Revert "net: ipv4: ip_forward: fix inverted local_df test"
[linux/fpc-iii.git] / mm / rmap.c
blobf3f6fd398b32fa41bf918c31019e4f1d473387fe
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * mm->mmap_sem
25 * page->flags PG_locked (lock_page)
26 * mapping->i_mmap_mutex
27 * anon_vma->mutex
28 * mm->page_table_lock or pte_lock
29 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
30 * swap_lock (in swap_duplicate, swap_info_get)
31 * mmlist_lock (in mmput, drain_mmlist and others)
32 * mapping->private_lock (in __set_page_dirty_buffers)
33 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
34 * bdi.wb->list_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within bdi.wb->list_lock in __sync_single_inode)
40 * anon_vma->mutex,mapping->i_mutex (memory_failure, collect_procs_anon)
41 * ->tasklist_lock
42 * pte map lock
45 #include <linux/mm.h>
46 #include <linux/pagemap.h>
47 #include <linux/swap.h>
48 #include <linux/swapops.h>
49 #include <linux/slab.h>
50 #include <linux/init.h>
51 #include <linux/ksm.h>
52 #include <linux/rmap.h>
53 #include <linux/rcupdate.h>
54 #include <linux/export.h>
55 #include <linux/memcontrol.h>
56 #include <linux/mmu_notifier.h>
57 #include <linux/migrate.h>
58 #include <linux/hugetlb.h>
59 #include <linux/backing-dev.h>
61 #include <asm/tlbflush.h>
63 #include "internal.h"
65 static struct kmem_cache *anon_vma_cachep;
66 static struct kmem_cache *anon_vma_chain_cachep;
68 static inline struct anon_vma *anon_vma_alloc(void)
70 struct anon_vma *anon_vma;
72 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
73 if (anon_vma) {
74 atomic_set(&anon_vma->refcount, 1);
76 * Initialise the anon_vma root to point to itself. If called
77 * from fork, the root will be reset to the parents anon_vma.
79 anon_vma->root = anon_vma;
82 return anon_vma;
85 static inline void anon_vma_free(struct anon_vma *anon_vma)
87 VM_BUG_ON(atomic_read(&anon_vma->refcount));
90 * Synchronize against page_lock_anon_vma() such that
91 * we can safely hold the lock without the anon_vma getting
92 * freed.
94 * Relies on the full mb implied by the atomic_dec_and_test() from
95 * put_anon_vma() against the acquire barrier implied by
96 * mutex_trylock() from page_lock_anon_vma(). This orders:
98 * page_lock_anon_vma() VS put_anon_vma()
99 * mutex_trylock() atomic_dec_and_test()
100 * LOCK MB
101 * atomic_read() mutex_is_locked()
103 * LOCK should suffice since the actual taking of the lock must
104 * happen _before_ what follows.
106 might_sleep();
107 if (mutex_is_locked(&anon_vma->root->mutex)) {
108 anon_vma_lock(anon_vma);
109 anon_vma_unlock(anon_vma);
112 kmem_cache_free(anon_vma_cachep, anon_vma);
115 static inline struct anon_vma_chain *anon_vma_chain_alloc(gfp_t gfp)
117 return kmem_cache_alloc(anon_vma_chain_cachep, gfp);
120 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
122 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
126 * anon_vma_prepare - attach an anon_vma to a memory region
127 * @vma: the memory region in question
129 * This makes sure the memory mapping described by 'vma' has
130 * an 'anon_vma' attached to it, so that we can associate the
131 * anonymous pages mapped into it with that anon_vma.
133 * The common case will be that we already have one, but if
134 * not we either need to find an adjacent mapping that we
135 * can re-use the anon_vma from (very common when the only
136 * reason for splitting a vma has been mprotect()), or we
137 * allocate a new one.
139 * Anon-vma allocations are very subtle, because we may have
140 * optimistically looked up an anon_vma in page_lock_anon_vma()
141 * and that may actually touch the spinlock even in the newly
142 * allocated vma (it depends on RCU to make sure that the
143 * anon_vma isn't actually destroyed).
145 * As a result, we need to do proper anon_vma locking even
146 * for the new allocation. At the same time, we do not want
147 * to do any locking for the common case of already having
148 * an anon_vma.
150 * This must be called with the mmap_sem held for reading.
152 int anon_vma_prepare(struct vm_area_struct *vma)
154 struct anon_vma *anon_vma = vma->anon_vma;
155 struct anon_vma_chain *avc;
157 might_sleep();
158 if (unlikely(!anon_vma)) {
159 struct mm_struct *mm = vma->vm_mm;
160 struct anon_vma *allocated;
162 avc = anon_vma_chain_alloc(GFP_KERNEL);
163 if (!avc)
164 goto out_enomem;
166 anon_vma = find_mergeable_anon_vma(vma);
167 allocated = NULL;
168 if (!anon_vma) {
169 anon_vma = anon_vma_alloc();
170 if (unlikely(!anon_vma))
171 goto out_enomem_free_avc;
172 allocated = anon_vma;
175 anon_vma_lock(anon_vma);
176 /* page_table_lock to protect against threads */
177 spin_lock(&mm->page_table_lock);
178 if (likely(!vma->anon_vma)) {
179 vma->anon_vma = anon_vma;
180 avc->anon_vma = anon_vma;
181 avc->vma = vma;
182 list_add(&avc->same_vma, &vma->anon_vma_chain);
183 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
184 allocated = NULL;
185 avc = NULL;
187 spin_unlock(&mm->page_table_lock);
188 anon_vma_unlock(anon_vma);
190 if (unlikely(allocated))
191 put_anon_vma(allocated);
192 if (unlikely(avc))
193 anon_vma_chain_free(avc);
195 return 0;
197 out_enomem_free_avc:
198 anon_vma_chain_free(avc);
199 out_enomem:
200 return -ENOMEM;
204 * This is a useful helper function for locking the anon_vma root as
205 * we traverse the vma->anon_vma_chain, looping over anon_vma's that
206 * have the same vma.
208 * Such anon_vma's should have the same root, so you'd expect to see
209 * just a single mutex_lock for the whole traversal.
211 static inline struct anon_vma *lock_anon_vma_root(struct anon_vma *root, struct anon_vma *anon_vma)
213 struct anon_vma *new_root = anon_vma->root;
214 if (new_root != root) {
215 if (WARN_ON_ONCE(root))
216 mutex_unlock(&root->mutex);
217 root = new_root;
218 mutex_lock(&root->mutex);
220 return root;
223 static inline void unlock_anon_vma_root(struct anon_vma *root)
225 if (root)
226 mutex_unlock(&root->mutex);
229 static void anon_vma_chain_link(struct vm_area_struct *vma,
230 struct anon_vma_chain *avc,
231 struct anon_vma *anon_vma)
233 avc->vma = vma;
234 avc->anon_vma = anon_vma;
235 list_add(&avc->same_vma, &vma->anon_vma_chain);
238 * It's critical to add new vmas to the tail of the anon_vma,
239 * see comment in huge_memory.c:__split_huge_page().
241 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
245 * Attach the anon_vmas from src to dst.
246 * Returns 0 on success, -ENOMEM on failure.
248 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
250 struct anon_vma_chain *avc, *pavc;
251 struct anon_vma *root = NULL;
253 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
254 struct anon_vma *anon_vma;
256 avc = anon_vma_chain_alloc(GFP_NOWAIT | __GFP_NOWARN);
257 if (unlikely(!avc)) {
258 unlock_anon_vma_root(root);
259 root = NULL;
260 avc = anon_vma_chain_alloc(GFP_KERNEL);
261 if (!avc)
262 goto enomem_failure;
264 anon_vma = pavc->anon_vma;
265 root = lock_anon_vma_root(root, anon_vma);
266 anon_vma_chain_link(dst, avc, anon_vma);
268 unlock_anon_vma_root(root);
269 return 0;
271 enomem_failure:
272 unlink_anon_vmas(dst);
273 return -ENOMEM;
277 * Attach vma to its own anon_vma, as well as to the anon_vmas that
278 * the corresponding VMA in the parent process is attached to.
279 * Returns 0 on success, non-zero on failure.
281 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
283 struct anon_vma_chain *avc;
284 struct anon_vma *anon_vma;
286 /* Don't bother if the parent process has no anon_vma here. */
287 if (!pvma->anon_vma)
288 return 0;
291 * First, attach the new VMA to the parent VMA's anon_vmas,
292 * so rmap can find non-COWed pages in child processes.
294 if (anon_vma_clone(vma, pvma))
295 return -ENOMEM;
297 /* Then add our own anon_vma. */
298 anon_vma = anon_vma_alloc();
299 if (!anon_vma)
300 goto out_error;
301 avc = anon_vma_chain_alloc(GFP_KERNEL);
302 if (!avc)
303 goto out_error_free_anon_vma;
306 * The root anon_vma's spinlock is the lock actually used when we
307 * lock any of the anon_vmas in this anon_vma tree.
309 anon_vma->root = pvma->anon_vma->root;
311 * With refcounts, an anon_vma can stay around longer than the
312 * process it belongs to. The root anon_vma needs to be pinned until
313 * this anon_vma is freed, because the lock lives in the root.
315 get_anon_vma(anon_vma->root);
316 /* Mark this anon_vma as the one where our new (COWed) pages go. */
317 vma->anon_vma = anon_vma;
318 anon_vma_lock(anon_vma);
319 anon_vma_chain_link(vma, avc, anon_vma);
320 anon_vma_unlock(anon_vma);
322 return 0;
324 out_error_free_anon_vma:
325 put_anon_vma(anon_vma);
326 out_error:
327 unlink_anon_vmas(vma);
328 return -ENOMEM;
331 void unlink_anon_vmas(struct vm_area_struct *vma)
333 struct anon_vma_chain *avc, *next;
334 struct anon_vma *root = NULL;
337 * Unlink each anon_vma chained to the VMA. This list is ordered
338 * from newest to oldest, ensuring the root anon_vma gets freed last.
340 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
341 struct anon_vma *anon_vma = avc->anon_vma;
343 root = lock_anon_vma_root(root, anon_vma);
344 list_del(&avc->same_anon_vma);
347 * Leave empty anon_vmas on the list - we'll need
348 * to free them outside the lock.
350 if (list_empty(&anon_vma->head))
351 continue;
353 list_del(&avc->same_vma);
354 anon_vma_chain_free(avc);
356 unlock_anon_vma_root(root);
359 * Iterate the list once more, it now only contains empty and unlinked
360 * anon_vmas, destroy them. Could not do before due to __put_anon_vma()
361 * needing to acquire the anon_vma->root->mutex.
363 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
364 struct anon_vma *anon_vma = avc->anon_vma;
366 put_anon_vma(anon_vma);
368 list_del(&avc->same_vma);
369 anon_vma_chain_free(avc);
373 static void anon_vma_ctor(void *data)
375 struct anon_vma *anon_vma = data;
377 mutex_init(&anon_vma->mutex);
378 atomic_set(&anon_vma->refcount, 0);
379 INIT_LIST_HEAD(&anon_vma->head);
382 void __init anon_vma_init(void)
384 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
385 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
386 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
390 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
392 * Since there is no serialization what so ever against page_remove_rmap()
393 * the best this function can do is return a locked anon_vma that might
394 * have been relevant to this page.
396 * The page might have been remapped to a different anon_vma or the anon_vma
397 * returned may already be freed (and even reused).
399 * In case it was remapped to a different anon_vma, the new anon_vma will be a
400 * child of the old anon_vma, and the anon_vma lifetime rules will therefore
401 * ensure that any anon_vma obtained from the page will still be valid for as
402 * long as we observe page_mapped() [ hence all those page_mapped() tests ].
404 * All users of this function must be very careful when walking the anon_vma
405 * chain and verify that the page in question is indeed mapped in it
406 * [ something equivalent to page_mapped_in_vma() ].
408 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
409 * that the anon_vma pointer from page->mapping is valid if there is a
410 * mapcount, we can dereference the anon_vma after observing those.
412 struct anon_vma *page_get_anon_vma(struct page *page)
414 struct anon_vma *anon_vma = NULL;
415 unsigned long anon_mapping;
417 rcu_read_lock();
418 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
419 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
420 goto out;
421 if (!page_mapped(page))
422 goto out;
424 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
425 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
426 anon_vma = NULL;
427 goto out;
431 * If this page is still mapped, then its anon_vma cannot have been
432 * freed. But if it has been unmapped, we have no security against the
433 * anon_vma structure being freed and reused (for another anon_vma:
434 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
435 * above cannot corrupt).
437 if (!page_mapped(page)) {
438 rcu_read_unlock();
439 put_anon_vma(anon_vma);
440 return NULL;
442 out:
443 rcu_read_unlock();
445 return anon_vma;
449 * Similar to page_get_anon_vma() except it locks the anon_vma.
451 * Its a little more complex as it tries to keep the fast path to a single
452 * atomic op -- the trylock. If we fail the trylock, we fall back to getting a
453 * reference like with page_get_anon_vma() and then block on the mutex.
455 struct anon_vma *page_lock_anon_vma(struct page *page)
457 struct anon_vma *anon_vma = NULL;
458 struct anon_vma *root_anon_vma;
459 unsigned long anon_mapping;
461 rcu_read_lock();
462 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
463 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
464 goto out;
465 if (!page_mapped(page))
466 goto out;
468 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
469 root_anon_vma = ACCESS_ONCE(anon_vma->root);
470 if (mutex_trylock(&root_anon_vma->mutex)) {
472 * If the page is still mapped, then this anon_vma is still
473 * its anon_vma, and holding the mutex ensures that it will
474 * not go away, see anon_vma_free().
476 if (!page_mapped(page)) {
477 mutex_unlock(&root_anon_vma->mutex);
478 anon_vma = NULL;
480 goto out;
483 /* trylock failed, we got to sleep */
484 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
485 anon_vma = NULL;
486 goto out;
489 if (!page_mapped(page)) {
490 rcu_read_unlock();
491 put_anon_vma(anon_vma);
492 return NULL;
495 /* we pinned the anon_vma, its safe to sleep */
496 rcu_read_unlock();
497 anon_vma_lock(anon_vma);
499 if (atomic_dec_and_test(&anon_vma->refcount)) {
501 * Oops, we held the last refcount, release the lock
502 * and bail -- can't simply use put_anon_vma() because
503 * we'll deadlock on the anon_vma_lock() recursion.
505 anon_vma_unlock(anon_vma);
506 __put_anon_vma(anon_vma);
507 anon_vma = NULL;
510 return anon_vma;
512 out:
513 rcu_read_unlock();
514 return anon_vma;
517 void page_unlock_anon_vma(struct anon_vma *anon_vma)
519 anon_vma_unlock(anon_vma);
523 * At what user virtual address is page expected in @vma?
524 * Returns virtual address or -EFAULT if page's index/offset is not
525 * within the range mapped the @vma.
527 inline unsigned long
528 vma_address(struct page *page, struct vm_area_struct *vma)
530 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
531 unsigned long address;
533 if (unlikely(is_vm_hugetlb_page(vma)))
534 pgoff = page->index << huge_page_order(page_hstate(page));
535 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
536 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
537 /* page should be within @vma mapping range */
538 return -EFAULT;
540 return address;
544 * At what user virtual address is page expected in vma?
545 * Caller should check the page is actually part of the vma.
547 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
549 if (PageAnon(page)) {
550 struct anon_vma *page__anon_vma = page_anon_vma(page);
552 * Note: swapoff's unuse_vma() is more efficient with this
553 * check, and needs it to match anon_vma when KSM is active.
555 if (!vma->anon_vma || !page__anon_vma ||
556 vma->anon_vma->root != page__anon_vma->root)
557 return -EFAULT;
558 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
559 if (!vma->vm_file ||
560 vma->vm_file->f_mapping != page->mapping)
561 return -EFAULT;
562 } else
563 return -EFAULT;
564 return vma_address(page, vma);
568 * Check that @page is mapped at @address into @mm.
570 * If @sync is false, page_check_address may perform a racy check to avoid
571 * the page table lock when the pte is not present (helpful when reclaiming
572 * highly shared pages).
574 * On success returns with pte mapped and locked.
576 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
577 unsigned long address, spinlock_t **ptlp, int sync)
579 pgd_t *pgd;
580 pud_t *pud;
581 pmd_t *pmd;
582 pte_t *pte;
583 spinlock_t *ptl;
585 if (unlikely(PageHuge(page))) {
586 /* when pud is not present, pte will be NULL */
587 pte = huge_pte_offset(mm, address);
588 if (!pte)
589 return NULL;
591 ptl = &mm->page_table_lock;
592 goto check;
595 pgd = pgd_offset(mm, address);
596 if (!pgd_present(*pgd))
597 return NULL;
599 pud = pud_offset(pgd, address);
600 if (!pud_present(*pud))
601 return NULL;
603 pmd = pmd_offset(pud, address);
604 if (!pmd_present(*pmd))
605 return NULL;
606 if (pmd_trans_huge(*pmd))
607 return NULL;
609 pte = pte_offset_map(pmd, address);
610 /* Make a quick check before getting the lock */
611 if (!sync && !pte_present(*pte)) {
612 pte_unmap(pte);
613 return NULL;
616 ptl = pte_lockptr(mm, pmd);
617 check:
618 spin_lock(ptl);
619 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
620 *ptlp = ptl;
621 return pte;
623 pte_unmap_unlock(pte, ptl);
624 return NULL;
628 * page_mapped_in_vma - check whether a page is really mapped in a VMA
629 * @page: the page to test
630 * @vma: the VMA to test
632 * Returns 1 if the page is mapped into the page tables of the VMA, 0
633 * if the page is not mapped into the page tables of this VMA. Only
634 * valid for normal file or anonymous VMAs.
636 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
638 unsigned long address;
639 pte_t *pte;
640 spinlock_t *ptl;
642 address = vma_address(page, vma);
643 if (address == -EFAULT) /* out of vma range */
644 return 0;
645 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
646 if (!pte) /* the page is not in this mm */
647 return 0;
648 pte_unmap_unlock(pte, ptl);
650 return 1;
654 * Subfunctions of page_referenced: page_referenced_one called
655 * repeatedly from either page_referenced_anon or page_referenced_file.
657 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
658 unsigned long address, unsigned int *mapcount,
659 unsigned long *vm_flags)
661 struct mm_struct *mm = vma->vm_mm;
662 int referenced = 0;
664 if (unlikely(PageTransHuge(page))) {
665 pmd_t *pmd;
667 spin_lock(&mm->page_table_lock);
669 * rmap might return false positives; we must filter
670 * these out using page_check_address_pmd().
672 pmd = page_check_address_pmd(page, mm, address,
673 PAGE_CHECK_ADDRESS_PMD_FLAG);
674 if (!pmd) {
675 spin_unlock(&mm->page_table_lock);
676 goto out;
679 if (vma->vm_flags & VM_LOCKED) {
680 spin_unlock(&mm->page_table_lock);
681 *mapcount = 0; /* break early from loop */
682 *vm_flags |= VM_LOCKED;
683 goto out;
686 /* go ahead even if the pmd is pmd_trans_splitting() */
687 if (pmdp_clear_flush_young_notify(vma, address, pmd))
688 referenced++;
689 spin_unlock(&mm->page_table_lock);
690 } else {
691 pte_t *pte;
692 spinlock_t *ptl;
695 * rmap might return false positives; we must filter
696 * these out using page_check_address().
698 pte = page_check_address(page, mm, address, &ptl, 0);
699 if (!pte)
700 goto out;
702 if (vma->vm_flags & VM_LOCKED) {
703 pte_unmap_unlock(pte, ptl);
704 *mapcount = 0; /* break early from loop */
705 *vm_flags |= VM_LOCKED;
706 goto out;
709 if (ptep_clear_flush_young_notify(vma, address, pte)) {
711 * Don't treat a reference through a sequentially read
712 * mapping as such. If the page has been used in
713 * another mapping, we will catch it; if this other
714 * mapping is already gone, the unmap path will have
715 * set PG_referenced or activated the page.
717 if (likely(!VM_SequentialReadHint(vma)))
718 referenced++;
720 pte_unmap_unlock(pte, ptl);
723 /* Pretend the page is referenced if the task has the
724 swap token and is in the middle of a page fault. */
725 if (mm != current->mm && has_swap_token(mm) &&
726 rwsem_is_locked(&mm->mmap_sem))
727 referenced++;
729 (*mapcount)--;
731 if (referenced)
732 *vm_flags |= vma->vm_flags;
733 out:
734 return referenced;
737 static int page_referenced_anon(struct page *page,
738 struct mem_cgroup *mem_cont,
739 unsigned long *vm_flags)
741 unsigned int mapcount;
742 struct anon_vma *anon_vma;
743 struct anon_vma_chain *avc;
744 int referenced = 0;
746 anon_vma = page_lock_anon_vma(page);
747 if (!anon_vma)
748 return referenced;
750 mapcount = page_mapcount(page);
751 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
752 struct vm_area_struct *vma = avc->vma;
753 unsigned long address = vma_address(page, vma);
754 if (address == -EFAULT)
755 continue;
757 * If we are reclaiming on behalf of a cgroup, skip
758 * counting on behalf of references from different
759 * cgroups
761 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
762 continue;
763 referenced += page_referenced_one(page, vma, address,
764 &mapcount, vm_flags);
765 if (!mapcount)
766 break;
769 page_unlock_anon_vma(anon_vma);
770 return referenced;
774 * page_referenced_file - referenced check for object-based rmap
775 * @page: the page we're checking references on.
776 * @mem_cont: target memory controller
777 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
779 * For an object-based mapped page, find all the places it is mapped and
780 * check/clear the referenced flag. This is done by following the page->mapping
781 * pointer, then walking the chain of vmas it holds. It returns the number
782 * of references it found.
784 * This function is only called from page_referenced for object-based pages.
786 static int page_referenced_file(struct page *page,
787 struct mem_cgroup *mem_cont,
788 unsigned long *vm_flags)
790 unsigned int mapcount;
791 struct address_space *mapping = page->mapping;
792 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
793 struct vm_area_struct *vma;
794 struct prio_tree_iter iter;
795 int referenced = 0;
798 * The caller's checks on page->mapping and !PageAnon have made
799 * sure that this is a file page: the check for page->mapping
800 * excludes the case just before it gets set on an anon page.
802 BUG_ON(PageAnon(page));
805 * The page lock not only makes sure that page->mapping cannot
806 * suddenly be NULLified by truncation, it makes sure that the
807 * structure at mapping cannot be freed and reused yet,
808 * so we can safely take mapping->i_mmap_mutex.
810 BUG_ON(!PageLocked(page));
812 mutex_lock(&mapping->i_mmap_mutex);
815 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
816 * is more likely to be accurate if we note it after spinning.
818 mapcount = page_mapcount(page);
820 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
821 unsigned long address = vma_address(page, vma);
822 if (address == -EFAULT)
823 continue;
825 * If we are reclaiming on behalf of a cgroup, skip
826 * counting on behalf of references from different
827 * cgroups
829 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
830 continue;
831 referenced += page_referenced_one(page, vma, address,
832 &mapcount, vm_flags);
833 if (!mapcount)
834 break;
837 mutex_unlock(&mapping->i_mmap_mutex);
838 return referenced;
842 * page_referenced - test if the page was referenced
843 * @page: the page to test
844 * @is_locked: caller holds lock on the page
845 * @mem_cont: target memory controller
846 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
848 * Quick test_and_clear_referenced for all mappings to a page,
849 * returns the number of ptes which referenced the page.
851 int page_referenced(struct page *page,
852 int is_locked,
853 struct mem_cgroup *mem_cont,
854 unsigned long *vm_flags)
856 int referenced = 0;
857 int we_locked = 0;
859 *vm_flags = 0;
860 if (page_mapped(page) && page_rmapping(page)) {
861 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
862 we_locked = trylock_page(page);
863 if (!we_locked) {
864 referenced++;
865 goto out;
868 if (unlikely(PageKsm(page)))
869 referenced += page_referenced_ksm(page, mem_cont,
870 vm_flags);
871 else if (PageAnon(page))
872 referenced += page_referenced_anon(page, mem_cont,
873 vm_flags);
874 else if (page->mapping)
875 referenced += page_referenced_file(page, mem_cont,
876 vm_flags);
877 if (we_locked)
878 unlock_page(page);
880 if (page_test_and_clear_young(page_to_pfn(page)))
881 referenced++;
883 out:
884 return referenced;
887 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
888 unsigned long address)
890 struct mm_struct *mm = vma->vm_mm;
891 pte_t *pte;
892 spinlock_t *ptl;
893 int ret = 0;
895 pte = page_check_address(page, mm, address, &ptl, 1);
896 if (!pte)
897 goto out;
899 if (pte_dirty(*pte) || pte_write(*pte)) {
900 pte_t entry;
902 flush_cache_page(vma, address, pte_pfn(*pte));
903 entry = ptep_clear_flush_notify(vma, address, pte);
904 entry = pte_wrprotect(entry);
905 entry = pte_mkclean(entry);
906 set_pte_at(mm, address, pte, entry);
907 ret = 1;
910 pte_unmap_unlock(pte, ptl);
911 out:
912 return ret;
915 static int page_mkclean_file(struct address_space *mapping, struct page *page)
917 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
918 struct vm_area_struct *vma;
919 struct prio_tree_iter iter;
920 int ret = 0;
922 BUG_ON(PageAnon(page));
924 mutex_lock(&mapping->i_mmap_mutex);
925 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
926 if (vma->vm_flags & VM_SHARED) {
927 unsigned long address = vma_address(page, vma);
928 if (address == -EFAULT)
929 continue;
930 ret += page_mkclean_one(page, vma, address);
933 mutex_unlock(&mapping->i_mmap_mutex);
934 return ret;
937 int page_mkclean(struct page *page)
939 int ret = 0;
941 BUG_ON(!PageLocked(page));
943 if (page_mapped(page)) {
944 struct address_space *mapping = page_mapping(page);
945 if (mapping)
946 ret = page_mkclean_file(mapping, page);
949 return ret;
951 EXPORT_SYMBOL_GPL(page_mkclean);
954 * page_move_anon_rmap - move a page to our anon_vma
955 * @page: the page to move to our anon_vma
956 * @vma: the vma the page belongs to
957 * @address: the user virtual address mapped
959 * When a page belongs exclusively to one process after a COW event,
960 * that page can be moved into the anon_vma that belongs to just that
961 * process, so the rmap code will not search the parent or sibling
962 * processes.
964 void page_move_anon_rmap(struct page *page,
965 struct vm_area_struct *vma, unsigned long address)
967 struct anon_vma *anon_vma = vma->anon_vma;
969 VM_BUG_ON(!PageLocked(page));
970 VM_BUG_ON(!anon_vma);
971 VM_BUG_ON(page->index != linear_page_index(vma, address));
973 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
974 page->mapping = (struct address_space *) anon_vma;
978 * __page_set_anon_rmap - set up new anonymous rmap
979 * @page: Page to add to rmap
980 * @vma: VM area to add page to.
981 * @address: User virtual address of the mapping
982 * @exclusive: the page is exclusively owned by the current process
984 static void __page_set_anon_rmap(struct page *page,
985 struct vm_area_struct *vma, unsigned long address, int exclusive)
987 struct anon_vma *anon_vma = vma->anon_vma;
989 BUG_ON(!anon_vma);
991 if (PageAnon(page))
992 return;
995 * If the page isn't exclusively mapped into this vma,
996 * we must use the _oldest_ possible anon_vma for the
997 * page mapping!
999 if (!exclusive)
1000 anon_vma = anon_vma->root;
1002 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1003 page->mapping = (struct address_space *) anon_vma;
1004 page->index = linear_page_index(vma, address);
1008 * __page_check_anon_rmap - sanity check anonymous rmap addition
1009 * @page: the page to add the mapping to
1010 * @vma: the vm area in which the mapping is added
1011 * @address: the user virtual address mapped
1013 static void __page_check_anon_rmap(struct page *page,
1014 struct vm_area_struct *vma, unsigned long address)
1016 #ifdef CONFIG_DEBUG_VM
1018 * The page's anon-rmap details (mapping and index) are guaranteed to
1019 * be set up correctly at this point.
1021 * We have exclusion against page_add_anon_rmap because the caller
1022 * always holds the page locked, except if called from page_dup_rmap,
1023 * in which case the page is already known to be setup.
1025 * We have exclusion against page_add_new_anon_rmap because those pages
1026 * are initially only visible via the pagetables, and the pte is locked
1027 * over the call to page_add_new_anon_rmap.
1029 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
1030 BUG_ON(page->index != linear_page_index(vma, address));
1031 #endif
1035 * page_add_anon_rmap - add pte mapping to an anonymous page
1036 * @page: the page to add the mapping to
1037 * @vma: the vm area in which the mapping is added
1038 * @address: the user virtual address mapped
1040 * The caller needs to hold the pte lock, and the page must be locked in
1041 * the anon_vma case: to serialize mapping,index checking after setting,
1042 * and to ensure that PageAnon is not being upgraded racily to PageKsm
1043 * (but PageKsm is never downgraded to PageAnon).
1045 void page_add_anon_rmap(struct page *page,
1046 struct vm_area_struct *vma, unsigned long address)
1048 do_page_add_anon_rmap(page, vma, address, 0);
1052 * Special version of the above for do_swap_page, which often runs
1053 * into pages that are exclusively owned by the current process.
1054 * Everybody else should continue to use page_add_anon_rmap above.
1056 void do_page_add_anon_rmap(struct page *page,
1057 struct vm_area_struct *vma, unsigned long address, int exclusive)
1059 int first = atomic_inc_and_test(&page->_mapcount);
1060 if (first) {
1061 if (!PageTransHuge(page))
1062 __inc_zone_page_state(page, NR_ANON_PAGES);
1063 else
1064 __inc_zone_page_state(page,
1065 NR_ANON_TRANSPARENT_HUGEPAGES);
1067 if (unlikely(PageKsm(page)))
1068 return;
1070 VM_BUG_ON(!PageLocked(page));
1071 /* address might be in next vma when migration races vma_adjust */
1072 if (first)
1073 __page_set_anon_rmap(page, vma, address, exclusive);
1074 else
1075 __page_check_anon_rmap(page, vma, address);
1079 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
1080 * @page: the page to add the mapping to
1081 * @vma: the vm area in which the mapping is added
1082 * @address: the user virtual address mapped
1084 * Same as page_add_anon_rmap but must only be called on *new* pages.
1085 * This means the inc-and-test can be bypassed.
1086 * Page does not have to be locked.
1088 void page_add_new_anon_rmap(struct page *page,
1089 struct vm_area_struct *vma, unsigned long address)
1091 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1092 SetPageSwapBacked(page);
1093 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
1094 if (!PageTransHuge(page))
1095 __inc_zone_page_state(page, NR_ANON_PAGES);
1096 else
1097 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1098 __page_set_anon_rmap(page, vma, address, 1);
1099 if (page_evictable(page, vma))
1100 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
1101 else
1102 add_page_to_unevictable_list(page);
1106 * page_add_file_rmap - add pte mapping to a file page
1107 * @page: the page to add the mapping to
1109 * The caller needs to hold the pte lock.
1111 void page_add_file_rmap(struct page *page)
1113 if (atomic_inc_and_test(&page->_mapcount)) {
1114 __inc_zone_page_state(page, NR_FILE_MAPPED);
1115 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
1120 * page_remove_rmap - take down pte mapping from a page
1121 * @page: page to remove mapping from
1123 * The caller needs to hold the pte lock.
1125 void page_remove_rmap(struct page *page)
1127 struct address_space *mapping = page_mapping(page);
1129 /* page still mapped by someone else? */
1130 if (!atomic_add_negative(-1, &page->_mapcount))
1131 return;
1134 * Now that the last pte has gone, s390 must transfer dirty
1135 * flag from storage key to struct page. We can usually skip
1136 * this if the page is anon, so about to be freed; but perhaps
1137 * not if it's in swapcache - there might be another pte slot
1138 * containing the swap entry, but page not yet written to swap.
1140 * And we can skip it on file pages, so long as the filesystem
1141 * participates in dirty tracking; but need to catch shm and tmpfs
1142 * and ramfs pages which have been modified since creation by read
1143 * fault.
1145 * Note that mapping must be decided above, before decrementing
1146 * mapcount (which luckily provides a barrier): once page is unmapped,
1147 * it could be truncated and page->mapping reset to NULL at any moment.
1148 * Note also that we are relying on page_mapping(page) to set mapping
1149 * to &swapper_space when PageSwapCache(page).
1151 if (mapping && !mapping_cap_account_dirty(mapping) &&
1152 page_test_and_clear_dirty(page_to_pfn(page), 1))
1153 set_page_dirty(page);
1155 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1156 * and not charged by memcg for now.
1158 if (unlikely(PageHuge(page)))
1159 return;
1160 if (PageAnon(page)) {
1161 mem_cgroup_uncharge_page(page);
1162 if (!PageTransHuge(page))
1163 __dec_zone_page_state(page, NR_ANON_PAGES);
1164 else
1165 __dec_zone_page_state(page,
1166 NR_ANON_TRANSPARENT_HUGEPAGES);
1167 } else {
1168 __dec_zone_page_state(page, NR_FILE_MAPPED);
1169 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1172 * It would be tidy to reset the PageAnon mapping here,
1173 * but that might overwrite a racing page_add_anon_rmap
1174 * which increments mapcount after us but sets mapping
1175 * before us: so leave the reset to free_hot_cold_page,
1176 * and remember that it's only reliable while mapped.
1177 * Leaving it set also helps swapoff to reinstate ptes
1178 * faster for those pages still in swapcache.
1183 * Subfunctions of try_to_unmap: try_to_unmap_one called
1184 * repeatedly from try_to_unmap_ksm, try_to_unmap_anon or try_to_unmap_file.
1186 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1187 unsigned long address, enum ttu_flags flags)
1189 struct mm_struct *mm = vma->vm_mm;
1190 pte_t *pte;
1191 pte_t pteval;
1192 spinlock_t *ptl;
1193 int ret = SWAP_AGAIN;
1195 pte = page_check_address(page, mm, address, &ptl, 0);
1196 if (!pte)
1197 goto out;
1200 * If the page is mlock()d, we cannot swap it out.
1201 * If it's recently referenced (perhaps page_referenced
1202 * skipped over this mm) then we should reactivate it.
1204 if (!(flags & TTU_IGNORE_MLOCK)) {
1205 if (vma->vm_flags & VM_LOCKED)
1206 goto out_mlock;
1208 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1209 goto out_unmap;
1211 if (!(flags & TTU_IGNORE_ACCESS)) {
1212 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1213 ret = SWAP_FAIL;
1214 goto out_unmap;
1218 /* Nuke the page table entry. */
1219 flush_cache_page(vma, address, page_to_pfn(page));
1220 pteval = ptep_clear_flush_notify(vma, address, pte);
1222 /* Move the dirty bit to the physical page now the pte is gone. */
1223 if (pte_dirty(pteval))
1224 set_page_dirty(page);
1226 /* Update high watermark before we lower rss */
1227 update_hiwater_rss(mm);
1229 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1230 if (PageAnon(page))
1231 dec_mm_counter(mm, MM_ANONPAGES);
1232 else
1233 dec_mm_counter(mm, MM_FILEPAGES);
1234 set_pte_at(mm, address, pte,
1235 swp_entry_to_pte(make_hwpoison_entry(page)));
1236 } else if (PageAnon(page)) {
1237 swp_entry_t entry = { .val = page_private(page) };
1239 if (PageSwapCache(page)) {
1241 * Store the swap location in the pte.
1242 * See handle_pte_fault() ...
1244 if (swap_duplicate(entry) < 0) {
1245 set_pte_at(mm, address, pte, pteval);
1246 ret = SWAP_FAIL;
1247 goto out_unmap;
1249 if (list_empty(&mm->mmlist)) {
1250 spin_lock(&mmlist_lock);
1251 if (list_empty(&mm->mmlist))
1252 list_add(&mm->mmlist, &init_mm.mmlist);
1253 spin_unlock(&mmlist_lock);
1255 dec_mm_counter(mm, MM_ANONPAGES);
1256 inc_mm_counter(mm, MM_SWAPENTS);
1257 } else if (PAGE_MIGRATION) {
1259 * Store the pfn of the page in a special migration
1260 * pte. do_swap_page() will wait until the migration
1261 * pte is removed and then restart fault handling.
1263 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1264 entry = make_migration_entry(page, pte_write(pteval));
1266 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1267 BUG_ON(pte_file(*pte));
1268 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1269 /* Establish migration entry for a file page */
1270 swp_entry_t entry;
1271 entry = make_migration_entry(page, pte_write(pteval));
1272 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1273 } else
1274 dec_mm_counter(mm, MM_FILEPAGES);
1276 page_remove_rmap(page);
1277 page_cache_release(page);
1279 out_unmap:
1280 pte_unmap_unlock(pte, ptl);
1281 out:
1282 return ret;
1284 out_mlock:
1285 pte_unmap_unlock(pte, ptl);
1289 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1290 * unstable result and race. Plus, We can't wait here because
1291 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
1292 * if trylock failed, the page remain in evictable lru and later
1293 * vmscan could retry to move the page to unevictable lru if the
1294 * page is actually mlocked.
1296 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1297 if (vma->vm_flags & VM_LOCKED) {
1298 mlock_vma_page(page);
1299 ret = SWAP_MLOCK;
1301 up_read(&vma->vm_mm->mmap_sem);
1303 return ret;
1307 * objrmap doesn't work for nonlinear VMAs because the assumption that
1308 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1309 * Consequently, given a particular page and its ->index, we cannot locate the
1310 * ptes which are mapping that page without an exhaustive linear search.
1312 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1313 * maps the file to which the target page belongs. The ->vm_private_data field
1314 * holds the current cursor into that scan. Successive searches will circulate
1315 * around the vma's virtual address space.
1317 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1318 * more scanning pressure is placed against them as well. Eventually pages
1319 * will become fully unmapped and are eligible for eviction.
1321 * For very sparsely populated VMAs this is a little inefficient - chances are
1322 * there there won't be many ptes located within the scan cluster. In this case
1323 * maybe we could scan further - to the end of the pte page, perhaps.
1325 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1326 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1327 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1328 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1330 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1331 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1333 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1334 struct vm_area_struct *vma, struct page *check_page)
1336 struct mm_struct *mm = vma->vm_mm;
1337 pgd_t *pgd;
1338 pud_t *pud;
1339 pmd_t *pmd;
1340 pte_t *pte;
1341 pte_t pteval;
1342 spinlock_t *ptl;
1343 struct page *page;
1344 unsigned long address;
1345 unsigned long end;
1346 int ret = SWAP_AGAIN;
1347 int locked_vma = 0;
1349 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1350 end = address + CLUSTER_SIZE;
1351 if (address < vma->vm_start)
1352 address = vma->vm_start;
1353 if (end > vma->vm_end)
1354 end = vma->vm_end;
1356 pgd = pgd_offset(mm, address);
1357 if (!pgd_present(*pgd))
1358 return ret;
1360 pud = pud_offset(pgd, address);
1361 if (!pud_present(*pud))
1362 return ret;
1364 pmd = pmd_offset(pud, address);
1365 if (!pmd_present(*pmd))
1366 return ret;
1369 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1370 * keep the sem while scanning the cluster for mlocking pages.
1372 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1373 locked_vma = (vma->vm_flags & VM_LOCKED);
1374 if (!locked_vma)
1375 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1378 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1380 /* Update high watermark before we lower rss */
1381 update_hiwater_rss(mm);
1383 for (; address < end; pte++, address += PAGE_SIZE) {
1384 if (!pte_present(*pte))
1385 continue;
1386 page = vm_normal_page(vma, address, *pte);
1387 BUG_ON(!page || PageAnon(page));
1389 if (locked_vma) {
1390 if (page == check_page) {
1391 /* we know we have check_page locked */
1392 mlock_vma_page(page);
1393 ret = SWAP_MLOCK;
1394 } else if (trylock_page(page)) {
1396 * If we can lock the page, perform mlock.
1397 * Otherwise leave the page alone, it will be
1398 * eventually encountered again later.
1400 mlock_vma_page(page);
1401 unlock_page(page);
1403 continue; /* don't unmap */
1406 if (ptep_clear_flush_young_notify(vma, address, pte))
1407 continue;
1409 /* Nuke the page table entry. */
1410 flush_cache_page(vma, address, pte_pfn(*pte));
1411 pteval = ptep_clear_flush_notify(vma, address, pte);
1413 /* If nonlinear, store the file page offset in the pte. */
1414 if (page->index != linear_page_index(vma, address))
1415 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1417 /* Move the dirty bit to the physical page now the pte is gone. */
1418 if (pte_dirty(pteval))
1419 set_page_dirty(page);
1421 page_remove_rmap(page);
1422 page_cache_release(page);
1423 dec_mm_counter(mm, MM_FILEPAGES);
1424 (*mapcount)--;
1426 pte_unmap_unlock(pte - 1, ptl);
1427 if (locked_vma)
1428 up_read(&vma->vm_mm->mmap_sem);
1429 return ret;
1432 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1434 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1436 if (!maybe_stack)
1437 return false;
1439 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1440 VM_STACK_INCOMPLETE_SETUP)
1441 return true;
1443 return false;
1447 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1448 * rmap method
1449 * @page: the page to unmap/unlock
1450 * @flags: action and flags
1452 * Find all the mappings of a page using the mapping pointer and the vma chains
1453 * contained in the anon_vma struct it points to.
1455 * This function is only called from try_to_unmap/try_to_munlock for
1456 * anonymous pages.
1457 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1458 * where the page was found will be held for write. So, we won't recheck
1459 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1460 * 'LOCKED.
1462 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1464 struct anon_vma *anon_vma;
1465 struct anon_vma_chain *avc;
1466 int ret = SWAP_AGAIN;
1468 anon_vma = page_lock_anon_vma(page);
1469 if (!anon_vma)
1470 return ret;
1472 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1473 struct vm_area_struct *vma = avc->vma;
1474 unsigned long address;
1477 * During exec, a temporary VMA is setup and later moved.
1478 * The VMA is moved under the anon_vma lock but not the
1479 * page tables leading to a race where migration cannot
1480 * find the migration ptes. Rather than increasing the
1481 * locking requirements of exec(), migration skips
1482 * temporary VMAs until after exec() completes.
1484 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1485 is_vma_temporary_stack(vma))
1486 continue;
1488 address = vma_address(page, vma);
1489 if (address == -EFAULT)
1490 continue;
1491 ret = try_to_unmap_one(page, vma, address, flags);
1492 if (ret != SWAP_AGAIN || !page_mapped(page))
1493 break;
1496 page_unlock_anon_vma(anon_vma);
1497 return ret;
1501 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1502 * @page: the page to unmap/unlock
1503 * @flags: action and flags
1505 * Find all the mappings of a page using the mapping pointer and the vma chains
1506 * contained in the address_space struct it points to.
1508 * This function is only called from try_to_unmap/try_to_munlock for
1509 * object-based pages.
1510 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1511 * where the page was found will be held for write. So, we won't recheck
1512 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1513 * 'LOCKED.
1515 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1517 struct address_space *mapping = page->mapping;
1518 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1519 struct vm_area_struct *vma;
1520 struct prio_tree_iter iter;
1521 int ret = SWAP_AGAIN;
1522 unsigned long cursor;
1523 unsigned long max_nl_cursor = 0;
1524 unsigned long max_nl_size = 0;
1525 unsigned int mapcount;
1527 mutex_lock(&mapping->i_mmap_mutex);
1528 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1529 unsigned long address = vma_address(page, vma);
1530 if (address == -EFAULT)
1531 continue;
1532 ret = try_to_unmap_one(page, vma, address, flags);
1533 if (ret != SWAP_AGAIN || !page_mapped(page))
1534 goto out;
1537 if (list_empty(&mapping->i_mmap_nonlinear))
1538 goto out;
1541 * We don't bother to try to find the munlocked page in nonlinears.
1542 * It's costly. Instead, later, page reclaim logic may call
1543 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1545 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1546 goto out;
1548 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1549 shared.vm_set.list) {
1550 cursor = (unsigned long) vma->vm_private_data;
1551 if (cursor > max_nl_cursor)
1552 max_nl_cursor = cursor;
1553 cursor = vma->vm_end - vma->vm_start;
1554 if (cursor > max_nl_size)
1555 max_nl_size = cursor;
1558 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1559 ret = SWAP_FAIL;
1560 goto out;
1564 * We don't try to search for this page in the nonlinear vmas,
1565 * and page_referenced wouldn't have found it anyway. Instead
1566 * just walk the nonlinear vmas trying to age and unmap some.
1567 * The mapcount of the page we came in with is irrelevant,
1568 * but even so use it as a guide to how hard we should try?
1570 mapcount = page_mapcount(page);
1571 if (!mapcount)
1572 goto out;
1573 cond_resched();
1575 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1576 if (max_nl_cursor == 0)
1577 max_nl_cursor = CLUSTER_SIZE;
1579 do {
1580 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1581 shared.vm_set.list) {
1582 cursor = (unsigned long) vma->vm_private_data;
1583 while ( cursor < max_nl_cursor &&
1584 cursor < vma->vm_end - vma->vm_start) {
1585 if (try_to_unmap_cluster(cursor, &mapcount,
1586 vma, page) == SWAP_MLOCK)
1587 ret = SWAP_MLOCK;
1588 cursor += CLUSTER_SIZE;
1589 vma->vm_private_data = (void *) cursor;
1590 if ((int)mapcount <= 0)
1591 goto out;
1593 vma->vm_private_data = (void *) max_nl_cursor;
1595 cond_resched();
1596 max_nl_cursor += CLUSTER_SIZE;
1597 } while (max_nl_cursor <= max_nl_size);
1600 * Don't loop forever (perhaps all the remaining pages are
1601 * in locked vmas). Reset cursor on all unreserved nonlinear
1602 * vmas, now forgetting on which ones it had fallen behind.
1604 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1605 vma->vm_private_data = NULL;
1606 out:
1607 mutex_unlock(&mapping->i_mmap_mutex);
1608 return ret;
1612 * try_to_unmap - try to remove all page table mappings to a page
1613 * @page: the page to get unmapped
1614 * @flags: action and flags
1616 * Tries to remove all the page table entries which are mapping this
1617 * page, used in the pageout path. Caller must hold the page lock.
1618 * Return values are:
1620 * SWAP_SUCCESS - we succeeded in removing all mappings
1621 * SWAP_AGAIN - we missed a mapping, try again later
1622 * SWAP_FAIL - the page is unswappable
1623 * SWAP_MLOCK - page is mlocked.
1625 int try_to_unmap(struct page *page, enum ttu_flags flags)
1627 int ret;
1629 BUG_ON(!PageLocked(page));
1630 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1632 if (unlikely(PageKsm(page)))
1633 ret = try_to_unmap_ksm(page, flags);
1634 else if (PageAnon(page))
1635 ret = try_to_unmap_anon(page, flags);
1636 else
1637 ret = try_to_unmap_file(page, flags);
1638 if (ret != SWAP_MLOCK && !page_mapped(page))
1639 ret = SWAP_SUCCESS;
1640 return ret;
1644 * try_to_munlock - try to munlock a page
1645 * @page: the page to be munlocked
1647 * Called from munlock code. Checks all of the VMAs mapping the page
1648 * to make sure nobody else has this page mlocked. The page will be
1649 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1651 * Return values are:
1653 * SWAP_AGAIN - no vma is holding page mlocked, or,
1654 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1655 * SWAP_FAIL - page cannot be located at present
1656 * SWAP_MLOCK - page is now mlocked.
1658 int try_to_munlock(struct page *page)
1660 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1662 if (unlikely(PageKsm(page)))
1663 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1664 else if (PageAnon(page))
1665 return try_to_unmap_anon(page, TTU_MUNLOCK);
1666 else
1667 return try_to_unmap_file(page, TTU_MUNLOCK);
1670 void __put_anon_vma(struct anon_vma *anon_vma)
1672 struct anon_vma *root = anon_vma->root;
1674 anon_vma_free(anon_vma);
1675 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1676 anon_vma_free(root);
1679 #ifdef CONFIG_MIGRATION
1681 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1682 * Called by migrate.c to remove migration ptes, but might be used more later.
1684 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1685 struct vm_area_struct *, unsigned long, void *), void *arg)
1687 struct anon_vma *anon_vma;
1688 struct anon_vma_chain *avc;
1689 int ret = SWAP_AGAIN;
1692 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1693 * because that depends on page_mapped(); but not all its usages
1694 * are holding mmap_sem. Users without mmap_sem are required to
1695 * take a reference count to prevent the anon_vma disappearing
1697 anon_vma = page_anon_vma(page);
1698 if (!anon_vma)
1699 return ret;
1700 anon_vma_lock(anon_vma);
1701 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1702 struct vm_area_struct *vma = avc->vma;
1703 unsigned long address = vma_address(page, vma);
1704 if (address == -EFAULT)
1705 continue;
1706 ret = rmap_one(page, vma, address, arg);
1707 if (ret != SWAP_AGAIN)
1708 break;
1710 anon_vma_unlock(anon_vma);
1711 return ret;
1714 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1715 struct vm_area_struct *, unsigned long, void *), void *arg)
1717 struct address_space *mapping = page->mapping;
1718 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1719 struct vm_area_struct *vma;
1720 struct prio_tree_iter iter;
1721 int ret = SWAP_AGAIN;
1723 if (!mapping)
1724 return ret;
1725 mutex_lock(&mapping->i_mmap_mutex);
1726 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1727 unsigned long address = vma_address(page, vma);
1728 if (address == -EFAULT)
1729 continue;
1730 ret = rmap_one(page, vma, address, arg);
1731 if (ret != SWAP_AGAIN)
1732 break;
1735 * No nonlinear handling: being always shared, nonlinear vmas
1736 * never contain migration ptes. Decide what to do about this
1737 * limitation to linear when we need rmap_walk() on nonlinear.
1739 mutex_unlock(&mapping->i_mmap_mutex);
1740 return ret;
1743 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1744 struct vm_area_struct *, unsigned long, void *), void *arg)
1746 VM_BUG_ON(!PageLocked(page));
1748 if (unlikely(PageKsm(page)))
1749 return rmap_walk_ksm(page, rmap_one, arg);
1750 else if (PageAnon(page))
1751 return rmap_walk_anon(page, rmap_one, arg);
1752 else
1753 return rmap_walk_file(page, rmap_one, arg);
1755 #endif /* CONFIG_MIGRATION */
1757 #ifdef CONFIG_HUGETLB_PAGE
1759 * The following three functions are for anonymous (private mapped) hugepages.
1760 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1761 * and no lru code, because we handle hugepages differently from common pages.
1763 static void __hugepage_set_anon_rmap(struct page *page,
1764 struct vm_area_struct *vma, unsigned long address, int exclusive)
1766 struct anon_vma *anon_vma = vma->anon_vma;
1768 BUG_ON(!anon_vma);
1770 if (PageAnon(page))
1771 return;
1772 if (!exclusive)
1773 anon_vma = anon_vma->root;
1775 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1776 page->mapping = (struct address_space *) anon_vma;
1777 page->index = linear_page_index(vma, address);
1780 void hugepage_add_anon_rmap(struct page *page,
1781 struct vm_area_struct *vma, unsigned long address)
1783 struct anon_vma *anon_vma = vma->anon_vma;
1784 int first;
1786 BUG_ON(!PageLocked(page));
1787 BUG_ON(!anon_vma);
1788 /* address might be in next vma when migration races vma_adjust */
1789 first = atomic_inc_and_test(&page->_mapcount);
1790 if (first)
1791 __hugepage_set_anon_rmap(page, vma, address, 0);
1794 void hugepage_add_new_anon_rmap(struct page *page,
1795 struct vm_area_struct *vma, unsigned long address)
1797 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1798 atomic_set(&page->_mapcount, 0);
1799 __hugepage_set_anon_rmap(page, vma, address, 1);
1801 #endif /* CONFIG_HUGETLB_PAGE */