1 // SPDX-License-Identifier: GPL-2.0-or-later
5 * Copyright (c) 2013 Heiko Stuebner <heiko@sntech.de>
7 * based on amba-pl08x.c
9 * Copyright (c) 2006 ARM Ltd.
10 * Copyright (c) 2010 ST-Ericsson SA
12 * Author: Peter Pearse <peter.pearse@arm.com>
13 * Author: Linus Walleij <linus.walleij@stericsson.com>
15 * The DMA controllers in S3C24XX SoCs have a varying number of DMA signals
16 * that can be routed to any of the 4 to 8 hardware-channels.
18 * Therefore on these DMA controllers the number of channels
19 * and the number of incoming DMA signals are two totally different things.
20 * It is usually not possible to theoretically handle all physical signals,
21 * so a multiplexing scheme with possible denial of use is necessary.
27 #include <linux/platform_device.h>
28 #include <linux/types.h>
29 #include <linux/dmaengine.h>
30 #include <linux/dma-mapping.h>
31 #include <linux/interrupt.h>
32 #include <linux/clk.h>
33 #include <linux/module.h>
34 #include <linux/mod_devicetable.h>
35 #include <linux/slab.h>
36 #include <linux/platform_data/dma-s3c24xx.h>
38 #include "dmaengine.h"
41 #define MAX_DMA_CHANNELS 8
43 #define S3C24XX_DISRC 0x00
44 #define S3C24XX_DISRCC 0x04
45 #define S3C24XX_DISRCC_INC_INCREMENT 0
46 #define S3C24XX_DISRCC_INC_FIXED BIT(0)
47 #define S3C24XX_DISRCC_LOC_AHB 0
48 #define S3C24XX_DISRCC_LOC_APB BIT(1)
50 #define S3C24XX_DIDST 0x08
51 #define S3C24XX_DIDSTC 0x0c
52 #define S3C24XX_DIDSTC_INC_INCREMENT 0
53 #define S3C24XX_DIDSTC_INC_FIXED BIT(0)
54 #define S3C24XX_DIDSTC_LOC_AHB 0
55 #define S3C24XX_DIDSTC_LOC_APB BIT(1)
56 #define S3C24XX_DIDSTC_INT_TC0 0
57 #define S3C24XX_DIDSTC_INT_RELOAD BIT(2)
59 #define S3C24XX_DCON 0x10
61 #define S3C24XX_DCON_TC_MASK 0xfffff
62 #define S3C24XX_DCON_DSZ_BYTE (0 << 20)
63 #define S3C24XX_DCON_DSZ_HALFWORD (1 << 20)
64 #define S3C24XX_DCON_DSZ_WORD (2 << 20)
65 #define S3C24XX_DCON_DSZ_MASK (3 << 20)
66 #define S3C24XX_DCON_DSZ_SHIFT 20
67 #define S3C24XX_DCON_AUTORELOAD 0
68 #define S3C24XX_DCON_NORELOAD BIT(22)
69 #define S3C24XX_DCON_HWTRIG BIT(23)
70 #define S3C24XX_DCON_HWSRC_SHIFT 24
71 #define S3C24XX_DCON_SERV_SINGLE 0
72 #define S3C24XX_DCON_SERV_WHOLE BIT(27)
73 #define S3C24XX_DCON_TSZ_UNIT 0
74 #define S3C24XX_DCON_TSZ_BURST4 BIT(28)
75 #define S3C24XX_DCON_INT BIT(29)
76 #define S3C24XX_DCON_SYNC_PCLK 0
77 #define S3C24XX_DCON_SYNC_HCLK BIT(30)
78 #define S3C24XX_DCON_DEMAND 0
79 #define S3C24XX_DCON_HANDSHAKE BIT(31)
81 #define S3C24XX_DSTAT 0x14
82 #define S3C24XX_DSTAT_STAT_BUSY BIT(20)
83 #define S3C24XX_DSTAT_CURRTC_MASK 0xfffff
85 #define S3C24XX_DMASKTRIG 0x20
86 #define S3C24XX_DMASKTRIG_SWTRIG BIT(0)
87 #define S3C24XX_DMASKTRIG_ON BIT(1)
88 #define S3C24XX_DMASKTRIG_STOP BIT(2)
90 #define S3C24XX_DMAREQSEL 0x24
91 #define S3C24XX_DMAREQSEL_HW BIT(0)
94 * S3C2410, S3C2440 and S3C2442 SoCs cannot select any physical channel
95 * for a DMA source. Instead only specific channels are valid.
96 * All of these SoCs have 4 physical channels and the number of request
97 * source bits is 3. Additionally we also need 1 bit to mark the channel
99 * Therefore we separate the chansel element of the channel data into 4
100 * parts of 4 bits each, to hold the information if the channel is valid
101 * and the hw request source to use.
104 * SDI is valid on channels 0, 2 and 3 - with varying hw request sources.
105 * For it the chansel field would look like
107 * ((BIT(3) | 1) << 3 * 4) | // channel 3, with request source 1
108 * ((BIT(3) | 2) << 2 * 4) | // channel 2, with request source 2
109 * ((BIT(3) | 2) << 0 * 4) // channel 0, with request source 2
111 #define S3C24XX_CHANSEL_WIDTH 4
112 #define S3C24XX_CHANSEL_VALID BIT(3)
113 #define S3C24XX_CHANSEL_REQ_MASK 7
116 * struct soc_data - vendor-specific config parameters for individual SoCs
117 * @stride: spacing between the registers of each channel
118 * @has_reqsel: does the controller use the newer requestselection mechanism
119 * @has_clocks: are controllable dma-clocks present
128 * enum s3c24xx_dma_chan_state - holds the virtual channel states
129 * @S3C24XX_DMA_CHAN_IDLE: the channel is idle
130 * @S3C24XX_DMA_CHAN_RUNNING: the channel has allocated a physical transport
131 * channel and is running a transfer on it
132 * @S3C24XX_DMA_CHAN_WAITING: the channel is waiting for a physical transport
133 * channel to become available (only pertains to memcpy channels)
135 enum s3c24xx_dma_chan_state
{
136 S3C24XX_DMA_CHAN_IDLE
,
137 S3C24XX_DMA_CHAN_RUNNING
,
138 S3C24XX_DMA_CHAN_WAITING
,
142 * struct s3c24xx_sg - structure containing data per sg
143 * @src_addr: src address of sg
144 * @dst_addr: dst address of sg
145 * @len: transfer len in bytes
146 * @node: node for txd's dsg_list
152 struct list_head node
;
156 * struct s3c24xx_txd - wrapper for struct dma_async_tx_descriptor
157 * @vd: virtual DMA descriptor
158 * @dsg_list: list of children sg's
159 * @at: sg currently being transfered
160 * @width: transfer width
161 * @disrcc: value for source control register
162 * @didstc: value for destination control register
163 * @dcon: base value for dcon register
164 * @cyclic: indicate cyclic transfer
167 struct virt_dma_desc vd
;
168 struct list_head dsg_list
;
169 struct list_head
*at
;
177 struct s3c24xx_dma_chan
;
180 * struct s3c24xx_dma_phy - holder for the physical channels
181 * @id: physical index to this channel
182 * @valid: does the channel have all required elements
183 * @base: virtual memory base (remapped) for the this channel
184 * @irq: interrupt for this channel
185 * @clk: clock for this channel
186 * @lock: a lock to use when altering an instance of this struct
187 * @serving: virtual channel currently being served by this physicalchannel
188 * @host: a pointer to the host (internal use)
190 struct s3c24xx_dma_phy
{
197 struct s3c24xx_dma_chan
*serving
;
198 struct s3c24xx_dma_engine
*host
;
202 * struct s3c24xx_dma_chan - this structure wraps a DMA ENGINE channel
203 * @id: the id of the channel
204 * @name: name of the channel
205 * @vc: wrappped virtual channel
206 * @phy: the physical channel utilized by this channel, if there is one
207 * @runtime_addr: address for RX/TX according to the runtime config
208 * @at: active transaction on this channel
209 * @lock: a lock for this channel data
210 * @host: a pointer to the host (internal use)
211 * @state: whether the channel is idle, running etc
212 * @slave: whether this channel is a device (slave) or for memcpy
214 struct s3c24xx_dma_chan
{
217 struct virt_dma_chan vc
;
218 struct s3c24xx_dma_phy
*phy
;
219 struct dma_slave_config cfg
;
220 struct s3c24xx_txd
*at
;
221 struct s3c24xx_dma_engine
*host
;
222 enum s3c24xx_dma_chan_state state
;
227 * struct s3c24xx_dma_engine - the local state holder for the S3C24XX
228 * @pdev: the corresponding platform device
229 * @pdata: platform data passed in from the platform/machine
230 * @base: virtual memory base (remapped)
231 * @slave: slave engine for this instance
232 * @memcpy: memcpy engine for this instance
233 * @phy_chans: array of data for the physical channels
235 struct s3c24xx_dma_engine
{
236 struct platform_device
*pdev
;
237 const struct s3c24xx_dma_platdata
*pdata
;
238 struct soc_data
*sdata
;
240 struct dma_device slave
;
241 struct dma_device memcpy
;
242 struct s3c24xx_dma_phy
*phy_chans
;
246 * Physical channel handling
250 * Check whether a certain channel is busy or not.
252 static int s3c24xx_dma_phy_busy(struct s3c24xx_dma_phy
*phy
)
254 unsigned int val
= readl(phy
->base
+ S3C24XX_DSTAT
);
255 return val
& S3C24XX_DSTAT_STAT_BUSY
;
258 static bool s3c24xx_dma_phy_valid(struct s3c24xx_dma_chan
*s3cchan
,
259 struct s3c24xx_dma_phy
*phy
)
261 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
262 const struct s3c24xx_dma_platdata
*pdata
= s3cdma
->pdata
;
263 struct s3c24xx_dma_channel
*cdata
= &pdata
->channels
[s3cchan
->id
];
266 /* every phy is valid for memcopy channels */
270 /* On newer variants all phys can be used for all virtual channels */
271 if (s3cdma
->sdata
->has_reqsel
)
274 phyvalid
= (cdata
->chansel
>> (phy
->id
* S3C24XX_CHANSEL_WIDTH
));
275 return (phyvalid
& S3C24XX_CHANSEL_VALID
) ? true : false;
279 * Allocate a physical channel for a virtual channel
281 * Try to locate a physical channel to be used for this transfer. If all
282 * are taken return NULL and the requester will have to cope by using
283 * some fallback PIO mode or retrying later.
286 struct s3c24xx_dma_phy
*s3c24xx_dma_get_phy(struct s3c24xx_dma_chan
*s3cchan
)
288 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
289 struct s3c24xx_dma_phy
*phy
= NULL
;
294 for (i
= 0; i
< s3cdma
->pdata
->num_phy_channels
; i
++) {
295 phy
= &s3cdma
->phy_chans
[i
];
300 if (!s3c24xx_dma_phy_valid(s3cchan
, phy
))
303 spin_lock_irqsave(&phy
->lock
, flags
);
306 phy
->serving
= s3cchan
;
307 spin_unlock_irqrestore(&phy
->lock
, flags
);
311 spin_unlock_irqrestore(&phy
->lock
, flags
);
314 /* No physical channel available, cope with it */
315 if (i
== s3cdma
->pdata
->num_phy_channels
) {
316 dev_warn(&s3cdma
->pdev
->dev
, "no phy channel available\n");
320 /* start the phy clock */
321 if (s3cdma
->sdata
->has_clocks
) {
322 ret
= clk_enable(phy
->clk
);
324 dev_err(&s3cdma
->pdev
->dev
, "could not enable clock for channel %d, err %d\n",
335 * Mark the physical channel as free.
337 * This drops the link between the physical and virtual channel.
339 static inline void s3c24xx_dma_put_phy(struct s3c24xx_dma_phy
*phy
)
341 struct s3c24xx_dma_engine
*s3cdma
= phy
->host
;
343 if (s3cdma
->sdata
->has_clocks
)
344 clk_disable(phy
->clk
);
350 * Stops the channel by writing the stop bit.
351 * This should not be used for an on-going transfer, but as a method of
352 * shutting down a channel (eg, when it's no longer used) or terminating a
355 static void s3c24xx_dma_terminate_phy(struct s3c24xx_dma_phy
*phy
)
357 writel(S3C24XX_DMASKTRIG_STOP
, phy
->base
+ S3C24XX_DMASKTRIG
);
361 * Virtual channel handling
365 struct s3c24xx_dma_chan
*to_s3c24xx_dma_chan(struct dma_chan
*chan
)
367 return container_of(chan
, struct s3c24xx_dma_chan
, vc
.chan
);
370 static u32
s3c24xx_dma_getbytes_chan(struct s3c24xx_dma_chan
*s3cchan
)
372 struct s3c24xx_dma_phy
*phy
= s3cchan
->phy
;
373 struct s3c24xx_txd
*txd
= s3cchan
->at
;
374 u32 tc
= readl(phy
->base
+ S3C24XX_DSTAT
) & S3C24XX_DSTAT_CURRTC_MASK
;
376 return tc
* txd
->width
;
379 static int s3c24xx_dma_set_runtime_config(struct dma_chan
*chan
,
380 struct dma_slave_config
*config
)
382 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
386 /* Reject definitely invalid configurations */
387 if (config
->src_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
||
388 config
->dst_addr_width
== DMA_SLAVE_BUSWIDTH_8_BYTES
)
391 spin_lock_irqsave(&s3cchan
->vc
.lock
, flags
);
393 if (!s3cchan
->slave
) {
398 s3cchan
->cfg
= *config
;
401 spin_unlock_irqrestore(&s3cchan
->vc
.lock
, flags
);
410 struct s3c24xx_txd
*to_s3c24xx_txd(struct dma_async_tx_descriptor
*tx
)
412 return container_of(tx
, struct s3c24xx_txd
, vd
.tx
);
415 static struct s3c24xx_txd
*s3c24xx_dma_get_txd(void)
417 struct s3c24xx_txd
*txd
= kzalloc(sizeof(*txd
), GFP_NOWAIT
);
420 INIT_LIST_HEAD(&txd
->dsg_list
);
421 txd
->dcon
= S3C24XX_DCON_INT
| S3C24XX_DCON_NORELOAD
;
427 static void s3c24xx_dma_free_txd(struct s3c24xx_txd
*txd
)
429 struct s3c24xx_sg
*dsg
, *_dsg
;
431 list_for_each_entry_safe(dsg
, _dsg
, &txd
->dsg_list
, node
) {
432 list_del(&dsg
->node
);
439 static void s3c24xx_dma_start_next_sg(struct s3c24xx_dma_chan
*s3cchan
,
440 struct s3c24xx_txd
*txd
)
442 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
443 struct s3c24xx_dma_phy
*phy
= s3cchan
->phy
;
444 const struct s3c24xx_dma_platdata
*pdata
= s3cdma
->pdata
;
445 struct s3c24xx_sg
*dsg
= list_entry(txd
->at
, struct s3c24xx_sg
, node
);
446 u32 dcon
= txd
->dcon
;
449 /* transfer-size and -count from len and width */
450 switch (txd
->width
) {
452 dcon
|= S3C24XX_DCON_DSZ_BYTE
| dsg
->len
;
455 dcon
|= S3C24XX_DCON_DSZ_HALFWORD
| (dsg
->len
/ 2);
458 dcon
|= S3C24XX_DCON_DSZ_WORD
| (dsg
->len
/ 4);
462 if (s3cchan
->slave
) {
463 struct s3c24xx_dma_channel
*cdata
=
464 &pdata
->channels
[s3cchan
->id
];
466 if (s3cdma
->sdata
->has_reqsel
) {
467 writel_relaxed((cdata
->chansel
<< 1) |
468 S3C24XX_DMAREQSEL_HW
,
469 phy
->base
+ S3C24XX_DMAREQSEL
);
471 int csel
= cdata
->chansel
>> (phy
->id
*
472 S3C24XX_CHANSEL_WIDTH
);
474 csel
&= S3C24XX_CHANSEL_REQ_MASK
;
475 dcon
|= csel
<< S3C24XX_DCON_HWSRC_SHIFT
;
476 dcon
|= S3C24XX_DCON_HWTRIG
;
479 if (s3cdma
->sdata
->has_reqsel
)
480 writel_relaxed(0, phy
->base
+ S3C24XX_DMAREQSEL
);
483 writel_relaxed(dsg
->src_addr
, phy
->base
+ S3C24XX_DISRC
);
484 writel_relaxed(txd
->disrcc
, phy
->base
+ S3C24XX_DISRCC
);
485 writel_relaxed(dsg
->dst_addr
, phy
->base
+ S3C24XX_DIDST
);
486 writel_relaxed(txd
->didstc
, phy
->base
+ S3C24XX_DIDSTC
);
487 writel_relaxed(dcon
, phy
->base
+ S3C24XX_DCON
);
489 val
= readl_relaxed(phy
->base
+ S3C24XX_DMASKTRIG
);
490 val
&= ~S3C24XX_DMASKTRIG_STOP
;
491 val
|= S3C24XX_DMASKTRIG_ON
;
493 /* trigger the dma operation for memcpy transfers */
495 val
|= S3C24XX_DMASKTRIG_SWTRIG
;
497 writel(val
, phy
->base
+ S3C24XX_DMASKTRIG
);
501 * Set the initial DMA register values and start first sg.
503 static void s3c24xx_dma_start_next_txd(struct s3c24xx_dma_chan
*s3cchan
)
505 struct s3c24xx_dma_phy
*phy
= s3cchan
->phy
;
506 struct virt_dma_desc
*vd
= vchan_next_desc(&s3cchan
->vc
);
507 struct s3c24xx_txd
*txd
= to_s3c24xx_txd(&vd
->tx
);
509 list_del(&txd
->vd
.node
);
513 /* Wait for channel inactive */
514 while (s3c24xx_dma_phy_busy(phy
))
517 /* point to the first element of the sg list */
518 txd
->at
= txd
->dsg_list
.next
;
519 s3c24xx_dma_start_next_sg(s3cchan
, txd
);
523 * Try to allocate a physical channel. When successful, assign it to
524 * this virtual channel, and initiate the next descriptor. The
525 * virtual channel lock must be held at this point.
527 static void s3c24xx_dma_phy_alloc_and_start(struct s3c24xx_dma_chan
*s3cchan
)
529 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
530 struct s3c24xx_dma_phy
*phy
;
532 phy
= s3c24xx_dma_get_phy(s3cchan
);
534 dev_dbg(&s3cdma
->pdev
->dev
, "no physical channel available for xfer on %s\n",
536 s3cchan
->state
= S3C24XX_DMA_CHAN_WAITING
;
540 dev_dbg(&s3cdma
->pdev
->dev
, "allocated physical channel %d for xfer on %s\n",
541 phy
->id
, s3cchan
->name
);
544 s3cchan
->state
= S3C24XX_DMA_CHAN_RUNNING
;
546 s3c24xx_dma_start_next_txd(s3cchan
);
549 static void s3c24xx_dma_phy_reassign_start(struct s3c24xx_dma_phy
*phy
,
550 struct s3c24xx_dma_chan
*s3cchan
)
552 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
554 dev_dbg(&s3cdma
->pdev
->dev
, "reassigned physical channel %d for xfer on %s\n",
555 phy
->id
, s3cchan
->name
);
558 * We do this without taking the lock; we're really only concerned
559 * about whether this pointer is NULL or not, and we're guaranteed
560 * that this will only be called when it _already_ is non-NULL.
562 phy
->serving
= s3cchan
;
564 s3cchan
->state
= S3C24XX_DMA_CHAN_RUNNING
;
565 s3c24xx_dma_start_next_txd(s3cchan
);
569 * Free a physical DMA channel, potentially reallocating it to another
570 * virtual channel if we have any pending.
572 static void s3c24xx_dma_phy_free(struct s3c24xx_dma_chan
*s3cchan
)
574 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
575 struct s3c24xx_dma_chan
*p
, *next
;
580 /* Find a waiting virtual channel for the next transfer. */
581 list_for_each_entry(p
, &s3cdma
->memcpy
.channels
, vc
.chan
.device_node
)
582 if (p
->state
== S3C24XX_DMA_CHAN_WAITING
) {
588 list_for_each_entry(p
, &s3cdma
->slave
.channels
,
590 if (p
->state
== S3C24XX_DMA_CHAN_WAITING
&&
591 s3c24xx_dma_phy_valid(p
, s3cchan
->phy
)) {
597 /* Ensure that the physical channel is stopped */
598 s3c24xx_dma_terminate_phy(s3cchan
->phy
);
604 * Eww. We know this isn't going to deadlock
605 * but lockdep probably doesn't.
607 spin_lock(&next
->vc
.lock
);
608 /* Re-check the state now that we have the lock */
609 success
= next
->state
== S3C24XX_DMA_CHAN_WAITING
;
611 s3c24xx_dma_phy_reassign_start(s3cchan
->phy
, next
);
612 spin_unlock(&next
->vc
.lock
);
614 /* If the state changed, try to find another channel */
618 /* No more jobs, so free up the physical channel */
619 s3c24xx_dma_put_phy(s3cchan
->phy
);
623 s3cchan
->state
= S3C24XX_DMA_CHAN_IDLE
;
626 static void s3c24xx_dma_desc_free(struct virt_dma_desc
*vd
)
628 struct s3c24xx_txd
*txd
= to_s3c24xx_txd(&vd
->tx
);
629 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(vd
->tx
.chan
);
632 dma_descriptor_unmap(&vd
->tx
);
634 s3c24xx_dma_free_txd(txd
);
637 static irqreturn_t
s3c24xx_dma_irq(int irq
, void *data
)
639 struct s3c24xx_dma_phy
*phy
= data
;
640 struct s3c24xx_dma_chan
*s3cchan
= phy
->serving
;
641 struct s3c24xx_txd
*txd
;
643 dev_dbg(&phy
->host
->pdev
->dev
, "interrupt on channel %d\n", phy
->id
);
646 * Interrupts happen to notify the completion of a transfer and the
647 * channel should have moved into its stop state already on its own.
648 * Therefore interrupts on channels not bound to a virtual channel
649 * should never happen. Nevertheless send a terminate command to the
650 * channel if the unlikely case happens.
652 if (unlikely(!s3cchan
)) {
653 dev_err(&phy
->host
->pdev
->dev
, "interrupt on unused channel %d\n",
656 s3c24xx_dma_terminate_phy(phy
);
661 spin_lock(&s3cchan
->vc
.lock
);
664 /* when more sg's are in this txd, start the next one */
665 if (!list_is_last(txd
->at
, &txd
->dsg_list
)) {
666 txd
->at
= txd
->at
->next
;
668 vchan_cyclic_callback(&txd
->vd
);
669 s3c24xx_dma_start_next_sg(s3cchan
, txd
);
670 } else if (!txd
->cyclic
) {
672 vchan_cookie_complete(&txd
->vd
);
675 * And start the next descriptor (if any),
676 * otherwise free this channel.
678 if (vchan_next_desc(&s3cchan
->vc
))
679 s3c24xx_dma_start_next_txd(s3cchan
);
681 s3c24xx_dma_phy_free(s3cchan
);
683 vchan_cyclic_callback(&txd
->vd
);
685 /* Cyclic: reset at beginning */
686 txd
->at
= txd
->dsg_list
.next
;
687 s3c24xx_dma_start_next_sg(s3cchan
, txd
);
690 spin_unlock(&s3cchan
->vc
.lock
);
699 static int s3c24xx_dma_terminate_all(struct dma_chan
*chan
)
701 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
702 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
707 spin_lock_irqsave(&s3cchan
->vc
.lock
, flags
);
709 if (!s3cchan
->phy
&& !s3cchan
->at
) {
710 dev_err(&s3cdma
->pdev
->dev
, "trying to terminate already stopped channel %d\n",
716 s3cchan
->state
= S3C24XX_DMA_CHAN_IDLE
;
718 /* Mark physical channel as free */
720 s3c24xx_dma_phy_free(s3cchan
);
722 /* Dequeue current job */
724 vchan_terminate_vdesc(&s3cchan
->at
->vd
);
728 /* Dequeue jobs not yet fired as well */
730 vchan_get_all_descriptors(&s3cchan
->vc
, &head
);
732 spin_unlock_irqrestore(&s3cchan
->vc
.lock
, flags
);
734 vchan_dma_desc_free_list(&s3cchan
->vc
, &head
);
739 spin_unlock_irqrestore(&s3cchan
->vc
.lock
, flags
);
744 static void s3c24xx_dma_synchronize(struct dma_chan
*chan
)
746 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
748 vchan_synchronize(&s3cchan
->vc
);
751 static void s3c24xx_dma_free_chan_resources(struct dma_chan
*chan
)
753 /* Ensure all queued descriptors are freed */
754 vchan_free_chan_resources(to_virt_chan(chan
));
757 static enum dma_status
s3c24xx_dma_tx_status(struct dma_chan
*chan
,
758 dma_cookie_t cookie
, struct dma_tx_state
*txstate
)
760 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
761 struct s3c24xx_txd
*txd
;
762 struct s3c24xx_sg
*dsg
;
763 struct virt_dma_desc
*vd
;
768 spin_lock_irqsave(&s3cchan
->vc
.lock
, flags
);
769 ret
= dma_cookie_status(chan
, cookie
, txstate
);
772 * There's no point calculating the residue if there's
773 * no txstate to store the value.
775 if (ret
== DMA_COMPLETE
|| !txstate
) {
776 spin_unlock_irqrestore(&s3cchan
->vc
.lock
, flags
);
780 vd
= vchan_find_desc(&s3cchan
->vc
, cookie
);
782 /* On the issued list, so hasn't been processed yet */
783 txd
= to_s3c24xx_txd(&vd
->tx
);
785 list_for_each_entry(dsg
, &txd
->dsg_list
, node
)
789 * Currently running, so sum over the pending sg's and
790 * the currently active one.
794 dsg
= list_entry(txd
->at
, struct s3c24xx_sg
, node
);
795 list_for_each_entry_from(dsg
, &txd
->dsg_list
, node
)
798 bytes
+= s3c24xx_dma_getbytes_chan(s3cchan
);
800 spin_unlock_irqrestore(&s3cchan
->vc
.lock
, flags
);
803 * This cookie not complete yet
804 * Get number of bytes left in the active transactions and queue
806 dma_set_residue(txstate
, bytes
);
808 /* Whether waiting or running, we're in progress */
813 * Initialize a descriptor to be used by memcpy submit
815 static struct dma_async_tx_descriptor
*s3c24xx_dma_prep_memcpy(
816 struct dma_chan
*chan
, dma_addr_t dest
, dma_addr_t src
,
817 size_t len
, unsigned long flags
)
819 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
820 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
821 struct s3c24xx_txd
*txd
;
822 struct s3c24xx_sg
*dsg
;
823 int src_mod
, dest_mod
;
825 dev_dbg(&s3cdma
->pdev
->dev
, "prepare memcpy of %zu bytes from %s\n",
828 if ((len
& S3C24XX_DCON_TC_MASK
) != len
) {
829 dev_err(&s3cdma
->pdev
->dev
, "memcpy size %zu to large\n", len
);
833 txd
= s3c24xx_dma_get_txd();
837 dsg
= kzalloc(sizeof(*dsg
), GFP_NOWAIT
);
839 s3c24xx_dma_free_txd(txd
);
842 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
845 dsg
->dst_addr
= dest
;
849 * Determine a suitable transfer width.
850 * The DMA controller cannot fetch/store information which is not
851 * naturally aligned on the bus, i.e., a 4 byte fetch must start at
852 * an address divisible by 4 - more generally addr % width must be 0.
858 txd
->width
= (src_mod
== 0 && dest_mod
== 0) ? 4 : 1;
861 txd
->width
= ((src_mod
== 2 || src_mod
== 0) &&
862 (dest_mod
== 2 || dest_mod
== 0)) ? 2 : 1;
869 txd
->disrcc
= S3C24XX_DISRCC_LOC_AHB
| S3C24XX_DISRCC_INC_INCREMENT
;
870 txd
->didstc
= S3C24XX_DIDSTC_LOC_AHB
| S3C24XX_DIDSTC_INC_INCREMENT
;
871 txd
->dcon
|= S3C24XX_DCON_DEMAND
| S3C24XX_DCON_SYNC_HCLK
|
872 S3C24XX_DCON_SERV_WHOLE
;
874 return vchan_tx_prep(&s3cchan
->vc
, &txd
->vd
, flags
);
877 static struct dma_async_tx_descriptor
*s3c24xx_dma_prep_dma_cyclic(
878 struct dma_chan
*chan
, dma_addr_t addr
, size_t size
, size_t period
,
879 enum dma_transfer_direction direction
, unsigned long flags
)
881 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
882 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
883 const struct s3c24xx_dma_platdata
*pdata
= s3cdma
->pdata
;
884 struct s3c24xx_dma_channel
*cdata
= &pdata
->channels
[s3cchan
->id
];
885 struct s3c24xx_txd
*txd
;
886 struct s3c24xx_sg
*dsg
;
888 dma_addr_t slave_addr
;
892 dev_dbg(&s3cdma
->pdev
->dev
,
893 "prepare cyclic transaction of %zu bytes with period %zu from %s\n",
894 size
, period
, s3cchan
->name
);
896 if (!is_slave_direction(direction
)) {
897 dev_err(&s3cdma
->pdev
->dev
,
898 "direction %d unsupported\n", direction
);
902 txd
= s3c24xx_dma_get_txd();
908 if (cdata
->handshake
)
909 txd
->dcon
|= S3C24XX_DCON_HANDSHAKE
;
911 switch (cdata
->bus
) {
912 case S3C24XX_DMA_APB
:
913 txd
->dcon
|= S3C24XX_DCON_SYNC_PCLK
;
914 hwcfg
|= S3C24XX_DISRCC_LOC_APB
;
916 case S3C24XX_DMA_AHB
:
917 txd
->dcon
|= S3C24XX_DCON_SYNC_HCLK
;
918 hwcfg
|= S3C24XX_DISRCC_LOC_AHB
;
923 * Always assume our peripheral desintation is a fixed
926 hwcfg
|= S3C24XX_DISRCC_INC_FIXED
;
929 * Individual dma operations are requested by the slave,
930 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
932 txd
->dcon
|= S3C24XX_DCON_SERV_SINGLE
;
934 if (direction
== DMA_MEM_TO_DEV
) {
935 txd
->disrcc
= S3C24XX_DISRCC_LOC_AHB
|
936 S3C24XX_DISRCC_INC_INCREMENT
;
938 slave_addr
= s3cchan
->cfg
.dst_addr
;
939 txd
->width
= s3cchan
->cfg
.dst_addr_width
;
942 txd
->didstc
= S3C24XX_DIDSTC_LOC_AHB
|
943 S3C24XX_DIDSTC_INC_INCREMENT
;
944 slave_addr
= s3cchan
->cfg
.src_addr
;
945 txd
->width
= s3cchan
->cfg
.src_addr_width
;
948 sg_len
= size
/ period
;
950 for (i
= 0; i
< sg_len
; i
++) {
951 dsg
= kzalloc(sizeof(*dsg
), GFP_NOWAIT
);
953 s3c24xx_dma_free_txd(txd
);
956 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
959 /* Check last period length */
961 dsg
->len
= size
- period
* i
;
962 if (direction
== DMA_MEM_TO_DEV
) {
963 dsg
->src_addr
= addr
+ period
* i
;
964 dsg
->dst_addr
= slave_addr
;
965 } else { /* DMA_DEV_TO_MEM */
966 dsg
->src_addr
= slave_addr
;
967 dsg
->dst_addr
= addr
+ period
* i
;
971 return vchan_tx_prep(&s3cchan
->vc
, &txd
->vd
, flags
);
974 static struct dma_async_tx_descriptor
*s3c24xx_dma_prep_slave_sg(
975 struct dma_chan
*chan
, struct scatterlist
*sgl
,
976 unsigned int sg_len
, enum dma_transfer_direction direction
,
977 unsigned long flags
, void *context
)
979 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
980 struct s3c24xx_dma_engine
*s3cdma
= s3cchan
->host
;
981 const struct s3c24xx_dma_platdata
*pdata
= s3cdma
->pdata
;
982 struct s3c24xx_dma_channel
*cdata
= &pdata
->channels
[s3cchan
->id
];
983 struct s3c24xx_txd
*txd
;
984 struct s3c24xx_sg
*dsg
;
985 struct scatterlist
*sg
;
986 dma_addr_t slave_addr
;
990 dev_dbg(&s3cdma
->pdev
->dev
, "prepare transaction of %d bytes from %s\n",
991 sg_dma_len(sgl
), s3cchan
->name
);
993 txd
= s3c24xx_dma_get_txd();
997 if (cdata
->handshake
)
998 txd
->dcon
|= S3C24XX_DCON_HANDSHAKE
;
1000 switch (cdata
->bus
) {
1001 case S3C24XX_DMA_APB
:
1002 txd
->dcon
|= S3C24XX_DCON_SYNC_PCLK
;
1003 hwcfg
|= S3C24XX_DISRCC_LOC_APB
;
1005 case S3C24XX_DMA_AHB
:
1006 txd
->dcon
|= S3C24XX_DCON_SYNC_HCLK
;
1007 hwcfg
|= S3C24XX_DISRCC_LOC_AHB
;
1012 * Always assume our peripheral desintation is a fixed
1013 * address in memory.
1015 hwcfg
|= S3C24XX_DISRCC_INC_FIXED
;
1018 * Individual dma operations are requested by the slave,
1019 * so serve only single atomic operations (S3C24XX_DCON_SERV_SINGLE).
1021 txd
->dcon
|= S3C24XX_DCON_SERV_SINGLE
;
1023 if (direction
== DMA_MEM_TO_DEV
) {
1024 txd
->disrcc
= S3C24XX_DISRCC_LOC_AHB
|
1025 S3C24XX_DISRCC_INC_INCREMENT
;
1026 txd
->didstc
= hwcfg
;
1027 slave_addr
= s3cchan
->cfg
.dst_addr
;
1028 txd
->width
= s3cchan
->cfg
.dst_addr_width
;
1029 } else if (direction
== DMA_DEV_TO_MEM
) {
1030 txd
->disrcc
= hwcfg
;
1031 txd
->didstc
= S3C24XX_DIDSTC_LOC_AHB
|
1032 S3C24XX_DIDSTC_INC_INCREMENT
;
1033 slave_addr
= s3cchan
->cfg
.src_addr
;
1034 txd
->width
= s3cchan
->cfg
.src_addr_width
;
1036 s3c24xx_dma_free_txd(txd
);
1037 dev_err(&s3cdma
->pdev
->dev
,
1038 "direction %d unsupported\n", direction
);
1042 for_each_sg(sgl
, sg
, sg_len
, tmp
) {
1043 dsg
= kzalloc(sizeof(*dsg
), GFP_NOWAIT
);
1045 s3c24xx_dma_free_txd(txd
);
1048 list_add_tail(&dsg
->node
, &txd
->dsg_list
);
1050 dsg
->len
= sg_dma_len(sg
);
1051 if (direction
== DMA_MEM_TO_DEV
) {
1052 dsg
->src_addr
= sg_dma_address(sg
);
1053 dsg
->dst_addr
= slave_addr
;
1054 } else { /* DMA_DEV_TO_MEM */
1055 dsg
->src_addr
= slave_addr
;
1056 dsg
->dst_addr
= sg_dma_address(sg
);
1060 return vchan_tx_prep(&s3cchan
->vc
, &txd
->vd
, flags
);
1064 * Slave transactions callback to the slave device to allow
1065 * synchronization of slave DMA signals with the DMAC enable
1067 static void s3c24xx_dma_issue_pending(struct dma_chan
*chan
)
1069 struct s3c24xx_dma_chan
*s3cchan
= to_s3c24xx_dma_chan(chan
);
1070 unsigned long flags
;
1072 spin_lock_irqsave(&s3cchan
->vc
.lock
, flags
);
1073 if (vchan_issue_pending(&s3cchan
->vc
)) {
1074 if (!s3cchan
->phy
&& s3cchan
->state
!= S3C24XX_DMA_CHAN_WAITING
)
1075 s3c24xx_dma_phy_alloc_and_start(s3cchan
);
1077 spin_unlock_irqrestore(&s3cchan
->vc
.lock
, flags
);
1081 * Bringup and teardown
1085 * Initialise the DMAC memcpy/slave channels.
1086 * Make a local wrapper to hold required data
1088 static int s3c24xx_dma_init_virtual_channels(struct s3c24xx_dma_engine
*s3cdma
,
1089 struct dma_device
*dmadev
, unsigned int channels
, bool slave
)
1091 struct s3c24xx_dma_chan
*chan
;
1094 INIT_LIST_HEAD(&dmadev
->channels
);
1097 * Register as many many memcpy as we have physical channels,
1098 * we won't always be able to use all but the code will have
1099 * to cope with that situation.
1101 for (i
= 0; i
< channels
; i
++) {
1102 chan
= devm_kzalloc(dmadev
->dev
, sizeof(*chan
), GFP_KERNEL
);
1107 chan
->host
= s3cdma
;
1108 chan
->state
= S3C24XX_DMA_CHAN_IDLE
;
1112 chan
->name
= kasprintf(GFP_KERNEL
, "slave%d", i
);
1116 chan
->name
= kasprintf(GFP_KERNEL
, "memcpy%d", i
);
1120 dev_dbg(dmadev
->dev
,
1121 "initialize virtual channel \"%s\"\n",
1124 chan
->vc
.desc_free
= s3c24xx_dma_desc_free
;
1125 vchan_init(&chan
->vc
, dmadev
);
1127 dev_info(dmadev
->dev
, "initialized %d virtual %s channels\n",
1128 i
, slave
? "slave" : "memcpy");
1132 static void s3c24xx_dma_free_virtual_channels(struct dma_device
*dmadev
)
1134 struct s3c24xx_dma_chan
*chan
= NULL
;
1135 struct s3c24xx_dma_chan
*next
;
1137 list_for_each_entry_safe(chan
,
1138 next
, &dmadev
->channels
, vc
.chan
.device_node
) {
1139 list_del(&chan
->vc
.chan
.device_node
);
1140 tasklet_kill(&chan
->vc
.task
);
1144 /* s3c2410, s3c2440 and s3c2442 have a 0x40 stride without separate clocks */
1145 static struct soc_data soc_s3c2410
= {
1147 .has_reqsel
= false,
1148 .has_clocks
= false,
1151 /* s3c2412 and s3c2413 have a 0x40 stride and dmareqsel mechanism */
1152 static struct soc_data soc_s3c2412
= {
1158 /* s3c2443 and following have a 0x100 stride and dmareqsel mechanism */
1159 static struct soc_data soc_s3c2443
= {
1165 static const struct platform_device_id s3c24xx_dma_driver_ids
[] = {
1167 .name
= "s3c2410-dma",
1168 .driver_data
= (kernel_ulong_t
)&soc_s3c2410
,
1170 .name
= "s3c2412-dma",
1171 .driver_data
= (kernel_ulong_t
)&soc_s3c2412
,
1173 .name
= "s3c2443-dma",
1174 .driver_data
= (kernel_ulong_t
)&soc_s3c2443
,
1179 static struct soc_data
*s3c24xx_dma_get_soc_data(struct platform_device
*pdev
)
1181 return (struct soc_data
*)
1182 platform_get_device_id(pdev
)->driver_data
;
1185 static int s3c24xx_dma_probe(struct platform_device
*pdev
)
1187 const struct s3c24xx_dma_platdata
*pdata
= dev_get_platdata(&pdev
->dev
);
1188 struct s3c24xx_dma_engine
*s3cdma
;
1189 struct soc_data
*sdata
;
1190 struct resource
*res
;
1195 dev_err(&pdev
->dev
, "platform data missing\n");
1199 /* Basic sanity check */
1200 if (pdata
->num_phy_channels
> MAX_DMA_CHANNELS
) {
1201 dev_err(&pdev
->dev
, "too many dma channels %d, max %d\n",
1202 pdata
->num_phy_channels
, MAX_DMA_CHANNELS
);
1206 sdata
= s3c24xx_dma_get_soc_data(pdev
);
1210 s3cdma
= devm_kzalloc(&pdev
->dev
, sizeof(*s3cdma
), GFP_KERNEL
);
1214 s3cdma
->pdev
= pdev
;
1215 s3cdma
->pdata
= pdata
;
1216 s3cdma
->sdata
= sdata
;
1218 res
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1219 s3cdma
->base
= devm_ioremap_resource(&pdev
->dev
, res
);
1220 if (IS_ERR(s3cdma
->base
))
1221 return PTR_ERR(s3cdma
->base
);
1223 s3cdma
->phy_chans
= devm_kcalloc(&pdev
->dev
,
1224 pdata
->num_phy_channels
,
1225 sizeof(struct s3c24xx_dma_phy
),
1227 if (!s3cdma
->phy_chans
)
1230 /* acquire irqs and clocks for all physical channels */
1231 for (i
= 0; i
< pdata
->num_phy_channels
; i
++) {
1232 struct s3c24xx_dma_phy
*phy
= &s3cdma
->phy_chans
[i
];
1236 phy
->base
= s3cdma
->base
+ (i
* sdata
->stride
);
1239 phy
->irq
= platform_get_irq(pdev
, i
);
1243 ret
= devm_request_irq(&pdev
->dev
, phy
->irq
, s3c24xx_dma_irq
,
1244 0, pdev
->name
, phy
);
1246 dev_err(&pdev
->dev
, "Unable to request irq for channel %d, error %d\n",
1251 if (sdata
->has_clocks
) {
1252 sprintf(clk_name
, "dma.%d", i
);
1253 phy
->clk
= devm_clk_get(&pdev
->dev
, clk_name
);
1254 if (IS_ERR(phy
->clk
) && sdata
->has_clocks
) {
1255 dev_err(&pdev
->dev
, "unable to acquire clock for channel %d, error %lu\n",
1256 i
, PTR_ERR(phy
->clk
));
1260 ret
= clk_prepare(phy
->clk
);
1262 dev_err(&pdev
->dev
, "clock for phy %d failed, error %d\n",
1268 spin_lock_init(&phy
->lock
);
1271 dev_dbg(&pdev
->dev
, "physical channel %d is %s\n",
1272 i
, s3c24xx_dma_phy_busy(phy
) ? "BUSY" : "FREE");
1275 /* Initialize memcpy engine */
1276 dma_cap_set(DMA_MEMCPY
, s3cdma
->memcpy
.cap_mask
);
1277 dma_cap_set(DMA_PRIVATE
, s3cdma
->memcpy
.cap_mask
);
1278 s3cdma
->memcpy
.dev
= &pdev
->dev
;
1279 s3cdma
->memcpy
.device_free_chan_resources
=
1280 s3c24xx_dma_free_chan_resources
;
1281 s3cdma
->memcpy
.device_prep_dma_memcpy
= s3c24xx_dma_prep_memcpy
;
1282 s3cdma
->memcpy
.device_tx_status
= s3c24xx_dma_tx_status
;
1283 s3cdma
->memcpy
.device_issue_pending
= s3c24xx_dma_issue_pending
;
1284 s3cdma
->memcpy
.device_config
= s3c24xx_dma_set_runtime_config
;
1285 s3cdma
->memcpy
.device_terminate_all
= s3c24xx_dma_terminate_all
;
1286 s3cdma
->memcpy
.device_synchronize
= s3c24xx_dma_synchronize
;
1288 /* Initialize slave engine for SoC internal dedicated peripherals */
1289 dma_cap_set(DMA_SLAVE
, s3cdma
->slave
.cap_mask
);
1290 dma_cap_set(DMA_CYCLIC
, s3cdma
->slave
.cap_mask
);
1291 dma_cap_set(DMA_PRIVATE
, s3cdma
->slave
.cap_mask
);
1292 s3cdma
->slave
.dev
= &pdev
->dev
;
1293 s3cdma
->slave
.device_free_chan_resources
=
1294 s3c24xx_dma_free_chan_resources
;
1295 s3cdma
->slave
.device_tx_status
= s3c24xx_dma_tx_status
;
1296 s3cdma
->slave
.device_issue_pending
= s3c24xx_dma_issue_pending
;
1297 s3cdma
->slave
.device_prep_slave_sg
= s3c24xx_dma_prep_slave_sg
;
1298 s3cdma
->slave
.device_prep_dma_cyclic
= s3c24xx_dma_prep_dma_cyclic
;
1299 s3cdma
->slave
.device_config
= s3c24xx_dma_set_runtime_config
;
1300 s3cdma
->slave
.device_terminate_all
= s3c24xx_dma_terminate_all
;
1301 s3cdma
->slave
.device_synchronize
= s3c24xx_dma_synchronize
;
1302 s3cdma
->slave
.filter
.map
= pdata
->slave_map
;
1303 s3cdma
->slave
.filter
.mapcnt
= pdata
->slavecnt
;
1304 s3cdma
->slave
.filter
.fn
= s3c24xx_dma_filter
;
1306 /* Register as many memcpy channels as there are physical channels */
1307 ret
= s3c24xx_dma_init_virtual_channels(s3cdma
, &s3cdma
->memcpy
,
1308 pdata
->num_phy_channels
, false);
1310 dev_warn(&pdev
->dev
,
1311 "%s failed to enumerate memcpy channels - %d\n",
1316 /* Register slave channels */
1317 ret
= s3c24xx_dma_init_virtual_channels(s3cdma
, &s3cdma
->slave
,
1318 pdata
->num_channels
, true);
1320 dev_warn(&pdev
->dev
,
1321 "%s failed to enumerate slave channels - %d\n",
1326 ret
= dma_async_device_register(&s3cdma
->memcpy
);
1328 dev_warn(&pdev
->dev
,
1329 "%s failed to register memcpy as an async device - %d\n",
1331 goto err_memcpy_reg
;
1334 ret
= dma_async_device_register(&s3cdma
->slave
);
1336 dev_warn(&pdev
->dev
,
1337 "%s failed to register slave as an async device - %d\n",
1342 platform_set_drvdata(pdev
, s3cdma
);
1343 dev_info(&pdev
->dev
, "Loaded dma driver with %d physical channels\n",
1344 pdata
->num_phy_channels
);
1349 dma_async_device_unregister(&s3cdma
->memcpy
);
1351 s3c24xx_dma_free_virtual_channels(&s3cdma
->slave
);
1353 s3c24xx_dma_free_virtual_channels(&s3cdma
->memcpy
);
1355 if (sdata
->has_clocks
)
1356 for (i
= 0; i
< pdata
->num_phy_channels
; i
++) {
1357 struct s3c24xx_dma_phy
*phy
= &s3cdma
->phy_chans
[i
];
1359 clk_unprepare(phy
->clk
);
1365 static void s3c24xx_dma_free_irq(struct platform_device
*pdev
,
1366 struct s3c24xx_dma_engine
*s3cdma
)
1370 for (i
= 0; i
< s3cdma
->pdata
->num_phy_channels
; i
++) {
1371 struct s3c24xx_dma_phy
*phy
= &s3cdma
->phy_chans
[i
];
1373 devm_free_irq(&pdev
->dev
, phy
->irq
, phy
);
1377 static int s3c24xx_dma_remove(struct platform_device
*pdev
)
1379 const struct s3c24xx_dma_platdata
*pdata
= dev_get_platdata(&pdev
->dev
);
1380 struct s3c24xx_dma_engine
*s3cdma
= platform_get_drvdata(pdev
);
1381 struct soc_data
*sdata
= s3c24xx_dma_get_soc_data(pdev
);
1384 dma_async_device_unregister(&s3cdma
->slave
);
1385 dma_async_device_unregister(&s3cdma
->memcpy
);
1387 s3c24xx_dma_free_irq(pdev
, s3cdma
);
1389 s3c24xx_dma_free_virtual_channels(&s3cdma
->slave
);
1390 s3c24xx_dma_free_virtual_channels(&s3cdma
->memcpy
);
1392 if (sdata
->has_clocks
)
1393 for (i
= 0; i
< pdata
->num_phy_channels
; i
++) {
1394 struct s3c24xx_dma_phy
*phy
= &s3cdma
->phy_chans
[i
];
1396 clk_unprepare(phy
->clk
);
1402 static struct platform_driver s3c24xx_dma_driver
= {
1404 .name
= "s3c24xx-dma",
1406 .id_table
= s3c24xx_dma_driver_ids
,
1407 .probe
= s3c24xx_dma_probe
,
1408 .remove
= s3c24xx_dma_remove
,
1411 module_platform_driver(s3c24xx_dma_driver
);
1413 bool s3c24xx_dma_filter(struct dma_chan
*chan
, void *param
)
1415 struct s3c24xx_dma_chan
*s3cchan
;
1417 if (chan
->device
->dev
->driver
!= &s3c24xx_dma_driver
.driver
)
1420 s3cchan
= to_s3c24xx_dma_chan(chan
);
1422 return s3cchan
->id
== (uintptr_t)param
;
1424 EXPORT_SYMBOL(s3c24xx_dma_filter
);
1426 MODULE_DESCRIPTION("S3C24XX DMA Driver");
1427 MODULE_AUTHOR("Heiko Stuebner");
1428 MODULE_LICENSE("GPL v2");