chan
*chan
)
1039 return container_of(chan
, struct sdma_channel
, vc
.chan
);
1042 static int sdma_disable_channel(struct dma_chan
*chan
)
1044 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1045 struct sdma_engine
*sdma
= sdmac
->sdma
;
1046 int channel
= sdmac
->channel
;
1048 writel_relaxed(BIT(channel
), sdma
->regs
+ SDMA_H_STATSTOP
);
1049 sdmac
->status
= DMA_ERROR
;
1053 static void sdma_channel_terminate_work(struct work_struct
*work
)
1055 struct sdma_channel
*sdmac
= container_of(work
, struct sdma_channel
,
1057 unsigned long flags
;
1061 * According to NXP R&D team a delay of one BD SDMA cost time
1062 * (maximum is 1ms) should be added after disable of the channel
1063 * bit, to ensure SDMA core has really been stopped after SDMA
1064 * clients call .device_terminate_all.
1066 usleep_range(1000, 2000);
1068 spin_lock_irqsave(&sdmac
->vc
.lock
, flags
);
1069 vchan_get_all_descriptors(&sdmac
->vc
, &head
);
1070 spin_unlock_irqrestore(&sdmac
->vc
.lock
, flags
);
1071 vchan_dma_desc_free_list(&sdmac
->vc
, &head
);
1072 sdmac
->context_loaded
= false;
1075 static int sdma_terminate_all(struct dma_chan
*chan
)
1077 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1078 unsigned long flags
;
1080 spin_lock_irqsave(&sdmac
->vc
.lock
, flags
);
1082 sdma_disable_channel(chan
);
1085 vchan_terminate_vdesc(&sdmac
->desc
->vd
);
1087 schedule_work(&sdmac
->terminate_worker
);
1090 spin_unlock_irqrestore(&sdmac
->vc
.lock
, flags
);
1095 static void sdma_channel_synchronize(struct dma_chan
*chan
)
1097 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1099 vchan_synchronize(&sdmac
->vc
);
1101 flush_work(&sdmac
->terminate_worker
);
1104 static void sdma_set_watermarklevel_for_p2p(struct sdma_channel
*sdmac
)
1106 struct sdma_engine
*sdma
= sdmac
->sdma
;
1108 int lwml
= sdmac
->watermark_level
& SDMA_WATERMARK_LEVEL_LWML
;
1109 int hwml
= (sdmac
->watermark_level
& SDMA_WATERMARK_LEVEL_HWML
) >> 16;
1111 set_bit(sdmac
->event_id0
% 32, &sdmac
->event_mask
[1]);
1112 set_bit(sdmac
->event_id1
% 32, &sdmac
->event_mask
[0]);
1114 if (sdmac
->event_id0
> 31)
1115 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_LWE
;
1117 if (sdmac
->event_id1
> 31)
1118 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_HWE
;
1121 * If LWML(src_maxburst) > HWML(dst_maxburst), we need
1122 * swap LWML and HWML of INFO(A.3.2.5.1), also need swap
1123 * r0(event_mask[1]) and r1(event_mask[0]).
1126 sdmac
->watermark_level
&= ~(SDMA_WATERMARK_LEVEL_LWML
|
1127 SDMA_WATERMARK_LEVEL_HWML
);
1128 sdmac
->watermark_level
|= hwml
;
1129 sdmac
->watermark_level
|= lwml
<< 16;
1130 swap(sdmac
->event_mask
[0], sdmac
->event_mask
[1]);
1133 if (sdmac
->per_address2
>= sdma
->spba_start_addr
&&
1134 sdmac
->per_address2
<= sdma
->spba_end_addr
)
1135 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_SP
;
1137 if (sdmac
->per_address
>= sdma
->spba_start_addr
&&
1138 sdmac
->per_address
<= sdma
->spba_end_addr
)
1139 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_DP
;
1141 sdmac
->watermark_level
|= SDMA_WATERMARK_LEVEL_CONT
;
1144 static int sdma_config_channel(struct dma_chan
*chan
)
1146 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1149 sdma_disable_channel(chan
);
1151 sdmac
->event_mask
[0] = 0;
1152 sdmac
->event_mask
[1] = 0;
1153 sdmac
->shp_addr
= 0;
1154 sdmac
->per_addr
= 0;
1156 switch (sdmac
->peripheral_type
) {
1157 case IMX_DMATYPE_DSP
:
1158 sdma_config_ownership(sdmac
, false, true, true);
1160 case IMX_DMATYPE_MEMORY
:
1161 sdma_config_ownership(sdmac
, false, true, false);
1164 sdma_config_ownership(sdmac
, true, true, false);
1168 sdma_get_pc(sdmac
, sdmac
->peripheral_type
);
1170 if ((sdmac
->peripheral_type
!= IMX_DMATYPE_MEMORY
) &&
1171 (sdmac
->peripheral_type
!= IMX_DMATYPE_DSP
)) {
1172 /* Handle multiple event channels differently */
1173 if (sdmac
->event_id1
) {
1174 if (sdmac
->peripheral_type
== IMX_DMATYPE_ASRC_SP
||
1175 sdmac
->peripheral_type
== IMX_DMATYPE_ASRC
)
1176 sdma_set_watermarklevel_for_p2p(sdmac
);
1178 __set_bit(sdmac
->event_id0
, sdmac
->event_mask
);
1181 sdmac
->shp_addr
= sdmac
->per_address
;
1182 sdmac
->per_addr
= sdmac
->per_address2
;
1184 sdmac
->watermark_level
= 0; /* FIXME: M3_BASE_ADDRESS */
1187 ret
= sdma_load_context(sdmac
);
1192 static int sdma_set_channel_priority(struct sdma_channel
*sdmac
,
1193 unsigned int priority
)
1195 struct sdma_engine
*sdma
= sdmac
->sdma
;
1196 int channel
= sdmac
->channel
;
1198 if (priority
< MXC_SDMA_MIN_PRIORITY
1199 || priority
> MXC_SDMA_MAX_PRIORITY
) {
1203 writel_relaxed(priority
, sdma
->regs
+ SDMA_CHNPRI_0
+ 4 * channel
);
1208 static int sdma_request_channel0(struct sdma_engine
*sdma
)
1212 sdma
->bd0
= dma_alloc_coherent(sdma
->dev
, PAGE_SIZE
, &sdma
->bd0_phys
,
1219 sdma
->channel_control
[0].base_bd_ptr
= sdma
->bd0_phys
;
1220 sdma
->channel_control
[0].current_bd_ptr
= sdma
->bd0_phys
;
1222 sdma_set_channel_priority(&sdma
->channel
[0], MXC_SDMA_DEFAULT_PRIORITY
);
1230 static int sdma_alloc_bd(struct sdma_desc
*desc
)
1232 u32 bd_size
= desc
->num_bd
* sizeof(struct sdma_buffer_descriptor
);
1235 desc
->bd
= dma_alloc_coherent(desc
->sdmac
->sdma
->dev
, bd_size
,
1236 &desc
->bd_phys
, GFP_NOWAIT
);
1245 static void sdma_free_bd(struct sdma_desc
*desc
)
1247 u32 bd_size
= desc
->num_bd
* sizeof(struct sdma_buffer_descriptor
);
1249 dma_free_coherent(desc
->sdmac
->sdma
->dev
, bd_size
, desc
->bd
,
1253 static void sdma_desc_free(struct virt_dma_desc
*vd
)
1255 struct sdma_desc
*desc
= container_of(vd
, struct sdma_desc
, vd
);
1261 static int sdma_alloc_chan_resources(struct dma_chan
*chan
)
1263 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1264 struct imx_dma_data
*data
= chan
->private;
1265 struct imx_dma_data mem_data
;
1269 * MEMCPY may never setup chan->private by filter function such as
1270 * dmatest, thus create 'struct imx_dma_data mem_data' for this case.
1271 * Please note in any other slave case, you have to setup chan->private
1272 * with 'struct imx_dma_data' in your own filter function if you want to
1273 * request dma channel by dma_request_channel() rather than
1274 * dma_request_slave_channel(). Othwise, 'MEMCPY in case?' will appear
1275 * to warn you to correct your filter function.
1278 dev_dbg(sdmac
->sdma
->dev
, "MEMCPY in case?\n");
1279 mem_data
.priority
= 2;
1280 mem_data
.peripheral_type
= IMX_DMATYPE_MEMORY
;
1281 mem_data
.dma_request
= 0;
1282 mem_data
.dma_request2
= 0;
1285 sdma_get_pc(sdmac
, IMX_DMATYPE_MEMORY
);
1288 switch (data
->priority
) {
1292 case DMA_PRIO_MEDIUM
:
1301 sdmac
->peripheral_type
= data
->peripheral_type
;
1302 sdmac
->event_id0
= data
->dma_request
;
1303 sdmac
->event_id1
= data
->dma_request2
;
1305 ret
= clk_enable(sdmac
->sdma
->clk_ipg
);
1308 ret
= clk_enable(sdmac
->sdma
->clk_ahb
);
1310 goto disable_clk_ipg
;
1312 ret
= sdma_set_channel_priority(sdmac
, prio
);
1314 goto disable_clk_ahb
;
1319 clk_disable(sdmac
->sdma
->clk_ahb
);
1321 clk_disable(sdmac
->sdma
->clk_ipg
);
1325 static void sdma_free_chan_resources(struct dma_chan
*chan
)
1327 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1328 struct sdma_engine
*sdma
= sdmac
->sdma
;
1330 sdma_terminate_all(chan
);
1332 sdma_channel_synchronize(chan
);
1334 if (sdmac
->event_id0
)
1335 sdma_event_disable(sdmac
, sdmac
->event_id0
);
1336 if (sdmac
->event_id1
)
1337 sdma_event_disable(sdmac
, sdmac
->event_id1
);
1339 sdmac
->event_id0
= 0;
1340 sdmac
->event_id1
= 0;
1342 sdma_set_channel_priority(sdmac
, 0);
1344 clk_disable(sdma
->clk_ipg
);
1345 clk_disable(sdma
->clk_ahb
);
1348 static struct sdma_desc
*sdma_transfer_init(struct sdma_channel
*sdmac
,
1349 enum dma_transfer_direction direction
, u32 bds
)
1351 struct sdma_desc
*desc
;
1353 desc
= kzalloc((sizeof(*desc
)), GFP_NOWAIT
);
1357 sdmac
->status
= DMA_IN_PROGRESS
;
1358 sdmac
->direction
= direction
;
1361 desc
->chn_count
= 0;
1362 desc
->chn_real_count
= 0;
1364 desc
->buf_ptail
= 0;
1365 desc
->sdmac
= sdmac
;
1368 if (sdma_alloc_bd(desc
))
1371 /* No slave_config called in MEMCPY case, so do here */
1372 if (direction
== DMA_MEM_TO_MEM
)
1373 sdma_config_ownership(sdmac
, false, true, false);
1375 if (sdma_load_context(sdmac
))
1386 static struct dma_async_tx_descriptor
*sdma_prep_memcpy(
1387 struct dma_chan
*chan
, dma_addr_t dma_dst
,
1388 dma_addr_t dma_src
, size_t len
, unsigned long flags
)
1390 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1391 struct sdma_engine
*sdma
= sdmac
->sdma
;
1392 int channel
= sdmac
->channel
;
1395 struct sdma_buffer_descriptor
*bd
;
1396 struct sdma_desc
*desc
;
1401 dev_dbg(sdma
->dev
, "memcpy: %pad->%pad, len=%zu, channel=%d.\n",
1402 &dma_src
, &dma_dst
, len
, channel
);
1404 desc
= sdma_transfer_init(sdmac
, DMA_MEM_TO_MEM
,
1405 len
/ SDMA_BD_MAX_CNT
+ 1);
1410 count
= min_t(size_t, len
, SDMA_BD_MAX_CNT
);
1412 bd
->buffer_addr
= dma_src
;
1413 bd
->ext_buffer_addr
= dma_dst
;
1414 bd
->mode
.count
= count
;
1415 desc
->chn_count
+= count
;
1416 bd
->mode
.command
= 0;
1423 param
= BD_DONE
| BD_EXTD
| BD_CONT
;
1431 dev_dbg(sdma
->dev
, "entry %d: count: %zd dma: 0x%x %s%s\n",
1432 i
, count
, bd
->buffer_addr
,
1433 param
& BD_WRAP
? "wrap" : "",
1434 param
& BD_INTR
? " intr" : "");
1436 bd
->mode
.status
= param
;
1439 return vchan_tx_prep(&sdmac
->vc
, &desc
->vd
, flags
);
1442 static struct dma_async_tx_descriptor
*sdma_prep_slave_sg(
1443 struct dma_chan
*chan
, struct scatterlist
*sgl
,
1444 unsigned int sg_len
, enum dma_transfer_direction direction
,
1445 unsigned long flags
, void *context
)
1447 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1448 struct sdma_engine
*sdma
= sdmac
->sdma
;
1450 int channel
= sdmac
->channel
;
1451 struct scatterlist
*sg
;
1452 struct sdma_desc
*desc
;
1454 sdma_config_write(chan
, &sdmac
->slave_config
, direction
);
1456 desc
= sdma_transfer_init(sdmac
, direction
, sg_len
);
1460 dev_dbg(sdma
->dev
, "setting up %d entries for channel %d.\n",
1463 for_each_sg(sgl
, sg
, sg_len
, i
) {
1464 struct sdma_buffer_descriptor
*bd
= &desc
->bd
[i
];
1467 bd
->buffer_addr
= sg
->dma_address
;
1469 count
= sg_dma_len(sg
);
1471 if (count
> SDMA_BD_MAX_CNT
) {
1472 dev_err(sdma
->dev
, "SDMA channel %d: maximum bytes for sg entry exceeded: %d > %d\n",
1473 channel
, count
, SDMA_BD_MAX_CNT
);
1477 bd
->mode
.count
= count
;
1478 desc
->chn_count
+= count
;
1480 if (sdmac
->word_size
> DMA_SLAVE_BUSWIDTH_4_BYTES
)
1483 switch (sdmac
->word_size
) {
1484 case DMA_SLAVE_BUSWIDTH_4_BYTES
:
1485 bd
->mode
.command
= 0;
1486 if (count
& 3 || sg
->dma_address
& 3)
1489 case DMA_SLAVE_BUSWIDTH_2_BYTES
:
1490 bd
->mode
.command
= 2;
1491 if (count
& 1 || sg
->dma_address
& 1)
1494 case DMA_SLAVE_BUSWIDTH_1_BYTE
:
1495 bd
->mode
.command
= 1;
1501 param
= BD_DONE
| BD_EXTD
| BD_CONT
;
1503 if (i
+ 1 == sg_len
) {
1509 dev_dbg(sdma
->dev
, "entry %d: count: %d dma: %#llx %s%s\n",
1510 i
, count
, (u64
)sg
->dma_address
,
1511 param
& BD_WRAP
? "wrap" : "",
1512 param
& BD_INTR
? " intr" : "");
1514 bd
->mode
.status
= param
;
1517 return vchan_tx_prep(&sdmac
->vc
, &desc
->vd
, flags
);
1522 sdmac
->status
= DMA_ERROR
;
1526 static struct dma_async_tx_descriptor
*sdma_prep_dma_cyclic(
1527 struct dma_chan
*chan
, dma_addr_t dma_addr
, size_t buf_len
,
1528 size_t period_len
, enum dma_transfer_direction direction
,
1529 unsigned long flags
)
1531 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1532 struct sdma_engine
*sdma
= sdmac
->sdma
;
1533 int num_periods
= buf_len
/ period_len
;
1534 int channel
= sdmac
->channel
;
1536 struct sdma_desc
*desc
;
1538 dev_dbg(sdma
->dev
, "%s channel: %d\n", __func__
, channel
);
1540 sdma_config_write(chan
, &sdmac
->slave_config
, direction
);
1542 desc
= sdma_transfer_init(sdmac
, direction
, num_periods
);
1546 desc
->period_len
= period_len
;
1548 sdmac
->flags
|= IMX_DMA_SG_LOOP
;
1550 if (period_len
> SDMA_BD_MAX_CNT
) {
1551 dev_err(sdma
->dev
, "SDMA channel %d: maximum period size exceeded: %zu > %d\n",
1552 channel
, period_len
, SDMA_BD_MAX_CNT
);
1556 while (buf
< buf_len
) {
1557 struct sdma_buffer_descriptor
*bd
= &desc
->bd
[i
];
1560 bd
->buffer_addr
= dma_addr
;
1562 bd
->mode
.count
= period_len
;
1564 if (sdmac
->word_size
> DMA_SLAVE_BUSWIDTH_4_BYTES
)
1566 if (sdmac
->word_size
== DMA_SLAVE_BUSWIDTH_4_BYTES
)
1567 bd
->mode
.command
= 0;
1569 bd
->mode
.command
= sdmac
->word_size
;
1571 param
= BD_DONE
| BD_EXTD
| BD_CONT
| BD_INTR
;
1572 if (i
+ 1 == num_periods
)
1575 dev_dbg(sdma
->dev
, "entry %d: count: %zu dma: %#llx %s%s\n",
1576 i
, period_len
, (u64
)dma_addr
,
1577 param
& BD_WRAP
? "wrap" : "",
1578 param
& BD_INTR
? " intr" : "");
1580 bd
->mode
.status
= param
;
1582 dma_addr
+= period_len
;
1588 return vchan_tx_prep(&sdmac
->vc
, &desc
->vd
, flags
);
1593 sdmac
->status
= DMA_ERROR
;
1597 static int sdma_config_write(struct dma_chan
*chan
,
1598 struct dma_slave_config
*dmaengine_cfg
,
1599 enum dma_transfer_direction direction
)
1601 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1603 if (direction
== DMA_DEV_TO_MEM
) {
1604 sdmac
->per_address
= dmaengine_cfg
->src_addr
;
1605 sdmac
->watermark_level
= dmaengine_cfg
->src_maxburst
*
1606 dmaengine_cfg
->src_addr_width
;
1607 sdmac
->word_size
= dmaengine_cfg
->src_addr_width
;
1608 } else if (direction
== DMA_DEV_TO_DEV
) {
1609 sdmac
->per_address2
= dmaengine_cfg
->src_addr
;
1610 sdmac
->per_address
= dmaengine_cfg
->dst_addr
;
1611 sdmac
->watermark_level
= dmaengine_cfg
->src_maxburst
&
1612 SDMA_WATERMARK_LEVEL_LWML
;
1613 sdmac
->watermark_level
|= (dmaengine_cfg
->dst_maxburst
<< 16) &
1614 SDMA_WATERMARK_LEVEL_HWML
;
1615 sdmac
->word_size
= dmaengine_cfg
->dst_addr_width
;
1617 sdmac
->per_address
= dmaengine_cfg
->dst_addr
;
1618 sdmac
->watermark_level
= dmaengine_cfg
->dst_maxburst
*
1619 dmaengine_cfg
->dst_addr_width
;
1620 sdmac
->word_size
= dmaengine_cfg
->dst_addr_width
;
1622 sdmac
->direction
= direction
;
1623 return sdma_config_channel(chan
);
1626 static int sdma_config(struct dma_chan
*chan
,
1627 struct dma_slave_config
*dmaengine_cfg
)
1629 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1631 memcpy(&sdmac
->slave_config
, dmaengine_cfg
, sizeof(*dmaengine_cfg
));
1633 /* Set ENBLn earlier to make sure dma request triggered after that */
1634 if (sdmac
->event_id0
) {
1635 if (sdmac
->event_id0
>= sdmac
->sdma
->drvdata
->num_events
)
1637 sdma_event_enable(sdmac
, sdmac
->event_id0
);
1640 if (sdmac
->event_id1
) {
1641 if (sdmac
->event_id1
>= sdmac
->sdma
->drvdata
->num_events
)
1643 sdma_event_enable(sdmac
, sdmac
->event_id1
);
1649 static enum dma_status
sdma_tx_status(struct dma_chan
*chan
,
1650 dma_cookie_t cookie
,
1651 struct dma_tx_state
*txstate
)
1653 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1654 struct sdma_desc
*desc
= NULL
;
1656 struct virt_dma_desc
*vd
;
1657 enum dma_status ret
;
1658 unsigned long flags
;
1660 ret
= dma_cookie_status(chan
, cookie
, txstate
);
1661 if (ret
== DMA_COMPLETE
|| !txstate
)
1664 spin_lock_irqsave(&sdmac
->vc
.lock
, flags
);
1666 vd
= vchan_find_desc(&sdmac
->vc
, cookie
);
1668 desc
= to_sdma_desc(&vd
->tx
);
1669 else if (sdmac
->desc
&& sdmac
->desc
->vd
.tx
.cookie
== cookie
)
1673 if (sdmac
->flags
& IMX_DMA_SG_LOOP
)
1674 residue
= (desc
->num_bd
- desc
->buf_ptail
) *
1675 desc
->period_len
- desc
->chn_real_count
;
1677 residue
= desc
->chn_count
- desc
->chn_real_count
;
1682 spin_unlock_irqrestore(&sdmac
->vc
.lock
, flags
);
1684 dma_set_tx_state(txstate
, chan
->completed_cookie
, chan
->cookie
,
1687 return sdmac
->status
;
1690 static void sdma_issue_pending(struct dma_chan
*chan
)
1692 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1693 unsigned long flags
;
1695 spin_lock_irqsave(&sdmac
->vc
.lock
, flags
);
1696 if (vchan_issue_pending(&sdmac
->vc
) && !sdmac
->desc
)
1697 sdma_start_desc(sdmac
);
1698 spin_unlock_irqrestore(&sdmac
->vc
.lock
, flags
);
1701 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1 34
1702 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2 38
1703 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3 41
1704 #define SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4 42
1706 static void sdma_add_scripts(struct sdma_engine
*sdma
,
1707 const struct sdma_script_start_addrs
*addr
)
1709 s32
*addr_arr
= (u32
*)addr
;
1710 s32
*saddr_arr
= (u32
*)sdma
->script_addrs
;
1713 /* use the default firmware in ROM if missing external firmware */
1714 if (!sdma
->script_number
)
1715 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1
;
1717 if (sdma
->script_number
> sizeof(struct sdma_script_start_addrs
)
1720 "SDMA script number %d not match with firmware.\n",
1721 sdma
->script_number
);
1725 for (i
= 0; i
< sdma
->script_number
; i
++)
1726 if (addr_arr
[i
] > 0)
1727 saddr_arr
[i
] = addr_arr
[i
];
1730 static void sdma_load_firmware(const struct firmware
*fw
, void *context
)
1732 struct sdma_engine
*sdma
= context
;
1733 const struct sdma_firmware_header
*header
;
1734 const struct sdma_script_start_addrs
*addr
;
1735 unsigned short *ram_code
;
1738 dev_info(sdma
->dev
, "external firmware not found, using ROM firmware\n");
1739 /* In this case we just use the ROM firmware. */
1743 if (fw
->size
< sizeof(*header
))
1746 header
= (struct sdma_firmware_header
*)fw
->data
;
1748 if (header
->magic
!= SDMA_FIRMWARE_MAGIC
)
1750 if (header
->ram_code_start
+ header
->ram_code_size
> fw
->size
)
1752 switch (header
->version_major
) {
1754 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1
;
1757 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V2
;
1760 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V3
;
1763 sdma
->script_number
= SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V4
;
1766 dev_err(sdma
->dev
, "unknown firmware version\n");
1770 addr
= (void *)header
+ header
->script_addrs_start
;
1771 ram_code
= (void *)header
+ header
->ram_code_start
;
1773 clk_enable(sdma
->clk_ipg
);
1774 clk_enable(sdma
->clk_ahb
);
1775 /* download the RAM image for SDMA */
1776 sdma_load_script(sdma
, ram_code
,
1777 header
->ram_code_size
,
1778 addr
->ram_code_start_addr
);
1779 clk_disable(sdma
->clk_ipg
);
1780 clk_disable(sdma
->clk_ahb
);
1782 sdma_add_scripts(sdma
, addr
);
1784 dev_info(sdma
->dev
, "loaded firmware %d.%d\n",
1785 header
->version_major
,
1786 header
->version_minor
);
1789 release_firmware(fw
);
1792 #define EVENT_REMAP_CELLS 3
1794 static int sdma_event_remap(struct sdma_engine
*sdma
)
1796 struct device_node
*np
= sdma
->dev
->of_node
;
1797 struct device_node
*gpr_np
= of_parse_phandle(np
, "gpr", 0);
1798 struct property
*event_remap
;
1800 char propname
[] = "fsl,sdma-event-remap";
1801 u32 reg
, val
, shift
, num_map
, i
;
1804 if (IS_ERR(np
) || IS_ERR(gpr_np
))
1807 event_remap
= of_find_property(np
, propname
, NULL
);
1808 num_map
= event_remap
? (event_remap
->length
/ sizeof(u32
)) : 0;
1810 dev_dbg(sdma
->dev
, "no event needs to be remapped\n");
1812 } else if (num_map
% EVENT_REMAP_CELLS
) {
1813 dev_err(sdma
->dev
, "the property %s must modulo %d\n",
1814 propname
, EVENT_REMAP_CELLS
);
1819 gpr
= syscon_node_to_regmap(gpr_np
);
1821 dev_err(sdma
->dev
, "failed to get gpr regmap\n");
1826 for (i
= 0; i
< num_map
; i
+= EVENT_REMAP_CELLS
) {
1827 ret
= of_property_read_u32_index(np
, propname
, i
, ®
);
1829 dev_err(sdma
->dev
, "failed to read property %s index %d\n",
1834 ret
= of_property_read_u32_index(np
, propname
, i
+ 1, &shift
);
1836 dev_err(sdma
->dev
, "failed to read property %s index %d\n",
1841 ret
= of_property_read_u32_index(np
, propname
, i
+ 2, &val
);
1843 dev_err(sdma
->dev
, "failed to read property %s index %d\n",
1848 regmap_update_bits(gpr
, reg
, BIT(shift
), val
<< shift
);
1852 if (!IS_ERR(gpr_np
))
1853 of_node_put(gpr_np
);
1858 static int sdma_get_firmware(struct sdma_engine
*sdma
,
1859 const char *fw_name
)
1863 ret
= request_firmware_nowait(THIS_MODULE
,
1864 FW_ACTION_HOTPLUG
, fw_name
, sdma
->dev
,
1865 GFP_KERNEL
, sdma
, sdma_load_firmware
);
1870 static int sdma_init(struct sdma_engine
*sdma
)
1873 dma_addr_t ccb_phys
;
1875 ret
= clk_enable(sdma
->clk_ipg
);
1878 ret
= clk_enable(sdma
->clk_ahb
);
1880 goto disable_clk_ipg
;
1882 if (sdma
->drvdata
->check_ratio
&&
1883 (clk_get_rate(sdma
->clk_ahb
) == clk_get_rate(sdma
->clk_ipg
)))
1884 sdma
->clk_ratio
= 1;
1886 /* Be sure SDMA has not started yet */
1887 writel_relaxed(0, sdma
->regs
+ SDMA_H_C0PTR
);
1889 sdma
->channel_control
= dma_alloc_coherent(sdma
->dev
,
1890 MAX_DMA_CHANNELS
* sizeof (struct sdma_channel_control
) +
1891 sizeof(struct sdma_context_data
),
1892 &ccb_phys
, GFP_KERNEL
);
1894 if (!sdma
->channel_control
) {
1899 sdma
->context
= (void *)sdma
->channel_control
+
1900 MAX_DMA_CHANNELS
* sizeof (struct sdma_channel_control
);
1901 sdma
->context_phys
= ccb_phys
+
1902 MAX_DMA_CHANNELS
* sizeof (struct sdma_channel_control
);
1904 /* disable all channels */
1905 for (i
= 0; i
< sdma
->drvdata
->num_events
; i
++)
1906 writel_relaxed(0, sdma
->regs
+ chnenbl_ofs(sdma
, i
));
1908 /* All channels have priority 0 */
1909 for (i
= 0; i
< MAX_DMA_CHANNELS
; i
++)
1910 writel_relaxed(0, sdma
->regs
+ SDMA_CHNPRI_0
+ i
* 4);
1912 ret
= sdma_request_channel0(sdma
);
1916 sdma_config_ownership(&sdma
->channel
[0], false, true, false);
1918 /* Set Command Channel (Channel Zero) */
1919 writel_relaxed(0x4050, sdma
->regs
+ SDMA_CHN0ADDR
);
1921 /* Set bits of CONFIG register but with static context switching */
1922 if (sdma
->clk_ratio
)
1923 writel_relaxed(SDMA_H_CONFIG_ACR
, sdma
->regs
+ SDMA_H_CONFIG
);
1925 writel_relaxed(0, sdma
->regs
+ SDMA_H_CONFIG
);
1927 writel_relaxed(ccb_phys
, sdma
->regs
+ SDMA_H_C0PTR
);
1929 /* Initializes channel's priorities */
1930 sdma_set_channel_priority(&sdma
->channel
[0], 7);
1932 clk_disable(sdma
->clk_ipg
);
1933 clk_disable(sdma
->clk_ahb
);
1938 clk_disable(sdma
->clk_ahb
);
1940 clk_disable(sdma
->clk_ipg
);
1941 dev_err(sdma
->dev
, "initialisation failed with %d\n", ret
);
1945 static bool sdma_filter_fn(struct dma_chan
*chan
, void *fn_param
)
1947 struct sdma_channel
*sdmac
= to_sdma_chan(chan
);
1948 struct imx_dma_data
*data
= fn_param
;
1950 if (!imx_dma_is_general_purpose(chan
))
1953 sdmac
->data
= *data
;
1954 chan
->private = &sdmac
->data
;
1959 static struct dma_chan
*sdma_xlate(struct of_phandle_args
*dma_spec
,
1960 struct of_dma
*ofdma
)
1962 struct sdma_engine
*sdma
= ofdma
->of_dma_data
;
1963 dma_cap_mask_t mask
= sdma
->dma_device
.cap_mask
;
1964 struct imx_dma_data data
;
1966 if (dma_spec
->args_count
!= 3)
1969 data
.dma_request
= dma_spec
->args
[0];
1970 data
.peripheral_type
= dma_spec
->args
[1];
1971 data
.priority
= dma_spec
->args
[2];
1973 * init dma_request2 to zero, which is not used by the dts.
1974 * For P2P, dma_request2 is init from dma_request_channel(),
1975 * chan->private will point to the imx_dma_data, and in
1976 * device_alloc_chan_resources(), imx_dma_data.dma_request2 will
1977 * be set to sdmac->event_id1.
1979 data
.dma_request2
= 0;
1981 return __dma_request_channel(&mask
, sdma_filter_fn
, &data
,
1985 static int sdma_probe(struct platform_device
*pdev
)
1987 const struct of_device_id
*of_id
=
1988 of_match_device(sdma_dt_ids
, &pdev
->dev
);
1989 struct device_node
*np
= pdev
->dev
.of_node
;
1990 struct device_node
*spba_bus
;
1991 const char *fw_name
;
1994 struct resource
*iores
;
1995 struct resource spba_res
;
1996 struct sdma_platform_data
*pdata
= dev_get_platdata(&pdev
->dev
);
1998 struct sdma_engine
*sdma
;
2000 const struct sdma_driver_data
*drvdata
= NULL
;
2003 drvdata
= of_id
->data
;
2004 else if (pdev
->id_entry
)
2005 drvdata
= (void *)pdev
->id_entry
->driver_data
;
2008 dev_err(&pdev
->dev
, "unable to find driver data\n");
2012 ret
= dma_coerce_mask_and_coherent(&pdev
->dev
, DMA_BIT_MASK(32));
2016 sdma
= devm_kzalloc(&pdev
->dev
, sizeof(*sdma
), GFP_KERNEL
);
2020 spin_lock_init(&sdma
->channel_0_lock
);
2022 sdma
->dev
= &pdev
->dev
;
2023 sdma
->drvdata
= drvdata
;
2025 irq
= platform_get_irq(pdev
, 0);
2029 iores
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
2030 sdma
->regs
= devm_ioremap_resource(&pdev
->dev
, iores
);
2031 if (IS_ERR(sdma
->regs
))
2032 return PTR_ERR(sdma
->regs
);
2034 sdma
->clk_ipg
= devm_clk_get(&pdev
->dev
, "ipg");
2035 if (IS_ERR(sdma
->clk_ipg
))
2036 return PTR_ERR(sdma
->clk_ipg
);
2038 sdma
->clk_ahb
= devm_clk_get(&pdev
->dev
, "ahb");
2039 if (IS_ERR(sdma
->clk_ahb
))
2040 return PTR_ERR(sdma
->clk_ahb
);
2042 ret
= clk_prepare(sdma
->clk_ipg
);
2046 ret
= clk_prepare(sdma
->clk_ahb
);
2050 ret
= devm_request_irq(&pdev
->dev
, irq
, sdma_int_handler
, 0, "sdma",
2057 sdma
->script_addrs
= kzalloc(sizeof(*sdma
->script_addrs
), GFP_KERNEL
);
2058 if (!sdma
->script_addrs
) {
2063 /* initially no scripts available */
2064 saddr_arr
= (s32
*)sdma
->script_addrs
;
2065 for (i
= 0; i
< SDMA_SCRIPT_ADDRS_ARRAY_SIZE_V1
; i
++)
2066 saddr_arr
[i
] = -EINVAL
;
2068 dma_cap_set(DMA_SLAVE
, sdma
->dma_device
.cap_mask
);
2069 dma_cap_set(DMA_CYCLIC
, sdma
->dma_device
.cap_mask
);
2070 dma_cap_set(DMA_MEMCPY
, sdma
->dma_device
.cap_mask
);
2072 INIT_LIST_HEAD(&sdma
->dma_device
.channels
);
2073 /* Initialize channel parameters */
2074 for (i
= 0; i
< MAX_DMA_CHANNELS
; i
++) {
2075 struct sdma_channel
*sdmac
= &sdma
->channel
[i
];
2080 sdmac
->vc
.desc_free
= sdma_desc_free
;
2081 INIT_WORK(&sdmac
->terminate_worker
,
2082 sdma_channel_terminate_work
);
2084 * Add the channel to the DMAC list. Do not add channel 0 though
2085 * because we need it internally in the SDMA driver. This also means
2086 * that channel 0 in dmaengine counting matches sdma channel 1.
2089 vchan_init(&sdmac
->vc
, &sdma
->dma_device
);
2092 ret
= sdma_init(sdma
);
2096 ret
= sdma_event_remap(sdma
);
2100 if (sdma
->drvdata
->script_addrs
)
2101 sdma_add_scripts(sdma
, sdma
->drvdata
->script_addrs
);
2102 if (pdata
&& pdata
->script_addrs
)
2103 sdma_add_scripts(sdma
, pdata
->script_addrs
);
2105 sdma
->dma_device
.dev
= &pdev
->dev
;
2107 sdma
->dma_device
.device_alloc_chan_resources
= sdma_alloc_chan_resources
;
2108 sdma
->dma_device
.device_free_chan_resources
= sdma_free_chan_resources
;
2109 sdma
->dma_device
.device_tx_status
= sdma_tx_status
;
2110 sdma
->dma_device
.device_prep_slave_sg
= sdma_prep_slave_sg
;
2111 sdma
->dma_device
.device_prep_dma_cyclic
= sdma_prep_dma_cyclic
;
2112 sdma
->dma_device
.device_config
= sdma_config
;
2113 sdma
->dma_device
.device_terminate_all
= sdma_terminate_all
;
2114 sdma
->dma_device
.device_synchronize
= sdma_channel_synchronize
;
2115 sdma
->dma_device
.src_addr_widths
= SDMA_DMA_BUSWIDTHS
;
2116 sdma
->dma_device
.dst_addr_widths
= SDMA_DMA_BUSWIDTHS
;
2117 sdma
->dma_device
.directions
= SDMA_DMA_DIRECTIONS
;
2118 sdma
->dma_device
.residue_granularity
= DMA_RESIDUE_GRANULARITY_SEGMENT
;
2119 sdma
->dma_device
.device_prep_dma_memcpy
= sdma_prep_memcpy
;
2120 sdma
->dma_device
.device_issue_pending
= sdma_issue_pending
;
2121 sdma
->dma_device
.dev
->dma_parms
= &sdma
->dma_parms
;
2122 sdma
->dma_device
.copy_align
= 2;
2123 dma_set_max_seg_size(sdma
->dma_device
.dev
, SDMA_BD_MAX_CNT
);
2125 platform_set_drvdata(pdev
, sdma
);
2127 ret
= dma_async_device_register(&sdma
->dma_device
);
2129 dev_err(&pdev
->dev
, "unable to register\n");
2134 ret
= of_dma_controller_register(np
, sdma_xlate
, sdma
);
2136 dev_err(&pdev
->dev
, "failed to register controller\n");
2140 spba_bus
= of_find_compatible_node(NULL
, NULL
, "fsl,spba-bus");
2141 ret
= of_address_to_resource(spba_bus
, 0, &spba_res
);
2143 sdma
->spba_start_addr
= spba_res
.start
;
2144 sdma
->spba_end_addr
= spba_res
.end
;
2146 of_node_put(spba_bus
);
2150 * Kick off firmware loading as the very last step:
2151 * attempt to load firmware only if we're not on the error path, because
2152 * the firmware callback requires a fully functional and allocated sdma
2156 ret
= sdma_get_firmware(sdma
, pdata
->fw_name
);
2158 dev_warn(&pdev
->dev
, "failed to get firmware from platform data\n");
2161 * Because that device tree does not encode ROM script address,
2162 * the RAM script in firmware is mandatory for device tree
2163 * probe, otherwise it fails.
2165 ret
= of_property_read_string(np
, "fsl,sdma-ram-script-name",
2168 dev_warn(&pdev
->dev
, "failed to get firmware name\n");
2170 ret
= sdma_get_firmware(sdma
, fw_name
);
2172 dev_warn(&pdev
->dev
, "failed to get firmware from device tree\n");
2179 dma_async_device_unregister(&sdma
->dma_device
);
2181 kfree(sdma
->script_addrs
);
2183 clk_unprepare(sdma
->clk_ahb
);
2185 clk_unprepare(sdma
->clk_ipg
);
2189 static int sdma_remove(struct platform_device
*pdev
)
2191 struct sdma_engine
*sdma
= platform_get_drvdata(pdev
);
2194 devm_free_irq(&pdev
->dev
, sdma
->irq
, sdma
);
2195 dma_async_device_unregister(&sdma
->dma_device
);
2196 kfree(sdma
->script_addrs
);
2197 clk_unprepare(sdma
->clk_ahb
);
2198 clk_unprepare(sdma
->clk_ipg
);
2199 /* Kill the tasklet */
2200 for (i
= 0; i
< MAX_DMA_CHANNELS
; i
++) {
2201 struct sdma_channel
*sdmac
= &sdma
->channel
[i
];
2203 tasklet_kill(&sdmac
->vc
.task
);
2204 sdma_free_chan_resources(&sdmac
->vc
.chan
);
2207 platform_set_drvdata(pdev
, NULL
);
2211 static struct platform_driver sdma_driver
= {
2214 .of_match_table
= sdma_dt_ids
,
2216 .id_table
= sdma_devtypes
,
2217 .remove
= sdma_remove
,
2218 .probe
= sdma_probe
,
2221 module_platform_driver(sdma_driver
);
2223 MODULE_AUTHOR("Sascha Hauer, Pengutronix <s.hauer@pengutronix.de>");
2224 MODULE_DESCRIPTION("i.MX SDMA driver");
2225 #if IS_ENABLED(CONFIG_SOC_IMX6Q)
2226 MODULE_FIRMWARE("imx/sdma/sdma-imx6q.bin");
2228 #if IS_ENABLED(CONFIG_SOC_IMX7D)
2229 MODULE_FIRMWARE("imx/sdma/sdma-imx7d.bin");
2231 MODULE_LICENSE("GPL");