Merge tag 'thunderbolt-fix-for-v5.6-rc3' of git://git.kernel.org/pub/scm/linux/kernel...
[linux/fpc-iii.git] / drivers / dma / s3c24xx-dma.c
blob8e14c72d03f056989f2eace2796596c73bc000b0
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * S3C24XX DMA handling
5 * Copyright (c) 2013 Heiko Stuebner <heiko@sntech.de>
7 * based on amba-pl08x.c
9 * Copyright (c) 2006 ARM Ltd.
10 * Copyright (c) 2010 ST-Ericsson SA
12 * Author: Peter Pearse <peter.pearse@arm.com>
13 * Author: Linus Walleij <linus.walleij@stericsson.com>
15 * The DMA controllers in S3C24XX SoCs have a varying number of DMA signals
16 * that can be routed to any of the 4 to 8 hardware-channels.
18 * Therefore on these DMA controllers the number of channels
19 * and the number of incoming DMA signals are two totally different things.
20 * It is usually not possible to theoretically handle all physical signals,
21 * so a multiplexing scheme with possible denial of use is necessary.
23 * Open items:
24 * - bursts
27 #include <linux/platform_device.h>
28 #include <linux/types.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/interrupt.h>
32 #include <linux/clk.h>
33 #include <linux/module.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/slab.h>
36 #include <linux/platform_data/dma-s3c24xx.h>
38 #include "dmaengine.h"
39 #include "virt-dma.h"
41 #define MAX_DMA_CHANNELS 8
43 #define S3C24XX_DISRC 0x00
44 #define S3C24XX_DISRCC 0x04
45 #define S3C24XX_DISRCC_INC_INCREMENT 0
46 #define S3C24XX_DISRCC_INC_FIXED BIT(0)
47 #define S3C24XX_DISRCC_LOC_AHB 0
48 #define S3C24XX_DISRCC_LOC_APB BIT(1)
50 #define S3C24XX_DIDST 0x08
51 #define S3C24XX_DIDSTC 0x0c
52 #define S3C24XX_DIDSTC_INC_INCREMENT 0
53 #define S3C24XX_DIDSTC_INC_FIXED BIT(0)
54 #define S3C24XX_DIDSTC_LOC_AHB 0
55 #define S3C24XX_DIDSTC_LOC_APB BIT(1)
56 #define S3C24XX_DIDSTC_INT_TC0 0
57 #define S3C24XX_DIDSTC_INT_RELOAD BIT(2)
59 #define S3C24XX_DCON 0x10
61 #define S3C24XX_DCON_TC_MASK 0xfffff
62 #define S3C24XX_DCON_DSZ_BYTE (0 << 20)
63 #define S3C24XX_DCON_DSZ_HALFWORD (1 << 20)
64 #define S3C24XX_DCON_DSZ_WORD (2 << 20)
65 #define S3C24XX_DCON_DSZ_MASK (3 << 20)
66 #define S3C24XX_DCON_DSZ_SHIFT 20
67 #define S3C24XX_DCON_AUTORELOAD 0
68 #define S3C24XX_DCON_NORELOAD BIT(22)
69 #define S3C24XX_DCON_HWTRIG BIT(23)
70 #define S3C24XX_DCON_HWSRC_SHIFT 24
71 #define S3C24XX_DCON_SERV_SINGLE 0
72 #define S3C24XX_DCON_SERV_WHOLE BIT(27)
73 #define S3C24XX_DCON_TSZ_UNIT 0
74 #define S3C24XX_DCON_TSZ_BURST4 BIT(28)
75 #define S3C24XX_DCON_INT BIT(29)
76 #define S3C24XX_DCON_SYNC_PCLK 0
77 #define S3C24XX_DCON_SYNC_HCLK BIT(30)
78 #define S3C24XX_DCON_DEMAND 0
79 #define S3C24XX_DCON_HANDSHAKE BIT(31)
81 #define S3C24XX_DSTAT 0x14
82 #define S3C24XX_DSTAT_STAT_BUSY BIT(20)
83 #define S3C24XX_DSTAT_CURRTC_MASK 0xfffff
85 #define S3C24XX_DMASKTRIG 0x20
86 #define S3C24XX_DMASKTRIG_SWTRIG BIT(0)
87 #define S3C24XX_DMASKTRIG_ON BIT(1)
88 #define S3C24XX_DMASKTRIG_STOP BIT(2)
90 #define S3C24XX_DMAREQSEL 0x24
91 #define S3C24XX_DMAREQSEL_HW BIT(0)
94 * S3C2410, S3C2440 and S3C2442 SoCs cannot select any physical channel
95 * for a DMA source. Instead only specific channels are valid.
96 * All of these SoCs have 4 physical channels and the number of request
97 * source bits is 3. Additionally we also need 1 bit to mark the channel
98 * as valid.
99 * Therefore we separate the chansel element of the channel data into 4
100 * parts of 4 bits each, to hold the information if the channel is valid
101 * and the hw request source to use.
103 * Example:
104 * SDI is valid on channels 0, 2 and 3 - with varying hw request sources.
105 * For it the chansel field would look like
107 * ((BIT(3) | 1) << 3 * 4) | // channel 3, with request source 1
108 * ((BIT(3) | 2) << 2 * 4) | // channel 2, with request source 2
109 * ((BIT(3) | 2) << 0 * 4) // channel 0, with request source 2
111 #define S3C24XX_CHANSEL_WIDTH 4
112 #define S3C24XX_CHANSEL_VALID BIT(3)
113 #define S3C24XX_CHANSEL_REQ_MASK 7
116 * struct soc_data - vendor-specific config parameters for individual SoCs
117 * @stride: spacing between the registers of each channel
118 * @has_reqsel: does the controller use the newer requestselection mechanism
119 * @has_clocks: are controllable dma-clocks present
121 struct soc_data {
122 int stride;
123 bool has_reqsel;
124 bool has_clocks;
128 * enum s3c24xx_dma_chan_state - holds the virtual channel states
129 * @S3C24XX_DMA_CHAN_IDLE: the channel is idle
130 * @S3C24XX_DMA_CHAN_RUNNING: the channel has allocated a physical transport
131 * channel and is running a transfer on it
132 * @S3C24XX_DMA_CHAN_WAITING: the channel is waiting for a physical transport
133 * channel to become available (only pertains to memcpy channels)
135 enum s3c24xx_dma_chan_state {
136 S3C24XX_DMA_CHAN_IDLE,
137 S3C24XX_DMA_CHAN_RUNNING,
138 S3C24XX_DMA_CHAN_WAITING,
142 * struct s3c24xx_sg - structure containing data per sg
143 * @src_addr: src address of sg
144 * @dst_addr: dst address of sg
145 * @len: transfer len in bytes
146 * @node: node for txd's dsg_list
148 struct s3c24xx_sg {
149 dma_addr_t src_addr;
150 dma_addr_t dst_addr;
151 size_t len;
152 struct list_head node;
156 * struct s3c24xx_txd - wrapper for struct dma_async_tx_descriptor
157 * @vd: virtual DMA descriptor
158 * @dsg_list: list of children sg's
159 * @at: sg currently being transfered
160 * @width: transfer width
161 * @disrcc: value for source control register
162 * @didstc: value for destination control register
163 * @dcon: base value for dcon register
164 * @cyclic: indicate cyclic transfer
166 struct s3c24xx_txd {
167 struct virt_dma_desc vd;
168 struct list_head dsg_list;
169 struct list_head *at;
170 u8 width;
171 u32 disrcc;
172 u32 didstc;
173 u32 dcon;
174 bool cyclic;
177 struct s3c24xx_dma_chan;
180 * struct s3c24xx_dma_phy - holder for the physical channels
181 * @id: physical index to this channel
182 * @valid: does the channel have all required elements
183 * @base: virtual memory base (remapped) for the this channel
184 * @irq: interrupt for this channel
185 * @clk: clock for this channel
186 * @lock: a lock to use when altering an instance of this struct
187 * @serving: virtual channel currently being served by this physicalchannel
188 * @host: a pointer to the host (internal use)
190 struct s3c24xx_dma_phy {
191 unsigned int id;
192 bool valid;
193 void __iomem *base;
194 int irq;
195 struct clk *clk;
196 spinlock_t lock;
197 struct s3c24xx_dma_chan *serving;
198 struct s3c24xx_dma_engine *host;
202 * struct s3c24xx_dma_chan - this structure wraps a DMA ENGINE channel
203 * @id: the id of the channel
204 * @name: name of the channel
205 * @vc: wrappped virtual channel
206 * @phy: the physical channel utilized by this channel, if there is one
207 * @runtime_addr: address for RX/TX according to the runtime config
208 * @at: active transaction on this channel
209 * @lock: a lock for this channel data
210 * @host: a pointer to the host (internal use)
211 * @state: whether the channel is idle, running etc
212 * @slave: whether this channel is a device (slave) or for memcpy
214 struct s3c24xx_dma_chan {
215 int id;
216 const char *name;
217 struct virt_dma_chan vc;
218 struct s3c24xx_dma_phy *phy;
219 struct dma_slave_config cfg;
220 struct s3c24xx_txd *at;
221 struct s3c24xx_dma_engine *host;
222 enum s3c24xx_dma_chan_state state;
223 bool slave;
227 * struct s3c24xx_dma_engine - the local state holder for the S3C24XX
228 * @pdev: the corresponding platform device
229 * @pdata: platform data passed in from the platform/machine
230 * @base: virtual memory base (remapped)
231 * @slave: slave engine for this instance
232 * @memcpy: memcpy engine for this instance
233 * @phy_chans: array of data for the physical channels
235 struct s3c24xx_dma_engine {
236 struct platform_device *pdev;
237 const struct s3c24xx_dma_platdata *pdata;
238 struct soc_data *sdata;
239 void __iomem *base;
240 struct dma_device slave;
241 struct dma_device memcpy;
242 struct s3c24xx_dma_phy *phy_chans;
246 * Physical channel handling
250 * Check whether a certain channel is busy or not.
252 static int s3c24xx_dma_phy_busy(struct s3c24xx_dma_phy *phy)
254 unsigned int val = readl(phy->base + S3C24XX_DSTAT);
255 return val & S3C24XX_DSTAT_STAT_BUSY;
258 static bool s3c24xx_dma_phy_valid(struct s3c24xx_dma_chan *s3cchan,
259 struct s3c24xx_dma_phy *phy)
261 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
262 const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
263 struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
264 int phyvalid;
266 /* every phy is valid for memcopy channels */
267 if (!s3cchan->slave)
268 return true;
270 /* On newer variants all phys can be used for all virtual channels */
271 if (s3cdma->sdata->has_reqsel)
272 return true;
274 phyvalid = (cdata->chansel >> (phy->id * S3C24XX_CHANSEL_WIDTH));
275 return (phyvalid & S3C24XX_CHANSEL_VALID) ? true : false;
279 * Allocate a physical channel for a virtual channel
281 * Try to locate a physical channel to be used for this transfer. If all
282 * are taken return NULL and the requester will have to cope by using
283 * some fallback PIO mode or retrying later.
285 static
286 struct s3c24xx_dma_phy *s3c24xx_dma_get_phy(struct s3c24xx_dma_chan *s3cchan)
288 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
289 struct s3c24xx_dma_phy *phy = NULL;
290 unsigned long flags;
291 int i;
292 int ret;
294 for (i = 0; i < s3cdma->pdata->num_phy_channels; i++) {
295 phy = &s3cdma->phy_chans[i];
297 if (!phy->valid)
298 continue;
300 if (!s3c24xx_dma_phy_valid(s3cchan, phy))
301 continue;
303 spin_lock_irqsave(&phy->lock, flags);
305 if (!phy->serving) {
306 phy->serving = s3cchan;
307 spin_unlock_irqrestore(&phy->lock, flags);
308 break;
311 spin_unlock_irqrestore(&phy->lock, flags);
314 /* No physical channel available, cope with it */
315 if (i == s3cdma->pdata->num_phy_channels) {
316 dev_warn(&s3cdma->pdev->dev, "no phy channel available\n");
317 return NULL;
320 /* start the phy clock */
321 if (s3cdma->sdata->has_clocks) {
322 ret = clk_enable(phy->clk);
323 if (ret) {
324 dev_err(&s3cdma->pdev->dev, "could not enable clock for channel %d, err %d\n",
325 phy->id, ret);
326 phy->serving = NULL;
327 return NULL;
331 return phy;
335 * Mark the physical channel as free.
337 * This drops the link between the physical and virtual channel.
339 static inline void s3c24xx_dma_put_phy(struct s3c24xx_dma_phy *phy)
341 struct s3c24xx_dma_engine *s3cdma = phy->host;
343 if (s3cdma->sdata->has_clocks)
344 clk_disable(phy->clk);
346 phy->serving = NULL;
350 * Stops the channel by writing the stop bit.
351 * This should not be used for an on-going transfer, but as a method of
352 * shutting down a channel (eg, when it's no longer used) or terminating a
353 * transfer.
355 static void s3c24xx_dma_terminate_phy(struct s3c24xx_dma_phy *phy)
357 writel(S3C24XX_DMASKTRIG_STOP, phy->base + S3C24XX_DMASKTRIG);
361 * Virtual channel handling
364 static inline
365 struct s3c24xx_dma_chan *to_s3c24xx_dma_chan(struct dma_chan *chan)
367 return container_of(chan, struct s3c24xx_dma_chan, vc.chan);
370 static u32 s3c24xx_dma_getbytes_chan(struct s3c24xx_dma_chan *s3cchan)
372 struct s3c24xx_dma_phy *phy = s3cchan->phy;
373 struct s3c24xx_txd *txd = s3cchan->at;
374 u32 tc = readl(phy->base + S3C24XX_DSTAT) & S3C24XX_DSTAT_CURRTC_MASK;
376 return tc * txd->width;
379 static int s3c24xx_dma_set_runtime_config(struct dma_chan *chan,
380 struct dma_slave_config *config)
382 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
383 unsigned long flags;
384 int ret = 0;
386 /* Reject definitely invalid configurations */
387 if (config->src_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES ||
388 config->dst_addr_width == DMA_SLAVE_BUSWIDTH_8_BYTES)
389 return -EINVAL;
391 spin_lock_irqsave(&s3cchan->vc.lock, flags);
393 if (!s3cchan->slave) {
394 ret = -EINVAL;
395 goto out;
398 s3cchan->cfg = *config;
400 out:
401 spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
402 return ret;
406 * Transfer handling
409 static inline
410 struct s3c24xx_txd *to_s3c24xx_txd(struct dma_async_tx_descriptor *tx)
412 return container_of(tx, struct s3c24xx_txd, vd.tx);
415 static struct s3c24xx_txd *s3c24xx_dma_get_txd(void)
417 struct s3c24xx_txd *txd = kzalloc(sizeof(*txd), GFP_NOWAIT);
419 if (txd) {
420 INIT_LIST_HEAD(&txd->dsg_list);
421 txd->dcon = S3C24XX_DCON_INT | S3C24XX_DCON_NORELOAD;
424 return txd;
427 static void s3c24xx_dma_free_txd(struct s3c24xx_txd *txd)
429 struct s3c24xx_sg *dsg, *_dsg;
431 list_for_each_entry_safe(dsg, _dsg, &txd->dsg_list, node) {
432 list_del(&dsg->node);
433 kfree(dsg);
436 kfree(txd);
439 static void s3c24xx_dma_start_next_sg(struct s3c24xx_dma_chan *s3cchan,
440 struct s3c24xx_txd *txd)
442 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
443 struct s3c24xx_dma_phy *phy = s3cchan->phy;
444 const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
445 struct s3c24xx_sg *dsg = list_entry(txd->at, struct s3c24xx_sg, node);
446 u32 dcon = txd->dcon;
447 u32 val;
449 /* transfer-size and -count from len and width */
450 switch (txd->width) {
451 case 1:
452 dcon |= S3C24XX_DCON_DSZ_BYTE | dsg->len;
453 break;
454 case 2:
455 dcon |= S3C24XX_DCON_DSZ_HALFWORD | (dsg->len / 2);
456 break;
457 case 4:
458 dcon |= S3C24XX_DCON_DSZ_WORD | (dsg->len / 4);
459 break;
462 if (s3cchan->slave) {
463 struct s3c24xx_dma_channel *cdata =
464 &pdata->channels[s3cchan->id];
466 if (s3cdma->sdata->has_reqsel) {
467 writel_relaxed((cdata->chansel << 1) |
468 S3C24XX_DMAREQSEL_HW,
469 phy->base + S3C24XX_DMAREQSEL);
470 } else {
471 int csel = cdata->chansel >> (phy->id *
472 S3C24XX_CHANSEL_WIDTH);
474 csel &= S3C24XX_CHANSEL_REQ_MASK;
475 dcon |= csel << S3C24XX_DCON_HWSRC_SHIFT;
476 dcon |= S3C24XX_DCON_HWTRIG;
478 } else {
479 if (s3cdma->sdata->has_reqsel)
480 writel_relaxed(0, phy->base + S3C24XX_DMAREQSEL);
483 writel_relaxed(dsg->src_addr, phy->base + S3C24XX_DISRC);
484 writel_relaxed(txd->disrcc, phy->base + S3C24XX_DISRCC);
485 writel_relaxed(dsg->dst_addr, phy->base + S3C24XX_DIDST);
486 writel_relaxed(txd->didstc, phy->base + S3C24XX_DIDSTC);
487 writel_relaxed(dcon, phy->base + S3C24XX_DCON);
489 val = readl_relaxed(phy->base + S3C24XX_DMASKTRIG);
490 val &= ~S3C24XX_DMASKTRIG_STOP;
491 val |= S3C24XX_DMASKTRIG_ON;
493 /* trigger the dma operation for memcpy transfers */
494 if (!s3cchan->slave)
495 val |= S3C24XX_DMASKTRIG_SWTRIG;
497 writel(val, phy->base + S3C24XX_DMASKTRIG);
501 * Set the initial DMA register values and start first sg.
503 static void s3c24xx_dma_start_next_txd(struct s3c24xx_dma_chan *s3cchan)
505 struct s3c24xx_dma_phy *phy = s3cchan->phy;
506 struct virt_dma_desc *vd = vchan_next_desc(&s3cchan->vc);
507 struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
509 list_del(&txd->vd.node);
511 s3cchan->at = txd;
513 /* Wait for channel inactive */
514 while (s3c24xx_dma_phy_busy(phy))
515 cpu_relax();
517 /* point to the first element of the sg list */
518 txd->at = txd->dsg_list.next;
519 s3c24xx_dma_start_next_sg(s3cchan, txd);
523 * Try to allocate a physical channel. When successful, assign it to
524 * this virtual channel, and initiate the next descriptor. The
525 * virtual channel lock must be held at this point.
527 static void s3c24xx_dma_phy_alloc_and_start(struct s3c24xx_dma_chan *s3cchan)
529 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
530 struct s3c24xx_dma_phy *phy;
532 phy = s3c24xx_dma_get_phy(s3cchan);
533 if (!phy) {
534 dev_dbg(&s3cdma->pdev->dev, "no physical channel available for xfer on %s\n",
535 s3cchan->name);
536 s3cchan->state = S3C24XX_DMA_CHAN_WAITING;
537 return;
540 dev_dbg(&s3cdma->pdev->dev, "allocated physical channel %d for xfer on %s\n",
541 phy->id, s3cchan->name);
543 s3cchan->phy = phy;
544 s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
546 s3c24xx_dma_start_next_txd(s3cchan);
549 static void s3c24xx_dma_phy_reassign_start(struct s3c24xx_dma_phy *phy,
550 struct s3c24xx_dma_chan *s3cchan)
552 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
554 dev_dbg(&s3cdma->pdev->dev, "reassigned physical channel %d for xfer on %s\n",
555 phy->id, s3cchan->name);
558 * We do this without taking the lock; we're really only concerned
559 * about whether this pointer is NULL or not, and we're guaranteed
560 * that this will only be called when it _already_ is non-NULL.
562 phy->serving = s3cchan;
563 s3cchan->phy = phy;
564 s3cchan->state = S3C24XX_DMA_CHAN_RUNNING;
565 s3c24xx_dma_start_next_txd(s3cchan);
569 * Free a physical DMA channel, potentially reallocating it to another
570 * virtual channel if we have any pending.
572 static void s3c24xx_dma_phy_free(struct s3c24xx_dma_chan *s3cchan)
574 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
575 struct s3c24xx_dma_chan *p, *next;
577 retry:
578 next = NULL;
580 /* Find a waiting virtual channel for the next transfer. */
581 list_for_each_entry(p, &s3cdma->memcpy.channels, vc.chan.device_node)
582 if (p->state == S3C24XX_DMA_CHAN_WAITING) {
583 next = p;
584 break;
587 if (!next) {
588 list_for_each_entry(p, &s3cdma->slave.channels,
589 vc.chan.device_node)
590 if (p->state == S3C24XX_DMA_CHAN_WAITING &&
591 s3c24xx_dma_phy_valid(p, s3cchan->phy)) {
592 next = p;
593 break;
597 /* Ensure that the physical channel is stopped */
598 s3c24xx_dma_terminate_phy(s3cchan->phy);
600 if (next) {
601 bool success;
604 * Eww. We know this isn't going to deadlock
605 * but lockdep probably doesn't.
607 spin_lock(&next->vc.lock);
608 /* Re-check the state now that we have the lock */
609 success = next->state == S3C24XX_DMA_CHAN_WAITING;
610 if (success)
611 s3c24xx_dma_phy_reassign_start(s3cchan->phy, next);
612 spin_unlock(&next->vc.lock);
614 /* If the state changed, try to find another channel */
615 if (!success)
616 goto retry;
617 } else {
618 /* No more jobs, so free up the physical channel */
619 s3c24xx_dma_put_phy(s3cchan->phy);
622 s3cchan->phy = NULL;
623 s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
626 static void s3c24xx_dma_desc_free(struct virt_dma_desc *vd)
628 struct s3c24xx_txd *txd = to_s3c24xx_txd(&vd->tx);
629 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(vd->tx.chan);
631 if (!s3cchan->slave)
632 dma_descriptor_unmap(&vd->tx);
634 s3c24xx_dma_free_txd(txd);
637 static irqreturn_t s3c24xx_dma_irq(int irq, void *data)
639 struct s3c24xx_dma_phy *phy = data;
640 struct s3c24xx_dma_chan *s3cchan = phy->serving;
641 struct s3c24xx_txd *txd;
643 dev_dbg(&phy->host->pdev->dev, "interrupt on channel %d\n", phy->id);
646 * Interrupts happen to notify the completion of a transfer and the
647 * channel should have moved into its stop state already on its own.
648 * Therefore interrupts on channels not bound to a virtual channel
649 * should never happen. Nevertheless send a terminate command to the
650 * channel if the unlikely case happens.
652 if (unlikely(!s3cchan)) {
653 dev_err(&phy->host->pdev->dev, "interrupt on unused channel %d\n",
654 phy->id);
656 s3c24xx_dma_terminate_phy(phy);
658 return IRQ_HANDLED;
661 spin_lock(&s3cchan->vc.lock);
662 txd = s3cchan->at;
663 if (txd) {
664 /* when more sg's are in this txd, start the next one */
665 if (!list_is_last(txd->at, &txd->dsg_list)) {
666 txd->at = txd->at->next;
667 if (txd->cyclic)
668 vchan_cyclic_callback(&txd->vd);
669 s3c24xx_dma_start_next_sg(s3cchan, txd);
670 } else if (!txd->cyclic) {
671 s3cchan->at = NULL;
672 vchan_cookie_complete(&txd->vd);
675 * And start the next descriptor (if any),
676 * otherwise free this channel.
678 if (vchan_next_desc(&s3cchan->vc))
679 s3c24xx_dma_start_next_txd(s3cchan);
680 else
681 s3c24xx_dma_phy_free(s3cchan);
682 } else {
683 vchan_cyclic_callback(&txd->vd);
685 /* Cyclic: reset at beginning */
686 txd->at = txd->dsg_list.next;
687 s3c24xx_dma_start_next_sg(s3cchan, txd);
690 spin_unlock(&s3cchan->vc.lock);
692 return IRQ_HANDLED;
696 * The DMA ENGINE API
699 static int s3c24xx_dma_terminate_all(struct dma_chan *chan)
701 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
702 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
703 LIST_HEAD(head);
704 unsigned long flags;
705 int ret;
707 spin_lock_irqsave(&s3cchan->vc.lock, flags);
709 if (!s3cchan->phy && !s3cchan->at) {
710 dev_err(&s3cdma->pdev->dev, "trying to terminate already stopped channel %d\n",
711 s3cchan->id);
712 ret = -EINVAL;
713 goto unlock;
716 s3cchan->state = S3C24XX_DMA_CHAN_IDLE;
718 /* Mark physical channel as free */
719 if (s3cchan->phy)
720 s3c24xx_dma_phy_free(s3cchan);
722 /* Dequeue current job */
723 if (s3cchan->at) {
724 vchan_terminate_vdesc(&s3cchan->at->vd);
725 s3cchan->at = NULL;
728 /* Dequeue jobs not yet fired as well */
730 vchan_get_all_descriptors(&s3cchan->vc, &head);
732 spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
734 vchan_dma_desc_free_list(&s3cchan->vc, &head);
736 return 0;
738 unlock:
739 spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
741 return ret;
744 static void s3c24xx_dma_synchronize(struct dma_chan *chan)
746 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
748 vchan_synchronize(&s3cchan->vc);
751 static void s3c24xx_dma_free_chan_resources(struct dma_chan *chan)
753 /* Ensure all queued descriptors are freed */
754 vchan_free_chan_resources(to_virt_chan(chan));
757 static enum dma_status s3c24xx_dma_tx_status(struct dma_chan *chan,
758 dma_cookie_t cookie, struct dma_tx_state *txstate)
760 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
761 struct s3c24xx_txd *txd;
762 struct s3c24xx_sg *dsg;
763 struct virt_dma_desc *vd;
764 unsigned long flags;
765 enum dma_status ret;
766 size_t bytes = 0;
768 spin_lock_irqsave(&s3cchan->vc.lock, flags);
769 ret = dma_cookie_status(chan, cookie, txstate);
772 * There's no point calculating the residue if there's
773 * no txstate to store the value.
775 if (ret == DMA_COMPLETE || !txstate) {
776 spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
777 return ret;
780 vd = vchan_find_desc(&s3cchan->vc, cookie);
781 if (vd) {
782 /* On the issued list, so hasn't been processed yet */
783 txd = to_s3c24xx_txd(&vd->tx);
785 list_for_each_entry(dsg, &txd->dsg_list, node)
786 bytes += dsg->len;
787 } else {
789 * Currently running, so sum over the pending sg's and
790 * the currently active one.
792 txd = s3cchan->at;
794 dsg = list_entry(txd->at, struct s3c24xx_sg, node);
795 list_for_each_entry_from(dsg, &txd->dsg_list, node)
796 bytes += dsg->len;
798 bytes += s3c24xx_dma_getbytes_chan(s3cchan);
800 spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
803 * This cookie not complete yet
804 * Get number of bytes left in the active transactions and queue
806 dma_set_residue(txstate, bytes);
808 /* Whether waiting or running, we're in progress */
809 return ret;
813 * Initialize a descriptor to be used by memcpy submit
815 static struct dma_async_tx_descriptor *s3c24xx_dma_prep_memcpy(
816 struct dma_chan *chan, dma_addr_t dest, dma_addr_t src,
817 size_t len, unsigned long flags)
819 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
820 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
821 struct s3c24xx_txd *txd;
822 struct s3c24xx_sg *dsg;
823 int src_mod, dest_mod;
825 dev_dbg(&s3cdma->pdev->dev, "prepare memcpy of %zu bytes from %s\n",
826 len, s3cchan->name);
828 if ((len & S3C24XX_DCON_TC_MASK) != len) {
829 dev_err(&s3cdma->pdev->dev, "memcpy size %zu to large\n", len);
830 return NULL;
833 txd = s3c24xx_dma_get_txd();
834 if (!txd)
835 return NULL;
837 dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
838 if (!dsg) {
839 s3c24xx_dma_free_txd(txd);
840 return NULL;
842 list_add_tail(&dsg->node, &txd->dsg_list);
844 dsg->src_addr = src;
845 dsg->dst_addr = dest;
846 dsg->len = len;
849 * Determine a suitable transfer width.
850 * The DMA controller cannot fetch/store information which is not
851 * naturally aligned on the bus, i.e., a 4 byte fetch must start at
852 * an address divisible by 4 - more generally addr % width must be 0.
854 src_mod = src % 4;
855 dest_mod = dest % 4;
856 switch (len % 4) {
857 case 0:
858 txd->width = (src_mod == 0 && dest_mod == 0) ? 4 : 1;
859 break;
860 case 2:
861 txd->width = ((src_mod == 2 || src_mod == 0) &&
862 (dest_mod == 2 || dest_mod == 0)) ? 2 : 1;
863 break;
864 default:
865 txd->width = 1;
866 break;
869 txd->disrcc = S3C24XX_DISRCC_LOC_AHB | S3C24XX_DISRCC_INC_INCREMENT;
870 txd->didstc = S3C24XX_DIDSTC_LOC_AHB | S3C24XX_DIDSTC_INC_INCREMENT;
871 txd->dcon |= S3C24XX_DCON_DEMAND | S3C24XX_DCON_SYNC_HCLK |
872 S3C24XX_DCON_SERV_WHOLE;
874 return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
877 static struct dma_async_tx_descriptor *s3c24xx_dma_prep_dma_cyclic(
878 struct dma_chan *chan, dma_addr_t addr, size_t size, size_t period,
879 enum dma_transfer_direction direction, unsigned long flags)
881 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
882 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
883 const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
884 struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
885 struct s3c24xx_txd *txd;
886 struct s3c24xx_sg *dsg;
887 unsigned sg_len;
888 dma_addr_t slave_addr;
889 u32 hwcfg = 0;
890 int i;
892 dev_dbg(&s3cdma->pdev->dev,
893 "prepare cyclic transaction of %zu bytes with period %zu from %s\n",
894 size, period, s3cchan->name);
896 if (!is_slave_direction(direction)) {
897 dev_err(&s3cdma->pdev->dev,
898 "direction %d unsupported\n", direction);
899 return NULL;
902 txd = s3c24xx_dma_get_txd();
903 if (!txd)
904 return NULL;
906 txd->cyclic = 1;
908 if (cdata->handshake)
909 txd->dcon |= S3C24XX_DCON_HANDSHAKE;
911 switch (cdata->bus) {
912 case S3C24XX_DMA_APB:
913 txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
914 hwcfg |= S3C24XX_DISRCC_LOC_APB;
915 break;
916 case S3C24XX_DMA_AHB:
917 txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
918 hwcfg |= S3C24XX_DISRCC_LOC_AHB;
919 break;
923 * Always assume our peripheral desintation is a fixed
924 * address in memory.
926 hwcfg |= S3C24XX_DISRCC_INC_FIXED;
929 * Individual dma operations are requested by the slave,
930 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
932 txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
934 if (direction == DMA_MEM_TO_DEV) {
935 txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
936 S3C24XX_DISRCC_INC_INCREMENT;
937 txd->didstc = hwcfg;
938 slave_addr = s3cchan->cfg.dst_addr;
939 txd->width = s3cchan->cfg.dst_addr_width;
940 } else {
941 txd->disrcc = hwcfg;
942 txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
943 S3C24XX_DIDSTC_INC_INCREMENT;
944 slave_addr = s3cchan->cfg.src_addr;
945 txd->width = s3cchan->cfg.src_addr_width;
948 sg_len = size / period;
950 for (i = 0; i < sg_len; i++) {
951 dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
952 if (!dsg) {
953 s3c24xx_dma_free_txd(txd);
954 return NULL;
956 list_add_tail(&dsg->node, &txd->dsg_list);
958 dsg->len = period;
959 /* Check last period length */
960 if (i == sg_len - 1)
961 dsg->len = size - period * i;
962 if (direction == DMA_MEM_TO_DEV) {
963 dsg->src_addr = addr + period * i;
964 dsg->dst_addr = slave_addr;
965 } else { /* DMA_DEV_TO_MEM */
966 dsg->src_addr = slave_addr;
967 dsg->dst_addr = addr + period * i;
971 return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
974 static struct dma_async_tx_descriptor *s3c24xx_dma_prep_slave_sg(
975 struct dma_chan *chan, struct scatterlist *sgl,
976 unsigned int sg_len, enum dma_transfer_direction direction,
977 unsigned long flags, void *context)
979 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
980 struct s3c24xx_dma_engine *s3cdma = s3cchan->host;
981 const struct s3c24xx_dma_platdata *pdata = s3cdma->pdata;
982 struct s3c24xx_dma_channel *cdata = &pdata->channels[s3cchan->id];
983 struct s3c24xx_txd *txd;
984 struct s3c24xx_sg *dsg;
985 struct scatterlist *sg;
986 dma_addr_t slave_addr;
987 u32 hwcfg = 0;
988 int tmp;
990 dev_dbg(&s3cdma->pdev->dev, "prepare transaction of %d bytes from %s\n",
991 sg_dma_len(sgl), s3cchan->name);
993 txd = s3c24xx_dma_get_txd();
994 if (!txd)
995 return NULL;
997 if (cdata->handshake)
998 txd->dcon |= S3C24XX_DCON_HANDSHAKE;
1000 switch (cdata->bus) {
1001 case S3C24XX_DMA_APB:
1002 txd->dcon |= S3C24XX_DCON_SYNC_PCLK;
1003 hwcfg |= S3C24XX_DISRCC_LOC_APB;
1004 break;
1005 case S3C24XX_DMA_AHB:
1006 txd->dcon |= S3C24XX_DCON_SYNC_HCLK;
1007 hwcfg |= S3C24XX_DISRCC_LOC_AHB;
1008 break;
1012 * Always assume our peripheral desintation is a fixed
1013 * address in memory.
1015 hwcfg |= S3C24XX_DISRCC_INC_FIXED;
1018 * Individual dma operations are requested by the slave,
1019 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
1021 txd->dcon |= S3C24XX_DCON_SERV_SINGLE;
1023 if (direction == DMA_MEM_TO_DEV) {
1024 txd->disrcc = S3C24XX_DISRCC_LOC_AHB |
1025 S3C24XX_DISRCC_INC_INCREMENT;
1026 txd->didstc = hwcfg;
1027 slave_addr = s3cchan->cfg.dst_addr;
1028 txd->width = s3cchan->cfg.dst_addr_width;
1029 } else if (direction == DMA_DEV_TO_MEM) {
1030 txd->disrcc = hwcfg;
1031 txd->didstc = S3C24XX_DIDSTC_LOC_AHB |
1032 S3C24XX_DIDSTC_INC_INCREMENT;
1033 slave_addr = s3cchan->cfg.src_addr;
1034 txd->width = s3cchan->cfg.src_addr_width;
1035 } else {
1036 s3c24xx_dma_free_txd(txd);
1037 dev_err(&s3cdma->pdev->dev,
1038 "direction %d unsupported\n", direction);
1039 return NULL;
1042 for_each_sg(sgl, sg, sg_len, tmp) {
1043 dsg = kzalloc(sizeof(*dsg), GFP_NOWAIT);
1044 if (!dsg) {
1045 s3c24xx_dma_free_txd(txd);
1046 return NULL;
1048 list_add_tail(&dsg->node, &txd->dsg_list);
1050 dsg->len = sg_dma_len(sg);
1051 if (direction == DMA_MEM_TO_DEV) {
1052 dsg->src_addr = sg_dma_address(sg);
1053 dsg->dst_addr = slave_addr;
1054 } else { /* DMA_DEV_TO_MEM */
1055 dsg->src_addr = slave_addr;
1056 dsg->dst_addr = sg_dma_address(sg);
1060 return vchan_tx_prep(&s3cchan->vc, &txd->vd, flags);
1064 * Slave transactions callback to the slave device to allow
1065 * synchronization of slave DMA signals with the DMAC enable
1067 static void s3c24xx_dma_issue_pending(struct dma_chan *chan)
1069 struct s3c24xx_dma_chan *s3cchan = to_s3c24xx_dma_chan(chan);
1070 unsigned long flags;
1072 spin_lock_irqsave(&s3cchan->vc.lock, flags);
1073 if (vchan_issue_pending(&s3cchan->vc)) {
1074 if (!s3cchan->phy && s3cchan->state != S3C24XX_DMA_CHAN_WAITING)
1075 s3c24xx_dma_phy_alloc_and_start(s3cchan);
1077 spin_unlock_irqrestore(&s3cchan->vc.lock, flags);
1081 * Bringup and teardown
1085 * Initialise the DMAC memcpy/slave channels.
1086 * Make a local wrapper to hold required data
1088 static int s3c24xx_dma_init_virtual_channels(struct s3c24xx_dma_engine *s3cdma,
1089 struct dma_device *dmadev, unsigned int channels, bool slave)
1091 struct s3c24xx_dma_chan *chan;
1092 int i;
1094 INIT_LIST_HEAD(&dmadev->channels);
1097 * Register as many many memcpy as we have physical channels,
1098 * we won't always be able to use all but the code will have
1099 * to cope with that situation.
1101 for (i = 0; i < channels; i++) {
1102 chan = devm_kzalloc(dmadev->dev, sizeof(*chan), GFP_KERNEL);
1103 if (!chan)
1104 return -ENOMEM;
1106 chan->id = i;
1107 chan->host = s3cdma;
1108 chan->state = S3C24XX_DMA_CHAN_IDLE;
1110 if (slave) {
1111 chan->slave = true;
1112 chan->name = kasprintf(GFP_KERNEL, "slave%d", i);
1113 if (!chan->name)
1114 return -ENOMEM;
1115 } else {
1116 chan->name = kasprintf(GFP_KERNEL, "memcpy%d", i);
1117 if (!chan->name)
1118 return -ENOMEM;
1120 dev_dbg(dmadev->dev,
1121 "initialize virtual channel \"%s\"\n",
1122 chan->name);
1124 chan->vc.desc_free = s3c24xx_dma_desc_free;
1125 vchan_init(&chan->vc, dmadev);
1127 dev_info(dmadev->dev, "initialized %d virtual %s channels\n",
1128 i, slave ? "slave" : "memcpy");
1129 return i;
1132 static void s3c24xx_dma_free_virtual_channels(struct dma_device *dmadev)
1134 struct s3c24xx_dma_chan *chan = NULL;
1135 struct s3c24xx_dma_chan *next;
1137 list_for_each_entry_safe(chan,
1138 next, &dmadev->channels, vc.chan.device_node) {
1139 list_del(&chan->vc.chan.device_node);
1140 tasklet_kill(&chan->vc.task);
1144 /* s3c2410, s3c2440 and s3c2442 have a 0x40 stride without separate clocks */
1145 static struct soc_data soc_s3c2410 = {
1146 .stride = 0x40,
1147 .has_reqsel = false,
1148 .has_clocks = false,
1151 /* s3c2412 and s3c2413 have a 0x40 stride and dmareqsel mechanism */
1152 static struct soc_data soc_s3c2412 = {
1153 .stride = 0x40,
1154 .has_reqsel = true,
1155 .has_clocks = true,
1158 /* s3c2443 and following have a 0x100 stride and dmareqsel mechanism */
1159 static struct soc_data soc_s3c2443 = {
1160 .stride = 0x100,
1161 .has_reqsel = true,
1162 .has_clocks = true,
1165 static const struct platform_device_id s3c24xx_dma_driver_ids[] = {
1167 .name = "s3c2410-dma",
1168 .driver_data = (kernel_ulong_t)&soc_s3c2410,
1169 }, {
1170 .name = "s3c2412-dma",
1171 .driver_data = (kernel_ulong_t)&soc_s3c2412,
1172 }, {
1173 .name = "s3c2443-dma",
1174 .driver_data = (kernel_ulong_t)&soc_s3c2443,
1176 { },
1179 static struct soc_data *s3c24xx_dma_get_soc_data(struct platform_device *pdev)
1181 return (struct soc_data *)
1182 platform_get_device_id(pdev)->driver_data;
1185 static int s3c24xx_dma_probe(struct platform_device *pdev)
1187 const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
1188 struct s3c24xx_dma_engine *s3cdma;
1189 struct soc_data *sdata;
1190 struct resource *res;
1191 int ret;
1192 int i;
1194 if (!pdata) {
1195 dev_err(&pdev->dev, "platform data missing\n");
1196 return -ENODEV;
1199 /* Basic sanity check */
1200 if (pdata->num_phy_channels > MAX_DMA_CHANNELS) {
1201 dev_err(&pdev->dev, "too many dma channels %d, max %d\n",
1202 pdata->num_phy_channels, MAX_DMA_CHANNELS);
1203 return -EINVAL;
1206 sdata = s3c24xx_dma_get_soc_data(pdev);
1207 if (!sdata)
1208 return -EINVAL;
1210 s3cdma = devm_kzalloc(&pdev->dev, sizeof(*s3cdma), GFP_KERNEL);
1211 if (!s3cdma)
1212 return -ENOMEM;
1214 s3cdma->pdev = pdev;
1215 s3cdma->pdata = pdata;
1216 s3cdma->sdata = sdata;
1218 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1219 s3cdma->base = devm_ioremap_resource(&pdev->dev, res);
1220 if (IS_ERR(s3cdma->base))
1221 return PTR_ERR(s3cdma->base);
1223 s3cdma->phy_chans = devm_kcalloc(&pdev->dev,
1224 pdata->num_phy_channels,
1225 sizeof(struct s3c24xx_dma_phy),
1226 GFP_KERNEL);
1227 if (!s3cdma->phy_chans)
1228 return -ENOMEM;
1230 /* acquire irqs and clocks for all physical channels */
1231 for (i = 0; i < pdata->num_phy_channels; i++) {
1232 struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1233 char clk_name[6];
1235 phy->id = i;
1236 phy->base = s3cdma->base + (i * sdata->stride);
1237 phy->host = s3cdma;
1239 phy->irq = platform_get_irq(pdev, i);
1240 if (phy->irq < 0)
1241 continue;
1243 ret = devm_request_irq(&pdev->dev, phy->irq, s3c24xx_dma_irq,
1244 0, pdev->name, phy);
1245 if (ret) {
1246 dev_err(&pdev->dev, "Unable to request irq for channel %d, error %d\n",
1247 i, ret);
1248 continue;
1251 if (sdata->has_clocks) {
1252 sprintf(clk_name, "dma.%d", i);
1253 phy->clk = devm_clk_get(&pdev->dev, clk_name);
1254 if (IS_ERR(phy->clk) && sdata->has_clocks) {
1255 dev_err(&pdev->dev, "unable to acquire clock for channel %d, error %lu\n",
1256 i, PTR_ERR(phy->clk));
1257 continue;
1260 ret = clk_prepare(phy->clk);
1261 if (ret) {
1262 dev_err(&pdev->dev, "clock for phy %d failed, error %d\n",
1263 i, ret);
1264 continue;
1268 spin_lock_init(&phy->lock);
1269 phy->valid = true;
1271 dev_dbg(&pdev->dev, "physical channel %d is %s\n",
1272 i, s3c24xx_dma_phy_busy(phy) ? "BUSY" : "FREE");
1275 /* Initialize memcpy engine */
1276 dma_cap_set(DMA_MEMCPY, s3cdma->memcpy.cap_mask);
1277 dma_cap_set(DMA_PRIVATE, s3cdma->memcpy.cap_mask);
1278 s3cdma->memcpy.dev = &pdev->dev;
1279 s3cdma->memcpy.device_free_chan_resources =
1280 s3c24xx_dma_free_chan_resources;
1281 s3cdma->memcpy.device_prep_dma_memcpy = s3c24xx_dma_prep_memcpy;
1282 s3cdma->memcpy.device_tx_status = s3c24xx_dma_tx_status;
1283 s3cdma->memcpy.device_issue_pending = s3c24xx_dma_issue_pending;
1284 s3cdma->memcpy.device_config = s3c24xx_dma_set_runtime_config;
1285 s3cdma->memcpy.device_terminate_all = s3c24xx_dma_terminate_all;
1286 s3cdma->memcpy.device_synchronize = s3c24xx_dma_synchronize;
1288 /* Initialize slave engine for SoC internal dedicated peripherals */
1289 dma_cap_set(DMA_SLAVE, s3cdma->slave.cap_mask);
1290 dma_cap_set(DMA_CYCLIC, s3cdma->slave.cap_mask);
1291 dma_cap_set(DMA_PRIVATE, s3cdma->slave.cap_mask);
1292 s3cdma->slave.dev = &pdev->dev;
1293 s3cdma->slave.device_free_chan_resources =
1294 s3c24xx_dma_free_chan_resources;
1295 s3cdma->slave.device_tx_status = s3c24xx_dma_tx_status;
1296 s3cdma->slave.device_issue_pending = s3c24xx_dma_issue_pending;
1297 s3cdma->slave.device_prep_slave_sg = s3c24xx_dma_prep_slave_sg;
1298 s3cdma->slave.device_prep_dma_cyclic = s3c24xx_dma_prep_dma_cyclic;
1299 s3cdma->slave.device_config = s3c24xx_dma_set_runtime_config;
1300 s3cdma->slave.device_terminate_all = s3c24xx_dma_terminate_all;
1301 s3cdma->slave.device_synchronize = s3c24xx_dma_synchronize;
1302 s3cdma->slave.filter.map = pdata->slave_map;
1303 s3cdma->slave.filter.mapcnt = pdata->slavecnt;
1304 s3cdma->slave.filter.fn = s3c24xx_dma_filter;
1306 /* Register as many memcpy channels as there are physical channels */
1307 ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->memcpy,
1308 pdata->num_phy_channels, false);
1309 if (ret <= 0) {
1310 dev_warn(&pdev->dev,
1311 "%s failed to enumerate memcpy channels - %d\n",
1312 __func__, ret);
1313 goto err_memcpy;
1316 /* Register slave channels */
1317 ret = s3c24xx_dma_init_virtual_channels(s3cdma, &s3cdma->slave,
1318 pdata->num_channels, true);
1319 if (ret <= 0) {
1320 dev_warn(&pdev->dev,
1321 "%s failed to enumerate slave channels - %d\n",
1322 __func__, ret);
1323 goto err_slave;
1326 ret = dma_async_device_register(&s3cdma->memcpy);
1327 if (ret) {
1328 dev_warn(&pdev->dev,
1329 "%s failed to register memcpy as an async device - %d\n",
1330 __func__, ret);
1331 goto err_memcpy_reg;
1334 ret = dma_async_device_register(&s3cdma->slave);
1335 if (ret) {
1336 dev_warn(&pdev->dev,
1337 "%s failed to register slave as an async device - %d\n",
1338 __func__, ret);
1339 goto err_slave_reg;
1342 platform_set_drvdata(pdev, s3cdma);
1343 dev_info(&pdev->dev, "Loaded dma driver with %d physical channels\n",
1344 pdata->num_phy_channels);
1346 return 0;
1348 err_slave_reg:
1349 dma_async_device_unregister(&s3cdma->memcpy);
1350 err_memcpy_reg:
1351 s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
1352 err_slave:
1353 s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
1354 err_memcpy:
1355 if (sdata->has_clocks)
1356 for (i = 0; i < pdata->num_phy_channels; i++) {
1357 struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1358 if (phy->valid)
1359 clk_unprepare(phy->clk);
1362 return ret;
1365 static void s3c24xx_dma_free_irq(struct platform_device *pdev,
1366 struct s3c24xx_dma_engine *s3cdma)
1368 int i;
1370 for (i = 0; i < s3cdma->pdata->num_phy_channels; i++) {
1371 struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1373 devm_free_irq(&pdev->dev, phy->irq, phy);
1377 static int s3c24xx_dma_remove(struct platform_device *pdev)
1379 const struct s3c24xx_dma_platdata *pdata = dev_get_platdata(&pdev->dev);
1380 struct s3c24xx_dma_engine *s3cdma = platform_get_drvdata(pdev);
1381 struct soc_data *sdata = s3c24xx_dma_get_soc_data(pdev);
1382 int i;
1384 dma_async_device_unregister(&s3cdma->slave);
1385 dma_async_device_unregister(&s3cdma->memcpy);
1387 s3c24xx_dma_free_irq(pdev, s3cdma);
1389 s3c24xx_dma_free_virtual_channels(&s3cdma->slave);
1390 s3c24xx_dma_free_virtual_channels(&s3cdma->memcpy);
1392 if (sdata->has_clocks)
1393 for (i = 0; i < pdata->num_phy_channels; i++) {
1394 struct s3c24xx_dma_phy *phy = &s3cdma->phy_chans[i];
1395 if (phy->valid)
1396 clk_unprepare(phy->clk);
1399 return 0;
1402 static struct platform_driver s3c24xx_dma_driver = {
1403 .driver = {
1404 .name = "s3c24xx-dma",
1406 .id_table = s3c24xx_dma_driver_ids,
1407 .probe = s3c24xx_dma_probe,
1408 .remove = s3c24xx_dma_remove,
1411 module_platform_driver(s3c24xx_dma_driver);
1413 bool s3c24xx_dma_filter(struct dma_chan *chan, void *param)
1415 struct s3c24xx_dma_chan *s3cchan;
1417 if (chan->device->dev->driver != &s3c24xx_dma_driver.driver)
1418 return false;
1420 s3cchan = to_s3c24xx_dma_chan(chan);
1422 return s3cchan->id == (uintptr_t)param;
1424 EXPORT_SYMBOL(s3c24xx_dma_filter);
1426 MODULE_DESCRIPTION("S3C24XX DMA Driver");
1427 MODULE_AUTHOR("Heiko Stuebner");
1428 MODULE_LICENSE("GPL v2");