Merge tag 'powerpc-5.9-4' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[linux/fpc-iii.git] / mm / filemap.c
blob1aaea26556cc7e4ab702af1e96262d67a0607cf0
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/mm/filemap.c
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
8 /*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
13 #include <linux/export.h>
14 #include <linux/compiler.h>
15 #include <linux/dax.h>
16 #include <linux/fs.h>
17 #include <linux/sched/signal.h>
18 #include <linux/uaccess.h>
19 #include <linux/capability.h>
20 #include <linux/kernel_stat.h>
21 #include <linux/gfp.h>
22 #include <linux/mm.h>
23 #include <linux/swap.h>
24 #include <linux/mman.h>
25 #include <linux/pagemap.h>
26 #include <linux/file.h>
27 #include <linux/uio.h>
28 #include <linux/error-injection.h>
29 #include <linux/hash.h>
30 #include <linux/writeback.h>
31 #include <linux/backing-dev.h>
32 #include <linux/pagevec.h>
33 #include <linux/blkdev.h>
34 #include <linux/security.h>
35 #include <linux/cpuset.h>
36 #include <linux/hugetlb.h>
37 #include <linux/memcontrol.h>
38 #include <linux/cleancache.h>
39 #include <linux/shmem_fs.h>
40 #include <linux/rmap.h>
41 #include <linux/delayacct.h>
42 #include <linux/psi.h>
43 #include <linux/ramfs.h>
44 #include <linux/page_idle.h>
45 #include "internal.h"
47 #define CREATE_TRACE_POINTS
48 #include <trace/events/filemap.h>
51 * FIXME: remove all knowledge of the buffer layer from the core VM
53 #include <linux/buffer_head.h> /* for try_to_free_buffers */
55 #include <asm/mman.h>
58 * Shared mappings implemented 30.11.1994. It's not fully working yet,
59 * though.
61 * Shared mappings now work. 15.8.1995 Bruno.
63 * finished 'unifying' the page and buffer cache and SMP-threaded the
64 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
66 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
70 * Lock ordering:
72 * ->i_mmap_rwsem (truncate_pagecache)
73 * ->private_lock (__free_pte->__set_page_dirty_buffers)
74 * ->swap_lock (exclusive_swap_page, others)
75 * ->i_pages lock
77 * ->i_mutex
78 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
80 * ->mmap_lock
81 * ->i_mmap_rwsem
82 * ->page_table_lock or pte_lock (various, mainly in memory.c)
83 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
85 * ->mmap_lock
86 * ->lock_page (access_process_vm)
88 * ->i_mutex (generic_perform_write)
89 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
91 * bdi->wb.list_lock
92 * sb_lock (fs/fs-writeback.c)
93 * ->i_pages lock (__sync_single_inode)
95 * ->i_mmap_rwsem
96 * ->anon_vma.lock (vma_adjust)
98 * ->anon_vma.lock
99 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
101 * ->page_table_lock or pte_lock
102 * ->swap_lock (try_to_unmap_one)
103 * ->private_lock (try_to_unmap_one)
104 * ->i_pages lock (try_to_unmap_one)
105 * ->pgdat->lru_lock (follow_page->mark_page_accessed)
106 * ->pgdat->lru_lock (check_pte_range->isolate_lru_page)
107 * ->private_lock (page_remove_rmap->set_page_dirty)
108 * ->i_pages lock (page_remove_rmap->set_page_dirty)
109 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
110 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
111 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
112 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
113 * ->inode->i_lock (zap_pte_range->set_page_dirty)
114 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
116 * ->i_mmap_rwsem
117 * ->tasklist_lock (memory_failure, collect_procs_ao)
120 static void page_cache_delete(struct address_space *mapping,
121 struct page *page, void *shadow)
123 XA_STATE(xas, &mapping->i_pages, page->index);
124 unsigned int nr = 1;
126 mapping_set_update(&xas, mapping);
128 /* hugetlb pages are represented by a single entry in the xarray */
129 if (!PageHuge(page)) {
130 xas_set_order(&xas, page->index, compound_order(page));
131 nr = compound_nr(page);
134 VM_BUG_ON_PAGE(!PageLocked(page), page);
135 VM_BUG_ON_PAGE(PageTail(page), page);
136 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
138 xas_store(&xas, shadow);
139 xas_init_marks(&xas);
141 page->mapping = NULL;
142 /* Leave page->index set: truncation lookup relies upon it */
144 if (shadow) {
145 mapping->nrexceptional += nr;
147 * Make sure the nrexceptional update is committed before
148 * the nrpages update so that final truncate racing
149 * with reclaim does not see both counters 0 at the
150 * same time and miss a shadow entry.
152 smp_wmb();
154 mapping->nrpages -= nr;
157 static void unaccount_page_cache_page(struct address_space *mapping,
158 struct page *page)
160 int nr;
163 * if we're uptodate, flush out into the cleancache, otherwise
164 * invalidate any existing cleancache entries. We can't leave
165 * stale data around in the cleancache once our page is gone
167 if (PageUptodate(page) && PageMappedToDisk(page))
168 cleancache_put_page(page);
169 else
170 cleancache_invalidate_page(mapping, page);
172 VM_BUG_ON_PAGE(PageTail(page), page);
173 VM_BUG_ON_PAGE(page_mapped(page), page);
174 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
175 int mapcount;
177 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
178 current->comm, page_to_pfn(page));
179 dump_page(page, "still mapped when deleted");
180 dump_stack();
181 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
183 mapcount = page_mapcount(page);
184 if (mapping_exiting(mapping) &&
185 page_count(page) >= mapcount + 2) {
187 * All vmas have already been torn down, so it's
188 * a good bet that actually the page is unmapped,
189 * and we'd prefer not to leak it: if we're wrong,
190 * some other bad page check should catch it later.
192 page_mapcount_reset(page);
193 page_ref_sub(page, mapcount);
197 /* hugetlb pages do not participate in page cache accounting. */
198 if (PageHuge(page))
199 return;
201 nr = thp_nr_pages(page);
203 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
204 if (PageSwapBacked(page)) {
205 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
206 if (PageTransHuge(page))
207 __dec_node_page_state(page, NR_SHMEM_THPS);
208 } else if (PageTransHuge(page)) {
209 __dec_node_page_state(page, NR_FILE_THPS);
210 filemap_nr_thps_dec(mapping);
214 * At this point page must be either written or cleaned by
215 * truncate. Dirty page here signals a bug and loss of
216 * unwritten data.
218 * This fixes dirty accounting after removing the page entirely
219 * but leaves PageDirty set: it has no effect for truncated
220 * page and anyway will be cleared before returning page into
221 * buddy allocator.
223 if (WARN_ON_ONCE(PageDirty(page)))
224 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
228 * Delete a page from the page cache and free it. Caller has to make
229 * sure the page is locked and that nobody else uses it - or that usage
230 * is safe. The caller must hold the i_pages lock.
232 void __delete_from_page_cache(struct page *page, void *shadow)
234 struct address_space *mapping = page->mapping;
236 trace_mm_filemap_delete_from_page_cache(page);
238 unaccount_page_cache_page(mapping, page);
239 page_cache_delete(mapping, page, shadow);
242 static void page_cache_free_page(struct address_space *mapping,
243 struct page *page)
245 void (*freepage)(struct page *);
247 freepage = mapping->a_ops->freepage;
248 if (freepage)
249 freepage(page);
251 if (PageTransHuge(page) && !PageHuge(page)) {
252 page_ref_sub(page, HPAGE_PMD_NR);
253 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
254 } else {
255 put_page(page);
260 * delete_from_page_cache - delete page from page cache
261 * @page: the page which the kernel is trying to remove from page cache
263 * This must be called only on pages that have been verified to be in the page
264 * cache and locked. It will never put the page into the free list, the caller
265 * has a reference on the page.
267 void delete_from_page_cache(struct page *page)
269 struct address_space *mapping = page_mapping(page);
270 unsigned long flags;
272 BUG_ON(!PageLocked(page));
273 xa_lock_irqsave(&mapping->i_pages, flags);
274 __delete_from_page_cache(page, NULL);
275 xa_unlock_irqrestore(&mapping->i_pages, flags);
277 page_cache_free_page(mapping, page);
279 EXPORT_SYMBOL(delete_from_page_cache);
282 * page_cache_delete_batch - delete several pages from page cache
283 * @mapping: the mapping to which pages belong
284 * @pvec: pagevec with pages to delete
286 * The function walks over mapping->i_pages and removes pages passed in @pvec
287 * from the mapping. The function expects @pvec to be sorted by page index
288 * and is optimised for it to be dense.
289 * It tolerates holes in @pvec (mapping entries at those indices are not
290 * modified). The function expects only THP head pages to be present in the
291 * @pvec.
293 * The function expects the i_pages lock to be held.
295 static void page_cache_delete_batch(struct address_space *mapping,
296 struct pagevec *pvec)
298 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
299 int total_pages = 0;
300 int i = 0;
301 struct page *page;
303 mapping_set_update(&xas, mapping);
304 xas_for_each(&xas, page, ULONG_MAX) {
305 if (i >= pagevec_count(pvec))
306 break;
308 /* A swap/dax/shadow entry got inserted? Skip it. */
309 if (xa_is_value(page))
310 continue;
312 * A page got inserted in our range? Skip it. We have our
313 * pages locked so they are protected from being removed.
314 * If we see a page whose index is higher than ours, it
315 * means our page has been removed, which shouldn't be
316 * possible because we're holding the PageLock.
318 if (page != pvec->pages[i]) {
319 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
320 page);
321 continue;
324 WARN_ON_ONCE(!PageLocked(page));
326 if (page->index == xas.xa_index)
327 page->mapping = NULL;
328 /* Leave page->index set: truncation lookup relies on it */
331 * Move to the next page in the vector if this is a regular
332 * page or the index is of the last sub-page of this compound
333 * page.
335 if (page->index + compound_nr(page) - 1 == xas.xa_index)
336 i++;
337 xas_store(&xas, NULL);
338 total_pages++;
340 mapping->nrpages -= total_pages;
343 void delete_from_page_cache_batch(struct address_space *mapping,
344 struct pagevec *pvec)
346 int i;
347 unsigned long flags;
349 if (!pagevec_count(pvec))
350 return;
352 xa_lock_irqsave(&mapping->i_pages, flags);
353 for (i = 0; i < pagevec_count(pvec); i++) {
354 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
356 unaccount_page_cache_page(mapping, pvec->pages[i]);
358 page_cache_delete_batch(mapping, pvec);
359 xa_unlock_irqrestore(&mapping->i_pages, flags);
361 for (i = 0; i < pagevec_count(pvec); i++)
362 page_cache_free_page(mapping, pvec->pages[i]);
365 int filemap_check_errors(struct address_space *mapping)
367 int ret = 0;
368 /* Check for outstanding write errors */
369 if (test_bit(AS_ENOSPC, &mapping->flags) &&
370 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
371 ret = -ENOSPC;
372 if (test_bit(AS_EIO, &mapping->flags) &&
373 test_and_clear_bit(AS_EIO, &mapping->flags))
374 ret = -EIO;
375 return ret;
377 EXPORT_SYMBOL(filemap_check_errors);
379 static int filemap_check_and_keep_errors(struct address_space *mapping)
381 /* Check for outstanding write errors */
382 if (test_bit(AS_EIO, &mapping->flags))
383 return -EIO;
384 if (test_bit(AS_ENOSPC, &mapping->flags))
385 return -ENOSPC;
386 return 0;
390 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
391 * @mapping: address space structure to write
392 * @start: offset in bytes where the range starts
393 * @end: offset in bytes where the range ends (inclusive)
394 * @sync_mode: enable synchronous operation
396 * Start writeback against all of a mapping's dirty pages that lie
397 * within the byte offsets <start, end> inclusive.
399 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
400 * opposed to a regular memory cleansing writeback. The difference between
401 * these two operations is that if a dirty page/buffer is encountered, it must
402 * be waited upon, and not just skipped over.
404 * Return: %0 on success, negative error code otherwise.
406 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
407 loff_t end, int sync_mode)
409 int ret;
410 struct writeback_control wbc = {
411 .sync_mode = sync_mode,
412 .nr_to_write = LONG_MAX,
413 .range_start = start,
414 .range_end = end,
417 if (!mapping_cap_writeback_dirty(mapping) ||
418 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
419 return 0;
421 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
422 ret = do_writepages(mapping, &wbc);
423 wbc_detach_inode(&wbc);
424 return ret;
427 static inline int __filemap_fdatawrite(struct address_space *mapping,
428 int sync_mode)
430 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
433 int filemap_fdatawrite(struct address_space *mapping)
435 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
437 EXPORT_SYMBOL(filemap_fdatawrite);
439 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
440 loff_t end)
442 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
444 EXPORT_SYMBOL(filemap_fdatawrite_range);
447 * filemap_flush - mostly a non-blocking flush
448 * @mapping: target address_space
450 * This is a mostly non-blocking flush. Not suitable for data-integrity
451 * purposes - I/O may not be started against all dirty pages.
453 * Return: %0 on success, negative error code otherwise.
455 int filemap_flush(struct address_space *mapping)
457 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
459 EXPORT_SYMBOL(filemap_flush);
462 * filemap_range_has_page - check if a page exists in range.
463 * @mapping: address space within which to check
464 * @start_byte: offset in bytes where the range starts
465 * @end_byte: offset in bytes where the range ends (inclusive)
467 * Find at least one page in the range supplied, usually used to check if
468 * direct writing in this range will trigger a writeback.
470 * Return: %true if at least one page exists in the specified range,
471 * %false otherwise.
473 bool filemap_range_has_page(struct address_space *mapping,
474 loff_t start_byte, loff_t end_byte)
476 struct page *page;
477 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
478 pgoff_t max = end_byte >> PAGE_SHIFT;
480 if (end_byte < start_byte)
481 return false;
483 rcu_read_lock();
484 for (;;) {
485 page = xas_find(&xas, max);
486 if (xas_retry(&xas, page))
487 continue;
488 /* Shadow entries don't count */
489 if (xa_is_value(page))
490 continue;
492 * We don't need to try to pin this page; we're about to
493 * release the RCU lock anyway. It is enough to know that
494 * there was a page here recently.
496 break;
498 rcu_read_unlock();
500 return page != NULL;
502 EXPORT_SYMBOL(filemap_range_has_page);
504 static void __filemap_fdatawait_range(struct address_space *mapping,
505 loff_t start_byte, loff_t end_byte)
507 pgoff_t index = start_byte >> PAGE_SHIFT;
508 pgoff_t end = end_byte >> PAGE_SHIFT;
509 struct pagevec pvec;
510 int nr_pages;
512 if (end_byte < start_byte)
513 return;
515 pagevec_init(&pvec);
516 while (index <= end) {
517 unsigned i;
519 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
520 end, PAGECACHE_TAG_WRITEBACK);
521 if (!nr_pages)
522 break;
524 for (i = 0; i < nr_pages; i++) {
525 struct page *page = pvec.pages[i];
527 wait_on_page_writeback(page);
528 ClearPageError(page);
530 pagevec_release(&pvec);
531 cond_resched();
536 * filemap_fdatawait_range - wait for writeback to complete
537 * @mapping: address space structure to wait for
538 * @start_byte: offset in bytes where the range starts
539 * @end_byte: offset in bytes where the range ends (inclusive)
541 * Walk the list of under-writeback pages of the given address space
542 * in the given range and wait for all of them. Check error status of
543 * the address space and return it.
545 * Since the error status of the address space is cleared by this function,
546 * callers are responsible for checking the return value and handling and/or
547 * reporting the error.
549 * Return: error status of the address space.
551 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
552 loff_t end_byte)
554 __filemap_fdatawait_range(mapping, start_byte, end_byte);
555 return filemap_check_errors(mapping);
557 EXPORT_SYMBOL(filemap_fdatawait_range);
560 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
561 * @mapping: address space structure to wait for
562 * @start_byte: offset in bytes where the range starts
563 * @end_byte: offset in bytes where the range ends (inclusive)
565 * Walk the list of under-writeback pages of the given address space in the
566 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
567 * this function does not clear error status of the address space.
569 * Use this function if callers don't handle errors themselves. Expected
570 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
571 * fsfreeze(8)
573 int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
574 loff_t start_byte, loff_t end_byte)
576 __filemap_fdatawait_range(mapping, start_byte, end_byte);
577 return filemap_check_and_keep_errors(mapping);
579 EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
582 * file_fdatawait_range - wait for writeback to complete
583 * @file: file pointing to address space structure to wait for
584 * @start_byte: offset in bytes where the range starts
585 * @end_byte: offset in bytes where the range ends (inclusive)
587 * Walk the list of under-writeback pages of the address space that file
588 * refers to, in the given range and wait for all of them. Check error
589 * status of the address space vs. the file->f_wb_err cursor and return it.
591 * Since the error status of the file is advanced by this function,
592 * callers are responsible for checking the return value and handling and/or
593 * reporting the error.
595 * Return: error status of the address space vs. the file->f_wb_err cursor.
597 int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
599 struct address_space *mapping = file->f_mapping;
601 __filemap_fdatawait_range(mapping, start_byte, end_byte);
602 return file_check_and_advance_wb_err(file);
604 EXPORT_SYMBOL(file_fdatawait_range);
607 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
608 * @mapping: address space structure to wait for
610 * Walk the list of under-writeback pages of the given address space
611 * and wait for all of them. Unlike filemap_fdatawait(), this function
612 * does not clear error status of the address space.
614 * Use this function if callers don't handle errors themselves. Expected
615 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
616 * fsfreeze(8)
618 * Return: error status of the address space.
620 int filemap_fdatawait_keep_errors(struct address_space *mapping)
622 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
623 return filemap_check_and_keep_errors(mapping);
625 EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
627 /* Returns true if writeback might be needed or already in progress. */
628 static bool mapping_needs_writeback(struct address_space *mapping)
630 if (dax_mapping(mapping))
631 return mapping->nrexceptional;
633 return mapping->nrpages;
637 * filemap_write_and_wait_range - write out & wait on a file range
638 * @mapping: the address_space for the pages
639 * @lstart: offset in bytes where the range starts
640 * @lend: offset in bytes where the range ends (inclusive)
642 * Write out and wait upon file offsets lstart->lend, inclusive.
644 * Note that @lend is inclusive (describes the last byte to be written) so
645 * that this function can be used to write to the very end-of-file (end = -1).
647 * Return: error status of the address space.
649 int filemap_write_and_wait_range(struct address_space *mapping,
650 loff_t lstart, loff_t lend)
652 int err = 0;
654 if (mapping_needs_writeback(mapping)) {
655 err = __filemap_fdatawrite_range(mapping, lstart, lend,
656 WB_SYNC_ALL);
658 * Even if the above returned error, the pages may be
659 * written partially (e.g. -ENOSPC), so we wait for it.
660 * But the -EIO is special case, it may indicate the worst
661 * thing (e.g. bug) happened, so we avoid waiting for it.
663 if (err != -EIO) {
664 int err2 = filemap_fdatawait_range(mapping,
665 lstart, lend);
666 if (!err)
667 err = err2;
668 } else {
669 /* Clear any previously stored errors */
670 filemap_check_errors(mapping);
672 } else {
673 err = filemap_check_errors(mapping);
675 return err;
677 EXPORT_SYMBOL(filemap_write_and_wait_range);
679 void __filemap_set_wb_err(struct address_space *mapping, int err)
681 errseq_t eseq = errseq_set(&mapping->wb_err, err);
683 trace_filemap_set_wb_err(mapping, eseq);
685 EXPORT_SYMBOL(__filemap_set_wb_err);
688 * file_check_and_advance_wb_err - report wb error (if any) that was previously
689 * and advance wb_err to current one
690 * @file: struct file on which the error is being reported
692 * When userland calls fsync (or something like nfsd does the equivalent), we
693 * want to report any writeback errors that occurred since the last fsync (or
694 * since the file was opened if there haven't been any).
696 * Grab the wb_err from the mapping. If it matches what we have in the file,
697 * then just quickly return 0. The file is all caught up.
699 * If it doesn't match, then take the mapping value, set the "seen" flag in
700 * it and try to swap it into place. If it works, or another task beat us
701 * to it with the new value, then update the f_wb_err and return the error
702 * portion. The error at this point must be reported via proper channels
703 * (a'la fsync, or NFS COMMIT operation, etc.).
705 * While we handle mapping->wb_err with atomic operations, the f_wb_err
706 * value is protected by the f_lock since we must ensure that it reflects
707 * the latest value swapped in for this file descriptor.
709 * Return: %0 on success, negative error code otherwise.
711 int file_check_and_advance_wb_err(struct file *file)
713 int err = 0;
714 errseq_t old = READ_ONCE(file->f_wb_err);
715 struct address_space *mapping = file->f_mapping;
717 /* Locklessly handle the common case where nothing has changed */
718 if (errseq_check(&mapping->wb_err, old)) {
719 /* Something changed, must use slow path */
720 spin_lock(&file->f_lock);
721 old = file->f_wb_err;
722 err = errseq_check_and_advance(&mapping->wb_err,
723 &file->f_wb_err);
724 trace_file_check_and_advance_wb_err(file, old);
725 spin_unlock(&file->f_lock);
729 * We're mostly using this function as a drop in replacement for
730 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
731 * that the legacy code would have had on these flags.
733 clear_bit(AS_EIO, &mapping->flags);
734 clear_bit(AS_ENOSPC, &mapping->flags);
735 return err;
737 EXPORT_SYMBOL(file_check_and_advance_wb_err);
740 * file_write_and_wait_range - write out & wait on a file range
741 * @file: file pointing to address_space with pages
742 * @lstart: offset in bytes where the range starts
743 * @lend: offset in bytes where the range ends (inclusive)
745 * Write out and wait upon file offsets lstart->lend, inclusive.
747 * Note that @lend is inclusive (describes the last byte to be written) so
748 * that this function can be used to write to the very end-of-file (end = -1).
750 * After writing out and waiting on the data, we check and advance the
751 * f_wb_err cursor to the latest value, and return any errors detected there.
753 * Return: %0 on success, negative error code otherwise.
755 int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
757 int err = 0, err2;
758 struct address_space *mapping = file->f_mapping;
760 if (mapping_needs_writeback(mapping)) {
761 err = __filemap_fdatawrite_range(mapping, lstart, lend,
762 WB_SYNC_ALL);
763 /* See comment of filemap_write_and_wait() */
764 if (err != -EIO)
765 __filemap_fdatawait_range(mapping, lstart, lend);
767 err2 = file_check_and_advance_wb_err(file);
768 if (!err)
769 err = err2;
770 return err;
772 EXPORT_SYMBOL(file_write_and_wait_range);
775 * replace_page_cache_page - replace a pagecache page with a new one
776 * @old: page to be replaced
777 * @new: page to replace with
778 * @gfp_mask: allocation mode
780 * This function replaces a page in the pagecache with a new one. On
781 * success it acquires the pagecache reference for the new page and
782 * drops it for the old page. Both the old and new pages must be
783 * locked. This function does not add the new page to the LRU, the
784 * caller must do that.
786 * The remove + add is atomic. This function cannot fail.
788 * Return: %0
790 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
792 struct address_space *mapping = old->mapping;
793 void (*freepage)(struct page *) = mapping->a_ops->freepage;
794 pgoff_t offset = old->index;
795 XA_STATE(xas, &mapping->i_pages, offset);
796 unsigned long flags;
798 VM_BUG_ON_PAGE(!PageLocked(old), old);
799 VM_BUG_ON_PAGE(!PageLocked(new), new);
800 VM_BUG_ON_PAGE(new->mapping, new);
802 get_page(new);
803 new->mapping = mapping;
804 new->index = offset;
806 mem_cgroup_migrate(old, new);
808 xas_lock_irqsave(&xas, flags);
809 xas_store(&xas, new);
811 old->mapping = NULL;
812 /* hugetlb pages do not participate in page cache accounting. */
813 if (!PageHuge(old))
814 __dec_lruvec_page_state(old, NR_FILE_PAGES);
815 if (!PageHuge(new))
816 __inc_lruvec_page_state(new, NR_FILE_PAGES);
817 if (PageSwapBacked(old))
818 __dec_lruvec_page_state(old, NR_SHMEM);
819 if (PageSwapBacked(new))
820 __inc_lruvec_page_state(new, NR_SHMEM);
821 xas_unlock_irqrestore(&xas, flags);
822 if (freepage)
823 freepage(old);
824 put_page(old);
826 return 0;
828 EXPORT_SYMBOL_GPL(replace_page_cache_page);
830 static int __add_to_page_cache_locked(struct page *page,
831 struct address_space *mapping,
832 pgoff_t offset, gfp_t gfp_mask,
833 void **shadowp)
835 XA_STATE(xas, &mapping->i_pages, offset);
836 int huge = PageHuge(page);
837 int error;
838 void *old;
840 VM_BUG_ON_PAGE(!PageLocked(page), page);
841 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
842 mapping_set_update(&xas, mapping);
844 get_page(page);
845 page->mapping = mapping;
846 page->index = offset;
848 if (!huge) {
849 error = mem_cgroup_charge(page, current->mm, gfp_mask);
850 if (error)
851 goto error;
854 do {
855 xas_lock_irq(&xas);
856 old = xas_load(&xas);
857 if (old && !xa_is_value(old))
858 xas_set_err(&xas, -EEXIST);
859 xas_store(&xas, page);
860 if (xas_error(&xas))
861 goto unlock;
863 if (xa_is_value(old)) {
864 mapping->nrexceptional--;
865 if (shadowp)
866 *shadowp = old;
868 mapping->nrpages++;
870 /* hugetlb pages do not participate in page cache accounting */
871 if (!huge)
872 __inc_lruvec_page_state(page, NR_FILE_PAGES);
873 unlock:
874 xas_unlock_irq(&xas);
875 } while (xas_nomem(&xas, gfp_mask & GFP_RECLAIM_MASK));
877 if (xas_error(&xas)) {
878 error = xas_error(&xas);
879 goto error;
882 trace_mm_filemap_add_to_page_cache(page);
883 return 0;
884 error:
885 page->mapping = NULL;
886 /* Leave page->index set: truncation relies upon it */
887 put_page(page);
888 return error;
890 ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
893 * add_to_page_cache_locked - add a locked page to the pagecache
894 * @page: page to add
895 * @mapping: the page's address_space
896 * @offset: page index
897 * @gfp_mask: page allocation mode
899 * This function is used to add a page to the pagecache. It must be locked.
900 * This function does not add the page to the LRU. The caller must do that.
902 * Return: %0 on success, negative error code otherwise.
904 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
905 pgoff_t offset, gfp_t gfp_mask)
907 return __add_to_page_cache_locked(page, mapping, offset,
908 gfp_mask, NULL);
910 EXPORT_SYMBOL(add_to_page_cache_locked);
912 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
913 pgoff_t offset, gfp_t gfp_mask)
915 void *shadow = NULL;
916 int ret;
918 __SetPageLocked(page);
919 ret = __add_to_page_cache_locked(page, mapping, offset,
920 gfp_mask, &shadow);
921 if (unlikely(ret))
922 __ClearPageLocked(page);
923 else {
925 * The page might have been evicted from cache only
926 * recently, in which case it should be activated like
927 * any other repeatedly accessed page.
928 * The exception is pages getting rewritten; evicting other
929 * data from the working set, only to cache data that will
930 * get overwritten with something else, is a waste of memory.
932 WARN_ON_ONCE(PageActive(page));
933 if (!(gfp_mask & __GFP_WRITE) && shadow)
934 workingset_refault(page, shadow);
935 lru_cache_add(page);
937 return ret;
939 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
941 #ifdef CONFIG_NUMA
942 struct page *__page_cache_alloc(gfp_t gfp)
944 int n;
945 struct page *page;
947 if (cpuset_do_page_mem_spread()) {
948 unsigned int cpuset_mems_cookie;
949 do {
950 cpuset_mems_cookie = read_mems_allowed_begin();
951 n = cpuset_mem_spread_node();
952 page = __alloc_pages_node(n, gfp, 0);
953 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
955 return page;
957 return alloc_pages(gfp, 0);
959 EXPORT_SYMBOL(__page_cache_alloc);
960 #endif
963 * In order to wait for pages to become available there must be
964 * waitqueues associated with pages. By using a hash table of
965 * waitqueues where the bucket discipline is to maintain all
966 * waiters on the same queue and wake all when any of the pages
967 * become available, and for the woken contexts to check to be
968 * sure the appropriate page became available, this saves space
969 * at a cost of "thundering herd" phenomena during rare hash
970 * collisions.
972 #define PAGE_WAIT_TABLE_BITS 8
973 #define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
974 static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
976 static wait_queue_head_t *page_waitqueue(struct page *page)
978 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
981 void __init pagecache_init(void)
983 int i;
985 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
986 init_waitqueue_head(&page_wait_table[i]);
988 page_writeback_init();
991 static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
993 int ret;
994 struct wait_page_key *key = arg;
995 struct wait_page_queue *wait_page
996 = container_of(wait, struct wait_page_queue, wait);
998 if (!wake_page_match(wait_page, key))
999 return 0;
1002 * If it's an exclusive wait, we get the bit for it, and
1003 * stop walking if we can't.
1005 * If it's a non-exclusive wait, then the fact that this
1006 * wake function was called means that the bit already
1007 * was cleared, and we don't care if somebody then
1008 * re-took it.
1010 ret = 0;
1011 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1012 if (test_and_set_bit(key->bit_nr, &key->page->flags))
1013 return -1;
1014 ret = 1;
1016 wait->flags |= WQ_FLAG_WOKEN;
1018 wake_up_state(wait->private, mode);
1021 * Ok, we have successfully done what we're waiting for,
1022 * and we can unconditionally remove the wait entry.
1024 * Note that this has to be the absolute last thing we do,
1025 * since after list_del_init(&wait->entry) the wait entry
1026 * might be de-allocated and the process might even have
1027 * exited.
1029 list_del_init_careful(&wait->entry);
1030 return ret;
1033 static void wake_up_page_bit(struct page *page, int bit_nr)
1035 wait_queue_head_t *q = page_waitqueue(page);
1036 struct wait_page_key key;
1037 unsigned long flags;
1038 wait_queue_entry_t bookmark;
1040 key.page = page;
1041 key.bit_nr = bit_nr;
1042 key.page_match = 0;
1044 bookmark.flags = 0;
1045 bookmark.private = NULL;
1046 bookmark.func = NULL;
1047 INIT_LIST_HEAD(&bookmark.entry);
1049 spin_lock_irqsave(&q->lock, flags);
1050 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1052 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1054 * Take a breather from holding the lock,
1055 * allow pages that finish wake up asynchronously
1056 * to acquire the lock and remove themselves
1057 * from wait queue
1059 spin_unlock_irqrestore(&q->lock, flags);
1060 cpu_relax();
1061 spin_lock_irqsave(&q->lock, flags);
1062 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1066 * It is possible for other pages to have collided on the waitqueue
1067 * hash, so in that case check for a page match. That prevents a long-
1068 * term waiter
1070 * It is still possible to miss a case here, when we woke page waiters
1071 * and removed them from the waitqueue, but there are still other
1072 * page waiters.
1074 if (!waitqueue_active(q) || !key.page_match) {
1075 ClearPageWaiters(page);
1077 * It's possible to miss clearing Waiters here, when we woke
1078 * our page waiters, but the hashed waitqueue has waiters for
1079 * other pages on it.
1081 * That's okay, it's a rare case. The next waker will clear it.
1084 spin_unlock_irqrestore(&q->lock, flags);
1087 static void wake_up_page(struct page *page, int bit)
1089 if (!PageWaiters(page))
1090 return;
1091 wake_up_page_bit(page, bit);
1095 * A choice of three behaviors for wait_on_page_bit_common():
1097 enum behavior {
1098 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1099 * __lock_page() waiting on then setting PG_locked.
1101 SHARED, /* Hold ref to page and check the bit when woken, like
1102 * wait_on_page_writeback() waiting on PG_writeback.
1104 DROP, /* Drop ref to page before wait, no check when woken,
1105 * like put_and_wait_on_page_locked() on PG_locked.
1110 * Attempt to check (or get) the page bit, and mark the
1111 * waiter woken if successful.
1113 static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1114 struct wait_queue_entry *wait)
1116 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1117 if (test_and_set_bit(bit_nr, &page->flags))
1118 return false;
1119 } else if (test_bit(bit_nr, &page->flags))
1120 return false;
1122 wait->flags |= WQ_FLAG_WOKEN;
1123 return true;
1126 static inline int wait_on_page_bit_common(wait_queue_head_t *q,
1127 struct page *page, int bit_nr, int state, enum behavior behavior)
1129 struct wait_page_queue wait_page;
1130 wait_queue_entry_t *wait = &wait_page.wait;
1131 bool thrashing = false;
1132 bool delayacct = false;
1133 unsigned long pflags;
1135 if (bit_nr == PG_locked &&
1136 !PageUptodate(page) && PageWorkingset(page)) {
1137 if (!PageSwapBacked(page)) {
1138 delayacct_thrashing_start();
1139 delayacct = true;
1141 psi_memstall_enter(&pflags);
1142 thrashing = true;
1145 init_wait(wait);
1146 wait->flags = behavior == EXCLUSIVE ? WQ_FLAG_EXCLUSIVE : 0;
1147 wait->func = wake_page_function;
1148 wait_page.page = page;
1149 wait_page.bit_nr = bit_nr;
1152 * Do one last check whether we can get the
1153 * page bit synchronously.
1155 * Do the SetPageWaiters() marking before that
1156 * to let any waker we _just_ missed know they
1157 * need to wake us up (otherwise they'll never
1158 * even go to the slow case that looks at the
1159 * page queue), and add ourselves to the wait
1160 * queue if we need to sleep.
1162 * This part needs to be done under the queue
1163 * lock to avoid races.
1165 spin_lock_irq(&q->lock);
1166 SetPageWaiters(page);
1167 if (!trylock_page_bit_common(page, bit_nr, wait))
1168 __add_wait_queue_entry_tail(q, wait);
1169 spin_unlock_irq(&q->lock);
1172 * From now on, all the logic will be based on
1173 * the WQ_FLAG_WOKEN flag, and the and the page
1174 * bit testing (and setting) will be - or has
1175 * already been - done by the wake function.
1177 * We can drop our reference to the page.
1179 if (behavior == DROP)
1180 put_page(page);
1182 for (;;) {
1183 set_current_state(state);
1185 if (signal_pending_state(state, current))
1186 break;
1188 if (wait->flags & WQ_FLAG_WOKEN)
1189 break;
1191 io_schedule();
1194 finish_wait(q, wait);
1196 if (thrashing) {
1197 if (delayacct)
1198 delayacct_thrashing_end();
1199 psi_memstall_leave(&pflags);
1203 * A signal could leave PageWaiters set. Clearing it here if
1204 * !waitqueue_active would be possible (by open-coding finish_wait),
1205 * but still fail to catch it in the case of wait hash collision. We
1206 * already can fail to clear wait hash collision cases, so don't
1207 * bother with signals either.
1210 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
1213 void wait_on_page_bit(struct page *page, int bit_nr)
1215 wait_queue_head_t *q = page_waitqueue(page);
1216 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
1218 EXPORT_SYMBOL(wait_on_page_bit);
1220 int wait_on_page_bit_killable(struct page *page, int bit_nr)
1222 wait_queue_head_t *q = page_waitqueue(page);
1223 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
1225 EXPORT_SYMBOL(wait_on_page_bit_killable);
1227 static int __wait_on_page_locked_async(struct page *page,
1228 struct wait_page_queue *wait, bool set)
1230 struct wait_queue_head *q = page_waitqueue(page);
1231 int ret = 0;
1233 wait->page = page;
1234 wait->bit_nr = PG_locked;
1236 spin_lock_irq(&q->lock);
1237 __add_wait_queue_entry_tail(q, &wait->wait);
1238 SetPageWaiters(page);
1239 if (set)
1240 ret = !trylock_page(page);
1241 else
1242 ret = PageLocked(page);
1244 * If we were succesful now, we know we're still on the
1245 * waitqueue as we're still under the lock. This means it's
1246 * safe to remove and return success, we know the callback
1247 * isn't going to trigger.
1249 if (!ret)
1250 __remove_wait_queue(q, &wait->wait);
1251 else
1252 ret = -EIOCBQUEUED;
1253 spin_unlock_irq(&q->lock);
1254 return ret;
1257 static int wait_on_page_locked_async(struct page *page,
1258 struct wait_page_queue *wait)
1260 if (!PageLocked(page))
1261 return 0;
1262 return __wait_on_page_locked_async(compound_head(page), wait, false);
1266 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1267 * @page: The page to wait for.
1269 * The caller should hold a reference on @page. They expect the page to
1270 * become unlocked relatively soon, but do not wish to hold up migration
1271 * (for example) by holding the reference while waiting for the page to
1272 * come unlocked. After this function returns, the caller should not
1273 * dereference @page.
1275 void put_and_wait_on_page_locked(struct page *page)
1277 wait_queue_head_t *q;
1279 page = compound_head(page);
1280 q = page_waitqueue(page);
1281 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1285 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
1286 * @page: Page defining the wait queue of interest
1287 * @waiter: Waiter to add to the queue
1289 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1291 void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
1293 wait_queue_head_t *q = page_waitqueue(page);
1294 unsigned long flags;
1296 spin_lock_irqsave(&q->lock, flags);
1297 __add_wait_queue_entry_tail(q, waiter);
1298 SetPageWaiters(page);
1299 spin_unlock_irqrestore(&q->lock, flags);
1301 EXPORT_SYMBOL_GPL(add_page_wait_queue);
1303 #ifndef clear_bit_unlock_is_negative_byte
1306 * PG_waiters is the high bit in the same byte as PG_lock.
1308 * On x86 (and on many other architectures), we can clear PG_lock and
1309 * test the sign bit at the same time. But if the architecture does
1310 * not support that special operation, we just do this all by hand
1311 * instead.
1313 * The read of PG_waiters has to be after (or concurrently with) PG_locked
1314 * being cleared, but a memory barrier should be unnecessary since it is
1315 * in the same byte as PG_locked.
1317 static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1319 clear_bit_unlock(nr, mem);
1320 /* smp_mb__after_atomic(); */
1321 return test_bit(PG_waiters, mem);
1324 #endif
1327 * unlock_page - unlock a locked page
1328 * @page: the page
1330 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
1331 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
1332 * mechanism between PageLocked pages and PageWriteback pages is shared.
1333 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1335 * Note that this depends on PG_waiters being the sign bit in the byte
1336 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1337 * clear the PG_locked bit and test PG_waiters at the same time fairly
1338 * portably (architectures that do LL/SC can test any bit, while x86 can
1339 * test the sign bit).
1341 void unlock_page(struct page *page)
1343 BUILD_BUG_ON(PG_waiters != 7);
1344 page = compound_head(page);
1345 VM_BUG_ON_PAGE(!PageLocked(page), page);
1346 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1347 wake_up_page_bit(page, PG_locked);
1349 EXPORT_SYMBOL(unlock_page);
1352 * end_page_writeback - end writeback against a page
1353 * @page: the page
1355 void end_page_writeback(struct page *page)
1358 * TestClearPageReclaim could be used here but it is an atomic
1359 * operation and overkill in this particular case. Failing to
1360 * shuffle a page marked for immediate reclaim is too mild to
1361 * justify taking an atomic operation penalty at the end of
1362 * ever page writeback.
1364 if (PageReclaim(page)) {
1365 ClearPageReclaim(page);
1366 rotate_reclaimable_page(page);
1369 if (!test_clear_page_writeback(page))
1370 BUG();
1372 smp_mb__after_atomic();
1373 wake_up_page(page, PG_writeback);
1375 EXPORT_SYMBOL(end_page_writeback);
1378 * After completing I/O on a page, call this routine to update the page
1379 * flags appropriately
1381 void page_endio(struct page *page, bool is_write, int err)
1383 if (!is_write) {
1384 if (!err) {
1385 SetPageUptodate(page);
1386 } else {
1387 ClearPageUptodate(page);
1388 SetPageError(page);
1390 unlock_page(page);
1391 } else {
1392 if (err) {
1393 struct address_space *mapping;
1395 SetPageError(page);
1396 mapping = page_mapping(page);
1397 if (mapping)
1398 mapping_set_error(mapping, err);
1400 end_page_writeback(page);
1403 EXPORT_SYMBOL_GPL(page_endio);
1406 * __lock_page - get a lock on the page, assuming we need to sleep to get it
1407 * @__page: the page to lock
1409 void __lock_page(struct page *__page)
1411 struct page *page = compound_head(__page);
1412 wait_queue_head_t *q = page_waitqueue(page);
1413 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1414 EXCLUSIVE);
1416 EXPORT_SYMBOL(__lock_page);
1418 int __lock_page_killable(struct page *__page)
1420 struct page *page = compound_head(__page);
1421 wait_queue_head_t *q = page_waitqueue(page);
1422 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1423 EXCLUSIVE);
1425 EXPORT_SYMBOL_GPL(__lock_page_killable);
1427 int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1429 return __wait_on_page_locked_async(page, wait, true);
1433 * Return values:
1434 * 1 - page is locked; mmap_lock is still held.
1435 * 0 - page is not locked.
1436 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
1437 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1438 * which case mmap_lock is still held.
1440 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1441 * with the page locked and the mmap_lock unperturbed.
1443 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1444 unsigned int flags)
1446 if (fault_flag_allow_retry_first(flags)) {
1448 * CAUTION! In this case, mmap_lock is not released
1449 * even though return 0.
1451 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1452 return 0;
1454 mmap_read_unlock(mm);
1455 if (flags & FAULT_FLAG_KILLABLE)
1456 wait_on_page_locked_killable(page);
1457 else
1458 wait_on_page_locked(page);
1459 return 0;
1460 } else {
1461 if (flags & FAULT_FLAG_KILLABLE) {
1462 int ret;
1464 ret = __lock_page_killable(page);
1465 if (ret) {
1466 mmap_read_unlock(mm);
1467 return 0;
1469 } else
1470 __lock_page(page);
1471 return 1;
1476 * page_cache_next_miss() - Find the next gap in the page cache.
1477 * @mapping: Mapping.
1478 * @index: Index.
1479 * @max_scan: Maximum range to search.
1481 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1482 * gap with the lowest index.
1484 * This function may be called under the rcu_read_lock. However, this will
1485 * not atomically search a snapshot of the cache at a single point in time.
1486 * For example, if a gap is created at index 5, then subsequently a gap is
1487 * created at index 10, page_cache_next_miss covering both indices may
1488 * return 10 if called under the rcu_read_lock.
1490 * Return: The index of the gap if found, otherwise an index outside the
1491 * range specified (in which case 'return - index >= max_scan' will be true).
1492 * In the rare case of index wrap-around, 0 will be returned.
1494 pgoff_t page_cache_next_miss(struct address_space *mapping,
1495 pgoff_t index, unsigned long max_scan)
1497 XA_STATE(xas, &mapping->i_pages, index);
1499 while (max_scan--) {
1500 void *entry = xas_next(&xas);
1501 if (!entry || xa_is_value(entry))
1502 break;
1503 if (xas.xa_index == 0)
1504 break;
1507 return xas.xa_index;
1509 EXPORT_SYMBOL(page_cache_next_miss);
1512 * page_cache_prev_miss() - Find the previous gap in the page cache.
1513 * @mapping: Mapping.
1514 * @index: Index.
1515 * @max_scan: Maximum range to search.
1517 * Search the range [max(index - max_scan + 1, 0), index] for the
1518 * gap with the highest index.
1520 * This function may be called under the rcu_read_lock. However, this will
1521 * not atomically search a snapshot of the cache at a single point in time.
1522 * For example, if a gap is created at index 10, then subsequently a gap is
1523 * created at index 5, page_cache_prev_miss() covering both indices may
1524 * return 5 if called under the rcu_read_lock.
1526 * Return: The index of the gap if found, otherwise an index outside the
1527 * range specified (in which case 'index - return >= max_scan' will be true).
1528 * In the rare case of wrap-around, ULONG_MAX will be returned.
1530 pgoff_t page_cache_prev_miss(struct address_space *mapping,
1531 pgoff_t index, unsigned long max_scan)
1533 XA_STATE(xas, &mapping->i_pages, index);
1535 while (max_scan--) {
1536 void *entry = xas_prev(&xas);
1537 if (!entry || xa_is_value(entry))
1538 break;
1539 if (xas.xa_index == ULONG_MAX)
1540 break;
1543 return xas.xa_index;
1545 EXPORT_SYMBOL(page_cache_prev_miss);
1548 * find_get_entry - find and get a page cache entry
1549 * @mapping: the address_space to search
1550 * @offset: the page cache index
1552 * Looks up the page cache slot at @mapping & @offset. If there is a
1553 * page cache page, it is returned with an increased refcount.
1555 * If the slot holds a shadow entry of a previously evicted page, or a
1556 * swap entry from shmem/tmpfs, it is returned.
1558 * Return: the found page or shadow entry, %NULL if nothing is found.
1560 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1562 XA_STATE(xas, &mapping->i_pages, offset);
1563 struct page *page;
1565 rcu_read_lock();
1566 repeat:
1567 xas_reset(&xas);
1568 page = xas_load(&xas);
1569 if (xas_retry(&xas, page))
1570 goto repeat;
1572 * A shadow entry of a recently evicted page, or a swap entry from
1573 * shmem/tmpfs. Return it without attempting to raise page count.
1575 if (!page || xa_is_value(page))
1576 goto out;
1578 if (!page_cache_get_speculative(page))
1579 goto repeat;
1582 * Has the page moved or been split?
1583 * This is part of the lockless pagecache protocol. See
1584 * include/linux/pagemap.h for details.
1586 if (unlikely(page != xas_reload(&xas))) {
1587 put_page(page);
1588 goto repeat;
1590 page = find_subpage(page, offset);
1591 out:
1592 rcu_read_unlock();
1594 return page;
1598 * find_lock_entry - locate, pin and lock a page cache entry
1599 * @mapping: the address_space to search
1600 * @offset: the page cache index
1602 * Looks up the page cache slot at @mapping & @offset. If there is a
1603 * page cache page, it is returned locked and with an increased
1604 * refcount.
1606 * If the slot holds a shadow entry of a previously evicted page, or a
1607 * swap entry from shmem/tmpfs, it is returned.
1609 * find_lock_entry() may sleep.
1611 * Return: the found page or shadow entry, %NULL if nothing is found.
1613 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1615 struct page *page;
1617 repeat:
1618 page = find_get_entry(mapping, offset);
1619 if (page && !xa_is_value(page)) {
1620 lock_page(page);
1621 /* Has the page been truncated? */
1622 if (unlikely(page_mapping(page) != mapping)) {
1623 unlock_page(page);
1624 put_page(page);
1625 goto repeat;
1627 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1629 return page;
1631 EXPORT_SYMBOL(find_lock_entry);
1634 * pagecache_get_page - Find and get a reference to a page.
1635 * @mapping: The address_space to search.
1636 * @index: The page index.
1637 * @fgp_flags: %FGP flags modify how the page is returned.
1638 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1640 * Looks up the page cache entry at @mapping & @index.
1642 * @fgp_flags can be zero or more of these flags:
1644 * * %FGP_ACCESSED - The page will be marked accessed.
1645 * * %FGP_LOCK - The page is returned locked.
1646 * * %FGP_CREAT - If no page is present then a new page is allocated using
1647 * @gfp_mask and added to the page cache and the VM's LRU list.
1648 * The page is returned locked and with an increased refcount.
1649 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1650 * page is already in cache. If the page was allocated, unlock it before
1651 * returning so the caller can do the same dance.
1652 * * %FGP_WRITE - The page will be written
1653 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1654 * * %FGP_NOWAIT - Don't get blocked by page lock
1656 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1657 * if the %GFP flags specified for %FGP_CREAT are atomic.
1659 * If there is a page cache page, it is returned with an increased refcount.
1661 * Return: The found page or %NULL otherwise.
1663 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1664 int fgp_flags, gfp_t gfp_mask)
1666 struct page *page;
1668 repeat:
1669 page = find_get_entry(mapping, index);
1670 if (xa_is_value(page))
1671 page = NULL;
1672 if (!page)
1673 goto no_page;
1675 if (fgp_flags & FGP_LOCK) {
1676 if (fgp_flags & FGP_NOWAIT) {
1677 if (!trylock_page(page)) {
1678 put_page(page);
1679 return NULL;
1681 } else {
1682 lock_page(page);
1685 /* Has the page been truncated? */
1686 if (unlikely(compound_head(page)->mapping != mapping)) {
1687 unlock_page(page);
1688 put_page(page);
1689 goto repeat;
1691 VM_BUG_ON_PAGE(page->index != index, page);
1694 if (fgp_flags & FGP_ACCESSED)
1695 mark_page_accessed(page);
1696 else if (fgp_flags & FGP_WRITE) {
1697 /* Clear idle flag for buffer write */
1698 if (page_is_idle(page))
1699 clear_page_idle(page);
1702 no_page:
1703 if (!page && (fgp_flags & FGP_CREAT)) {
1704 int err;
1705 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1706 gfp_mask |= __GFP_WRITE;
1707 if (fgp_flags & FGP_NOFS)
1708 gfp_mask &= ~__GFP_FS;
1710 page = __page_cache_alloc(gfp_mask);
1711 if (!page)
1712 return NULL;
1714 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
1715 fgp_flags |= FGP_LOCK;
1717 /* Init accessed so avoid atomic mark_page_accessed later */
1718 if (fgp_flags & FGP_ACCESSED)
1719 __SetPageReferenced(page);
1721 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
1722 if (unlikely(err)) {
1723 put_page(page);
1724 page = NULL;
1725 if (err == -EEXIST)
1726 goto repeat;
1730 * add_to_page_cache_lru locks the page, and for mmap we expect
1731 * an unlocked page.
1733 if (page && (fgp_flags & FGP_FOR_MMAP))
1734 unlock_page(page);
1737 return page;
1739 EXPORT_SYMBOL(pagecache_get_page);
1742 * find_get_entries - gang pagecache lookup
1743 * @mapping: The address_space to search
1744 * @start: The starting page cache index
1745 * @nr_entries: The maximum number of entries
1746 * @entries: Where the resulting entries are placed
1747 * @indices: The cache indices corresponding to the entries in @entries
1749 * find_get_entries() will search for and return a group of up to
1750 * @nr_entries entries in the mapping. The entries are placed at
1751 * @entries. find_get_entries() takes a reference against any actual
1752 * pages it returns.
1754 * The search returns a group of mapping-contiguous page cache entries
1755 * with ascending indexes. There may be holes in the indices due to
1756 * not-present pages.
1758 * Any shadow entries of evicted pages, or swap entries from
1759 * shmem/tmpfs, are included in the returned array.
1761 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1762 * stops at that page: the caller is likely to have a better way to handle
1763 * the compound page as a whole, and then skip its extent, than repeatedly
1764 * calling find_get_entries() to return all its tails.
1766 * Return: the number of pages and shadow entries which were found.
1768 unsigned find_get_entries(struct address_space *mapping,
1769 pgoff_t start, unsigned int nr_entries,
1770 struct page **entries, pgoff_t *indices)
1772 XA_STATE(xas, &mapping->i_pages, start);
1773 struct page *page;
1774 unsigned int ret = 0;
1776 if (!nr_entries)
1777 return 0;
1779 rcu_read_lock();
1780 xas_for_each(&xas, page, ULONG_MAX) {
1781 if (xas_retry(&xas, page))
1782 continue;
1784 * A shadow entry of a recently evicted page, a swap
1785 * entry from shmem/tmpfs or a DAX entry. Return it
1786 * without attempting to raise page count.
1788 if (xa_is_value(page))
1789 goto export;
1791 if (!page_cache_get_speculative(page))
1792 goto retry;
1794 /* Has the page moved or been split? */
1795 if (unlikely(page != xas_reload(&xas)))
1796 goto put_page;
1799 * Terminate early on finding a THP, to allow the caller to
1800 * handle it all at once; but continue if this is hugetlbfs.
1802 if (PageTransHuge(page) && !PageHuge(page)) {
1803 page = find_subpage(page, xas.xa_index);
1804 nr_entries = ret + 1;
1806 export:
1807 indices[ret] = xas.xa_index;
1808 entries[ret] = page;
1809 if (++ret == nr_entries)
1810 break;
1811 continue;
1812 put_page:
1813 put_page(page);
1814 retry:
1815 xas_reset(&xas);
1817 rcu_read_unlock();
1818 return ret;
1822 * find_get_pages_range - gang pagecache lookup
1823 * @mapping: The address_space to search
1824 * @start: The starting page index
1825 * @end: The final page index (inclusive)
1826 * @nr_pages: The maximum number of pages
1827 * @pages: Where the resulting pages are placed
1829 * find_get_pages_range() will search for and return a group of up to @nr_pages
1830 * pages in the mapping starting at index @start and up to index @end
1831 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1832 * a reference against the returned pages.
1834 * The search returns a group of mapping-contiguous pages with ascending
1835 * indexes. There may be holes in the indices due to not-present pages.
1836 * We also update @start to index the next page for the traversal.
1838 * Return: the number of pages which were found. If this number is
1839 * smaller than @nr_pages, the end of specified range has been
1840 * reached.
1842 unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1843 pgoff_t end, unsigned int nr_pages,
1844 struct page **pages)
1846 XA_STATE(xas, &mapping->i_pages, *start);
1847 struct page *page;
1848 unsigned ret = 0;
1850 if (unlikely(!nr_pages))
1851 return 0;
1853 rcu_read_lock();
1854 xas_for_each(&xas, page, end) {
1855 if (xas_retry(&xas, page))
1856 continue;
1857 /* Skip over shadow, swap and DAX entries */
1858 if (xa_is_value(page))
1859 continue;
1861 if (!page_cache_get_speculative(page))
1862 goto retry;
1864 /* Has the page moved or been split? */
1865 if (unlikely(page != xas_reload(&xas)))
1866 goto put_page;
1868 pages[ret] = find_subpage(page, xas.xa_index);
1869 if (++ret == nr_pages) {
1870 *start = xas.xa_index + 1;
1871 goto out;
1873 continue;
1874 put_page:
1875 put_page(page);
1876 retry:
1877 xas_reset(&xas);
1881 * We come here when there is no page beyond @end. We take care to not
1882 * overflow the index @start as it confuses some of the callers. This
1883 * breaks the iteration when there is a page at index -1 but that is
1884 * already broken anyway.
1886 if (end == (pgoff_t)-1)
1887 *start = (pgoff_t)-1;
1888 else
1889 *start = end + 1;
1890 out:
1891 rcu_read_unlock();
1893 return ret;
1897 * find_get_pages_contig - gang contiguous pagecache lookup
1898 * @mapping: The address_space to search
1899 * @index: The starting page index
1900 * @nr_pages: The maximum number of pages
1901 * @pages: Where the resulting pages are placed
1903 * find_get_pages_contig() works exactly like find_get_pages(), except
1904 * that the returned number of pages are guaranteed to be contiguous.
1906 * Return: the number of pages which were found.
1908 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1909 unsigned int nr_pages, struct page **pages)
1911 XA_STATE(xas, &mapping->i_pages, index);
1912 struct page *page;
1913 unsigned int ret = 0;
1915 if (unlikely(!nr_pages))
1916 return 0;
1918 rcu_read_lock();
1919 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
1920 if (xas_retry(&xas, page))
1921 continue;
1923 * If the entry has been swapped out, we can stop looking.
1924 * No current caller is looking for DAX entries.
1926 if (xa_is_value(page))
1927 break;
1929 if (!page_cache_get_speculative(page))
1930 goto retry;
1932 /* Has the page moved or been split? */
1933 if (unlikely(page != xas_reload(&xas)))
1934 goto put_page;
1936 pages[ret] = find_subpage(page, xas.xa_index);
1937 if (++ret == nr_pages)
1938 break;
1939 continue;
1940 put_page:
1941 put_page(page);
1942 retry:
1943 xas_reset(&xas);
1945 rcu_read_unlock();
1946 return ret;
1948 EXPORT_SYMBOL(find_get_pages_contig);
1951 * find_get_pages_range_tag - find and return pages in given range matching @tag
1952 * @mapping: the address_space to search
1953 * @index: the starting page index
1954 * @end: The final page index (inclusive)
1955 * @tag: the tag index
1956 * @nr_pages: the maximum number of pages
1957 * @pages: where the resulting pages are placed
1959 * Like find_get_pages, except we only return pages which are tagged with
1960 * @tag. We update @index to index the next page for the traversal.
1962 * Return: the number of pages which were found.
1964 unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
1965 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
1966 struct page **pages)
1968 XA_STATE(xas, &mapping->i_pages, *index);
1969 struct page *page;
1970 unsigned ret = 0;
1972 if (unlikely(!nr_pages))
1973 return 0;
1975 rcu_read_lock();
1976 xas_for_each_marked(&xas, page, end, tag) {
1977 if (xas_retry(&xas, page))
1978 continue;
1980 * Shadow entries should never be tagged, but this iteration
1981 * is lockless so there is a window for page reclaim to evict
1982 * a page we saw tagged. Skip over it.
1984 if (xa_is_value(page))
1985 continue;
1987 if (!page_cache_get_speculative(page))
1988 goto retry;
1990 /* Has the page moved or been split? */
1991 if (unlikely(page != xas_reload(&xas)))
1992 goto put_page;
1994 pages[ret] = find_subpage(page, xas.xa_index);
1995 if (++ret == nr_pages) {
1996 *index = xas.xa_index + 1;
1997 goto out;
1999 continue;
2000 put_page:
2001 put_page(page);
2002 retry:
2003 xas_reset(&xas);
2007 * We come here when we got to @end. We take care to not overflow the
2008 * index @index as it confuses some of the callers. This breaks the
2009 * iteration when there is a page at index -1 but that is already
2010 * broken anyway.
2012 if (end == (pgoff_t)-1)
2013 *index = (pgoff_t)-1;
2014 else
2015 *index = end + 1;
2016 out:
2017 rcu_read_unlock();
2019 return ret;
2021 EXPORT_SYMBOL(find_get_pages_range_tag);
2024 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2025 * a _large_ part of the i/o request. Imagine the worst scenario:
2027 * ---R__________________________________________B__________
2028 * ^ reading here ^ bad block(assume 4k)
2030 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2031 * => failing the whole request => read(R) => read(R+1) =>
2032 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2033 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2034 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2036 * It is going insane. Fix it by quickly scaling down the readahead size.
2038 static void shrink_readahead_size_eio(struct file_ra_state *ra)
2040 ra->ra_pages /= 4;
2044 * generic_file_buffered_read - generic file read routine
2045 * @iocb: the iocb to read
2046 * @iter: data destination
2047 * @written: already copied
2049 * This is a generic file read routine, and uses the
2050 * mapping->a_ops->readpage() function for the actual low-level stuff.
2052 * This is really ugly. But the goto's actually try to clarify some
2053 * of the logic when it comes to error handling etc.
2055 * Return:
2056 * * total number of bytes copied, including those the were already @written
2057 * * negative error code if nothing was copied
2059 ssize_t generic_file_buffered_read(struct kiocb *iocb,
2060 struct iov_iter *iter, ssize_t written)
2062 struct file *filp = iocb->ki_filp;
2063 struct address_space *mapping = filp->f_mapping;
2064 struct inode *inode = mapping->host;
2065 struct file_ra_state *ra = &filp->f_ra;
2066 loff_t *ppos = &iocb->ki_pos;
2067 pgoff_t index;
2068 pgoff_t last_index;
2069 pgoff_t prev_index;
2070 unsigned long offset; /* offset into pagecache page */
2071 unsigned int prev_offset;
2072 int error = 0;
2074 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
2075 return 0;
2076 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
2078 index = *ppos >> PAGE_SHIFT;
2079 prev_index = ra->prev_pos >> PAGE_SHIFT;
2080 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
2081 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
2082 offset = *ppos & ~PAGE_MASK;
2084 for (;;) {
2085 struct page *page;
2086 pgoff_t end_index;
2087 loff_t isize;
2088 unsigned long nr, ret;
2090 cond_resched();
2091 find_page:
2092 if (fatal_signal_pending(current)) {
2093 error = -EINTR;
2094 goto out;
2097 page = find_get_page(mapping, index);
2098 if (!page) {
2099 if (iocb->ki_flags & IOCB_NOIO)
2100 goto would_block;
2101 page_cache_sync_readahead(mapping,
2102 ra, filp,
2103 index, last_index - index);
2104 page = find_get_page(mapping, index);
2105 if (unlikely(page == NULL))
2106 goto no_cached_page;
2108 if (PageReadahead(page)) {
2109 if (iocb->ki_flags & IOCB_NOIO) {
2110 put_page(page);
2111 goto out;
2113 page_cache_async_readahead(mapping,
2114 ra, filp, page,
2115 index, last_index - index);
2117 if (!PageUptodate(page)) {
2119 * See comment in do_read_cache_page on why
2120 * wait_on_page_locked is used to avoid unnecessarily
2121 * serialisations and why it's safe.
2123 if (iocb->ki_flags & IOCB_WAITQ) {
2124 if (written) {
2125 put_page(page);
2126 goto out;
2128 error = wait_on_page_locked_async(page,
2129 iocb->ki_waitq);
2130 } else {
2131 if (iocb->ki_flags & IOCB_NOWAIT) {
2132 put_page(page);
2133 goto would_block;
2135 error = wait_on_page_locked_killable(page);
2137 if (unlikely(error))
2138 goto readpage_error;
2139 if (PageUptodate(page))
2140 goto page_ok;
2142 if (inode->i_blkbits == PAGE_SHIFT ||
2143 !mapping->a_ops->is_partially_uptodate)
2144 goto page_not_up_to_date;
2145 /* pipes can't handle partially uptodate pages */
2146 if (unlikely(iov_iter_is_pipe(iter)))
2147 goto page_not_up_to_date;
2148 if (!trylock_page(page))
2149 goto page_not_up_to_date;
2150 /* Did it get truncated before we got the lock? */
2151 if (!page->mapping)
2152 goto page_not_up_to_date_locked;
2153 if (!mapping->a_ops->is_partially_uptodate(page,
2154 offset, iter->count))
2155 goto page_not_up_to_date_locked;
2156 unlock_page(page);
2158 page_ok:
2160 * i_size must be checked after we know the page is Uptodate.
2162 * Checking i_size after the check allows us to calculate
2163 * the correct value for "nr", which means the zero-filled
2164 * part of the page is not copied back to userspace (unless
2165 * another truncate extends the file - this is desired though).
2168 isize = i_size_read(inode);
2169 end_index = (isize - 1) >> PAGE_SHIFT;
2170 if (unlikely(!isize || index > end_index)) {
2171 put_page(page);
2172 goto out;
2175 /* nr is the maximum number of bytes to copy from this page */
2176 nr = PAGE_SIZE;
2177 if (index == end_index) {
2178 nr = ((isize - 1) & ~PAGE_MASK) + 1;
2179 if (nr <= offset) {
2180 put_page(page);
2181 goto out;
2184 nr = nr - offset;
2186 /* If users can be writing to this page using arbitrary
2187 * virtual addresses, take care about potential aliasing
2188 * before reading the page on the kernel side.
2190 if (mapping_writably_mapped(mapping))
2191 flush_dcache_page(page);
2194 * When a sequential read accesses a page several times,
2195 * only mark it as accessed the first time.
2197 if (prev_index != index || offset != prev_offset)
2198 mark_page_accessed(page);
2199 prev_index = index;
2202 * Ok, we have the page, and it's up-to-date, so
2203 * now we can copy it to user space...
2206 ret = copy_page_to_iter(page, offset, nr, iter);
2207 offset += ret;
2208 index += offset >> PAGE_SHIFT;
2209 offset &= ~PAGE_MASK;
2210 prev_offset = offset;
2212 put_page(page);
2213 written += ret;
2214 if (!iov_iter_count(iter))
2215 goto out;
2216 if (ret < nr) {
2217 error = -EFAULT;
2218 goto out;
2220 continue;
2222 page_not_up_to_date:
2223 /* Get exclusive access to the page ... */
2224 if (iocb->ki_flags & IOCB_WAITQ)
2225 error = lock_page_async(page, iocb->ki_waitq);
2226 else
2227 error = lock_page_killable(page);
2228 if (unlikely(error))
2229 goto readpage_error;
2231 page_not_up_to_date_locked:
2232 /* Did it get truncated before we got the lock? */
2233 if (!page->mapping) {
2234 unlock_page(page);
2235 put_page(page);
2236 continue;
2239 /* Did somebody else fill it already? */
2240 if (PageUptodate(page)) {
2241 unlock_page(page);
2242 goto page_ok;
2245 readpage:
2246 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
2247 unlock_page(page);
2248 put_page(page);
2249 goto would_block;
2252 * A previous I/O error may have been due to temporary
2253 * failures, eg. multipath errors.
2254 * PG_error will be set again if readpage fails.
2256 ClearPageError(page);
2257 /* Start the actual read. The read will unlock the page. */
2258 error = mapping->a_ops->readpage(filp, page);
2260 if (unlikely(error)) {
2261 if (error == AOP_TRUNCATED_PAGE) {
2262 put_page(page);
2263 error = 0;
2264 goto find_page;
2266 goto readpage_error;
2269 if (!PageUptodate(page)) {
2270 error = lock_page_killable(page);
2271 if (unlikely(error))
2272 goto readpage_error;
2273 if (!PageUptodate(page)) {
2274 if (page->mapping == NULL) {
2276 * invalidate_mapping_pages got it
2278 unlock_page(page);
2279 put_page(page);
2280 goto find_page;
2282 unlock_page(page);
2283 shrink_readahead_size_eio(ra);
2284 error = -EIO;
2285 goto readpage_error;
2287 unlock_page(page);
2290 goto page_ok;
2292 readpage_error:
2293 /* UHHUH! A synchronous read error occurred. Report it */
2294 put_page(page);
2295 goto out;
2297 no_cached_page:
2299 * Ok, it wasn't cached, so we need to create a new
2300 * page..
2302 page = page_cache_alloc(mapping);
2303 if (!page) {
2304 error = -ENOMEM;
2305 goto out;
2307 error = add_to_page_cache_lru(page, mapping, index,
2308 mapping_gfp_constraint(mapping, GFP_KERNEL));
2309 if (error) {
2310 put_page(page);
2311 if (error == -EEXIST) {
2312 error = 0;
2313 goto find_page;
2315 goto out;
2317 goto readpage;
2320 would_block:
2321 error = -EAGAIN;
2322 out:
2323 ra->prev_pos = prev_index;
2324 ra->prev_pos <<= PAGE_SHIFT;
2325 ra->prev_pos |= prev_offset;
2327 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
2328 file_accessed(filp);
2329 return written ? written : error;
2331 EXPORT_SYMBOL_GPL(generic_file_buffered_read);
2334 * generic_file_read_iter - generic filesystem read routine
2335 * @iocb: kernel I/O control block
2336 * @iter: destination for the data read
2338 * This is the "read_iter()" routine for all filesystems
2339 * that can use the page cache directly.
2341 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2342 * be returned when no data can be read without waiting for I/O requests
2343 * to complete; it doesn't prevent readahead.
2345 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2346 * requests shall be made for the read or for readahead. When no data
2347 * can be read, -EAGAIN shall be returned. When readahead would be
2348 * triggered, a partial, possibly empty read shall be returned.
2350 * Return:
2351 * * number of bytes copied, even for partial reads
2352 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
2354 ssize_t
2355 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
2357 size_t count = iov_iter_count(iter);
2358 ssize_t retval = 0;
2360 if (!count)
2361 goto out; /* skip atime */
2363 if (iocb->ki_flags & IOCB_DIRECT) {
2364 struct file *file = iocb->ki_filp;
2365 struct address_space *mapping = file->f_mapping;
2366 struct inode *inode = mapping->host;
2367 loff_t size;
2369 size = i_size_read(inode);
2370 if (iocb->ki_flags & IOCB_NOWAIT) {
2371 if (filemap_range_has_page(mapping, iocb->ki_pos,
2372 iocb->ki_pos + count - 1))
2373 return -EAGAIN;
2374 } else {
2375 retval = filemap_write_and_wait_range(mapping,
2376 iocb->ki_pos,
2377 iocb->ki_pos + count - 1);
2378 if (retval < 0)
2379 goto out;
2382 file_accessed(file);
2384 retval = mapping->a_ops->direct_IO(iocb, iter);
2385 if (retval >= 0) {
2386 iocb->ki_pos += retval;
2387 count -= retval;
2389 iov_iter_revert(iter, count - iov_iter_count(iter));
2392 * Btrfs can have a short DIO read if we encounter
2393 * compressed extents, so if there was an error, or if
2394 * we've already read everything we wanted to, or if
2395 * there was a short read because we hit EOF, go ahead
2396 * and return. Otherwise fallthrough to buffered io for
2397 * the rest of the read. Buffered reads will not work for
2398 * DAX files, so don't bother trying.
2400 if (retval < 0 || !count || iocb->ki_pos >= size ||
2401 IS_DAX(inode))
2402 goto out;
2405 retval = generic_file_buffered_read(iocb, iter, retval);
2406 out:
2407 return retval;
2409 EXPORT_SYMBOL(generic_file_read_iter);
2411 #ifdef CONFIG_MMU
2412 #define MMAP_LOTSAMISS (100)
2414 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
2415 * @vmf - the vm_fault for this fault.
2416 * @page - the page to lock.
2417 * @fpin - the pointer to the file we may pin (or is already pinned).
2419 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
2420 * It differs in that it actually returns the page locked if it returns 1 and 0
2421 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
2422 * will point to the pinned file and needs to be fput()'ed at a later point.
2424 static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2425 struct file **fpin)
2427 if (trylock_page(page))
2428 return 1;
2431 * NOTE! This will make us return with VM_FAULT_RETRY, but with
2432 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
2433 * is supposed to work. We have way too many special cases..
2435 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2436 return 0;
2438 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2439 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2440 if (__lock_page_killable(page)) {
2442 * We didn't have the right flags to drop the mmap_lock,
2443 * but all fault_handlers only check for fatal signals
2444 * if we return VM_FAULT_RETRY, so we need to drop the
2445 * mmap_lock here and return 0 if we don't have a fpin.
2447 if (*fpin == NULL)
2448 mmap_read_unlock(vmf->vma->vm_mm);
2449 return 0;
2451 } else
2452 __lock_page(page);
2453 return 1;
2458 * Synchronous readahead happens when we don't even find a page in the page
2459 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2460 * to drop the mmap sem we return the file that was pinned in order for us to do
2461 * that. If we didn't pin a file then we return NULL. The file that is
2462 * returned needs to be fput()'ed when we're done with it.
2464 static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
2466 struct file *file = vmf->vma->vm_file;
2467 struct file_ra_state *ra = &file->f_ra;
2468 struct address_space *mapping = file->f_mapping;
2469 struct file *fpin = NULL;
2470 pgoff_t offset = vmf->pgoff;
2471 unsigned int mmap_miss;
2473 /* If we don't want any read-ahead, don't bother */
2474 if (vmf->vma->vm_flags & VM_RAND_READ)
2475 return fpin;
2476 if (!ra->ra_pages)
2477 return fpin;
2479 if (vmf->vma->vm_flags & VM_SEQ_READ) {
2480 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2481 page_cache_sync_readahead(mapping, ra, file, offset,
2482 ra->ra_pages);
2483 return fpin;
2486 /* Avoid banging the cache line if not needed */
2487 mmap_miss = READ_ONCE(ra->mmap_miss);
2488 if (mmap_miss < MMAP_LOTSAMISS * 10)
2489 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
2492 * Do we miss much more than hit in this file? If so,
2493 * stop bothering with read-ahead. It will only hurt.
2495 if (mmap_miss > MMAP_LOTSAMISS)
2496 return fpin;
2499 * mmap read-around
2501 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2502 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2503 ra->size = ra->ra_pages;
2504 ra->async_size = ra->ra_pages / 4;
2505 ra_submit(ra, mapping, file);
2506 return fpin;
2510 * Asynchronous readahead happens when we find the page and PG_readahead,
2511 * so we want to possibly extend the readahead further. We return the file that
2512 * was pinned if we have to drop the mmap_lock in order to do IO.
2514 static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2515 struct page *page)
2517 struct file *file = vmf->vma->vm_file;
2518 struct file_ra_state *ra = &file->f_ra;
2519 struct address_space *mapping = file->f_mapping;
2520 struct file *fpin = NULL;
2521 unsigned int mmap_miss;
2522 pgoff_t offset = vmf->pgoff;
2524 /* If we don't want any read-ahead, don't bother */
2525 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
2526 return fpin;
2527 mmap_miss = READ_ONCE(ra->mmap_miss);
2528 if (mmap_miss)
2529 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
2530 if (PageReadahead(page)) {
2531 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2532 page_cache_async_readahead(mapping, ra, file,
2533 page, offset, ra->ra_pages);
2535 return fpin;
2539 * filemap_fault - read in file data for page fault handling
2540 * @vmf: struct vm_fault containing details of the fault
2542 * filemap_fault() is invoked via the vma operations vector for a
2543 * mapped memory region to read in file data during a page fault.
2545 * The goto's are kind of ugly, but this streamlines the normal case of having
2546 * it in the page cache, and handles the special cases reasonably without
2547 * having a lot of duplicated code.
2549 * vma->vm_mm->mmap_lock must be held on entry.
2551 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
2552 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
2554 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
2555 * has not been released.
2557 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2559 * Return: bitwise-OR of %VM_FAULT_ codes.
2561 vm_fault_t filemap_fault(struct vm_fault *vmf)
2563 int error;
2564 struct file *file = vmf->vma->vm_file;
2565 struct file *fpin = NULL;
2566 struct address_space *mapping = file->f_mapping;
2567 struct file_ra_state *ra = &file->f_ra;
2568 struct inode *inode = mapping->host;
2569 pgoff_t offset = vmf->pgoff;
2570 pgoff_t max_off;
2571 struct page *page;
2572 vm_fault_t ret = 0;
2574 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2575 if (unlikely(offset >= max_off))
2576 return VM_FAULT_SIGBUS;
2579 * Do we have something in the page cache already?
2581 page = find_get_page(mapping, offset);
2582 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2584 * We found the page, so try async readahead before
2585 * waiting for the lock.
2587 fpin = do_async_mmap_readahead(vmf, page);
2588 } else if (!page) {
2589 /* No page in the page cache at all */
2590 count_vm_event(PGMAJFAULT);
2591 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
2592 ret = VM_FAULT_MAJOR;
2593 fpin = do_sync_mmap_readahead(vmf);
2594 retry_find:
2595 page = pagecache_get_page(mapping, offset,
2596 FGP_CREAT|FGP_FOR_MMAP,
2597 vmf->gfp_mask);
2598 if (!page) {
2599 if (fpin)
2600 goto out_retry;
2601 return VM_FAULT_OOM;
2605 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2606 goto out_retry;
2608 /* Did it get truncated? */
2609 if (unlikely(compound_head(page)->mapping != mapping)) {
2610 unlock_page(page);
2611 put_page(page);
2612 goto retry_find;
2614 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
2617 * We have a locked page in the page cache, now we need to check
2618 * that it's up-to-date. If not, it is going to be due to an error.
2620 if (unlikely(!PageUptodate(page)))
2621 goto page_not_uptodate;
2624 * We've made it this far and we had to drop our mmap_lock, now is the
2625 * time to return to the upper layer and have it re-find the vma and
2626 * redo the fault.
2628 if (fpin) {
2629 unlock_page(page);
2630 goto out_retry;
2634 * Found the page and have a reference on it.
2635 * We must recheck i_size under page lock.
2637 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2638 if (unlikely(offset >= max_off)) {
2639 unlock_page(page);
2640 put_page(page);
2641 return VM_FAULT_SIGBUS;
2644 vmf->page = page;
2645 return ret | VM_FAULT_LOCKED;
2647 page_not_uptodate:
2649 * Umm, take care of errors if the page isn't up-to-date.
2650 * Try to re-read it _once_. We do this synchronously,
2651 * because there really aren't any performance issues here
2652 * and we need to check for errors.
2654 ClearPageError(page);
2655 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2656 error = mapping->a_ops->readpage(file, page);
2657 if (!error) {
2658 wait_on_page_locked(page);
2659 if (!PageUptodate(page))
2660 error = -EIO;
2662 if (fpin)
2663 goto out_retry;
2664 put_page(page);
2666 if (!error || error == AOP_TRUNCATED_PAGE)
2667 goto retry_find;
2669 shrink_readahead_size_eio(ra);
2670 return VM_FAULT_SIGBUS;
2672 out_retry:
2674 * We dropped the mmap_lock, we need to return to the fault handler to
2675 * re-find the vma and come back and find our hopefully still populated
2676 * page.
2678 if (page)
2679 put_page(page);
2680 if (fpin)
2681 fput(fpin);
2682 return ret | VM_FAULT_RETRY;
2684 EXPORT_SYMBOL(filemap_fault);
2686 void filemap_map_pages(struct vm_fault *vmf,
2687 pgoff_t start_pgoff, pgoff_t end_pgoff)
2689 struct file *file = vmf->vma->vm_file;
2690 struct address_space *mapping = file->f_mapping;
2691 pgoff_t last_pgoff = start_pgoff;
2692 unsigned long max_idx;
2693 XA_STATE(xas, &mapping->i_pages, start_pgoff);
2694 struct page *page;
2695 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
2697 rcu_read_lock();
2698 xas_for_each(&xas, page, end_pgoff) {
2699 if (xas_retry(&xas, page))
2700 continue;
2701 if (xa_is_value(page))
2702 goto next;
2705 * Check for a locked page first, as a speculative
2706 * reference may adversely influence page migration.
2708 if (PageLocked(page))
2709 goto next;
2710 if (!page_cache_get_speculative(page))
2711 goto next;
2713 /* Has the page moved or been split? */
2714 if (unlikely(page != xas_reload(&xas)))
2715 goto skip;
2716 page = find_subpage(page, xas.xa_index);
2718 if (!PageUptodate(page) ||
2719 PageReadahead(page) ||
2720 PageHWPoison(page))
2721 goto skip;
2722 if (!trylock_page(page))
2723 goto skip;
2725 if (page->mapping != mapping || !PageUptodate(page))
2726 goto unlock;
2728 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2729 if (page->index >= max_idx)
2730 goto unlock;
2732 if (mmap_miss > 0)
2733 mmap_miss--;
2735 vmf->address += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
2736 if (vmf->pte)
2737 vmf->pte += xas.xa_index - last_pgoff;
2738 last_pgoff = xas.xa_index;
2739 if (alloc_set_pte(vmf, page))
2740 goto unlock;
2741 unlock_page(page);
2742 goto next;
2743 unlock:
2744 unlock_page(page);
2745 skip:
2746 put_page(page);
2747 next:
2748 /* Huge page is mapped? No need to proceed. */
2749 if (pmd_trans_huge(*vmf->pmd))
2750 break;
2752 rcu_read_unlock();
2753 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
2755 EXPORT_SYMBOL(filemap_map_pages);
2757 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2759 struct page *page = vmf->page;
2760 struct inode *inode = file_inode(vmf->vma->vm_file);
2761 vm_fault_t ret = VM_FAULT_LOCKED;
2763 sb_start_pagefault(inode->i_sb);
2764 file_update_time(vmf->vma->vm_file);
2765 lock_page(page);
2766 if (page->mapping != inode->i_mapping) {
2767 unlock_page(page);
2768 ret = VM_FAULT_NOPAGE;
2769 goto out;
2772 * We mark the page dirty already here so that when freeze is in
2773 * progress, we are guaranteed that writeback during freezing will
2774 * see the dirty page and writeprotect it again.
2776 set_page_dirty(page);
2777 wait_for_stable_page(page);
2778 out:
2779 sb_end_pagefault(inode->i_sb);
2780 return ret;
2783 const struct vm_operations_struct generic_file_vm_ops = {
2784 .fault = filemap_fault,
2785 .map_pages = filemap_map_pages,
2786 .page_mkwrite = filemap_page_mkwrite,
2789 /* This is used for a general mmap of a disk file */
2791 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2793 struct address_space *mapping = file->f_mapping;
2795 if (!mapping->a_ops->readpage)
2796 return -ENOEXEC;
2797 file_accessed(file);
2798 vma->vm_ops = &generic_file_vm_ops;
2799 return 0;
2803 * This is for filesystems which do not implement ->writepage.
2805 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2807 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2808 return -EINVAL;
2809 return generic_file_mmap(file, vma);
2811 #else
2812 vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
2814 return VM_FAULT_SIGBUS;
2816 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2818 return -ENOSYS;
2820 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2822 return -ENOSYS;
2824 #endif /* CONFIG_MMU */
2826 EXPORT_SYMBOL(filemap_page_mkwrite);
2827 EXPORT_SYMBOL(generic_file_mmap);
2828 EXPORT_SYMBOL(generic_file_readonly_mmap);
2830 static struct page *wait_on_page_read(struct page *page)
2832 if (!IS_ERR(page)) {
2833 wait_on_page_locked(page);
2834 if (!PageUptodate(page)) {
2835 put_page(page);
2836 page = ERR_PTR(-EIO);
2839 return page;
2842 static struct page *do_read_cache_page(struct address_space *mapping,
2843 pgoff_t index,
2844 int (*filler)(void *, struct page *),
2845 void *data,
2846 gfp_t gfp)
2848 struct page *page;
2849 int err;
2850 repeat:
2851 page = find_get_page(mapping, index);
2852 if (!page) {
2853 page = __page_cache_alloc(gfp);
2854 if (!page)
2855 return ERR_PTR(-ENOMEM);
2856 err = add_to_page_cache_lru(page, mapping, index, gfp);
2857 if (unlikely(err)) {
2858 put_page(page);
2859 if (err == -EEXIST)
2860 goto repeat;
2861 /* Presumably ENOMEM for xarray node */
2862 return ERR_PTR(err);
2865 filler:
2866 if (filler)
2867 err = filler(data, page);
2868 else
2869 err = mapping->a_ops->readpage(data, page);
2871 if (err < 0) {
2872 put_page(page);
2873 return ERR_PTR(err);
2876 page = wait_on_page_read(page);
2877 if (IS_ERR(page))
2878 return page;
2879 goto out;
2881 if (PageUptodate(page))
2882 goto out;
2885 * Page is not up to date and may be locked due one of the following
2886 * case a: Page is being filled and the page lock is held
2887 * case b: Read/write error clearing the page uptodate status
2888 * case c: Truncation in progress (page locked)
2889 * case d: Reclaim in progress
2891 * Case a, the page will be up to date when the page is unlocked.
2892 * There is no need to serialise on the page lock here as the page
2893 * is pinned so the lock gives no additional protection. Even if the
2894 * page is truncated, the data is still valid if PageUptodate as
2895 * it's a race vs truncate race.
2896 * Case b, the page will not be up to date
2897 * Case c, the page may be truncated but in itself, the data may still
2898 * be valid after IO completes as it's a read vs truncate race. The
2899 * operation must restart if the page is not uptodate on unlock but
2900 * otherwise serialising on page lock to stabilise the mapping gives
2901 * no additional guarantees to the caller as the page lock is
2902 * released before return.
2903 * Case d, similar to truncation. If reclaim holds the page lock, it
2904 * will be a race with remove_mapping that determines if the mapping
2905 * is valid on unlock but otherwise the data is valid and there is
2906 * no need to serialise with page lock.
2908 * As the page lock gives no additional guarantee, we optimistically
2909 * wait on the page to be unlocked and check if it's up to date and
2910 * use the page if it is. Otherwise, the page lock is required to
2911 * distinguish between the different cases. The motivation is that we
2912 * avoid spurious serialisations and wakeups when multiple processes
2913 * wait on the same page for IO to complete.
2915 wait_on_page_locked(page);
2916 if (PageUptodate(page))
2917 goto out;
2919 /* Distinguish between all the cases under the safety of the lock */
2920 lock_page(page);
2922 /* Case c or d, restart the operation */
2923 if (!page->mapping) {
2924 unlock_page(page);
2925 put_page(page);
2926 goto repeat;
2929 /* Someone else locked and filled the page in a very small window */
2930 if (PageUptodate(page)) {
2931 unlock_page(page);
2932 goto out;
2936 * A previous I/O error may have been due to temporary
2937 * failures.
2938 * Clear page error before actual read, PG_error will be
2939 * set again if read page fails.
2941 ClearPageError(page);
2942 goto filler;
2944 out:
2945 mark_page_accessed(page);
2946 return page;
2950 * read_cache_page - read into page cache, fill it if needed
2951 * @mapping: the page's address_space
2952 * @index: the page index
2953 * @filler: function to perform the read
2954 * @data: first arg to filler(data, page) function, often left as NULL
2956 * Read into the page cache. If a page already exists, and PageUptodate() is
2957 * not set, try to fill the page and wait for it to become unlocked.
2959 * If the page does not get brought uptodate, return -EIO.
2961 * Return: up to date page on success, ERR_PTR() on failure.
2963 struct page *read_cache_page(struct address_space *mapping,
2964 pgoff_t index,
2965 int (*filler)(void *, struct page *),
2966 void *data)
2968 return do_read_cache_page(mapping, index, filler, data,
2969 mapping_gfp_mask(mapping));
2971 EXPORT_SYMBOL(read_cache_page);
2974 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2975 * @mapping: the page's address_space
2976 * @index: the page index
2977 * @gfp: the page allocator flags to use if allocating
2979 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2980 * any new page allocations done using the specified allocation flags.
2982 * If the page does not get brought uptodate, return -EIO.
2984 * Return: up to date page on success, ERR_PTR() on failure.
2986 struct page *read_cache_page_gfp(struct address_space *mapping,
2987 pgoff_t index,
2988 gfp_t gfp)
2990 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
2992 EXPORT_SYMBOL(read_cache_page_gfp);
2995 * Don't operate on ranges the page cache doesn't support, and don't exceed the
2996 * LFS limits. If pos is under the limit it becomes a short access. If it
2997 * exceeds the limit we return -EFBIG.
2999 static int generic_write_check_limits(struct file *file, loff_t pos,
3000 loff_t *count)
3002 struct inode *inode = file->f_mapping->host;
3003 loff_t max_size = inode->i_sb->s_maxbytes;
3004 loff_t limit = rlimit(RLIMIT_FSIZE);
3006 if (limit != RLIM_INFINITY) {
3007 if (pos >= limit) {
3008 send_sig(SIGXFSZ, current, 0);
3009 return -EFBIG;
3011 *count = min(*count, limit - pos);
3014 if (!(file->f_flags & O_LARGEFILE))
3015 max_size = MAX_NON_LFS;
3017 if (unlikely(pos >= max_size))
3018 return -EFBIG;
3020 *count = min(*count, max_size - pos);
3022 return 0;
3026 * Performs necessary checks before doing a write
3028 * Can adjust writing position or amount of bytes to write.
3029 * Returns appropriate error code that caller should return or
3030 * zero in case that write should be allowed.
3032 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
3034 struct file *file = iocb->ki_filp;
3035 struct inode *inode = file->f_mapping->host;
3036 loff_t count;
3037 int ret;
3039 if (IS_SWAPFILE(inode))
3040 return -ETXTBSY;
3042 if (!iov_iter_count(from))
3043 return 0;
3045 /* FIXME: this is for backwards compatibility with 2.4 */
3046 if (iocb->ki_flags & IOCB_APPEND)
3047 iocb->ki_pos = i_size_read(inode);
3049 if ((iocb->ki_flags & IOCB_NOWAIT) && !(iocb->ki_flags & IOCB_DIRECT))
3050 return -EINVAL;
3052 count = iov_iter_count(from);
3053 ret = generic_write_check_limits(file, iocb->ki_pos, &count);
3054 if (ret)
3055 return ret;
3057 iov_iter_truncate(from, count);
3058 return iov_iter_count(from);
3060 EXPORT_SYMBOL(generic_write_checks);
3063 * Performs necessary checks before doing a clone.
3065 * Can adjust amount of bytes to clone via @req_count argument.
3066 * Returns appropriate error code that caller should return or
3067 * zero in case the clone should be allowed.
3069 int generic_remap_checks(struct file *file_in, loff_t pos_in,
3070 struct file *file_out, loff_t pos_out,
3071 loff_t *req_count, unsigned int remap_flags)
3073 struct inode *inode_in = file_in->f_mapping->host;
3074 struct inode *inode_out = file_out->f_mapping->host;
3075 uint64_t count = *req_count;
3076 uint64_t bcount;
3077 loff_t size_in, size_out;
3078 loff_t bs = inode_out->i_sb->s_blocksize;
3079 int ret;
3081 /* The start of both ranges must be aligned to an fs block. */
3082 if (!IS_ALIGNED(pos_in, bs) || !IS_ALIGNED(pos_out, bs))
3083 return -EINVAL;
3085 /* Ensure offsets don't wrap. */
3086 if (pos_in + count < pos_in || pos_out + count < pos_out)
3087 return -EINVAL;
3089 size_in = i_size_read(inode_in);
3090 size_out = i_size_read(inode_out);
3092 /* Dedupe requires both ranges to be within EOF. */
3093 if ((remap_flags & REMAP_FILE_DEDUP) &&
3094 (pos_in >= size_in || pos_in + count > size_in ||
3095 pos_out >= size_out || pos_out + count > size_out))
3096 return -EINVAL;
3098 /* Ensure the infile range is within the infile. */
3099 if (pos_in >= size_in)
3100 return -EINVAL;
3101 count = min(count, size_in - (uint64_t)pos_in);
3103 ret = generic_write_check_limits(file_out, pos_out, &count);
3104 if (ret)
3105 return ret;
3108 * If the user wanted us to link to the infile's EOF, round up to the
3109 * next block boundary for this check.
3111 * Otherwise, make sure the count is also block-aligned, having
3112 * already confirmed the starting offsets' block alignment.
3114 if (pos_in + count == size_in) {
3115 bcount = ALIGN(size_in, bs) - pos_in;
3116 } else {
3117 if (!IS_ALIGNED(count, bs))
3118 count = ALIGN_DOWN(count, bs);
3119 bcount = count;
3122 /* Don't allow overlapped cloning within the same file. */
3123 if (inode_in == inode_out &&
3124 pos_out + bcount > pos_in &&
3125 pos_out < pos_in + bcount)
3126 return -EINVAL;
3129 * We shortened the request but the caller can't deal with that, so
3130 * bounce the request back to userspace.
3132 if (*req_count != count && !(remap_flags & REMAP_FILE_CAN_SHORTEN))
3133 return -EINVAL;
3135 *req_count = count;
3136 return 0;
3141 * Performs common checks before doing a file copy/clone
3142 * from @file_in to @file_out.
3144 int generic_file_rw_checks(struct file *file_in, struct file *file_out)
3146 struct inode *inode_in = file_inode(file_in);
3147 struct inode *inode_out = file_inode(file_out);
3149 /* Don't copy dirs, pipes, sockets... */
3150 if (S_ISDIR(inode_in->i_mode) || S_ISDIR(inode_out->i_mode))
3151 return -EISDIR;
3152 if (!S_ISREG(inode_in->i_mode) || !S_ISREG(inode_out->i_mode))
3153 return -EINVAL;
3155 if (!(file_in->f_mode & FMODE_READ) ||
3156 !(file_out->f_mode & FMODE_WRITE) ||
3157 (file_out->f_flags & O_APPEND))
3158 return -EBADF;
3160 return 0;
3164 * Performs necessary checks before doing a file copy
3166 * Can adjust amount of bytes to copy via @req_count argument.
3167 * Returns appropriate error code that caller should return or
3168 * zero in case the copy should be allowed.
3170 int generic_copy_file_checks(struct file *file_in, loff_t pos_in,
3171 struct file *file_out, loff_t pos_out,
3172 size_t *req_count, unsigned int flags)
3174 struct inode *inode_in = file_inode(file_in);
3175 struct inode *inode_out = file_inode(file_out);
3176 uint64_t count = *req_count;
3177 loff_t size_in;
3178 int ret;
3180 ret = generic_file_rw_checks(file_in, file_out);
3181 if (ret)
3182 return ret;
3184 /* Don't touch certain kinds of inodes */
3185 if (IS_IMMUTABLE(inode_out))
3186 return -EPERM;
3188 if (IS_SWAPFILE(inode_in) || IS_SWAPFILE(inode_out))
3189 return -ETXTBSY;
3191 /* Ensure offsets don't wrap. */
3192 if (pos_in + count < pos_in || pos_out + count < pos_out)
3193 return -EOVERFLOW;
3195 /* Shorten the copy to EOF */
3196 size_in = i_size_read(inode_in);
3197 if (pos_in >= size_in)
3198 count = 0;
3199 else
3200 count = min(count, size_in - (uint64_t)pos_in);
3202 ret = generic_write_check_limits(file_out, pos_out, &count);
3203 if (ret)
3204 return ret;
3206 /* Don't allow overlapped copying within the same file. */
3207 if (inode_in == inode_out &&
3208 pos_out + count > pos_in &&
3209 pos_out < pos_in + count)
3210 return -EINVAL;
3212 *req_count = count;
3213 return 0;
3216 int pagecache_write_begin(struct file *file, struct address_space *mapping,
3217 loff_t pos, unsigned len, unsigned flags,
3218 struct page **pagep, void **fsdata)
3220 const struct address_space_operations *aops = mapping->a_ops;
3222 return aops->write_begin(file, mapping, pos, len, flags,
3223 pagep, fsdata);
3225 EXPORT_SYMBOL(pagecache_write_begin);
3227 int pagecache_write_end(struct file *file, struct address_space *mapping,
3228 loff_t pos, unsigned len, unsigned copied,
3229 struct page *page, void *fsdata)
3231 const struct address_space_operations *aops = mapping->a_ops;
3233 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
3235 EXPORT_SYMBOL(pagecache_write_end);
3238 * Warn about a page cache invalidation failure during a direct I/O write.
3240 void dio_warn_stale_pagecache(struct file *filp)
3242 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3243 char pathname[128];
3244 struct inode *inode = file_inode(filp);
3245 char *path;
3247 errseq_set(&inode->i_mapping->wb_err, -EIO);
3248 if (__ratelimit(&_rs)) {
3249 path = file_path(filp, pathname, sizeof(pathname));
3250 if (IS_ERR(path))
3251 path = "(unknown)";
3252 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3253 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3254 current->comm);
3258 ssize_t
3259 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
3261 struct file *file = iocb->ki_filp;
3262 struct address_space *mapping = file->f_mapping;
3263 struct inode *inode = mapping->host;
3264 loff_t pos = iocb->ki_pos;
3265 ssize_t written;
3266 size_t write_len;
3267 pgoff_t end;
3269 write_len = iov_iter_count(from);
3270 end = (pos + write_len - 1) >> PAGE_SHIFT;
3272 if (iocb->ki_flags & IOCB_NOWAIT) {
3273 /* If there are pages to writeback, return */
3274 if (filemap_range_has_page(inode->i_mapping, pos,
3275 pos + write_len - 1))
3276 return -EAGAIN;
3277 } else {
3278 written = filemap_write_and_wait_range(mapping, pos,
3279 pos + write_len - 1);
3280 if (written)
3281 goto out;
3285 * After a write we want buffered reads to be sure to go to disk to get
3286 * the new data. We invalidate clean cached page from the region we're
3287 * about to write. We do this *before* the write so that we can return
3288 * without clobbering -EIOCBQUEUED from ->direct_IO().
3290 written = invalidate_inode_pages2_range(mapping,
3291 pos >> PAGE_SHIFT, end);
3293 * If a page can not be invalidated, return 0 to fall back
3294 * to buffered write.
3296 if (written) {
3297 if (written == -EBUSY)
3298 return 0;
3299 goto out;
3302 written = mapping->a_ops->direct_IO(iocb, from);
3305 * Finally, try again to invalidate clean pages which might have been
3306 * cached by non-direct readahead, or faulted in by get_user_pages()
3307 * if the source of the write was an mmap'ed region of the file
3308 * we're writing. Either one is a pretty crazy thing to do,
3309 * so we don't support it 100%. If this invalidation
3310 * fails, tough, the write still worked...
3312 * Most of the time we do not need this since dio_complete() will do
3313 * the invalidation for us. However there are some file systems that
3314 * do not end up with dio_complete() being called, so let's not break
3315 * them by removing it completely.
3317 * Noticeable example is a blkdev_direct_IO().
3319 * Skip invalidation for async writes or if mapping has no pages.
3321 if (written > 0 && mapping->nrpages &&
3322 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3323 dio_warn_stale_pagecache(file);
3325 if (written > 0) {
3326 pos += written;
3327 write_len -= written;
3328 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3329 i_size_write(inode, pos);
3330 mark_inode_dirty(inode);
3332 iocb->ki_pos = pos;
3334 iov_iter_revert(from, write_len - iov_iter_count(from));
3335 out:
3336 return written;
3338 EXPORT_SYMBOL(generic_file_direct_write);
3341 * Find or create a page at the given pagecache position. Return the locked
3342 * page. This function is specifically for buffered writes.
3344 struct page *grab_cache_page_write_begin(struct address_space *mapping,
3345 pgoff_t index, unsigned flags)
3347 struct page *page;
3348 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
3350 if (flags & AOP_FLAG_NOFS)
3351 fgp_flags |= FGP_NOFS;
3353 page = pagecache_get_page(mapping, index, fgp_flags,
3354 mapping_gfp_mask(mapping));
3355 if (page)
3356 wait_for_stable_page(page);
3358 return page;
3360 EXPORT_SYMBOL(grab_cache_page_write_begin);
3362 ssize_t generic_perform_write(struct file *file,
3363 struct iov_iter *i, loff_t pos)
3365 struct address_space *mapping = file->f_mapping;
3366 const struct address_space_operations *a_ops = mapping->a_ops;
3367 long status = 0;
3368 ssize_t written = 0;
3369 unsigned int flags = 0;
3371 do {
3372 struct page *page;
3373 unsigned long offset; /* Offset into pagecache page */
3374 unsigned long bytes; /* Bytes to write to page */
3375 size_t copied; /* Bytes copied from user */
3376 void *fsdata;
3378 offset = (pos & (PAGE_SIZE - 1));
3379 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3380 iov_iter_count(i));
3382 again:
3384 * Bring in the user page that we will copy from _first_.
3385 * Otherwise there's a nasty deadlock on copying from the
3386 * same page as we're writing to, without it being marked
3387 * up-to-date.
3389 * Not only is this an optimisation, but it is also required
3390 * to check that the address is actually valid, when atomic
3391 * usercopies are used, below.
3393 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3394 status = -EFAULT;
3395 break;
3398 if (fatal_signal_pending(current)) {
3399 status = -EINTR;
3400 break;
3403 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
3404 &page, &fsdata);
3405 if (unlikely(status < 0))
3406 break;
3408 if (mapping_writably_mapped(mapping))
3409 flush_dcache_page(page);
3411 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
3412 flush_dcache_page(page);
3414 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3415 page, fsdata);
3416 if (unlikely(status < 0))
3417 break;
3418 copied = status;
3420 cond_resched();
3422 iov_iter_advance(i, copied);
3423 if (unlikely(copied == 0)) {
3425 * If we were unable to copy any data at all, we must
3426 * fall back to a single segment length write.
3428 * If we didn't fallback here, we could livelock
3429 * because not all segments in the iov can be copied at
3430 * once without a pagefault.
3432 bytes = min_t(unsigned long, PAGE_SIZE - offset,
3433 iov_iter_single_seg_count(i));
3434 goto again;
3436 pos += copied;
3437 written += copied;
3439 balance_dirty_pages_ratelimited(mapping);
3440 } while (iov_iter_count(i));
3442 return written ? written : status;
3444 EXPORT_SYMBOL(generic_perform_write);
3447 * __generic_file_write_iter - write data to a file
3448 * @iocb: IO state structure (file, offset, etc.)
3449 * @from: iov_iter with data to write
3451 * This function does all the work needed for actually writing data to a
3452 * file. It does all basic checks, removes SUID from the file, updates
3453 * modification times and calls proper subroutines depending on whether we
3454 * do direct IO or a standard buffered write.
3456 * It expects i_mutex to be grabbed unless we work on a block device or similar
3457 * object which does not need locking at all.
3459 * This function does *not* take care of syncing data in case of O_SYNC write.
3460 * A caller has to handle it. This is mainly due to the fact that we want to
3461 * avoid syncing under i_mutex.
3463 * Return:
3464 * * number of bytes written, even for truncated writes
3465 * * negative error code if no data has been written at all
3467 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3469 struct file *file = iocb->ki_filp;
3470 struct address_space * mapping = file->f_mapping;
3471 struct inode *inode = mapping->host;
3472 ssize_t written = 0;
3473 ssize_t err;
3474 ssize_t status;
3476 /* We can write back this queue in page reclaim */
3477 current->backing_dev_info = inode_to_bdi(inode);
3478 err = file_remove_privs(file);
3479 if (err)
3480 goto out;
3482 err = file_update_time(file);
3483 if (err)
3484 goto out;
3486 if (iocb->ki_flags & IOCB_DIRECT) {
3487 loff_t pos, endbyte;
3489 written = generic_file_direct_write(iocb, from);
3491 * If the write stopped short of completing, fall back to
3492 * buffered writes. Some filesystems do this for writes to
3493 * holes, for example. For DAX files, a buffered write will
3494 * not succeed (even if it did, DAX does not handle dirty
3495 * page-cache pages correctly).
3497 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
3498 goto out;
3500 status = generic_perform_write(file, from, pos = iocb->ki_pos);
3502 * If generic_perform_write() returned a synchronous error
3503 * then we want to return the number of bytes which were
3504 * direct-written, or the error code if that was zero. Note
3505 * that this differs from normal direct-io semantics, which
3506 * will return -EFOO even if some bytes were written.
3508 if (unlikely(status < 0)) {
3509 err = status;
3510 goto out;
3513 * We need to ensure that the page cache pages are written to
3514 * disk and invalidated to preserve the expected O_DIRECT
3515 * semantics.
3517 endbyte = pos + status - 1;
3518 err = filemap_write_and_wait_range(mapping, pos, endbyte);
3519 if (err == 0) {
3520 iocb->ki_pos = endbyte + 1;
3521 written += status;
3522 invalidate_mapping_pages(mapping,
3523 pos >> PAGE_SHIFT,
3524 endbyte >> PAGE_SHIFT);
3525 } else {
3527 * We don't know how much we wrote, so just return
3528 * the number of bytes which were direct-written
3531 } else {
3532 written = generic_perform_write(file, from, iocb->ki_pos);
3533 if (likely(written > 0))
3534 iocb->ki_pos += written;
3536 out:
3537 current->backing_dev_info = NULL;
3538 return written ? written : err;
3540 EXPORT_SYMBOL(__generic_file_write_iter);
3543 * generic_file_write_iter - write data to a file
3544 * @iocb: IO state structure
3545 * @from: iov_iter with data to write
3547 * This is a wrapper around __generic_file_write_iter() to be used by most
3548 * filesystems. It takes care of syncing the file in case of O_SYNC file
3549 * and acquires i_mutex as needed.
3550 * Return:
3551 * * negative error code if no data has been written at all of
3552 * vfs_fsync_range() failed for a synchronous write
3553 * * number of bytes written, even for truncated writes
3555 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
3557 struct file *file = iocb->ki_filp;
3558 struct inode *inode = file->f_mapping->host;
3559 ssize_t ret;
3561 inode_lock(inode);
3562 ret = generic_write_checks(iocb, from);
3563 if (ret > 0)
3564 ret = __generic_file_write_iter(iocb, from);
3565 inode_unlock(inode);
3567 if (ret > 0)
3568 ret = generic_write_sync(iocb, ret);
3569 return ret;
3571 EXPORT_SYMBOL(generic_file_write_iter);
3574 * try_to_release_page() - release old fs-specific metadata on a page
3576 * @page: the page which the kernel is trying to free
3577 * @gfp_mask: memory allocation flags (and I/O mode)
3579 * The address_space is to try to release any data against the page
3580 * (presumably at page->private).
3582 * This may also be called if PG_fscache is set on a page, indicating that the
3583 * page is known to the local caching routines.
3585 * The @gfp_mask argument specifies whether I/O may be performed to release
3586 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
3588 * Return: %1 if the release was successful, otherwise return zero.
3590 int try_to_release_page(struct page *page, gfp_t gfp_mask)
3592 struct address_space * const mapping = page->mapping;
3594 BUG_ON(!PageLocked(page));
3595 if (PageWriteback(page))
3596 return 0;
3598 if (mapping && mapping->a_ops->releasepage)
3599 return mapping->a_ops->releasepage(page, gfp_mask);
3600 return try_to_free_buffers(page);
3603 EXPORT_SYMBOL(try_to_release_page);