Revert "net: ipv4: ip_forward: fix inverted local_df test"
[linux/fpc-iii.git] / mm / vmscan.c
blobab98dc6b16778dadf6d6a33bde493a96d4f3dc48
1 /*
2 * linux/mm/vmscan.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
14 #include <linux/mm.h>
15 #include <linux/module.h>
16 #include <linux/gfp.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/compaction.h>
36 #include <linux/notifier.h>
37 #include <linux/rwsem.h>
38 #include <linux/delay.h>
39 #include <linux/kthread.h>
40 #include <linux/freezer.h>
41 #include <linux/memcontrol.h>
42 #include <linux/delayacct.h>
43 #include <linux/sysctl.h>
44 #include <linux/oom.h>
45 #include <linux/prefetch.h>
47 #include <asm/tlbflush.h>
48 #include <asm/div64.h>
50 #include <linux/swapops.h>
52 #include "internal.h"
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/vmscan.h>
58 * reclaim_mode determines how the inactive list is shrunk
59 * RECLAIM_MODE_SINGLE: Reclaim only order-0 pages
60 * RECLAIM_MODE_ASYNC: Do not block
61 * RECLAIM_MODE_SYNC: Allow blocking e.g. call wait_on_page_writeback
62 * RECLAIM_MODE_LUMPYRECLAIM: For high-order allocations, take a reference
63 * page from the LRU and reclaim all pages within a
64 * naturally aligned range
65 * RECLAIM_MODE_COMPACTION: For high-order allocations, reclaim a number of
66 * order-0 pages and then compact the zone
68 typedef unsigned __bitwise__ reclaim_mode_t;
69 #define RECLAIM_MODE_SINGLE ((__force reclaim_mode_t)0x01u)
70 #define RECLAIM_MODE_ASYNC ((__force reclaim_mode_t)0x02u)
71 #define RECLAIM_MODE_SYNC ((__force reclaim_mode_t)0x04u)
72 #define RECLAIM_MODE_LUMPYRECLAIM ((__force reclaim_mode_t)0x08u)
73 #define RECLAIM_MODE_COMPACTION ((__force reclaim_mode_t)0x10u)
75 struct scan_control {
76 /* Incremented by the number of inactive pages that were scanned */
77 unsigned long nr_scanned;
79 /* Number of pages freed so far during a call to shrink_zones() */
80 unsigned long nr_reclaimed;
82 /* How many pages shrink_list() should reclaim */
83 unsigned long nr_to_reclaim;
85 unsigned long hibernation_mode;
87 /* This context's GFP mask */
88 gfp_t gfp_mask;
90 int may_writepage;
92 /* Can mapped pages be reclaimed? */
93 int may_unmap;
95 /* Can pages be swapped as part of reclaim? */
96 int may_swap;
98 int order;
101 * Intend to reclaim enough continuous memory rather than reclaim
102 * enough amount of memory. i.e, mode for high order allocation.
104 reclaim_mode_t reclaim_mode;
106 /* Which cgroup do we reclaim from */
107 struct mem_cgroup *mem_cgroup;
110 * Nodemask of nodes allowed by the caller. If NULL, all nodes
111 * are scanned.
113 nodemask_t *nodemask;
116 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
118 #ifdef ARCH_HAS_PREFETCH
119 #define prefetch_prev_lru_page(_page, _base, _field) \
120 do { \
121 if ((_page)->lru.prev != _base) { \
122 struct page *prev; \
124 prev = lru_to_page(&(_page->lru)); \
125 prefetch(&prev->_field); \
127 } while (0)
128 #else
129 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
130 #endif
132 #ifdef ARCH_HAS_PREFETCHW
133 #define prefetchw_prev_lru_page(_page, _base, _field) \
134 do { \
135 if ((_page)->lru.prev != _base) { \
136 struct page *prev; \
138 prev = lru_to_page(&(_page->lru)); \
139 prefetchw(&prev->_field); \
141 } while (0)
142 #else
143 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
144 #endif
147 * From 0 .. 100. Higher means more swappy.
149 int vm_swappiness = 60;
150 long vm_total_pages; /* The total number of pages which the VM controls */
152 static LIST_HEAD(shrinker_list);
153 static DECLARE_RWSEM(shrinker_rwsem);
155 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
156 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
157 #else
158 #define scanning_global_lru(sc) (1)
159 #endif
161 static struct zone_reclaim_stat *get_reclaim_stat(struct zone *zone,
162 struct scan_control *sc)
164 if (!scanning_global_lru(sc))
165 return mem_cgroup_get_reclaim_stat(sc->mem_cgroup, zone);
167 return &zone->reclaim_stat;
170 static unsigned long zone_nr_lru_pages(struct zone *zone,
171 struct scan_control *sc, enum lru_list lru)
173 if (!scanning_global_lru(sc))
174 return mem_cgroup_zone_nr_lru_pages(sc->mem_cgroup,
175 zone_to_nid(zone), zone_idx(zone), BIT(lru));
177 return zone_page_state(zone, NR_LRU_BASE + lru);
182 * Add a shrinker callback to be called from the vm
184 void register_shrinker(struct shrinker *shrinker)
186 atomic_long_set(&shrinker->nr_in_batch, 0);
187 down_write(&shrinker_rwsem);
188 list_add_tail(&shrinker->list, &shrinker_list);
189 up_write(&shrinker_rwsem);
191 EXPORT_SYMBOL(register_shrinker);
194 * Remove one
196 void unregister_shrinker(struct shrinker *shrinker)
198 down_write(&shrinker_rwsem);
199 list_del(&shrinker->list);
200 up_write(&shrinker_rwsem);
202 EXPORT_SYMBOL(unregister_shrinker);
204 static inline int do_shrinker_shrink(struct shrinker *shrinker,
205 struct shrink_control *sc,
206 unsigned long nr_to_scan)
208 sc->nr_to_scan = nr_to_scan;
209 return (*shrinker->shrink)(shrinker, sc);
212 #define SHRINK_BATCH 128
214 * Call the shrink functions to age shrinkable caches
216 * Here we assume it costs one seek to replace a lru page and that it also
217 * takes a seek to recreate a cache object. With this in mind we age equal
218 * percentages of the lru and ageable caches. This should balance the seeks
219 * generated by these structures.
221 * If the vm encountered mapped pages on the LRU it increase the pressure on
222 * slab to avoid swapping.
224 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
226 * `lru_pages' represents the number of on-LRU pages in all the zones which
227 * are eligible for the caller's allocation attempt. It is used for balancing
228 * slab reclaim versus page reclaim.
230 * Returns the number of slab objects which we shrunk.
232 unsigned long shrink_slab(struct shrink_control *shrink,
233 unsigned long nr_pages_scanned,
234 unsigned long lru_pages)
236 struct shrinker *shrinker;
237 unsigned long ret = 0;
239 if (nr_pages_scanned == 0)
240 nr_pages_scanned = SWAP_CLUSTER_MAX;
242 if (!down_read_trylock(&shrinker_rwsem)) {
243 /* Assume we'll be able to shrink next time */
244 ret = 1;
245 goto out;
248 list_for_each_entry(shrinker, &shrinker_list, list) {
249 unsigned long long delta;
250 long total_scan;
251 long max_pass;
252 int shrink_ret = 0;
253 long nr;
254 long new_nr;
255 long batch_size = shrinker->batch ? shrinker->batch
256 : SHRINK_BATCH;
258 max_pass = do_shrinker_shrink(shrinker, shrink, 0);
259 if (max_pass <= 0)
260 continue;
263 * copy the current shrinker scan count into a local variable
264 * and zero it so that other concurrent shrinker invocations
265 * don't also do this scanning work.
267 nr = atomic_long_xchg(&shrinker->nr_in_batch, 0);
269 total_scan = nr;
270 delta = (4 * nr_pages_scanned) / shrinker->seeks;
271 delta *= max_pass;
272 do_div(delta, lru_pages + 1);
273 total_scan += delta;
274 if (total_scan < 0) {
275 printk(KERN_ERR "shrink_slab: %pF negative objects to "
276 "delete nr=%ld\n",
277 shrinker->shrink, total_scan);
278 total_scan = max_pass;
282 * We need to avoid excessive windup on filesystem shrinkers
283 * due to large numbers of GFP_NOFS allocations causing the
284 * shrinkers to return -1 all the time. This results in a large
285 * nr being built up so when a shrink that can do some work
286 * comes along it empties the entire cache due to nr >>>
287 * max_pass. This is bad for sustaining a working set in
288 * memory.
290 * Hence only allow the shrinker to scan the entire cache when
291 * a large delta change is calculated directly.
293 if (delta < max_pass / 4)
294 total_scan = min(total_scan, max_pass / 2);
297 * Avoid risking looping forever due to too large nr value:
298 * never try to free more than twice the estimate number of
299 * freeable entries.
301 if (total_scan > max_pass * 2)
302 total_scan = max_pass * 2;
304 trace_mm_shrink_slab_start(shrinker, shrink, nr,
305 nr_pages_scanned, lru_pages,
306 max_pass, delta, total_scan);
308 while (total_scan >= batch_size) {
309 int nr_before;
311 nr_before = do_shrinker_shrink(shrinker, shrink, 0);
312 shrink_ret = do_shrinker_shrink(shrinker, shrink,
313 batch_size);
314 if (shrink_ret == -1)
315 break;
316 if (shrink_ret < nr_before)
317 ret += nr_before - shrink_ret;
318 count_vm_events(SLABS_SCANNED, batch_size);
319 total_scan -= batch_size;
321 cond_resched();
325 * move the unused scan count back into the shrinker in a
326 * manner that handles concurrent updates. If we exhausted the
327 * scan, there is no need to do an update.
329 if (total_scan > 0)
330 new_nr = atomic_long_add_return(total_scan,
331 &shrinker->nr_in_batch);
332 else
333 new_nr = atomic_long_read(&shrinker->nr_in_batch);
335 trace_mm_shrink_slab_end(shrinker, shrink_ret, nr, new_nr);
337 up_read(&shrinker_rwsem);
338 out:
339 cond_resched();
340 return ret;
343 static void set_reclaim_mode(int priority, struct scan_control *sc,
344 bool sync)
346 reclaim_mode_t syncmode = sync ? RECLAIM_MODE_SYNC : RECLAIM_MODE_ASYNC;
349 * Initially assume we are entering either lumpy reclaim or
350 * reclaim/compaction.Depending on the order, we will either set the
351 * sync mode or just reclaim order-0 pages later.
353 if (COMPACTION_BUILD)
354 sc->reclaim_mode = RECLAIM_MODE_COMPACTION;
355 else
356 sc->reclaim_mode = RECLAIM_MODE_LUMPYRECLAIM;
359 * Avoid using lumpy reclaim or reclaim/compaction if possible by
360 * restricting when its set to either costly allocations or when
361 * under memory pressure
363 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
364 sc->reclaim_mode |= syncmode;
365 else if (sc->order && priority < DEF_PRIORITY - 2)
366 sc->reclaim_mode |= syncmode;
367 else
368 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
371 static void reset_reclaim_mode(struct scan_control *sc)
373 sc->reclaim_mode = RECLAIM_MODE_SINGLE | RECLAIM_MODE_ASYNC;
376 static inline int is_page_cache_freeable(struct page *page)
379 * A freeable page cache page is referenced only by the caller
380 * that isolated the page, the page cache radix tree and
381 * optional buffer heads at page->private.
383 return page_count(page) - page_has_private(page) == 2;
386 static int may_write_to_queue(struct backing_dev_info *bdi,
387 struct scan_control *sc)
389 if (current->flags & PF_SWAPWRITE)
390 return 1;
391 if (!bdi_write_congested(bdi))
392 return 1;
393 if (bdi == current->backing_dev_info)
394 return 1;
396 /* lumpy reclaim for hugepage often need a lot of write */
397 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
398 return 1;
399 return 0;
403 * We detected a synchronous write error writing a page out. Probably
404 * -ENOSPC. We need to propagate that into the address_space for a subsequent
405 * fsync(), msync() or close().
407 * The tricky part is that after writepage we cannot touch the mapping: nothing
408 * prevents it from being freed up. But we have a ref on the page and once
409 * that page is locked, the mapping is pinned.
411 * We're allowed to run sleeping lock_page() here because we know the caller has
412 * __GFP_FS.
414 static void handle_write_error(struct address_space *mapping,
415 struct page *page, int error)
417 lock_page(page);
418 if (page_mapping(page) == mapping)
419 mapping_set_error(mapping, error);
420 unlock_page(page);
423 /* possible outcome of pageout() */
424 typedef enum {
425 /* failed to write page out, page is locked */
426 PAGE_KEEP,
427 /* move page to the active list, page is locked */
428 PAGE_ACTIVATE,
429 /* page has been sent to the disk successfully, page is unlocked */
430 PAGE_SUCCESS,
431 /* page is clean and locked */
432 PAGE_CLEAN,
433 } pageout_t;
436 * pageout is called by shrink_page_list() for each dirty page.
437 * Calls ->writepage().
439 static pageout_t pageout(struct page *page, struct address_space *mapping,
440 struct scan_control *sc)
443 * If the page is dirty, only perform writeback if that write
444 * will be non-blocking. To prevent this allocation from being
445 * stalled by pagecache activity. But note that there may be
446 * stalls if we need to run get_block(). We could test
447 * PagePrivate for that.
449 * If this process is currently in __generic_file_aio_write() against
450 * this page's queue, we can perform writeback even if that
451 * will block.
453 * If the page is swapcache, write it back even if that would
454 * block, for some throttling. This happens by accident, because
455 * swap_backing_dev_info is bust: it doesn't reflect the
456 * congestion state of the swapdevs. Easy to fix, if needed.
458 if (!is_page_cache_freeable(page))
459 return PAGE_KEEP;
460 if (!mapping) {
462 * Some data journaling orphaned pages can have
463 * page->mapping == NULL while being dirty with clean buffers.
465 if (page_has_private(page)) {
466 if (try_to_free_buffers(page)) {
467 ClearPageDirty(page);
468 printk("%s: orphaned page\n", __func__);
469 return PAGE_CLEAN;
472 return PAGE_KEEP;
474 if (mapping->a_ops->writepage == NULL)
475 return PAGE_ACTIVATE;
476 if (!may_write_to_queue(mapping->backing_dev_info, sc))
477 return PAGE_KEEP;
479 if (clear_page_dirty_for_io(page)) {
480 int res;
481 struct writeback_control wbc = {
482 .sync_mode = WB_SYNC_NONE,
483 .nr_to_write = SWAP_CLUSTER_MAX,
484 .range_start = 0,
485 .range_end = LLONG_MAX,
486 .for_reclaim = 1,
489 SetPageReclaim(page);
490 res = mapping->a_ops->writepage(page, &wbc);
491 if (res < 0)
492 handle_write_error(mapping, page, res);
493 if (res == AOP_WRITEPAGE_ACTIVATE) {
494 ClearPageReclaim(page);
495 return PAGE_ACTIVATE;
498 if (!PageWriteback(page)) {
499 /* synchronous write or broken a_ops? */
500 ClearPageReclaim(page);
502 trace_mm_vmscan_writepage(page,
503 trace_reclaim_flags(page, sc->reclaim_mode));
504 inc_zone_page_state(page, NR_VMSCAN_WRITE);
505 return PAGE_SUCCESS;
508 return PAGE_CLEAN;
512 * Same as remove_mapping, but if the page is removed from the mapping, it
513 * gets returned with a refcount of 0.
515 static int __remove_mapping(struct address_space *mapping, struct page *page)
517 BUG_ON(!PageLocked(page));
518 BUG_ON(mapping != page_mapping(page));
520 spin_lock_irq(&mapping->tree_lock);
522 * The non racy check for a busy page.
524 * Must be careful with the order of the tests. When someone has
525 * a ref to the page, it may be possible that they dirty it then
526 * drop the reference. So if PageDirty is tested before page_count
527 * here, then the following race may occur:
529 * get_user_pages(&page);
530 * [user mapping goes away]
531 * write_to(page);
532 * !PageDirty(page) [good]
533 * SetPageDirty(page);
534 * put_page(page);
535 * !page_count(page) [good, discard it]
537 * [oops, our write_to data is lost]
539 * Reversing the order of the tests ensures such a situation cannot
540 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
541 * load is not satisfied before that of page->_count.
543 * Note that if SetPageDirty is always performed via set_page_dirty,
544 * and thus under tree_lock, then this ordering is not required.
546 if (!page_freeze_refs(page, 2))
547 goto cannot_free;
548 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
549 if (unlikely(PageDirty(page))) {
550 page_unfreeze_refs(page, 2);
551 goto cannot_free;
554 if (PageSwapCache(page)) {
555 swp_entry_t swap = { .val = page_private(page) };
556 __delete_from_swap_cache(page);
557 spin_unlock_irq(&mapping->tree_lock);
558 swapcache_free(swap, page);
559 } else {
560 void (*freepage)(struct page *);
562 freepage = mapping->a_ops->freepage;
564 __delete_from_page_cache(page);
565 spin_unlock_irq(&mapping->tree_lock);
566 mem_cgroup_uncharge_cache_page(page);
568 if (freepage != NULL)
569 freepage(page);
572 return 1;
574 cannot_free:
575 spin_unlock_irq(&mapping->tree_lock);
576 return 0;
580 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
581 * someone else has a ref on the page, abort and return 0. If it was
582 * successfully detached, return 1. Assumes the caller has a single ref on
583 * this page.
585 int remove_mapping(struct address_space *mapping, struct page *page)
587 if (__remove_mapping(mapping, page)) {
589 * Unfreezing the refcount with 1 rather than 2 effectively
590 * drops the pagecache ref for us without requiring another
591 * atomic operation.
593 page_unfreeze_refs(page, 1);
594 return 1;
596 return 0;
600 * putback_lru_page - put previously isolated page onto appropriate LRU list
601 * @page: page to be put back to appropriate lru list
603 * Add previously isolated @page to appropriate LRU list.
604 * Page may still be unevictable for other reasons.
606 * lru_lock must not be held, interrupts must be enabled.
608 void putback_lru_page(struct page *page)
610 int lru;
611 int active = !!TestClearPageActive(page);
612 int was_unevictable = PageUnevictable(page);
614 VM_BUG_ON(PageLRU(page));
616 redo:
617 ClearPageUnevictable(page);
619 if (page_evictable(page, NULL)) {
621 * For evictable pages, we can use the cache.
622 * In event of a race, worst case is we end up with an
623 * unevictable page on [in]active list.
624 * We know how to handle that.
626 lru = active + page_lru_base_type(page);
627 lru_cache_add_lru(page, lru);
628 } else {
630 * Put unevictable pages directly on zone's unevictable
631 * list.
633 lru = LRU_UNEVICTABLE;
634 add_page_to_unevictable_list(page);
636 * When racing with an mlock or AS_UNEVICTABLE clearing
637 * (page is unlocked) make sure that if the other thread
638 * does not observe our setting of PG_lru and fails
639 * isolation/check_move_unevictable_pages,
640 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
641 * the page back to the evictable list.
643 * The other side is TestClearPageMlocked() or shmem_lock().
645 smp_mb();
649 * page's status can change while we move it among lru. If an evictable
650 * page is on unevictable list, it never be freed. To avoid that,
651 * check after we added it to the list, again.
653 if (lru == LRU_UNEVICTABLE && page_evictable(page, NULL)) {
654 if (!isolate_lru_page(page)) {
655 put_page(page);
656 goto redo;
658 /* This means someone else dropped this page from LRU
659 * So, it will be freed or putback to LRU again. There is
660 * nothing to do here.
664 if (was_unevictable && lru != LRU_UNEVICTABLE)
665 count_vm_event(UNEVICTABLE_PGRESCUED);
666 else if (!was_unevictable && lru == LRU_UNEVICTABLE)
667 count_vm_event(UNEVICTABLE_PGCULLED);
669 put_page(page); /* drop ref from isolate */
672 enum page_references {
673 PAGEREF_RECLAIM,
674 PAGEREF_RECLAIM_CLEAN,
675 PAGEREF_KEEP,
676 PAGEREF_ACTIVATE,
679 static enum page_references page_check_references(struct page *page,
680 struct scan_control *sc)
682 int referenced_ptes, referenced_page;
683 unsigned long vm_flags;
685 referenced_ptes = page_referenced(page, 1, sc->mem_cgroup, &vm_flags);
686 referenced_page = TestClearPageReferenced(page);
688 /* Lumpy reclaim - ignore references */
689 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
690 return PAGEREF_RECLAIM;
693 * Mlock lost the isolation race with us. Let try_to_unmap()
694 * move the page to the unevictable list.
696 if (vm_flags & VM_LOCKED)
697 return PAGEREF_RECLAIM;
699 if (referenced_ptes) {
700 if (PageSwapBacked(page))
701 return PAGEREF_ACTIVATE;
703 * All mapped pages start out with page table
704 * references from the instantiating fault, so we need
705 * to look twice if a mapped file page is used more
706 * than once.
708 * Mark it and spare it for another trip around the
709 * inactive list. Another page table reference will
710 * lead to its activation.
712 * Note: the mark is set for activated pages as well
713 * so that recently deactivated but used pages are
714 * quickly recovered.
716 SetPageReferenced(page);
718 if (referenced_page || referenced_ptes > 1)
719 return PAGEREF_ACTIVATE;
722 * Activate file-backed executable pages after first usage.
724 if (vm_flags & VM_EXEC)
725 return PAGEREF_ACTIVATE;
727 return PAGEREF_KEEP;
730 /* Reclaim if clean, defer dirty pages to writeback */
731 if (referenced_page && !PageSwapBacked(page))
732 return PAGEREF_RECLAIM_CLEAN;
734 return PAGEREF_RECLAIM;
737 static noinline_for_stack void free_page_list(struct list_head *free_pages)
739 struct pagevec freed_pvec;
740 struct page *page, *tmp;
742 pagevec_init(&freed_pvec, 1);
744 list_for_each_entry_safe(page, tmp, free_pages, lru) {
745 list_del(&page->lru);
746 if (!pagevec_add(&freed_pvec, page)) {
747 __pagevec_free(&freed_pvec);
748 pagevec_reinit(&freed_pvec);
752 pagevec_free(&freed_pvec);
756 * shrink_page_list() returns the number of reclaimed pages
758 static unsigned long shrink_page_list(struct list_head *page_list,
759 struct zone *zone,
760 struct scan_control *sc,
761 int priority,
762 unsigned long *ret_nr_dirty,
763 unsigned long *ret_nr_writeback)
765 LIST_HEAD(ret_pages);
766 LIST_HEAD(free_pages);
767 int pgactivate = 0;
768 unsigned long nr_dirty = 0;
769 unsigned long nr_congested = 0;
770 unsigned long nr_reclaimed = 0;
771 unsigned long nr_writeback = 0;
773 cond_resched();
775 while (!list_empty(page_list)) {
776 enum page_references references;
777 struct address_space *mapping;
778 struct page *page;
779 int may_enter_fs;
781 cond_resched();
783 page = lru_to_page(page_list);
784 list_del(&page->lru);
786 if (!trylock_page(page))
787 goto keep;
789 VM_BUG_ON(PageActive(page));
790 VM_BUG_ON(page_zone(page) != zone);
792 sc->nr_scanned++;
794 if (unlikely(!page_evictable(page, NULL)))
795 goto cull_mlocked;
797 if (!sc->may_unmap && page_mapped(page))
798 goto keep_locked;
800 /* Double the slab pressure for mapped and swapcache pages */
801 if (page_mapped(page) || PageSwapCache(page))
802 sc->nr_scanned++;
804 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
805 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
807 if (PageWriteback(page)) {
808 nr_writeback++;
810 * Synchronous reclaim cannot queue pages for
811 * writeback due to the possibility of stack overflow
812 * but if it encounters a page under writeback, wait
813 * for the IO to complete.
815 if ((sc->reclaim_mode & RECLAIM_MODE_SYNC) &&
816 may_enter_fs)
817 wait_on_page_writeback(page);
818 else {
819 unlock_page(page);
820 goto keep_lumpy;
824 references = page_check_references(page, sc);
825 switch (references) {
826 case PAGEREF_ACTIVATE:
827 goto activate_locked;
828 case PAGEREF_KEEP:
829 goto keep_locked;
830 case PAGEREF_RECLAIM:
831 case PAGEREF_RECLAIM_CLEAN:
832 ; /* try to reclaim the page below */
836 * Anonymous process memory has backing store?
837 * Try to allocate it some swap space here.
839 if (PageAnon(page) && !PageSwapCache(page)) {
840 if (!(sc->gfp_mask & __GFP_IO))
841 goto keep_locked;
842 if (!add_to_swap(page))
843 goto activate_locked;
844 may_enter_fs = 1;
847 mapping = page_mapping(page);
850 * The page is mapped into the page tables of one or more
851 * processes. Try to unmap it here.
853 if (page_mapped(page) && mapping) {
854 switch (try_to_unmap(page, TTU_UNMAP)) {
855 case SWAP_FAIL:
856 goto activate_locked;
857 case SWAP_AGAIN:
858 goto keep_locked;
859 case SWAP_MLOCK:
860 goto cull_mlocked;
861 case SWAP_SUCCESS:
862 ; /* try to free the page below */
866 if (PageDirty(page)) {
867 nr_dirty++;
870 * Only kswapd can writeback filesystem pages to
871 * avoid risk of stack overflow but do not writeback
872 * unless under significant pressure.
874 if (page_is_file_cache(page) &&
875 (!current_is_kswapd() || priority >= DEF_PRIORITY - 2)) {
877 * Immediately reclaim when written back.
878 * Similar in principal to deactivate_page()
879 * except we already have the page isolated
880 * and know it's dirty
882 inc_zone_page_state(page, NR_VMSCAN_IMMEDIATE);
883 SetPageReclaim(page);
885 goto keep_locked;
888 if (references == PAGEREF_RECLAIM_CLEAN)
889 goto keep_locked;
890 if (!may_enter_fs)
891 goto keep_locked;
892 if (!sc->may_writepage)
893 goto keep_locked;
895 /* Page is dirty, try to write it out here */
896 switch (pageout(page, mapping, sc)) {
897 case PAGE_KEEP:
898 nr_congested++;
899 goto keep_locked;
900 case PAGE_ACTIVATE:
901 goto activate_locked;
902 case PAGE_SUCCESS:
903 if (PageWriteback(page))
904 goto keep_lumpy;
905 if (PageDirty(page))
906 goto keep;
909 * A synchronous write - probably a ramdisk. Go
910 * ahead and try to reclaim the page.
912 if (!trylock_page(page))
913 goto keep;
914 if (PageDirty(page) || PageWriteback(page))
915 goto keep_locked;
916 mapping = page_mapping(page);
917 case PAGE_CLEAN:
918 ; /* try to free the page below */
923 * If the page has buffers, try to free the buffer mappings
924 * associated with this page. If we succeed we try to free
925 * the page as well.
927 * We do this even if the page is PageDirty().
928 * try_to_release_page() does not perform I/O, but it is
929 * possible for a page to have PageDirty set, but it is actually
930 * clean (all its buffers are clean). This happens if the
931 * buffers were written out directly, with submit_bh(). ext3
932 * will do this, as well as the blockdev mapping.
933 * try_to_release_page() will discover that cleanness and will
934 * drop the buffers and mark the page clean - it can be freed.
936 * Rarely, pages can have buffers and no ->mapping. These are
937 * the pages which were not successfully invalidated in
938 * truncate_complete_page(). We try to drop those buffers here
939 * and if that worked, and the page is no longer mapped into
940 * process address space (page_count == 1) it can be freed.
941 * Otherwise, leave the page on the LRU so it is swappable.
943 if (page_has_private(page)) {
944 if (!try_to_release_page(page, sc->gfp_mask))
945 goto activate_locked;
946 if (!mapping && page_count(page) == 1) {
947 unlock_page(page);
948 if (put_page_testzero(page))
949 goto free_it;
950 else {
952 * rare race with speculative reference.
953 * the speculative reference will free
954 * this page shortly, so we may
955 * increment nr_reclaimed here (and
956 * leave it off the LRU).
958 nr_reclaimed++;
959 continue;
964 if (!mapping || !__remove_mapping(mapping, page))
965 goto keep_locked;
968 * At this point, we have no other references and there is
969 * no way to pick any more up (removed from LRU, removed
970 * from pagecache). Can use non-atomic bitops now (and
971 * we obviously don't have to worry about waking up a process
972 * waiting on the page lock, because there are no references.
974 __clear_page_locked(page);
975 free_it:
976 nr_reclaimed++;
979 * Is there need to periodically free_page_list? It would
980 * appear not as the counts should be low
982 list_add(&page->lru, &free_pages);
983 continue;
985 cull_mlocked:
986 if (PageSwapCache(page))
987 try_to_free_swap(page);
988 unlock_page(page);
989 putback_lru_page(page);
990 reset_reclaim_mode(sc);
991 continue;
993 activate_locked:
994 /* Not a candidate for swapping, so reclaim swap space. */
995 if (PageSwapCache(page) && vm_swap_full())
996 try_to_free_swap(page);
997 VM_BUG_ON(PageActive(page));
998 SetPageActive(page);
999 pgactivate++;
1000 keep_locked:
1001 unlock_page(page);
1002 keep:
1003 reset_reclaim_mode(sc);
1004 keep_lumpy:
1005 list_add(&page->lru, &ret_pages);
1006 VM_BUG_ON(PageLRU(page) || PageUnevictable(page));
1010 * Tag a zone as congested if all the dirty pages encountered were
1011 * backed by a congested BDI. In this case, reclaimers should just
1012 * back off and wait for congestion to clear because further reclaim
1013 * will encounter the same problem
1015 if (nr_dirty && nr_dirty == nr_congested && scanning_global_lru(sc))
1016 zone_set_flag(zone, ZONE_CONGESTED);
1018 free_page_list(&free_pages);
1020 list_splice(&ret_pages, page_list);
1021 count_vm_events(PGACTIVATE, pgactivate);
1022 *ret_nr_dirty += nr_dirty;
1023 *ret_nr_writeback += nr_writeback;
1024 return nr_reclaimed;
1028 * Attempt to remove the specified page from its LRU. Only take this page
1029 * if it is of the appropriate PageActive status. Pages which are being
1030 * freed elsewhere are also ignored.
1032 * page: page to consider
1033 * mode: one of the LRU isolation modes defined above
1035 * returns 0 on success, -ve errno on failure.
1037 int __isolate_lru_page(struct page *page, isolate_mode_t mode, int file)
1039 bool all_lru_mode;
1040 int ret = -EINVAL;
1042 /* Only take pages on the LRU. */
1043 if (!PageLRU(page))
1044 return ret;
1046 all_lru_mode = (mode & (ISOLATE_ACTIVE|ISOLATE_INACTIVE)) ==
1047 (ISOLATE_ACTIVE|ISOLATE_INACTIVE);
1050 * When checking the active state, we need to be sure we are
1051 * dealing with comparible boolean values. Take the logical not
1052 * of each.
1054 if (!all_lru_mode && !PageActive(page) != !(mode & ISOLATE_ACTIVE))
1055 return ret;
1057 if (!all_lru_mode && !!page_is_file_cache(page) != file)
1058 return ret;
1061 * When this function is being called for lumpy reclaim, we
1062 * initially look into all LRU pages, active, inactive and
1063 * unevictable; only give shrink_page_list evictable pages.
1065 if (PageUnevictable(page))
1066 return ret;
1068 ret = -EBUSY;
1071 * To minimise LRU disruption, the caller can indicate that it only
1072 * wants to isolate pages it will be able to operate on without
1073 * blocking - clean pages for the most part.
1075 * ISOLATE_CLEAN means that only clean pages should be isolated. This
1076 * is used by reclaim when it is cannot write to backing storage
1078 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1079 * that it is possible to migrate without blocking
1081 if (mode & (ISOLATE_CLEAN|ISOLATE_ASYNC_MIGRATE)) {
1082 /* All the caller can do on PageWriteback is block */
1083 if (PageWriteback(page))
1084 return ret;
1086 if (PageDirty(page)) {
1087 struct address_space *mapping;
1089 /* ISOLATE_CLEAN means only clean pages */
1090 if (mode & ISOLATE_CLEAN)
1091 return ret;
1094 * Only pages without mappings or that have a
1095 * ->migratepage callback are possible to migrate
1096 * without blocking
1098 mapping = page_mapping(page);
1099 if (mapping && !mapping->a_ops->migratepage)
1100 return ret;
1104 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1105 return ret;
1107 if (likely(get_page_unless_zero(page))) {
1109 * Be careful not to clear PageLRU until after we're
1110 * sure the page is not being freed elsewhere -- the
1111 * page release code relies on it.
1113 ClearPageLRU(page);
1114 ret = 0;
1117 return ret;
1121 * zone->lru_lock is heavily contended. Some of the functions that
1122 * shrink the lists perform better by taking out a batch of pages
1123 * and working on them outside the LRU lock.
1125 * For pagecache intensive workloads, this function is the hottest
1126 * spot in the kernel (apart from copy_*_user functions).
1128 * Appropriate locks must be held before calling this function.
1130 * @nr_to_scan: The number of pages to look through on the list.
1131 * @src: The LRU list to pull pages off.
1132 * @dst: The temp list to put pages on to.
1133 * @scanned: The number of pages that were scanned.
1134 * @order: The caller's attempted allocation order
1135 * @mode: One of the LRU isolation modes
1136 * @file: True [1] if isolating file [!anon] pages
1138 * returns how many pages were moved onto *@dst.
1140 static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
1141 struct list_head *src, struct list_head *dst,
1142 unsigned long *scanned, int order, isolate_mode_t mode,
1143 int file)
1145 unsigned long nr_taken = 0;
1146 unsigned long nr_lumpy_taken = 0;
1147 unsigned long nr_lumpy_dirty = 0;
1148 unsigned long nr_lumpy_failed = 0;
1149 unsigned long scan;
1151 for (scan = 0; scan < nr_to_scan && !list_empty(src); scan++) {
1152 struct page *page;
1153 unsigned long pfn;
1154 unsigned long end_pfn;
1155 unsigned long page_pfn;
1156 int zone_id;
1158 page = lru_to_page(src);
1159 prefetchw_prev_lru_page(page, src, flags);
1161 VM_BUG_ON(!PageLRU(page));
1163 switch (__isolate_lru_page(page, mode, file)) {
1164 case 0:
1165 list_move(&page->lru, dst);
1166 mem_cgroup_del_lru(page);
1167 nr_taken += hpage_nr_pages(page);
1168 break;
1170 case -EBUSY:
1171 /* else it is being freed elsewhere */
1172 list_move(&page->lru, src);
1173 mem_cgroup_rotate_lru_list(page, page_lru(page));
1174 continue;
1176 default:
1177 BUG();
1180 if (!order)
1181 continue;
1184 * Attempt to take all pages in the order aligned region
1185 * surrounding the tag page. Only take those pages of
1186 * the same active state as that tag page. We may safely
1187 * round the target page pfn down to the requested order
1188 * as the mem_map is guaranteed valid out to MAX_ORDER,
1189 * where that page is in a different zone we will detect
1190 * it from its zone id and abort this block scan.
1192 zone_id = page_zone_id(page);
1193 page_pfn = page_to_pfn(page);
1194 pfn = page_pfn & ~((1 << order) - 1);
1195 end_pfn = pfn + (1 << order);
1196 for (; pfn < end_pfn; pfn++) {
1197 struct page *cursor_page;
1199 /* The target page is in the block, ignore it. */
1200 if (unlikely(pfn == page_pfn))
1201 continue;
1203 /* Avoid holes within the zone. */
1204 if (unlikely(!pfn_valid_within(pfn)))
1205 break;
1207 cursor_page = pfn_to_page(pfn);
1209 /* Check that we have not crossed a zone boundary. */
1210 if (unlikely(page_zone_id(cursor_page) != zone_id))
1211 break;
1214 * If we don't have enough swap space, reclaiming of
1215 * anon page which don't already have a swap slot is
1216 * pointless.
1218 if (nr_swap_pages <= 0 && PageSwapBacked(cursor_page) &&
1219 !PageSwapCache(cursor_page))
1220 break;
1222 if (__isolate_lru_page(cursor_page, mode, file) == 0) {
1223 list_move(&cursor_page->lru, dst);
1224 mem_cgroup_del_lru(cursor_page);
1225 nr_taken += hpage_nr_pages(page);
1226 nr_lumpy_taken++;
1227 if (PageDirty(cursor_page))
1228 nr_lumpy_dirty++;
1229 scan++;
1230 } else {
1232 * Check if the page is freed already.
1234 * We can't use page_count() as that
1235 * requires compound_head and we don't
1236 * have a pin on the page here. If a
1237 * page is tail, we may or may not
1238 * have isolated the head, so assume
1239 * it's not free, it'd be tricky to
1240 * track the head status without a
1241 * page pin.
1243 if (!PageTail(cursor_page) &&
1244 !atomic_read(&cursor_page->_count))
1245 continue;
1246 break;
1250 /* If we break out of the loop above, lumpy reclaim failed */
1251 if (pfn < end_pfn)
1252 nr_lumpy_failed++;
1255 *scanned = scan;
1257 trace_mm_vmscan_lru_isolate(order,
1258 nr_to_scan, scan,
1259 nr_taken,
1260 nr_lumpy_taken, nr_lumpy_dirty, nr_lumpy_failed,
1261 mode);
1262 return nr_taken;
1265 static unsigned long isolate_pages_global(unsigned long nr,
1266 struct list_head *dst,
1267 unsigned long *scanned, int order,
1268 isolate_mode_t mode,
1269 struct zone *z, int active, int file)
1271 int lru = LRU_BASE;
1272 if (active)
1273 lru += LRU_ACTIVE;
1274 if (file)
1275 lru += LRU_FILE;
1276 return isolate_lru_pages(nr, &z->lru[lru].list, dst, scanned, order,
1277 mode, file);
1281 * clear_active_flags() is a helper for shrink_active_list(), clearing
1282 * any active bits from the pages in the list.
1284 static unsigned long clear_active_flags(struct list_head *page_list,
1285 unsigned int *count)
1287 int nr_active = 0;
1288 int lru;
1289 struct page *page;
1291 list_for_each_entry(page, page_list, lru) {
1292 int numpages = hpage_nr_pages(page);
1293 lru = page_lru_base_type(page);
1294 if (PageActive(page)) {
1295 lru += LRU_ACTIVE;
1296 ClearPageActive(page);
1297 nr_active += numpages;
1299 if (count)
1300 count[lru] += numpages;
1303 return nr_active;
1307 * isolate_lru_page - tries to isolate a page from its LRU list
1308 * @page: page to isolate from its LRU list
1310 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1311 * vmstat statistic corresponding to whatever LRU list the page was on.
1313 * Returns 0 if the page was removed from an LRU list.
1314 * Returns -EBUSY if the page was not on an LRU list.
1316 * The returned page will have PageLRU() cleared. If it was found on
1317 * the active list, it will have PageActive set. If it was found on
1318 * the unevictable list, it will have the PageUnevictable bit set. That flag
1319 * may need to be cleared by the caller before letting the page go.
1321 * The vmstat statistic corresponding to the list on which the page was
1322 * found will be decremented.
1324 * Restrictions:
1325 * (1) Must be called with an elevated refcount on the page. This is a
1326 * fundamentnal difference from isolate_lru_pages (which is called
1327 * without a stable reference).
1328 * (2) the lru_lock must not be held.
1329 * (3) interrupts must be enabled.
1331 int isolate_lru_page(struct page *page)
1333 int ret = -EBUSY;
1335 VM_BUG_ON(!page_count(page));
1337 if (PageLRU(page)) {
1338 struct zone *zone = page_zone(page);
1340 spin_lock_irq(&zone->lru_lock);
1341 if (PageLRU(page)) {
1342 int lru = page_lru(page);
1343 ret = 0;
1344 get_page(page);
1345 ClearPageLRU(page);
1347 del_page_from_lru_list(zone, page, lru);
1349 spin_unlock_irq(&zone->lru_lock);
1351 return ret;
1355 * Are there way too many processes in the direct reclaim path already?
1357 static int too_many_isolated(struct zone *zone, int file,
1358 struct scan_control *sc)
1360 unsigned long inactive, isolated;
1362 if (current_is_kswapd())
1363 return 0;
1365 if (!scanning_global_lru(sc))
1366 return 0;
1368 if (file) {
1369 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1370 isolated = zone_page_state(zone, NR_ISOLATED_FILE);
1371 } else {
1372 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1373 isolated = zone_page_state(zone, NR_ISOLATED_ANON);
1376 return isolated > inactive;
1380 * TODO: Try merging with migrations version of putback_lru_pages
1382 static noinline_for_stack void
1383 putback_lru_pages(struct zone *zone, struct scan_control *sc,
1384 unsigned long nr_anon, unsigned long nr_file,
1385 struct list_head *page_list)
1387 struct page *page;
1388 struct pagevec pvec;
1389 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1391 pagevec_init(&pvec, 1);
1394 * Put back any unfreeable pages.
1396 spin_lock(&zone->lru_lock);
1397 while (!list_empty(page_list)) {
1398 int lru;
1399 page = lru_to_page(page_list);
1400 VM_BUG_ON(PageLRU(page));
1401 list_del(&page->lru);
1402 if (unlikely(!page_evictable(page, NULL))) {
1403 spin_unlock_irq(&zone->lru_lock);
1404 putback_lru_page(page);
1405 spin_lock_irq(&zone->lru_lock);
1406 continue;
1408 SetPageLRU(page);
1409 lru = page_lru(page);
1410 add_page_to_lru_list(zone, page, lru);
1411 if (is_active_lru(lru)) {
1412 int file = is_file_lru(lru);
1413 int numpages = hpage_nr_pages(page);
1414 reclaim_stat->recent_rotated[file] += numpages;
1416 if (!pagevec_add(&pvec, page)) {
1417 spin_unlock_irq(&zone->lru_lock);
1418 __pagevec_release(&pvec);
1419 spin_lock_irq(&zone->lru_lock);
1422 __mod_zone_page_state(zone, NR_ISOLATED_ANON, -nr_anon);
1423 __mod_zone_page_state(zone, NR_ISOLATED_FILE, -nr_file);
1425 spin_unlock_irq(&zone->lru_lock);
1426 pagevec_release(&pvec);
1429 static noinline_for_stack void update_isolated_counts(struct zone *zone,
1430 struct scan_control *sc,
1431 unsigned long *nr_anon,
1432 unsigned long *nr_file,
1433 struct list_head *isolated_list)
1435 unsigned long nr_active;
1436 unsigned int count[NR_LRU_LISTS] = { 0, };
1437 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1439 nr_active = clear_active_flags(isolated_list, count);
1440 __count_vm_events(PGDEACTIVATE, nr_active);
1442 __mod_zone_page_state(zone, NR_ACTIVE_FILE,
1443 -count[LRU_ACTIVE_FILE]);
1444 __mod_zone_page_state(zone, NR_INACTIVE_FILE,
1445 -count[LRU_INACTIVE_FILE]);
1446 __mod_zone_page_state(zone, NR_ACTIVE_ANON,
1447 -count[LRU_ACTIVE_ANON]);
1448 __mod_zone_page_state(zone, NR_INACTIVE_ANON,
1449 -count[LRU_INACTIVE_ANON]);
1451 *nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
1452 *nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
1453 __mod_zone_page_state(zone, NR_ISOLATED_ANON, *nr_anon);
1454 __mod_zone_page_state(zone, NR_ISOLATED_FILE, *nr_file);
1456 reclaim_stat->recent_scanned[0] += *nr_anon;
1457 reclaim_stat->recent_scanned[1] += *nr_file;
1461 * Returns true if a direct reclaim should wait on pages under writeback.
1463 * If we are direct reclaiming for contiguous pages and we do not reclaim
1464 * everything in the list, try again and wait for writeback IO to complete.
1465 * This will stall high-order allocations noticeably. Only do that when really
1466 * need to free the pages under high memory pressure.
1468 static inline bool should_reclaim_stall(unsigned long nr_taken,
1469 unsigned long nr_freed,
1470 int priority,
1471 struct scan_control *sc)
1473 int lumpy_stall_priority;
1475 /* kswapd should not stall on sync IO */
1476 if (current_is_kswapd())
1477 return false;
1479 /* Only stall on lumpy reclaim */
1480 if (sc->reclaim_mode & RECLAIM_MODE_SINGLE)
1481 return false;
1483 /* If we have reclaimed everything on the isolated list, no stall */
1484 if (nr_freed == nr_taken)
1485 return false;
1488 * For high-order allocations, there are two stall thresholds.
1489 * High-cost allocations stall immediately where as lower
1490 * order allocations such as stacks require the scanning
1491 * priority to be much higher before stalling.
1493 if (sc->order > PAGE_ALLOC_COSTLY_ORDER)
1494 lumpy_stall_priority = DEF_PRIORITY;
1495 else
1496 lumpy_stall_priority = DEF_PRIORITY / 3;
1498 return priority <= lumpy_stall_priority;
1502 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1503 * of reclaimed pages
1505 static noinline_for_stack unsigned long
1506 shrink_inactive_list(unsigned long nr_to_scan, struct zone *zone,
1507 struct scan_control *sc, int priority, int file)
1509 LIST_HEAD(page_list);
1510 unsigned long nr_scanned;
1511 unsigned long nr_reclaimed = 0;
1512 unsigned long nr_taken;
1513 unsigned long nr_anon;
1514 unsigned long nr_file;
1515 unsigned long nr_dirty = 0;
1516 unsigned long nr_writeback = 0;
1517 isolate_mode_t reclaim_mode = ISOLATE_INACTIVE;
1519 while (unlikely(too_many_isolated(zone, file, sc))) {
1520 congestion_wait(BLK_RW_ASYNC, HZ/10);
1522 /* We are about to die and free our memory. Return now. */
1523 if (fatal_signal_pending(current))
1524 return SWAP_CLUSTER_MAX;
1527 set_reclaim_mode(priority, sc, false);
1528 if (sc->reclaim_mode & RECLAIM_MODE_LUMPYRECLAIM)
1529 reclaim_mode |= ISOLATE_ACTIVE;
1531 lru_add_drain();
1533 if (!sc->may_unmap)
1534 reclaim_mode |= ISOLATE_UNMAPPED;
1535 if (!sc->may_writepage)
1536 reclaim_mode |= ISOLATE_CLEAN;
1538 spin_lock_irq(&zone->lru_lock);
1540 if (scanning_global_lru(sc)) {
1541 nr_taken = isolate_pages_global(nr_to_scan, &page_list,
1542 &nr_scanned, sc->order, reclaim_mode, zone, 0, file);
1543 zone->pages_scanned += nr_scanned;
1544 if (current_is_kswapd())
1545 __count_zone_vm_events(PGSCAN_KSWAPD, zone,
1546 nr_scanned);
1547 else
1548 __count_zone_vm_events(PGSCAN_DIRECT, zone,
1549 nr_scanned);
1550 } else {
1551 nr_taken = mem_cgroup_isolate_pages(nr_to_scan, &page_list,
1552 &nr_scanned, sc->order, reclaim_mode, zone,
1553 sc->mem_cgroup, 0, file);
1555 * mem_cgroup_isolate_pages() keeps track of
1556 * scanned pages on its own.
1560 if (nr_taken == 0) {
1561 spin_unlock_irq(&zone->lru_lock);
1562 return 0;
1565 update_isolated_counts(zone, sc, &nr_anon, &nr_file, &page_list);
1567 spin_unlock_irq(&zone->lru_lock);
1569 nr_reclaimed = shrink_page_list(&page_list, zone, sc, priority,
1570 &nr_dirty, &nr_writeback);
1572 /* Check if we should syncronously wait for writeback */
1573 if (should_reclaim_stall(nr_taken, nr_reclaimed, priority, sc)) {
1574 set_reclaim_mode(priority, sc, true);
1575 nr_reclaimed += shrink_page_list(&page_list, zone, sc,
1576 priority, &nr_dirty, &nr_writeback);
1579 local_irq_disable();
1580 if (current_is_kswapd())
1581 __count_vm_events(KSWAPD_STEAL, nr_reclaimed);
1582 __count_zone_vm_events(PGSTEAL, zone, nr_reclaimed);
1584 putback_lru_pages(zone, sc, nr_anon, nr_file, &page_list);
1587 * If reclaim is isolating dirty pages under writeback, it implies
1588 * that the long-lived page allocation rate is exceeding the page
1589 * laundering rate. Either the global limits are not being effective
1590 * at throttling processes due to the page distribution throughout
1591 * zones or there is heavy usage of a slow backing device. The
1592 * only option is to throttle from reclaim context which is not ideal
1593 * as there is no guarantee the dirtying process is throttled in the
1594 * same way balance_dirty_pages() manages.
1596 * This scales the number of dirty pages that must be under writeback
1597 * before throttling depending on priority. It is a simple backoff
1598 * function that has the most effect in the range DEF_PRIORITY to
1599 * DEF_PRIORITY-2 which is the priority reclaim is considered to be
1600 * in trouble and reclaim is considered to be in trouble.
1602 * DEF_PRIORITY 100% isolated pages must be PageWriteback to throttle
1603 * DEF_PRIORITY-1 50% must be PageWriteback
1604 * DEF_PRIORITY-2 25% must be PageWriteback, kswapd in trouble
1605 * ...
1606 * DEF_PRIORITY-6 For SWAP_CLUSTER_MAX isolated pages, throttle if any
1607 * isolated page is PageWriteback
1609 if (nr_writeback && nr_writeback >= (nr_taken >> (DEF_PRIORITY-priority)))
1610 wait_iff_congested(zone, BLK_RW_ASYNC, HZ/10);
1612 trace_mm_vmscan_lru_shrink_inactive(zone->zone_pgdat->node_id,
1613 zone_idx(zone),
1614 nr_scanned, nr_reclaimed,
1615 priority,
1616 trace_shrink_flags(file, sc->reclaim_mode));
1617 return nr_reclaimed;
1621 * This moves pages from the active list to the inactive list.
1623 * We move them the other way if the page is referenced by one or more
1624 * processes, from rmap.
1626 * If the pages are mostly unmapped, the processing is fast and it is
1627 * appropriate to hold zone->lru_lock across the whole operation. But if
1628 * the pages are mapped, the processing is slow (page_referenced()) so we
1629 * should drop zone->lru_lock around each page. It's impossible to balance
1630 * this, so instead we remove the pages from the LRU while processing them.
1631 * It is safe to rely on PG_active against the non-LRU pages in here because
1632 * nobody will play with that bit on a non-LRU page.
1634 * The downside is that we have to touch page->_count against each page.
1635 * But we had to alter page->flags anyway.
1638 static void move_active_pages_to_lru(struct zone *zone,
1639 struct list_head *list,
1640 enum lru_list lru)
1642 unsigned long pgmoved = 0;
1643 struct pagevec pvec;
1644 struct page *page;
1646 pagevec_init(&pvec, 1);
1648 while (!list_empty(list)) {
1649 page = lru_to_page(list);
1651 VM_BUG_ON(PageLRU(page));
1652 SetPageLRU(page);
1654 list_move(&page->lru, &zone->lru[lru].list);
1655 mem_cgroup_add_lru_list(page, lru);
1656 pgmoved += hpage_nr_pages(page);
1658 if (!pagevec_add(&pvec, page) || list_empty(list)) {
1659 spin_unlock_irq(&zone->lru_lock);
1660 if (buffer_heads_over_limit)
1661 pagevec_strip(&pvec);
1662 __pagevec_release(&pvec);
1663 spin_lock_irq(&zone->lru_lock);
1666 __mod_zone_page_state(zone, NR_LRU_BASE + lru, pgmoved);
1667 if (!is_active_lru(lru))
1668 __count_vm_events(PGDEACTIVATE, pgmoved);
1671 static void shrink_active_list(unsigned long nr_pages, struct zone *zone,
1672 struct scan_control *sc, int priority, int file)
1674 unsigned long nr_taken;
1675 unsigned long pgscanned;
1676 unsigned long vm_flags;
1677 LIST_HEAD(l_hold); /* The pages which were snipped off */
1678 LIST_HEAD(l_active);
1679 LIST_HEAD(l_inactive);
1680 struct page *page;
1681 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1682 unsigned long nr_rotated = 0;
1683 isolate_mode_t reclaim_mode = ISOLATE_ACTIVE;
1685 lru_add_drain();
1687 if (!sc->may_unmap)
1688 reclaim_mode |= ISOLATE_UNMAPPED;
1689 if (!sc->may_writepage)
1690 reclaim_mode |= ISOLATE_CLEAN;
1692 spin_lock_irq(&zone->lru_lock);
1693 if (scanning_global_lru(sc)) {
1694 nr_taken = isolate_pages_global(nr_pages, &l_hold,
1695 &pgscanned, sc->order,
1696 reclaim_mode, zone,
1697 1, file);
1698 zone->pages_scanned += pgscanned;
1699 } else {
1700 nr_taken = mem_cgroup_isolate_pages(nr_pages, &l_hold,
1701 &pgscanned, sc->order,
1702 reclaim_mode, zone,
1703 sc->mem_cgroup, 1, file);
1705 * mem_cgroup_isolate_pages() keeps track of
1706 * scanned pages on its own.
1710 reclaim_stat->recent_scanned[file] += nr_taken;
1712 __count_zone_vm_events(PGREFILL, zone, pgscanned);
1713 if (file)
1714 __mod_zone_page_state(zone, NR_ACTIVE_FILE, -nr_taken);
1715 else
1716 __mod_zone_page_state(zone, NR_ACTIVE_ANON, -nr_taken);
1717 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, nr_taken);
1718 spin_unlock_irq(&zone->lru_lock);
1720 while (!list_empty(&l_hold)) {
1721 cond_resched();
1722 page = lru_to_page(&l_hold);
1723 list_del(&page->lru);
1725 if (unlikely(!page_evictable(page, NULL))) {
1726 putback_lru_page(page);
1727 continue;
1730 if (page_referenced(page, 0, sc->mem_cgroup, &vm_flags)) {
1731 nr_rotated += hpage_nr_pages(page);
1733 * Identify referenced, file-backed active pages and
1734 * give them one more trip around the active list. So
1735 * that executable code get better chances to stay in
1736 * memory under moderate memory pressure. Anon pages
1737 * are not likely to be evicted by use-once streaming
1738 * IO, plus JVM can create lots of anon VM_EXEC pages,
1739 * so we ignore them here.
1741 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
1742 list_add(&page->lru, &l_active);
1743 continue;
1747 ClearPageActive(page); /* we are de-activating */
1748 list_add(&page->lru, &l_inactive);
1752 * Move pages back to the lru list.
1754 spin_lock_irq(&zone->lru_lock);
1756 * Count referenced pages from currently used mappings as rotated,
1757 * even though only some of them are actually re-activated. This
1758 * helps balance scan pressure between file and anonymous pages in
1759 * get_scan_ratio.
1761 reclaim_stat->recent_rotated[file] += nr_rotated;
1763 move_active_pages_to_lru(zone, &l_active,
1764 LRU_ACTIVE + file * LRU_FILE);
1765 move_active_pages_to_lru(zone, &l_inactive,
1766 LRU_BASE + file * LRU_FILE);
1767 __mod_zone_page_state(zone, NR_ISOLATED_ANON + file, -nr_taken);
1768 spin_unlock_irq(&zone->lru_lock);
1771 #ifdef CONFIG_SWAP
1772 static int inactive_anon_is_low_global(struct zone *zone)
1774 unsigned long active, inactive;
1776 active = zone_page_state(zone, NR_ACTIVE_ANON);
1777 inactive = zone_page_state(zone, NR_INACTIVE_ANON);
1779 if (inactive * zone->inactive_ratio < active)
1780 return 1;
1782 return 0;
1786 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1787 * @zone: zone to check
1788 * @sc: scan control of this context
1790 * Returns true if the zone does not have enough inactive anon pages,
1791 * meaning some active anon pages need to be deactivated.
1793 static int inactive_anon_is_low(struct zone *zone, struct scan_control *sc)
1795 int low;
1798 * If we don't have swap space, anonymous page deactivation
1799 * is pointless.
1801 if (!total_swap_pages)
1802 return 0;
1804 if (scanning_global_lru(sc))
1805 low = inactive_anon_is_low_global(zone);
1806 else
1807 low = mem_cgroup_inactive_anon_is_low(sc->mem_cgroup, zone);
1808 return low;
1810 #else
1811 static inline int inactive_anon_is_low(struct zone *zone,
1812 struct scan_control *sc)
1814 return 0;
1816 #endif
1818 static int inactive_file_is_low_global(struct zone *zone)
1820 unsigned long active, inactive;
1822 active = zone_page_state(zone, NR_ACTIVE_FILE);
1823 inactive = zone_page_state(zone, NR_INACTIVE_FILE);
1825 return (active > inactive);
1829 * inactive_file_is_low - check if file pages need to be deactivated
1830 * @zone: zone to check
1831 * @sc: scan control of this context
1833 * When the system is doing streaming IO, memory pressure here
1834 * ensures that active file pages get deactivated, until more
1835 * than half of the file pages are on the inactive list.
1837 * Once we get to that situation, protect the system's working
1838 * set from being evicted by disabling active file page aging.
1840 * This uses a different ratio than the anonymous pages, because
1841 * the page cache uses a use-once replacement algorithm.
1843 static int inactive_file_is_low(struct zone *zone, struct scan_control *sc)
1845 int low;
1847 if (scanning_global_lru(sc))
1848 low = inactive_file_is_low_global(zone);
1849 else
1850 low = mem_cgroup_inactive_file_is_low(sc->mem_cgroup, zone);
1851 return low;
1854 static int inactive_list_is_low(struct zone *zone, struct scan_control *sc,
1855 int file)
1857 if (file)
1858 return inactive_file_is_low(zone, sc);
1859 else
1860 return inactive_anon_is_low(zone, sc);
1863 static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
1864 struct zone *zone, struct scan_control *sc, int priority)
1866 int file = is_file_lru(lru);
1868 if (is_active_lru(lru)) {
1869 if (inactive_list_is_low(zone, sc, file))
1870 shrink_active_list(nr_to_scan, zone, sc, priority, file);
1871 return 0;
1874 return shrink_inactive_list(nr_to_scan, zone, sc, priority, file);
1877 static int vmscan_swappiness(struct scan_control *sc)
1879 if (scanning_global_lru(sc))
1880 return vm_swappiness;
1881 return mem_cgroup_swappiness(sc->mem_cgroup);
1885 * Determine how aggressively the anon and file LRU lists should be
1886 * scanned. The relative value of each set of LRU lists is determined
1887 * by looking at the fraction of the pages scanned we did rotate back
1888 * onto the active list instead of evict.
1890 * nr[0] = anon pages to scan; nr[1] = file pages to scan
1892 static void get_scan_count(struct zone *zone, struct scan_control *sc,
1893 unsigned long *nr, int priority)
1895 unsigned long anon, file, free;
1896 unsigned long anon_prio, file_prio;
1897 unsigned long ap, fp;
1898 struct zone_reclaim_stat *reclaim_stat = get_reclaim_stat(zone, sc);
1899 u64 fraction[2], denominator;
1900 enum lru_list l;
1901 int noswap = 0;
1902 bool force_scan = false;
1905 * If the zone or memcg is small, nr[l] can be 0. This
1906 * results in no scanning on this priority and a potential
1907 * priority drop. Global direct reclaim can go to the next
1908 * zone and tends to have no problems. Global kswapd is for
1909 * zone balancing and it needs to scan a minimum amount. When
1910 * reclaiming for a memcg, a priority drop can cause high
1911 * latencies, so it's better to scan a minimum amount there as
1912 * well.
1914 if (scanning_global_lru(sc) && current_is_kswapd() &&
1915 zone->all_unreclaimable)
1916 force_scan = true;
1917 if (!scanning_global_lru(sc))
1918 force_scan = true;
1920 /* If we have no swap space, do not bother scanning anon pages. */
1921 if (!sc->may_swap || (nr_swap_pages <= 0)) {
1922 noswap = 1;
1923 fraction[0] = 0;
1924 fraction[1] = 1;
1925 denominator = 1;
1926 goto out;
1929 anon = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_ANON) +
1930 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
1931 file = zone_nr_lru_pages(zone, sc, LRU_ACTIVE_FILE) +
1932 zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
1934 if (scanning_global_lru(sc)) {
1935 free = zone_page_state(zone, NR_FREE_PAGES);
1936 /* If we have very few page cache pages,
1937 force-scan anon pages. */
1938 if (unlikely(file + free <= high_wmark_pages(zone))) {
1939 fraction[0] = 1;
1940 fraction[1] = 0;
1941 denominator = 1;
1942 goto out;
1947 * With swappiness at 100, anonymous and file have the same priority.
1948 * This scanning priority is essentially the inverse of IO cost.
1950 anon_prio = vmscan_swappiness(sc);
1951 file_prio = 200 - vmscan_swappiness(sc);
1954 * OK, so we have swap space and a fair amount of page cache
1955 * pages. We use the recently rotated / recently scanned
1956 * ratios to determine how valuable each cache is.
1958 * Because workloads change over time (and to avoid overflow)
1959 * we keep these statistics as a floating average, which ends
1960 * up weighing recent references more than old ones.
1962 * anon in [0], file in [1]
1964 spin_lock_irq(&zone->lru_lock);
1965 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
1966 reclaim_stat->recent_scanned[0] /= 2;
1967 reclaim_stat->recent_rotated[0] /= 2;
1970 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
1971 reclaim_stat->recent_scanned[1] /= 2;
1972 reclaim_stat->recent_rotated[1] /= 2;
1976 * The amount of pressure on anon vs file pages is inversely
1977 * proportional to the fraction of recently scanned pages on
1978 * each list that were recently referenced and in active use.
1980 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
1981 ap /= reclaim_stat->recent_rotated[0] + 1;
1983 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
1984 fp /= reclaim_stat->recent_rotated[1] + 1;
1985 spin_unlock_irq(&zone->lru_lock);
1987 fraction[0] = ap;
1988 fraction[1] = fp;
1989 denominator = ap + fp + 1;
1990 out:
1991 for_each_evictable_lru(l) {
1992 int file = is_file_lru(l);
1993 unsigned long scan;
1995 scan = zone_nr_lru_pages(zone, sc, l);
1996 if (priority || noswap || !vmscan_swappiness(sc)) {
1997 scan >>= priority;
1998 if (!scan && force_scan)
1999 scan = SWAP_CLUSTER_MAX;
2000 scan = div64_u64(scan * fraction[file], denominator);
2002 nr[l] = scan;
2007 * Reclaim/compaction depends on a number of pages being freed. To avoid
2008 * disruption to the system, a small number of order-0 pages continue to be
2009 * rotated and reclaimed in the normal fashion. However, by the time we get
2010 * back to the allocator and call try_to_compact_zone(), we ensure that
2011 * there are enough free pages for it to be likely successful
2013 static inline bool should_continue_reclaim(struct zone *zone,
2014 unsigned long nr_reclaimed,
2015 unsigned long nr_scanned,
2016 struct scan_control *sc)
2018 unsigned long pages_for_compaction;
2019 unsigned long inactive_lru_pages;
2021 /* If not in reclaim/compaction mode, stop */
2022 if (!(sc->reclaim_mode & RECLAIM_MODE_COMPACTION))
2023 return false;
2025 /* Consider stopping depending on scan and reclaim activity */
2026 if (sc->gfp_mask & __GFP_REPEAT) {
2028 * For __GFP_REPEAT allocations, stop reclaiming if the
2029 * full LRU list has been scanned and we are still failing
2030 * to reclaim pages. This full LRU scan is potentially
2031 * expensive but a __GFP_REPEAT caller really wants to succeed
2033 if (!nr_reclaimed && !nr_scanned)
2034 return false;
2035 } else {
2037 * For non-__GFP_REPEAT allocations which can presumably
2038 * fail without consequence, stop if we failed to reclaim
2039 * any pages from the last SWAP_CLUSTER_MAX number of
2040 * pages that were scanned. This will return to the
2041 * caller faster at the risk reclaim/compaction and
2042 * the resulting allocation attempt fails
2044 if (!nr_reclaimed)
2045 return false;
2049 * If we have not reclaimed enough pages for compaction and the
2050 * inactive lists are large enough, continue reclaiming
2052 pages_for_compaction = (2UL << sc->order);
2053 inactive_lru_pages = zone_nr_lru_pages(zone, sc, LRU_INACTIVE_FILE);
2054 if (nr_swap_pages > 0)
2055 inactive_lru_pages += zone_nr_lru_pages(zone, sc, LRU_INACTIVE_ANON);
2056 if (sc->nr_reclaimed < pages_for_compaction &&
2057 inactive_lru_pages > pages_for_compaction)
2058 return true;
2060 /* If compaction would go ahead or the allocation would succeed, stop */
2061 switch (compaction_suitable(zone, sc->order)) {
2062 case COMPACT_PARTIAL:
2063 case COMPACT_CONTINUE:
2064 return false;
2065 default:
2066 return true;
2071 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
2073 static void shrink_zone(int priority, struct zone *zone,
2074 struct scan_control *sc)
2076 unsigned long nr[NR_LRU_LISTS];
2077 unsigned long nr_to_scan;
2078 enum lru_list l;
2079 unsigned long nr_reclaimed, nr_scanned;
2080 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2081 struct blk_plug plug;
2083 restart:
2084 nr_reclaimed = 0;
2085 nr_scanned = sc->nr_scanned;
2086 get_scan_count(zone, sc, nr, priority);
2088 blk_start_plug(&plug);
2089 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2090 nr[LRU_INACTIVE_FILE]) {
2091 for_each_evictable_lru(l) {
2092 if (nr[l]) {
2093 nr_to_scan = min_t(unsigned long,
2094 nr[l], SWAP_CLUSTER_MAX);
2095 nr[l] -= nr_to_scan;
2097 nr_reclaimed += shrink_list(l, nr_to_scan,
2098 zone, sc, priority);
2102 * On large memory systems, scan >> priority can become
2103 * really large. This is fine for the starting priority;
2104 * we want to put equal scanning pressure on each zone.
2105 * However, if the VM has a harder time of freeing pages,
2106 * with multiple processes reclaiming pages, the total
2107 * freeing target can get unreasonably large.
2109 if (nr_reclaimed >= nr_to_reclaim && priority < DEF_PRIORITY)
2110 break;
2112 blk_finish_plug(&plug);
2113 sc->nr_reclaimed += nr_reclaimed;
2116 * Even if we did not try to evict anon pages at all, we want to
2117 * rebalance the anon lru active/inactive ratio.
2119 if (inactive_anon_is_low(zone, sc))
2120 shrink_active_list(SWAP_CLUSTER_MAX, zone, sc, priority, 0);
2122 /* reclaim/compaction might need reclaim to continue */
2123 if (should_continue_reclaim(zone, nr_reclaimed,
2124 sc->nr_scanned - nr_scanned, sc))
2125 goto restart;
2127 throttle_vm_writeout(sc->gfp_mask);
2130 /* Returns true if compaction should go ahead for a high-order request */
2131 static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
2133 unsigned long balance_gap, watermark;
2134 bool watermark_ok;
2136 /* Do not consider compaction for orders reclaim is meant to satisfy */
2137 if (sc->order <= PAGE_ALLOC_COSTLY_ORDER)
2138 return false;
2141 * Compaction takes time to run and there are potentially other
2142 * callers using the pages just freed. Continue reclaiming until
2143 * there is a buffer of free pages available to give compaction
2144 * a reasonable chance of completing and allocating the page
2146 balance_gap = min(low_wmark_pages(zone),
2147 (zone->present_pages + KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2148 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2149 watermark = high_wmark_pages(zone) + balance_gap + (2UL << sc->order);
2150 watermark_ok = zone_watermark_ok_safe(zone, 0, watermark, 0, 0);
2153 * If compaction is deferred, reclaim up to a point where
2154 * compaction will have a chance of success when re-enabled
2156 if (compaction_deferred(zone))
2157 return watermark_ok;
2159 /* If compaction is not ready to start, keep reclaiming */
2160 if (!compaction_suitable(zone, sc->order))
2161 return false;
2163 return watermark_ok;
2167 * This is the direct reclaim path, for page-allocating processes. We only
2168 * try to reclaim pages from zones which will satisfy the caller's allocation
2169 * request.
2171 * We reclaim from a zone even if that zone is over high_wmark_pages(zone).
2172 * Because:
2173 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
2174 * allocation or
2175 * b) The target zone may be at high_wmark_pages(zone) but the lower zones
2176 * must go *over* high_wmark_pages(zone) to satisfy the `incremental min'
2177 * zone defense algorithm.
2179 * If a zone is deemed to be full of pinned pages then just give it a light
2180 * scan then give up on it.
2182 * This function returns true if a zone is being reclaimed for a costly
2183 * high-order allocation and compaction is ready to begin. This indicates to
2184 * the caller that it should consider retrying the allocation instead of
2185 * further reclaim.
2187 static bool shrink_zones(int priority, struct zonelist *zonelist,
2188 struct scan_control *sc)
2190 struct zoneref *z;
2191 struct zone *zone;
2192 unsigned long nr_soft_reclaimed;
2193 unsigned long nr_soft_scanned;
2194 bool aborted_reclaim = false;
2196 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2197 gfp_zone(sc->gfp_mask), sc->nodemask) {
2198 if (!populated_zone(zone))
2199 continue;
2201 * Take care memory controller reclaiming has small influence
2202 * to global LRU.
2204 if (scanning_global_lru(sc)) {
2205 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2206 continue;
2207 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2208 continue; /* Let kswapd poll it */
2209 if (COMPACTION_BUILD) {
2211 * If we already have plenty of memory free for
2212 * compaction in this zone, don't free any more.
2213 * Even though compaction is invoked for any
2214 * non-zero order, only frequent costly order
2215 * reclamation is disruptive enough to become a
2216 * noticable problem, like transparent huge page
2217 * allocations.
2219 if (compaction_ready(zone, sc)) {
2220 aborted_reclaim = true;
2221 continue;
2225 * This steals pages from memory cgroups over softlimit
2226 * and returns the number of reclaimed pages and
2227 * scanned pages. This works for global memory pressure
2228 * and balancing, not for a memcg's limit.
2230 nr_soft_scanned = 0;
2231 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2232 sc->order, sc->gfp_mask,
2233 &nr_soft_scanned);
2234 sc->nr_reclaimed += nr_soft_reclaimed;
2235 sc->nr_scanned += nr_soft_scanned;
2236 /* need some check for avoid more shrink_zone() */
2239 shrink_zone(priority, zone, sc);
2242 return aborted_reclaim;
2245 static bool zone_reclaimable(struct zone *zone)
2247 return zone->pages_scanned < zone_reclaimable_pages(zone) * 6;
2250 /* All zones in zonelist are unreclaimable? */
2251 static bool all_unreclaimable(struct zonelist *zonelist,
2252 struct scan_control *sc)
2254 struct zoneref *z;
2255 struct zone *zone;
2257 for_each_zone_zonelist_nodemask(zone, z, zonelist,
2258 gfp_zone(sc->gfp_mask), sc->nodemask) {
2259 if (!populated_zone(zone))
2260 continue;
2261 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2262 continue;
2263 if (!zone->all_unreclaimable)
2264 return false;
2267 return true;
2271 * This is the main entry point to direct page reclaim.
2273 * If a full scan of the inactive list fails to free enough memory then we
2274 * are "out of memory" and something needs to be killed.
2276 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2277 * high - the zone may be full of dirty or under-writeback pages, which this
2278 * caller can't do much about. We kick the writeback threads and take explicit
2279 * naps in the hope that some of these pages can be written. But if the
2280 * allocating task holds filesystem locks which prevent writeout this might not
2281 * work, and the allocation attempt will fail.
2283 * returns: 0, if no pages reclaimed
2284 * else, the number of pages reclaimed
2286 static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
2287 struct scan_control *sc,
2288 struct shrink_control *shrink)
2290 int priority;
2291 unsigned long total_scanned = 0;
2292 struct reclaim_state *reclaim_state = current->reclaim_state;
2293 struct zoneref *z;
2294 struct zone *zone;
2295 unsigned long writeback_threshold;
2296 bool aborted_reclaim;
2298 delayacct_freepages_start();
2300 if (scanning_global_lru(sc))
2301 count_vm_event(ALLOCSTALL);
2303 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2304 sc->nr_scanned = 0;
2305 if (!priority)
2306 disable_swap_token(sc->mem_cgroup);
2307 aborted_reclaim = shrink_zones(priority, zonelist, sc);
2310 * Don't shrink slabs when reclaiming memory from
2311 * over limit cgroups
2313 if (scanning_global_lru(sc)) {
2314 unsigned long lru_pages = 0;
2315 for_each_zone_zonelist(zone, z, zonelist,
2316 gfp_zone(sc->gfp_mask)) {
2317 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
2318 continue;
2320 lru_pages += zone_reclaimable_pages(zone);
2323 shrink_slab(shrink, sc->nr_scanned, lru_pages);
2324 if (reclaim_state) {
2325 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2326 reclaim_state->reclaimed_slab = 0;
2329 total_scanned += sc->nr_scanned;
2330 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
2331 goto out;
2334 * Try to write back as many pages as we just scanned. This
2335 * tends to cause slow streaming writers to write data to the
2336 * disk smoothly, at the dirtying rate, which is nice. But
2337 * that's undesirable in laptop mode, where we *want* lumpy
2338 * writeout. So in laptop mode, write out the whole world.
2340 writeback_threshold = sc->nr_to_reclaim + sc->nr_to_reclaim / 2;
2341 if (total_scanned > writeback_threshold) {
2342 wakeup_flusher_threads(laptop_mode ? 0 : total_scanned,
2343 WB_REASON_TRY_TO_FREE_PAGES);
2344 sc->may_writepage = 1;
2347 /* Take a nap, wait for some writeback to complete */
2348 if (!sc->hibernation_mode && sc->nr_scanned &&
2349 priority < DEF_PRIORITY - 2) {
2350 struct zone *preferred_zone;
2352 first_zones_zonelist(zonelist, gfp_zone(sc->gfp_mask),
2353 &cpuset_current_mems_allowed,
2354 &preferred_zone);
2355 wait_iff_congested(preferred_zone, BLK_RW_ASYNC, HZ/10);
2359 out:
2360 delayacct_freepages_end();
2362 if (sc->nr_reclaimed)
2363 return sc->nr_reclaimed;
2366 * As hibernation is going on, kswapd is freezed so that it can't mark
2367 * the zone into all_unreclaimable. Thus bypassing all_unreclaimable
2368 * check.
2370 if (oom_killer_disabled)
2371 return 0;
2373 /* Aborted reclaim to try compaction? don't OOM, then */
2374 if (aborted_reclaim)
2375 return 1;
2377 /* top priority shrink_zones still had more to do? don't OOM, then */
2378 if (scanning_global_lru(sc) && !all_unreclaimable(zonelist, sc))
2379 return 1;
2381 return 0;
2384 unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
2385 gfp_t gfp_mask, nodemask_t *nodemask)
2387 unsigned long nr_reclaimed;
2388 struct scan_control sc = {
2389 .gfp_mask = gfp_mask,
2390 .may_writepage = !laptop_mode,
2391 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2392 .may_unmap = 1,
2393 .may_swap = 1,
2394 .order = order,
2395 .mem_cgroup = NULL,
2396 .nodemask = nodemask,
2398 struct shrink_control shrink = {
2399 .gfp_mask = sc.gfp_mask,
2402 trace_mm_vmscan_direct_reclaim_begin(order,
2403 sc.may_writepage,
2404 gfp_mask);
2406 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2408 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
2410 return nr_reclaimed;
2413 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
2415 unsigned long mem_cgroup_shrink_node_zone(struct mem_cgroup *mem,
2416 gfp_t gfp_mask, bool noswap,
2417 struct zone *zone,
2418 unsigned long *nr_scanned)
2420 struct scan_control sc = {
2421 .nr_scanned = 0,
2422 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2423 .may_writepage = !laptop_mode,
2424 .may_unmap = 1,
2425 .may_swap = !noswap,
2426 .order = 0,
2427 .mem_cgroup = mem,
2430 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2431 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
2433 trace_mm_vmscan_memcg_softlimit_reclaim_begin(0,
2434 sc.may_writepage,
2435 sc.gfp_mask);
2438 * NOTE: Although we can get the priority field, using it
2439 * here is not a good idea, since it limits the pages we can scan.
2440 * if we don't reclaim here, the shrink_zone from balance_pgdat
2441 * will pick up pages from other mem cgroup's as well. We hack
2442 * the priority and make it zero.
2444 shrink_zone(0, zone, &sc);
2446 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
2448 *nr_scanned = sc.nr_scanned;
2449 return sc.nr_reclaimed;
2452 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *mem_cont,
2453 gfp_t gfp_mask,
2454 bool noswap)
2456 struct zonelist *zonelist;
2457 unsigned long nr_reclaimed;
2458 int nid;
2459 struct scan_control sc = {
2460 .may_writepage = !laptop_mode,
2461 .may_unmap = 1,
2462 .may_swap = !noswap,
2463 .nr_to_reclaim = SWAP_CLUSTER_MAX,
2464 .order = 0,
2465 .mem_cgroup = mem_cont,
2466 .nodemask = NULL, /* we don't care the placement */
2467 .gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
2468 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
2470 struct shrink_control shrink = {
2471 .gfp_mask = sc.gfp_mask,
2475 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
2476 * take care of from where we get pages. So the node where we start the
2477 * scan does not need to be the current node.
2479 nid = mem_cgroup_select_victim_node(mem_cont);
2481 zonelist = NODE_DATA(nid)->node_zonelists;
2483 trace_mm_vmscan_memcg_reclaim_begin(0,
2484 sc.may_writepage,
2485 sc.gfp_mask);
2487 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
2489 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
2491 return nr_reclaimed;
2493 #endif
2496 * pgdat_balanced is used when checking if a node is balanced for high-order
2497 * allocations. Only zones that meet watermarks and are in a zone allowed
2498 * by the callers classzone_idx are added to balanced_pages. The total of
2499 * balanced pages must be at least 25% of the zones allowed by classzone_idx
2500 * for the node to be considered balanced. Forcing all zones to be balanced
2501 * for high orders can cause excessive reclaim when there are imbalanced zones.
2502 * The choice of 25% is due to
2503 * o a 16M DMA zone that is balanced will not balance a zone on any
2504 * reasonable sized machine
2505 * o On all other machines, the top zone must be at least a reasonable
2506 * percentage of the middle zones. For example, on 32-bit x86, highmem
2507 * would need to be at least 256M for it to be balance a whole node.
2508 * Similarly, on x86-64 the Normal zone would need to be at least 1G
2509 * to balance a node on its own. These seemed like reasonable ratios.
2511 static bool pgdat_balanced(pg_data_t *pgdat, unsigned long balanced_pages,
2512 int classzone_idx)
2514 unsigned long present_pages = 0;
2515 int i;
2517 for (i = 0; i <= classzone_idx; i++)
2518 present_pages += pgdat->node_zones[i].present_pages;
2520 /* A special case here: if zone has no page, we think it's balanced */
2521 return balanced_pages >= (present_pages >> 2);
2524 /* is kswapd sleeping prematurely? */
2525 static bool sleeping_prematurely(pg_data_t *pgdat, int order, long remaining,
2526 int classzone_idx)
2528 int i;
2529 unsigned long balanced = 0;
2530 bool all_zones_ok = true;
2532 /* If a direct reclaimer woke kswapd within HZ/10, it's premature */
2533 if (remaining)
2534 return true;
2536 /* Check the watermark levels */
2537 for (i = 0; i <= classzone_idx; i++) {
2538 struct zone *zone = pgdat->node_zones + i;
2540 if (!populated_zone(zone))
2541 continue;
2544 * balance_pgdat() skips over all_unreclaimable after
2545 * DEF_PRIORITY. Effectively, it considers them balanced so
2546 * they must be considered balanced here as well if kswapd
2547 * is to sleep
2549 if (zone->all_unreclaimable) {
2550 balanced += zone->present_pages;
2551 continue;
2554 if (!zone_watermark_ok_safe(zone, order, high_wmark_pages(zone),
2555 i, 0))
2556 all_zones_ok = false;
2557 else
2558 balanced += zone->present_pages;
2562 * For high-order requests, the balanced zones must contain at least
2563 * 25% of the nodes pages for kswapd to sleep. For order-0, all zones
2564 * must be balanced
2566 if (order)
2567 return !pgdat_balanced(pgdat, balanced, classzone_idx);
2568 else
2569 return !all_zones_ok;
2573 * For kswapd, balance_pgdat() will work across all this node's zones until
2574 * they are all at high_wmark_pages(zone).
2576 * Returns the final order kswapd was reclaiming at
2578 * There is special handling here for zones which are full of pinned pages.
2579 * This can happen if the pages are all mlocked, or if they are all used by
2580 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
2581 * What we do is to detect the case where all pages in the zone have been
2582 * scanned twice and there has been zero successful reclaim. Mark the zone as
2583 * dead and from now on, only perform a short scan. Basically we're polling
2584 * the zone for when the problem goes away.
2586 * kswapd scans the zones in the highmem->normal->dma direction. It skips
2587 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
2588 * found to have free_pages <= high_wmark_pages(zone), we scan that zone and the
2589 * lower zones regardless of the number of free pages in the lower zones. This
2590 * interoperates with the page allocator fallback scheme to ensure that aging
2591 * of pages is balanced across the zones.
2593 static unsigned long balance_pgdat(pg_data_t *pgdat, int order,
2594 int *classzone_idx)
2596 int all_zones_ok;
2597 unsigned long balanced;
2598 int priority;
2599 int i;
2600 int end_zone = 0; /* Inclusive. 0 = ZONE_DMA */
2601 unsigned long total_scanned;
2602 struct reclaim_state *reclaim_state = current->reclaim_state;
2603 unsigned long nr_soft_reclaimed;
2604 unsigned long nr_soft_scanned;
2605 struct scan_control sc = {
2606 .gfp_mask = GFP_KERNEL,
2607 .may_unmap = 1,
2608 .may_swap = 1,
2610 * kswapd doesn't want to be bailed out while reclaim. because
2611 * we want to put equal scanning pressure on each zone.
2613 .nr_to_reclaim = ULONG_MAX,
2614 .order = order,
2615 .mem_cgroup = NULL,
2617 struct shrink_control shrink = {
2618 .gfp_mask = sc.gfp_mask,
2620 loop_again:
2621 total_scanned = 0;
2622 sc.nr_reclaimed = 0;
2623 sc.may_writepage = !laptop_mode;
2624 count_vm_event(PAGEOUTRUN);
2626 for (priority = DEF_PRIORITY; priority >= 0; priority--) {
2627 unsigned long lru_pages = 0;
2628 int has_under_min_watermark_zone = 0;
2630 /* The swap token gets in the way of swapout... */
2631 if (!priority)
2632 disable_swap_token(NULL);
2634 all_zones_ok = 1;
2635 balanced = 0;
2638 * Scan in the highmem->dma direction for the highest
2639 * zone which needs scanning
2641 for (i = pgdat->nr_zones - 1; i >= 0; i--) {
2642 struct zone *zone = pgdat->node_zones + i;
2644 if (!populated_zone(zone))
2645 continue;
2647 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2648 continue;
2651 * Do some background aging of the anon list, to give
2652 * pages a chance to be referenced before reclaiming.
2654 if (inactive_anon_is_low(zone, &sc))
2655 shrink_active_list(SWAP_CLUSTER_MAX, zone,
2656 &sc, priority, 0);
2658 if (!zone_watermark_ok_safe(zone, order,
2659 high_wmark_pages(zone), 0, 0)) {
2660 end_zone = i;
2661 break;
2662 } else {
2663 /* If balanced, clear the congested flag */
2664 zone_clear_flag(zone, ZONE_CONGESTED);
2667 if (i < 0)
2668 goto out;
2670 for (i = 0; i <= end_zone; i++) {
2671 struct zone *zone = pgdat->node_zones + i;
2673 lru_pages += zone_reclaimable_pages(zone);
2677 * Now scan the zone in the dma->highmem direction, stopping
2678 * at the last zone which needs scanning.
2680 * We do this because the page allocator works in the opposite
2681 * direction. This prevents the page allocator from allocating
2682 * pages behind kswapd's direction of progress, which would
2683 * cause too much scanning of the lower zones.
2685 for (i = 0; i <= end_zone; i++) {
2686 struct zone *zone = pgdat->node_zones + i;
2687 int nr_slab;
2688 unsigned long balance_gap;
2690 if (!populated_zone(zone))
2691 continue;
2693 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2694 continue;
2696 sc.nr_scanned = 0;
2698 nr_soft_scanned = 0;
2700 * Call soft limit reclaim before calling shrink_zone.
2702 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone,
2703 order, sc.gfp_mask,
2704 &nr_soft_scanned);
2705 sc.nr_reclaimed += nr_soft_reclaimed;
2706 total_scanned += nr_soft_scanned;
2709 * We put equal pressure on every zone, unless
2710 * one zone has way too many pages free
2711 * already. The "too many pages" is defined
2712 * as the high wmark plus a "gap" where the
2713 * gap is either the low watermark or 1%
2714 * of the zone, whichever is smaller.
2716 balance_gap = min(low_wmark_pages(zone),
2717 (zone->present_pages +
2718 KSWAPD_ZONE_BALANCE_GAP_RATIO-1) /
2719 KSWAPD_ZONE_BALANCE_GAP_RATIO);
2720 if (!zone_watermark_ok_safe(zone, order,
2721 high_wmark_pages(zone) + balance_gap,
2722 end_zone, 0)) {
2723 shrink_zone(priority, zone, &sc);
2725 reclaim_state->reclaimed_slab = 0;
2726 nr_slab = shrink_slab(&shrink, sc.nr_scanned, lru_pages);
2727 sc.nr_reclaimed += reclaim_state->reclaimed_slab;
2728 total_scanned += sc.nr_scanned;
2730 if (nr_slab == 0 && !zone_reclaimable(zone))
2731 zone->all_unreclaimable = 1;
2735 * If we've done a decent amount of scanning and
2736 * the reclaim ratio is low, start doing writepage
2737 * even in laptop mode
2739 if (total_scanned > SWAP_CLUSTER_MAX * 2 &&
2740 total_scanned > sc.nr_reclaimed + sc.nr_reclaimed / 2)
2741 sc.may_writepage = 1;
2743 if (zone->all_unreclaimable) {
2744 if (end_zone && end_zone == i)
2745 end_zone--;
2746 continue;
2749 if (!zone_watermark_ok_safe(zone, order,
2750 high_wmark_pages(zone), end_zone, 0)) {
2751 all_zones_ok = 0;
2753 * We are still under min water mark. This
2754 * means that we have a GFP_ATOMIC allocation
2755 * failure risk. Hurry up!
2757 if (!zone_watermark_ok_safe(zone, order,
2758 min_wmark_pages(zone), end_zone, 0))
2759 has_under_min_watermark_zone = 1;
2760 } else {
2762 * If a zone reaches its high watermark,
2763 * consider it to be no longer congested. It's
2764 * possible there are dirty pages backed by
2765 * congested BDIs but as pressure is relieved,
2766 * spectulatively avoid congestion waits
2768 zone_clear_flag(zone, ZONE_CONGESTED);
2769 if (i <= *classzone_idx)
2770 balanced += zone->present_pages;
2774 if (all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))
2775 break; /* kswapd: all done */
2777 * OK, kswapd is getting into trouble. Take a nap, then take
2778 * another pass across the zones.
2780 if (total_scanned && (priority < DEF_PRIORITY - 2)) {
2781 if (has_under_min_watermark_zone)
2782 count_vm_event(KSWAPD_SKIP_CONGESTION_WAIT);
2783 else
2784 congestion_wait(BLK_RW_ASYNC, HZ/10);
2788 * We do this so kswapd doesn't build up large priorities for
2789 * example when it is freeing in parallel with allocators. It
2790 * matches the direct reclaim path behaviour in terms of impact
2791 * on zone->*_priority.
2793 if (sc.nr_reclaimed >= SWAP_CLUSTER_MAX)
2794 break;
2796 out:
2799 * order-0: All zones must meet high watermark for a balanced node
2800 * high-order: Balanced zones must make up at least 25% of the node
2801 * for the node to be balanced
2803 if (!(all_zones_ok || (order && pgdat_balanced(pgdat, balanced, *classzone_idx)))) {
2804 cond_resched();
2806 try_to_freeze();
2809 * Fragmentation may mean that the system cannot be
2810 * rebalanced for high-order allocations in all zones.
2811 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
2812 * it means the zones have been fully scanned and are still
2813 * not balanced. For high-order allocations, there is
2814 * little point trying all over again as kswapd may
2815 * infinite loop.
2817 * Instead, recheck all watermarks at order-0 as they
2818 * are the most important. If watermarks are ok, kswapd will go
2819 * back to sleep. High-order users can still perform direct
2820 * reclaim if they wish.
2822 if (sc.nr_reclaimed < SWAP_CLUSTER_MAX)
2823 order = sc.order = 0;
2825 goto loop_again;
2829 * If kswapd was reclaiming at a higher order, it has the option of
2830 * sleeping without all zones being balanced. Before it does, it must
2831 * ensure that the watermarks for order-0 on *all* zones are met and
2832 * that the congestion flags are cleared. The congestion flag must
2833 * be cleared as kswapd is the only mechanism that clears the flag
2834 * and it is potentially going to sleep here.
2836 if (order) {
2837 for (i = 0; i <= end_zone; i++) {
2838 struct zone *zone = pgdat->node_zones + i;
2840 if (!populated_zone(zone))
2841 continue;
2843 if (zone->all_unreclaimable && priority != DEF_PRIORITY)
2844 continue;
2846 /* Confirm the zone is balanced for order-0 */
2847 if (!zone_watermark_ok(zone, 0,
2848 high_wmark_pages(zone), 0, 0)) {
2849 order = sc.order = 0;
2850 goto loop_again;
2853 /* If balanced, clear the congested flag */
2854 zone_clear_flag(zone, ZONE_CONGESTED);
2855 if (i <= *classzone_idx)
2856 balanced += zone->present_pages;
2861 * Return the order we were reclaiming at so sleeping_prematurely()
2862 * makes a decision on the order we were last reclaiming at. However,
2863 * if another caller entered the allocator slow path while kswapd
2864 * was awake, order will remain at the higher level
2866 *classzone_idx = end_zone;
2867 return order;
2870 static void kswapd_try_to_sleep(pg_data_t *pgdat, int order, int classzone_idx)
2872 long remaining = 0;
2873 DEFINE_WAIT(wait);
2875 if (freezing(current) || kthread_should_stop())
2876 return;
2878 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2880 /* Try to sleep for a short interval */
2881 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2882 remaining = schedule_timeout(HZ/10);
2883 finish_wait(&pgdat->kswapd_wait, &wait);
2884 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
2888 * After a short sleep, check if it was a premature sleep. If not, then
2889 * go fully to sleep until explicitly woken up.
2891 if (!sleeping_prematurely(pgdat, order, remaining, classzone_idx)) {
2892 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
2895 * vmstat counters are not perfectly accurate and the estimated
2896 * value for counters such as NR_FREE_PAGES can deviate from the
2897 * true value by nr_online_cpus * threshold. To avoid the zone
2898 * watermarks being breached while under pressure, we reduce the
2899 * per-cpu vmstat threshold while kswapd is awake and restore
2900 * them before going back to sleep.
2902 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
2904 if (!kthread_should_stop())
2905 schedule();
2907 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
2908 } else {
2909 if (remaining)
2910 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
2911 else
2912 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
2914 finish_wait(&pgdat->kswapd_wait, &wait);
2918 * The background pageout daemon, started as a kernel thread
2919 * from the init process.
2921 * This basically trickles out pages so that we have _some_
2922 * free memory available even if there is no other activity
2923 * that frees anything up. This is needed for things like routing
2924 * etc, where we otherwise might have all activity going on in
2925 * asynchronous contexts that cannot page things out.
2927 * If there are applications that are active memory-allocators
2928 * (most normal use), this basically shouldn't matter.
2930 static int kswapd(void *p)
2932 unsigned long order, new_order;
2933 unsigned balanced_order;
2934 int classzone_idx, new_classzone_idx;
2935 int balanced_classzone_idx;
2936 pg_data_t *pgdat = (pg_data_t*)p;
2937 struct task_struct *tsk = current;
2939 struct reclaim_state reclaim_state = {
2940 .reclaimed_slab = 0,
2942 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2944 lockdep_set_current_reclaim_state(GFP_KERNEL);
2946 if (!cpumask_empty(cpumask))
2947 set_cpus_allowed_ptr(tsk, cpumask);
2948 current->reclaim_state = &reclaim_state;
2951 * Tell the memory management that we're a "memory allocator",
2952 * and that if we need more memory we should get access to it
2953 * regardless (see "__alloc_pages()"). "kswapd" should
2954 * never get caught in the normal page freeing logic.
2956 * (Kswapd normally doesn't need memory anyway, but sometimes
2957 * you need a small amount of memory in order to be able to
2958 * page out something else, and this flag essentially protects
2959 * us from recursively trying to free more memory as we're
2960 * trying to free the first piece of memory in the first place).
2962 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2963 set_freezable();
2965 order = new_order = 0;
2966 balanced_order = 0;
2967 classzone_idx = new_classzone_idx = pgdat->nr_zones - 1;
2968 balanced_classzone_idx = classzone_idx;
2969 for ( ; ; ) {
2970 int ret;
2973 * If the last balance_pgdat was unsuccessful it's unlikely a
2974 * new request of a similar or harder type will succeed soon
2975 * so consider going to sleep on the basis we reclaimed at
2977 if (balanced_classzone_idx >= new_classzone_idx &&
2978 balanced_order == new_order) {
2979 new_order = pgdat->kswapd_max_order;
2980 new_classzone_idx = pgdat->classzone_idx;
2981 pgdat->kswapd_max_order = 0;
2982 pgdat->classzone_idx = pgdat->nr_zones - 1;
2985 if (order < new_order || classzone_idx > new_classzone_idx) {
2987 * Don't sleep if someone wants a larger 'order'
2988 * allocation or has tigher zone constraints
2990 order = new_order;
2991 classzone_idx = new_classzone_idx;
2992 } else {
2993 kswapd_try_to_sleep(pgdat, balanced_order,
2994 balanced_classzone_idx);
2995 order = pgdat->kswapd_max_order;
2996 classzone_idx = pgdat->classzone_idx;
2997 new_order = order;
2998 new_classzone_idx = classzone_idx;
2999 pgdat->kswapd_max_order = 0;
3000 pgdat->classzone_idx = pgdat->nr_zones - 1;
3003 ret = try_to_freeze();
3004 if (kthread_should_stop())
3005 break;
3008 * We can speed up thawing tasks if we don't call balance_pgdat
3009 * after returning from the refrigerator
3011 if (!ret) {
3012 trace_mm_vmscan_kswapd_wake(pgdat->node_id, order);
3013 balanced_classzone_idx = classzone_idx;
3014 balanced_order = balance_pgdat(pgdat, order,
3015 &balanced_classzone_idx);
3019 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
3020 current->reclaim_state = NULL;
3021 lockdep_clear_current_reclaim_state();
3023 return 0;
3027 * A zone is low on free memory, so wake its kswapd task to service it.
3029 void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
3031 pg_data_t *pgdat;
3033 if (!populated_zone(zone))
3034 return;
3036 if (!cpuset_zone_allowed_hardwall(zone, GFP_KERNEL))
3037 return;
3038 pgdat = zone->zone_pgdat;
3039 if (pgdat->kswapd_max_order < order) {
3040 pgdat->kswapd_max_order = order;
3041 pgdat->classzone_idx = min(pgdat->classzone_idx, classzone_idx);
3043 if (!waitqueue_active(&pgdat->kswapd_wait))
3044 return;
3045 if (zone_watermark_ok_safe(zone, order, low_wmark_pages(zone), 0, 0))
3046 return;
3048 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, zone_idx(zone), order);
3049 wake_up_interruptible(&pgdat->kswapd_wait);
3053 * The reclaimable count would be mostly accurate.
3054 * The less reclaimable pages may be
3055 * - mlocked pages, which will be moved to unevictable list when encountered
3056 * - mapped pages, which may require several travels to be reclaimed
3057 * - dirty pages, which is not "instantly" reclaimable
3059 unsigned long global_reclaimable_pages(void)
3061 int nr;
3063 nr = global_page_state(NR_ACTIVE_FILE) +
3064 global_page_state(NR_INACTIVE_FILE);
3066 if (nr_swap_pages > 0)
3067 nr += global_page_state(NR_ACTIVE_ANON) +
3068 global_page_state(NR_INACTIVE_ANON);
3070 return nr;
3073 unsigned long zone_reclaimable_pages(struct zone *zone)
3075 int nr;
3077 nr = zone_page_state(zone, NR_ACTIVE_FILE) +
3078 zone_page_state(zone, NR_INACTIVE_FILE);
3080 if (nr_swap_pages > 0)
3081 nr += zone_page_state(zone, NR_ACTIVE_ANON) +
3082 zone_page_state(zone, NR_INACTIVE_ANON);
3084 return nr;
3087 #ifdef CONFIG_HIBERNATION
3089 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
3090 * freed pages.
3092 * Rather than trying to age LRUs the aim is to preserve the overall
3093 * LRU order by reclaiming preferentially
3094 * inactive > active > active referenced > active mapped
3096 unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
3098 struct reclaim_state reclaim_state;
3099 struct scan_control sc = {
3100 .gfp_mask = GFP_HIGHUSER_MOVABLE,
3101 .may_swap = 1,
3102 .may_unmap = 1,
3103 .may_writepage = 1,
3104 .nr_to_reclaim = nr_to_reclaim,
3105 .hibernation_mode = 1,
3106 .order = 0,
3108 struct shrink_control shrink = {
3109 .gfp_mask = sc.gfp_mask,
3111 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
3112 struct task_struct *p = current;
3113 unsigned long nr_reclaimed;
3115 p->flags |= PF_MEMALLOC;
3116 lockdep_set_current_reclaim_state(sc.gfp_mask);
3117 reclaim_state.reclaimed_slab = 0;
3118 p->reclaim_state = &reclaim_state;
3120 nr_reclaimed = do_try_to_free_pages(zonelist, &sc, &shrink);
3122 p->reclaim_state = NULL;
3123 lockdep_clear_current_reclaim_state();
3124 p->flags &= ~PF_MEMALLOC;
3126 return nr_reclaimed;
3128 #endif /* CONFIG_HIBERNATION */
3130 /* It's optimal to keep kswapds on the same CPUs as their memory, but
3131 not required for correctness. So if the last cpu in a node goes
3132 away, we get changed to run anywhere: as the first one comes back,
3133 restore their cpu bindings. */
3134 static int __devinit cpu_callback(struct notifier_block *nfb,
3135 unsigned long action, void *hcpu)
3137 int nid;
3139 if (action == CPU_ONLINE || action == CPU_ONLINE_FROZEN) {
3140 for_each_node_state(nid, N_HIGH_MEMORY) {
3141 pg_data_t *pgdat = NODE_DATA(nid);
3142 const struct cpumask *mask;
3144 mask = cpumask_of_node(pgdat->node_id);
3146 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3147 /* One of our CPUs online: restore mask */
3148 set_cpus_allowed_ptr(pgdat->kswapd, mask);
3151 return NOTIFY_OK;
3155 * This kswapd start function will be called by init and node-hot-add.
3156 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3158 int kswapd_run(int nid)
3160 pg_data_t *pgdat = NODE_DATA(nid);
3161 int ret = 0;
3163 if (pgdat->kswapd)
3164 return 0;
3166 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3167 if (IS_ERR(pgdat->kswapd)) {
3168 /* failure at boot is fatal */
3169 BUG_ON(system_state == SYSTEM_BOOTING);
3170 printk("Failed to start kswapd on node %d\n",nid);
3171 ret = -1;
3173 return ret;
3177 * Called by memory hotplug when all memory in a node is offlined. Caller must
3178 * hold lock_memory_hotplug().
3180 void kswapd_stop(int nid)
3182 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3184 if (kswapd) {
3185 kthread_stop(kswapd);
3186 NODE_DATA(nid)->kswapd = NULL;
3190 static int __init kswapd_init(void)
3192 int nid;
3194 swap_setup();
3195 for_each_node_state(nid, N_HIGH_MEMORY)
3196 kswapd_run(nid);
3197 hotcpu_notifier(cpu_callback, 0);
3198 return 0;
3201 module_init(kswapd_init)
3203 #ifdef CONFIG_NUMA
3205 * Zone reclaim mode
3207 * If non-zero call zone_reclaim when the number of free pages falls below
3208 * the watermarks.
3210 int zone_reclaim_mode __read_mostly;
3212 #define RECLAIM_OFF 0
3213 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
3214 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
3215 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
3218 * Priority for ZONE_RECLAIM. This determines the fraction of pages
3219 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3220 * a zone.
3222 #define ZONE_RECLAIM_PRIORITY 4
3225 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
3226 * occur.
3228 int sysctl_min_unmapped_ratio = 1;
3231 * If the number of slab pages in a zone grows beyond this percentage then
3232 * slab reclaim needs to occur.
3234 int sysctl_min_slab_ratio = 5;
3236 static inline unsigned long zone_unmapped_file_pages(struct zone *zone)
3238 unsigned long file_mapped = zone_page_state(zone, NR_FILE_MAPPED);
3239 unsigned long file_lru = zone_page_state(zone, NR_INACTIVE_FILE) +
3240 zone_page_state(zone, NR_ACTIVE_FILE);
3243 * It's possible for there to be more file mapped pages than
3244 * accounted for by the pages on the file LRU lists because
3245 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3247 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3250 /* Work out how many page cache pages we can reclaim in this reclaim_mode */
3251 static long zone_pagecache_reclaimable(struct zone *zone)
3253 long nr_pagecache_reclaimable;
3254 long delta = 0;
3257 * If RECLAIM_SWAP is set, then all file pages are considered
3258 * potentially reclaimable. Otherwise, we have to worry about
3259 * pages like swapcache and zone_unmapped_file_pages() provides
3260 * a better estimate
3262 if (zone_reclaim_mode & RECLAIM_SWAP)
3263 nr_pagecache_reclaimable = zone_page_state(zone, NR_FILE_PAGES);
3264 else
3265 nr_pagecache_reclaimable = zone_unmapped_file_pages(zone);
3267 /* If we can't clean pages, remove dirty pages from consideration */
3268 if (!(zone_reclaim_mode & RECLAIM_WRITE))
3269 delta += zone_page_state(zone, NR_FILE_DIRTY);
3271 /* Watch for any possible underflows due to delta */
3272 if (unlikely(delta > nr_pagecache_reclaimable))
3273 delta = nr_pagecache_reclaimable;
3275 return nr_pagecache_reclaimable - delta;
3279 * Try to free up some pages from this zone through reclaim.
3281 static int __zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3283 /* Minimum pages needed in order to stay on node */
3284 const unsigned long nr_pages = 1 << order;
3285 struct task_struct *p = current;
3286 struct reclaim_state reclaim_state;
3287 int priority;
3288 struct scan_control sc = {
3289 .may_writepage = !!(zone_reclaim_mode & RECLAIM_WRITE),
3290 .may_unmap = !!(zone_reclaim_mode & RECLAIM_SWAP),
3291 .may_swap = 1,
3292 .nr_to_reclaim = max_t(unsigned long, nr_pages,
3293 SWAP_CLUSTER_MAX),
3294 .gfp_mask = gfp_mask,
3295 .order = order,
3297 struct shrink_control shrink = {
3298 .gfp_mask = sc.gfp_mask,
3300 unsigned long nr_slab_pages0, nr_slab_pages1;
3302 cond_resched();
3304 * We need to be able to allocate from the reserves for RECLAIM_SWAP
3305 * and we also need to be able to write out pages for RECLAIM_WRITE
3306 * and RECLAIM_SWAP.
3308 p->flags |= PF_MEMALLOC | PF_SWAPWRITE;
3309 lockdep_set_current_reclaim_state(gfp_mask);
3310 reclaim_state.reclaimed_slab = 0;
3311 p->reclaim_state = &reclaim_state;
3313 if (zone_pagecache_reclaimable(zone) > zone->min_unmapped_pages) {
3315 * Free memory by calling shrink zone with increasing
3316 * priorities until we have enough memory freed.
3318 priority = ZONE_RECLAIM_PRIORITY;
3319 do {
3320 shrink_zone(priority, zone, &sc);
3321 priority--;
3322 } while (priority >= 0 && sc.nr_reclaimed < nr_pages);
3325 nr_slab_pages0 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3326 if (nr_slab_pages0 > zone->min_slab_pages) {
3328 * shrink_slab() does not currently allow us to determine how
3329 * many pages were freed in this zone. So we take the current
3330 * number of slab pages and shake the slab until it is reduced
3331 * by the same nr_pages that we used for reclaiming unmapped
3332 * pages.
3334 * Note that shrink_slab will free memory on all zones and may
3335 * take a long time.
3337 for (;;) {
3338 unsigned long lru_pages = zone_reclaimable_pages(zone);
3340 /* No reclaimable slab or very low memory pressure */
3341 if (!shrink_slab(&shrink, sc.nr_scanned, lru_pages))
3342 break;
3344 /* Freed enough memory */
3345 nr_slab_pages1 = zone_page_state(zone,
3346 NR_SLAB_RECLAIMABLE);
3347 if (nr_slab_pages1 + nr_pages <= nr_slab_pages0)
3348 break;
3352 * Update nr_reclaimed by the number of slab pages we
3353 * reclaimed from this zone.
3355 nr_slab_pages1 = zone_page_state(zone, NR_SLAB_RECLAIMABLE);
3356 if (nr_slab_pages1 < nr_slab_pages0)
3357 sc.nr_reclaimed += nr_slab_pages0 - nr_slab_pages1;
3360 p->reclaim_state = NULL;
3361 current->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE);
3362 lockdep_clear_current_reclaim_state();
3363 return sc.nr_reclaimed >= nr_pages;
3366 int zone_reclaim(struct zone *zone, gfp_t gfp_mask, unsigned int order)
3368 int node_id;
3369 int ret;
3372 * Zone reclaim reclaims unmapped file backed pages and
3373 * slab pages if we are over the defined limits.
3375 * A small portion of unmapped file backed pages is needed for
3376 * file I/O otherwise pages read by file I/O will be immediately
3377 * thrown out if the zone is overallocated. So we do not reclaim
3378 * if less than a specified percentage of the zone is used by
3379 * unmapped file backed pages.
3381 if (zone_pagecache_reclaimable(zone) <= zone->min_unmapped_pages &&
3382 zone_page_state(zone, NR_SLAB_RECLAIMABLE) <= zone->min_slab_pages)
3383 return ZONE_RECLAIM_FULL;
3385 if (zone->all_unreclaimable)
3386 return ZONE_RECLAIM_FULL;
3389 * Do not scan if the allocation should not be delayed.
3391 if (!(gfp_mask & __GFP_WAIT) || (current->flags & PF_MEMALLOC))
3392 return ZONE_RECLAIM_NOSCAN;
3395 * Only run zone reclaim on the local zone or on zones that do not
3396 * have associated processors. This will favor the local processor
3397 * over remote processors and spread off node memory allocations
3398 * as wide as possible.
3400 node_id = zone_to_nid(zone);
3401 if (node_state(node_id, N_CPU) && node_id != numa_node_id())
3402 return ZONE_RECLAIM_NOSCAN;
3404 if (zone_test_and_set_flag(zone, ZONE_RECLAIM_LOCKED))
3405 return ZONE_RECLAIM_NOSCAN;
3407 ret = __zone_reclaim(zone, gfp_mask, order);
3408 zone_clear_flag(zone, ZONE_RECLAIM_LOCKED);
3410 if (!ret)
3411 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3413 return ret;
3415 #endif
3418 * page_evictable - test whether a page is evictable
3419 * @page: the page to test
3420 * @vma: the VMA in which the page is or will be mapped, may be NULL
3422 * Test whether page is evictable--i.e., should be placed on active/inactive
3423 * lists vs unevictable list. The vma argument is !NULL when called from the
3424 * fault path to determine how to instantate a new page.
3426 * Reasons page might not be evictable:
3427 * (1) page's mapping marked unevictable
3428 * (2) page is part of an mlocked VMA
3431 int page_evictable(struct page *page, struct vm_area_struct *vma)
3434 if (mapping_unevictable(page_mapping(page)))
3435 return 0;
3437 if (PageMlocked(page) || (vma && is_mlocked_vma(vma, page)))
3438 return 0;
3440 return 1;
3443 #ifdef CONFIG_SHMEM
3445 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
3446 * @pages: array of pages to check
3447 * @nr_pages: number of pages to check
3449 * Checks pages for evictability and moves them to the appropriate lru list.
3451 * This function is only used for SysV IPC SHM_UNLOCK.
3453 void check_move_unevictable_pages(struct page **pages, int nr_pages)
3455 struct zone *zone = NULL;
3456 int pgscanned = 0;
3457 int pgrescued = 0;
3458 int i;
3460 for (i = 0; i < nr_pages; i++) {
3461 struct page *page = pages[i];
3462 struct zone *pagezone;
3464 pgscanned++;
3465 pagezone = page_zone(page);
3466 if (pagezone != zone) {
3467 if (zone)
3468 spin_unlock_irq(&zone->lru_lock);
3469 zone = pagezone;
3470 spin_lock_irq(&zone->lru_lock);
3473 if (!PageLRU(page) || !PageUnevictable(page))
3474 continue;
3476 if (page_evictable(page, NULL)) {
3477 enum lru_list lru = page_lru_base_type(page);
3479 VM_BUG_ON(PageActive(page));
3480 ClearPageUnevictable(page);
3481 __dec_zone_state(zone, NR_UNEVICTABLE);
3482 list_move(&page->lru, &zone->lru[lru].list);
3483 mem_cgroup_move_lists(page, LRU_UNEVICTABLE, lru);
3484 __inc_zone_state(zone, NR_INACTIVE_ANON + lru);
3485 pgrescued++;
3489 if (zone) {
3490 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
3491 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
3492 spin_unlock_irq(&zone->lru_lock);
3495 #endif /* CONFIG_SHMEM */
3497 static void warn_scan_unevictable_pages(void)
3499 printk_once(KERN_WARNING
3500 "The scan_unevictable_pages sysctl/node-interface has been "
3501 "disabled for lack of a legitimate use case. If you have "
3502 "one, please send an email to linux-mm@kvack.org.\n");
3506 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
3507 * all nodes' unevictable lists for evictable pages
3509 unsigned long scan_unevictable_pages;
3511 int scan_unevictable_handler(struct ctl_table *table, int write,
3512 void __user *buffer,
3513 size_t *length, loff_t *ppos)
3515 warn_scan_unevictable_pages();
3516 proc_doulongvec_minmax(table, write, buffer, length, ppos);
3517 scan_unevictable_pages = 0;
3518 return 0;
3521 #ifdef CONFIG_NUMA
3523 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
3524 * a specified node's per zone unevictable lists for evictable pages.
3527 static ssize_t read_scan_unevictable_node(struct sys_device *dev,
3528 struct sysdev_attribute *attr,
3529 char *buf)
3531 warn_scan_unevictable_pages();
3532 return sprintf(buf, "0\n"); /* always zero; should fit... */
3535 static ssize_t write_scan_unevictable_node(struct sys_device *dev,
3536 struct sysdev_attribute *attr,
3537 const char *buf, size_t count)
3539 warn_scan_unevictable_pages();
3540 return 1;
3544 static SYSDEV_ATTR(scan_unevictable_pages, S_IRUGO | S_IWUSR,
3545 read_scan_unevictable_node,
3546 write_scan_unevictable_node);
3548 int scan_unevictable_register_node(struct node *node)
3550 return sysdev_create_file(&node->sysdev, &attr_scan_unevictable_pages);
3553 void scan_unevictable_unregister_node(struct node *node)
3555 sysdev_remove_file(&node->sysdev, &attr_scan_unevictable_pages);
3557 #endif