Merge branch 'i2c/for-next' of git://git.kernel.org/pub/scm/linux/kernel/git/wsa...
[linux/fpc-iii.git] / kernel / futex.c
blobe646661f62827f6d2584265c869323891b3e477d
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Fast Userspace Mutexes (which I call "Futexes!").
4 * (C) Rusty Russell, IBM 2002
6 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
7 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
9 * Removed page pinning, fix privately mapped COW pages and other cleanups
10 * (C) Copyright 2003, 2004 Jamie Lokier
12 * Robust futex support started by Ingo Molnar
13 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
14 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
16 * PI-futex support started by Ingo Molnar and Thomas Gleixner
17 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
18 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
20 * PRIVATE futexes by Eric Dumazet
21 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
23 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
24 * Copyright (C) IBM Corporation, 2009
25 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
27 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
28 * enough at me, Linus for the original (flawed) idea, Matthew
29 * Kirkwood for proof-of-concept implementation.
31 * "The futexes are also cursed."
32 * "But they come in a choice of three flavours!"
34 #include <linux/compat.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fs.h>
38 #include <linux/file.h>
39 #include <linux/jhash.h>
40 #include <linux/init.h>
41 #include <linux/futex.h>
42 #include <linux/mount.h>
43 #include <linux/pagemap.h>
44 #include <linux/syscalls.h>
45 #include <linux/signal.h>
46 #include <linux/export.h>
47 #include <linux/magic.h>
48 #include <linux/pid.h>
49 #include <linux/nsproxy.h>
50 #include <linux/ptrace.h>
51 #include <linux/sched/rt.h>
52 #include <linux/sched/wake_q.h>
53 #include <linux/sched/mm.h>
54 #include <linux/hugetlb.h>
55 #include <linux/freezer.h>
56 #include <linux/memblock.h>
57 #include <linux/fault-inject.h>
58 #include <linux/refcount.h>
60 #include <asm/futex.h>
62 #include "locking/rtmutex_common.h"
65 * READ this before attempting to hack on futexes!
67 * Basic futex operation and ordering guarantees
68 * =============================================
70 * The waiter reads the futex value in user space and calls
71 * futex_wait(). This function computes the hash bucket and acquires
72 * the hash bucket lock. After that it reads the futex user space value
73 * again and verifies that the data has not changed. If it has not changed
74 * it enqueues itself into the hash bucket, releases the hash bucket lock
75 * and schedules.
77 * The waker side modifies the user space value of the futex and calls
78 * futex_wake(). This function computes the hash bucket and acquires the
79 * hash bucket lock. Then it looks for waiters on that futex in the hash
80 * bucket and wakes them.
82 * In futex wake up scenarios where no tasks are blocked on a futex, taking
83 * the hb spinlock can be avoided and simply return. In order for this
84 * optimization to work, ordering guarantees must exist so that the waiter
85 * being added to the list is acknowledged when the list is concurrently being
86 * checked by the waker, avoiding scenarios like the following:
88 * CPU 0 CPU 1
89 * val = *futex;
90 * sys_futex(WAIT, futex, val);
91 * futex_wait(futex, val);
92 * uval = *futex;
93 * *futex = newval;
94 * sys_futex(WAKE, futex);
95 * futex_wake(futex);
96 * if (queue_empty())
97 * return;
98 * if (uval == val)
99 * lock(hash_bucket(futex));
100 * queue();
101 * unlock(hash_bucket(futex));
102 * schedule();
104 * This would cause the waiter on CPU 0 to wait forever because it
105 * missed the transition of the user space value from val to newval
106 * and the waker did not find the waiter in the hash bucket queue.
108 * The correct serialization ensures that a waiter either observes
109 * the changed user space value before blocking or is woken by a
110 * concurrent waker:
112 * CPU 0 CPU 1
113 * val = *futex;
114 * sys_futex(WAIT, futex, val);
115 * futex_wait(futex, val);
117 * waiters++; (a)
118 * smp_mb(); (A) <-- paired with -.
120 * lock(hash_bucket(futex)); |
122 * uval = *futex; |
123 * | *futex = newval;
124 * | sys_futex(WAKE, futex);
125 * | futex_wake(futex);
127 * `--------> smp_mb(); (B)
128 * if (uval == val)
129 * queue();
130 * unlock(hash_bucket(futex));
131 * schedule(); if (waiters)
132 * lock(hash_bucket(futex));
133 * else wake_waiters(futex);
134 * waiters--; (b) unlock(hash_bucket(futex));
136 * Where (A) orders the waiters increment and the futex value read through
137 * atomic operations (see hb_waiters_inc) and where (B) orders the write
138 * to futex and the waiters read (see hb_waiters_pending()).
140 * This yields the following case (where X:=waiters, Y:=futex):
142 * X = Y = 0
144 * w[X]=1 w[Y]=1
145 * MB MB
146 * r[Y]=y r[X]=x
148 * Which guarantees that x==0 && y==0 is impossible; which translates back into
149 * the guarantee that we cannot both miss the futex variable change and the
150 * enqueue.
152 * Note that a new waiter is accounted for in (a) even when it is possible that
153 * the wait call can return error, in which case we backtrack from it in (b).
154 * Refer to the comment in queue_lock().
156 * Similarly, in order to account for waiters being requeued on another
157 * address we always increment the waiters for the destination bucket before
158 * acquiring the lock. It then decrements them again after releasing it -
159 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
160 * will do the additional required waiter count housekeeping. This is done for
161 * double_lock_hb() and double_unlock_hb(), respectively.
164 #ifdef CONFIG_HAVE_FUTEX_CMPXCHG
165 #define futex_cmpxchg_enabled 1
166 #else
167 static int __read_mostly futex_cmpxchg_enabled;
168 #endif
171 * Futex flags used to encode options to functions and preserve them across
172 * restarts.
174 #ifdef CONFIG_MMU
175 # define FLAGS_SHARED 0x01
176 #else
178 * NOMMU does not have per process address space. Let the compiler optimize
179 * code away.
181 # define FLAGS_SHARED 0x00
182 #endif
183 #define FLAGS_CLOCKRT 0x02
184 #define FLAGS_HAS_TIMEOUT 0x04
187 * Priority Inheritance state:
189 struct futex_pi_state {
191 * list of 'owned' pi_state instances - these have to be
192 * cleaned up in do_exit() if the task exits prematurely:
194 struct list_head list;
197 * The PI object:
199 struct rt_mutex pi_mutex;
201 struct task_struct *owner;
202 refcount_t refcount;
204 union futex_key key;
205 } __randomize_layout;
208 * struct futex_q - The hashed futex queue entry, one per waiting task
209 * @list: priority-sorted list of tasks waiting on this futex
210 * @task: the task waiting on the futex
211 * @lock_ptr: the hash bucket lock
212 * @key: the key the futex is hashed on
213 * @pi_state: optional priority inheritance state
214 * @rt_waiter: rt_waiter storage for use with requeue_pi
215 * @requeue_pi_key: the requeue_pi target futex key
216 * @bitset: bitset for the optional bitmasked wakeup
218 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
219 * we can wake only the relevant ones (hashed queues may be shared).
221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
223 * The order of wakeup is always to make the first condition true, then
224 * the second.
226 * PI futexes are typically woken before they are removed from the hash list via
227 * the rt_mutex code. See unqueue_me_pi().
229 struct futex_q {
230 struct plist_node list;
232 struct task_struct *task;
233 spinlock_t *lock_ptr;
234 union futex_key key;
235 struct futex_pi_state *pi_state;
236 struct rt_mutex_waiter *rt_waiter;
237 union futex_key *requeue_pi_key;
238 u32 bitset;
239 } __randomize_layout;
241 static const struct futex_q futex_q_init = {
242 /* list gets initialized in queue_me()*/
243 .key = FUTEX_KEY_INIT,
244 .bitset = FUTEX_BITSET_MATCH_ANY
248 * Hash buckets are shared by all the futex_keys that hash to the same
249 * location. Each key may have multiple futex_q structures, one for each task
250 * waiting on a futex.
252 struct futex_hash_bucket {
253 atomic_t waiters;
254 spinlock_t lock;
255 struct plist_head chain;
256 } ____cacheline_aligned_in_smp;
259 * The base of the bucket array and its size are always used together
260 * (after initialization only in hash_futex()), so ensure that they
261 * reside in the same cacheline.
263 static struct {
264 struct futex_hash_bucket *queues;
265 unsigned long hashsize;
266 } __futex_data __read_mostly __aligned(2*sizeof(long));
267 #define futex_queues (__futex_data.queues)
268 #define futex_hashsize (__futex_data.hashsize)
272 * Fault injections for futexes.
274 #ifdef CONFIG_FAIL_FUTEX
276 static struct {
277 struct fault_attr attr;
279 bool ignore_private;
280 } fail_futex = {
281 .attr = FAULT_ATTR_INITIALIZER,
282 .ignore_private = false,
285 static int __init setup_fail_futex(char *str)
287 return setup_fault_attr(&fail_futex.attr, str);
289 __setup("fail_futex=", setup_fail_futex);
291 static bool should_fail_futex(bool fshared)
293 if (fail_futex.ignore_private && !fshared)
294 return false;
296 return should_fail(&fail_futex.attr, 1);
299 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
301 static int __init fail_futex_debugfs(void)
303 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
304 struct dentry *dir;
306 dir = fault_create_debugfs_attr("fail_futex", NULL,
307 &fail_futex.attr);
308 if (IS_ERR(dir))
309 return PTR_ERR(dir);
311 debugfs_create_bool("ignore-private", mode, dir,
312 &fail_futex.ignore_private);
313 return 0;
316 late_initcall(fail_futex_debugfs);
318 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
320 #else
321 static inline bool should_fail_futex(bool fshared)
323 return false;
325 #endif /* CONFIG_FAIL_FUTEX */
327 #ifdef CONFIG_COMPAT
328 static void compat_exit_robust_list(struct task_struct *curr);
329 #else
330 static inline void compat_exit_robust_list(struct task_struct *curr) { }
331 #endif
334 * Reflects a new waiter being added to the waitqueue.
336 static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
338 #ifdef CONFIG_SMP
339 atomic_inc(&hb->waiters);
341 * Full barrier (A), see the ordering comment above.
343 smp_mb__after_atomic();
344 #endif
348 * Reflects a waiter being removed from the waitqueue by wakeup
349 * paths.
351 static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
353 #ifdef CONFIG_SMP
354 atomic_dec(&hb->waiters);
355 #endif
358 static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
360 #ifdef CONFIG_SMP
362 * Full barrier (B), see the ordering comment above.
364 smp_mb();
365 return atomic_read(&hb->waiters);
366 #else
367 return 1;
368 #endif
372 * hash_futex - Return the hash bucket in the global hash
373 * @key: Pointer to the futex key for which the hash is calculated
375 * We hash on the keys returned from get_futex_key (see below) and return the
376 * corresponding hash bucket in the global hash.
378 static struct futex_hash_bucket *hash_futex(union futex_key *key)
380 u32 hash = jhash2((u32 *)key, offsetof(typeof(*key), both.offset) / 4,
381 key->both.offset);
383 return &futex_queues[hash & (futex_hashsize - 1)];
388 * match_futex - Check whether two futex keys are equal
389 * @key1: Pointer to key1
390 * @key2: Pointer to key2
392 * Return 1 if two futex_keys are equal, 0 otherwise.
394 static inline int match_futex(union futex_key *key1, union futex_key *key2)
396 return (key1 && key2
397 && key1->both.word == key2->both.word
398 && key1->both.ptr == key2->both.ptr
399 && key1->both.offset == key2->both.offset);
402 enum futex_access {
403 FUTEX_READ,
404 FUTEX_WRITE
408 * futex_setup_timer - set up the sleeping hrtimer.
409 * @time: ptr to the given timeout value
410 * @timeout: the hrtimer_sleeper structure to be set up
411 * @flags: futex flags
412 * @range_ns: optional range in ns
414 * Return: Initialized hrtimer_sleeper structure or NULL if no timeout
415 * value given
417 static inline struct hrtimer_sleeper *
418 futex_setup_timer(ktime_t *time, struct hrtimer_sleeper *timeout,
419 int flags, u64 range_ns)
421 if (!time)
422 return NULL;
424 hrtimer_init_sleeper_on_stack(timeout, (flags & FLAGS_CLOCKRT) ?
425 CLOCK_REALTIME : CLOCK_MONOTONIC,
426 HRTIMER_MODE_ABS);
428 * If range_ns is 0, calling hrtimer_set_expires_range_ns() is
429 * effectively the same as calling hrtimer_set_expires().
431 hrtimer_set_expires_range_ns(&timeout->timer, *time, range_ns);
433 return timeout;
437 * Generate a machine wide unique identifier for this inode.
439 * This relies on u64 not wrapping in the life-time of the machine; which with
440 * 1ns resolution means almost 585 years.
442 * This further relies on the fact that a well formed program will not unmap
443 * the file while it has a (shared) futex waiting on it. This mapping will have
444 * a file reference which pins the mount and inode.
446 * If for some reason an inode gets evicted and read back in again, it will get
447 * a new sequence number and will _NOT_ match, even though it is the exact same
448 * file.
450 * It is important that match_futex() will never have a false-positive, esp.
451 * for PI futexes that can mess up the state. The above argues that false-negatives
452 * are only possible for malformed programs.
454 static u64 get_inode_sequence_number(struct inode *inode)
456 static atomic64_t i_seq;
457 u64 old;
459 /* Does the inode already have a sequence number? */
460 old = atomic64_read(&inode->i_sequence);
461 if (likely(old))
462 return old;
464 for (;;) {
465 u64 new = atomic64_add_return(1, &i_seq);
466 if (WARN_ON_ONCE(!new))
467 continue;
469 old = atomic64_cmpxchg_relaxed(&inode->i_sequence, 0, new);
470 if (old)
471 return old;
472 return new;
477 * get_futex_key() - Get parameters which are the keys for a futex
478 * @uaddr: virtual address of the futex
479 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
480 * @key: address where result is stored.
481 * @rw: mapping needs to be read/write (values: FUTEX_READ,
482 * FUTEX_WRITE)
484 * Return: a negative error code or 0
486 * The key words are stored in @key on success.
488 * For shared mappings (when @fshared), the key is:
490 * ( inode->i_sequence, page->index, offset_within_page )
492 * [ also see get_inode_sequence_number() ]
494 * For private mappings (or when !@fshared), the key is:
496 * ( current->mm, address, 0 )
498 * This allows (cross process, where applicable) identification of the futex
499 * without keeping the page pinned for the duration of the FUTEX_WAIT.
501 * lock_page() might sleep, the caller should not hold a spinlock.
503 static int
504 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, enum futex_access rw)
506 unsigned long address = (unsigned long)uaddr;
507 struct mm_struct *mm = current->mm;
508 struct page *page, *tail;
509 struct address_space *mapping;
510 int err, ro = 0;
513 * The futex address must be "naturally" aligned.
515 key->both.offset = address % PAGE_SIZE;
516 if (unlikely((address % sizeof(u32)) != 0))
517 return -EINVAL;
518 address -= key->both.offset;
520 if (unlikely(!access_ok(uaddr, sizeof(u32))))
521 return -EFAULT;
523 if (unlikely(should_fail_futex(fshared)))
524 return -EFAULT;
527 * PROCESS_PRIVATE futexes are fast.
528 * As the mm cannot disappear under us and the 'key' only needs
529 * virtual address, we dont even have to find the underlying vma.
530 * Note : We do have to check 'uaddr' is a valid user address,
531 * but access_ok() should be faster than find_vma()
533 if (!fshared) {
534 key->private.mm = mm;
535 key->private.address = address;
536 return 0;
539 again:
540 /* Ignore any VERIFY_READ mapping (futex common case) */
541 if (unlikely(should_fail_futex(fshared)))
542 return -EFAULT;
544 err = get_user_pages_fast(address, 1, FOLL_WRITE, &page);
546 * If write access is not required (eg. FUTEX_WAIT), try
547 * and get read-only access.
549 if (err == -EFAULT && rw == FUTEX_READ) {
550 err = get_user_pages_fast(address, 1, 0, &page);
551 ro = 1;
553 if (err < 0)
554 return err;
555 else
556 err = 0;
559 * The treatment of mapping from this point on is critical. The page
560 * lock protects many things but in this context the page lock
561 * stabilizes mapping, prevents inode freeing in the shared
562 * file-backed region case and guards against movement to swap cache.
564 * Strictly speaking the page lock is not needed in all cases being
565 * considered here and page lock forces unnecessarily serialization
566 * From this point on, mapping will be re-verified if necessary and
567 * page lock will be acquired only if it is unavoidable
569 * Mapping checks require the head page for any compound page so the
570 * head page and mapping is looked up now. For anonymous pages, it
571 * does not matter if the page splits in the future as the key is
572 * based on the address. For filesystem-backed pages, the tail is
573 * required as the index of the page determines the key. For
574 * base pages, there is no tail page and tail == page.
576 tail = page;
577 page = compound_head(page);
578 mapping = READ_ONCE(page->mapping);
581 * If page->mapping is NULL, then it cannot be a PageAnon
582 * page; but it might be the ZERO_PAGE or in the gate area or
583 * in a special mapping (all cases which we are happy to fail);
584 * or it may have been a good file page when get_user_pages_fast
585 * found it, but truncated or holepunched or subjected to
586 * invalidate_complete_page2 before we got the page lock (also
587 * cases which we are happy to fail). And we hold a reference,
588 * so refcount care in invalidate_complete_page's remove_mapping
589 * prevents drop_caches from setting mapping to NULL beneath us.
591 * The case we do have to guard against is when memory pressure made
592 * shmem_writepage move it from filecache to swapcache beneath us:
593 * an unlikely race, but we do need to retry for page->mapping.
595 if (unlikely(!mapping)) {
596 int shmem_swizzled;
599 * Page lock is required to identify which special case above
600 * applies. If this is really a shmem page then the page lock
601 * will prevent unexpected transitions.
603 lock_page(page);
604 shmem_swizzled = PageSwapCache(page) || page->mapping;
605 unlock_page(page);
606 put_page(page);
608 if (shmem_swizzled)
609 goto again;
611 return -EFAULT;
615 * Private mappings are handled in a simple way.
617 * If the futex key is stored on an anonymous page, then the associated
618 * object is the mm which is implicitly pinned by the calling process.
620 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
621 * it's a read-only handle, it's expected that futexes attach to
622 * the object not the particular process.
624 if (PageAnon(page)) {
626 * A RO anonymous page will never change and thus doesn't make
627 * sense for futex operations.
629 if (unlikely(should_fail_futex(fshared)) || ro) {
630 err = -EFAULT;
631 goto out;
634 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
635 key->private.mm = mm;
636 key->private.address = address;
638 } else {
639 struct inode *inode;
642 * The associated futex object in this case is the inode and
643 * the page->mapping must be traversed. Ordinarily this should
644 * be stabilised under page lock but it's not strictly
645 * necessary in this case as we just want to pin the inode, not
646 * update the radix tree or anything like that.
648 * The RCU read lock is taken as the inode is finally freed
649 * under RCU. If the mapping still matches expectations then the
650 * mapping->host can be safely accessed as being a valid inode.
652 rcu_read_lock();
654 if (READ_ONCE(page->mapping) != mapping) {
655 rcu_read_unlock();
656 put_page(page);
658 goto again;
661 inode = READ_ONCE(mapping->host);
662 if (!inode) {
663 rcu_read_unlock();
664 put_page(page);
666 goto again;
669 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
670 key->shared.i_seq = get_inode_sequence_number(inode);
671 key->shared.pgoff = basepage_index(tail);
672 rcu_read_unlock();
675 out:
676 put_page(page);
677 return err;
680 static inline void put_futex_key(union futex_key *key)
685 * fault_in_user_writeable() - Fault in user address and verify RW access
686 * @uaddr: pointer to faulting user space address
688 * Slow path to fixup the fault we just took in the atomic write
689 * access to @uaddr.
691 * We have no generic implementation of a non-destructive write to the
692 * user address. We know that we faulted in the atomic pagefault
693 * disabled section so we can as well avoid the #PF overhead by
694 * calling get_user_pages() right away.
696 static int fault_in_user_writeable(u32 __user *uaddr)
698 struct mm_struct *mm = current->mm;
699 int ret;
701 mmap_read_lock(mm);
702 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
703 FAULT_FLAG_WRITE, NULL);
704 mmap_read_unlock(mm);
706 return ret < 0 ? ret : 0;
710 * futex_top_waiter() - Return the highest priority waiter on a futex
711 * @hb: the hash bucket the futex_q's reside in
712 * @key: the futex key (to distinguish it from other futex futex_q's)
714 * Must be called with the hb lock held.
716 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
717 union futex_key *key)
719 struct futex_q *this;
721 plist_for_each_entry(this, &hb->chain, list) {
722 if (match_futex(&this->key, key))
723 return this;
725 return NULL;
728 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
729 u32 uval, u32 newval)
731 int ret;
733 pagefault_disable();
734 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
735 pagefault_enable();
737 return ret;
740 static int get_futex_value_locked(u32 *dest, u32 __user *from)
742 int ret;
744 pagefault_disable();
745 ret = __get_user(*dest, from);
746 pagefault_enable();
748 return ret ? -EFAULT : 0;
753 * PI code:
755 static int refill_pi_state_cache(void)
757 struct futex_pi_state *pi_state;
759 if (likely(current->pi_state_cache))
760 return 0;
762 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
764 if (!pi_state)
765 return -ENOMEM;
767 INIT_LIST_HEAD(&pi_state->list);
768 /* pi_mutex gets initialized later */
769 pi_state->owner = NULL;
770 refcount_set(&pi_state->refcount, 1);
771 pi_state->key = FUTEX_KEY_INIT;
773 current->pi_state_cache = pi_state;
775 return 0;
778 static struct futex_pi_state *alloc_pi_state(void)
780 struct futex_pi_state *pi_state = current->pi_state_cache;
782 WARN_ON(!pi_state);
783 current->pi_state_cache = NULL;
785 return pi_state;
788 static void get_pi_state(struct futex_pi_state *pi_state)
790 WARN_ON_ONCE(!refcount_inc_not_zero(&pi_state->refcount));
794 * Drops a reference to the pi_state object and frees or caches it
795 * when the last reference is gone.
797 static void put_pi_state(struct futex_pi_state *pi_state)
799 if (!pi_state)
800 return;
802 if (!refcount_dec_and_test(&pi_state->refcount))
803 return;
806 * If pi_state->owner is NULL, the owner is most probably dying
807 * and has cleaned up the pi_state already
809 if (pi_state->owner) {
810 struct task_struct *owner;
812 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
813 owner = pi_state->owner;
814 if (owner) {
815 raw_spin_lock(&owner->pi_lock);
816 list_del_init(&pi_state->list);
817 raw_spin_unlock(&owner->pi_lock);
819 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
820 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
823 if (current->pi_state_cache) {
824 kfree(pi_state);
825 } else {
827 * pi_state->list is already empty.
828 * clear pi_state->owner.
829 * refcount is at 0 - put it back to 1.
831 pi_state->owner = NULL;
832 refcount_set(&pi_state->refcount, 1);
833 current->pi_state_cache = pi_state;
837 #ifdef CONFIG_FUTEX_PI
840 * This task is holding PI mutexes at exit time => bad.
841 * Kernel cleans up PI-state, but userspace is likely hosed.
842 * (Robust-futex cleanup is separate and might save the day for userspace.)
844 static void exit_pi_state_list(struct task_struct *curr)
846 struct list_head *next, *head = &curr->pi_state_list;
847 struct futex_pi_state *pi_state;
848 struct futex_hash_bucket *hb;
849 union futex_key key = FUTEX_KEY_INIT;
851 if (!futex_cmpxchg_enabled)
852 return;
854 * We are a ZOMBIE and nobody can enqueue itself on
855 * pi_state_list anymore, but we have to be careful
856 * versus waiters unqueueing themselves:
858 raw_spin_lock_irq(&curr->pi_lock);
859 while (!list_empty(head)) {
860 next = head->next;
861 pi_state = list_entry(next, struct futex_pi_state, list);
862 key = pi_state->key;
863 hb = hash_futex(&key);
866 * We can race against put_pi_state() removing itself from the
867 * list (a waiter going away). put_pi_state() will first
868 * decrement the reference count and then modify the list, so
869 * its possible to see the list entry but fail this reference
870 * acquire.
872 * In that case; drop the locks to let put_pi_state() make
873 * progress and retry the loop.
875 if (!refcount_inc_not_zero(&pi_state->refcount)) {
876 raw_spin_unlock_irq(&curr->pi_lock);
877 cpu_relax();
878 raw_spin_lock_irq(&curr->pi_lock);
879 continue;
881 raw_spin_unlock_irq(&curr->pi_lock);
883 spin_lock(&hb->lock);
884 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
885 raw_spin_lock(&curr->pi_lock);
887 * We dropped the pi-lock, so re-check whether this
888 * task still owns the PI-state:
890 if (head->next != next) {
891 /* retain curr->pi_lock for the loop invariant */
892 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
893 spin_unlock(&hb->lock);
894 put_pi_state(pi_state);
895 continue;
898 WARN_ON(pi_state->owner != curr);
899 WARN_ON(list_empty(&pi_state->list));
900 list_del_init(&pi_state->list);
901 pi_state->owner = NULL;
903 raw_spin_unlock(&curr->pi_lock);
904 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
905 spin_unlock(&hb->lock);
907 rt_mutex_futex_unlock(&pi_state->pi_mutex);
908 put_pi_state(pi_state);
910 raw_spin_lock_irq(&curr->pi_lock);
912 raw_spin_unlock_irq(&curr->pi_lock);
914 #else
915 static inline void exit_pi_state_list(struct task_struct *curr) { }
916 #endif
919 * We need to check the following states:
921 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
923 * [1] NULL | --- | --- | 0 | 0/1 | Valid
924 * [2] NULL | --- | --- | >0 | 0/1 | Valid
926 * [3] Found | NULL | -- | Any | 0/1 | Invalid
928 * [4] Found | Found | NULL | 0 | 1 | Valid
929 * [5] Found | Found | NULL | >0 | 1 | Invalid
931 * [6] Found | Found | task | 0 | 1 | Valid
933 * [7] Found | Found | NULL | Any | 0 | Invalid
935 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
936 * [9] Found | Found | task | 0 | 0 | Invalid
937 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
939 * [1] Indicates that the kernel can acquire the futex atomically. We
940 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
942 * [2] Valid, if TID does not belong to a kernel thread. If no matching
943 * thread is found then it indicates that the owner TID has died.
945 * [3] Invalid. The waiter is queued on a non PI futex
947 * [4] Valid state after exit_robust_list(), which sets the user space
948 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
950 * [5] The user space value got manipulated between exit_robust_list()
951 * and exit_pi_state_list()
953 * [6] Valid state after exit_pi_state_list() which sets the new owner in
954 * the pi_state but cannot access the user space value.
956 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
958 * [8] Owner and user space value match
960 * [9] There is no transient state which sets the user space TID to 0
961 * except exit_robust_list(), but this is indicated by the
962 * FUTEX_OWNER_DIED bit. See [4]
964 * [10] There is no transient state which leaves owner and user space
965 * TID out of sync.
968 * Serialization and lifetime rules:
970 * hb->lock:
972 * hb -> futex_q, relation
973 * futex_q -> pi_state, relation
975 * (cannot be raw because hb can contain arbitrary amount
976 * of futex_q's)
978 * pi_mutex->wait_lock:
980 * {uval, pi_state}
982 * (and pi_mutex 'obviously')
984 * p->pi_lock:
986 * p->pi_state_list -> pi_state->list, relation
988 * pi_state->refcount:
990 * pi_state lifetime
993 * Lock order:
995 * hb->lock
996 * pi_mutex->wait_lock
997 * p->pi_lock
1002 * Validate that the existing waiter has a pi_state and sanity check
1003 * the pi_state against the user space value. If correct, attach to
1004 * it.
1006 static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1007 struct futex_pi_state *pi_state,
1008 struct futex_pi_state **ps)
1010 pid_t pid = uval & FUTEX_TID_MASK;
1011 u32 uval2;
1012 int ret;
1015 * Userspace might have messed up non-PI and PI futexes [3]
1017 if (unlikely(!pi_state))
1018 return -EINVAL;
1021 * We get here with hb->lock held, and having found a
1022 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1023 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1024 * which in turn means that futex_lock_pi() still has a reference on
1025 * our pi_state.
1027 * The waiter holding a reference on @pi_state also protects against
1028 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1029 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1030 * free pi_state before we can take a reference ourselves.
1032 WARN_ON(!refcount_read(&pi_state->refcount));
1035 * Now that we have a pi_state, we can acquire wait_lock
1036 * and do the state validation.
1038 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1041 * Since {uval, pi_state} is serialized by wait_lock, and our current
1042 * uval was read without holding it, it can have changed. Verify it
1043 * still is what we expect it to be, otherwise retry the entire
1044 * operation.
1046 if (get_futex_value_locked(&uval2, uaddr))
1047 goto out_efault;
1049 if (uval != uval2)
1050 goto out_eagain;
1053 * Handle the owner died case:
1055 if (uval & FUTEX_OWNER_DIED) {
1057 * exit_pi_state_list sets owner to NULL and wakes the
1058 * topmost waiter. The task which acquires the
1059 * pi_state->rt_mutex will fixup owner.
1061 if (!pi_state->owner) {
1063 * No pi state owner, but the user space TID
1064 * is not 0. Inconsistent state. [5]
1066 if (pid)
1067 goto out_einval;
1069 * Take a ref on the state and return success. [4]
1071 goto out_attach;
1075 * If TID is 0, then either the dying owner has not
1076 * yet executed exit_pi_state_list() or some waiter
1077 * acquired the rtmutex in the pi state, but did not
1078 * yet fixup the TID in user space.
1080 * Take a ref on the state and return success. [6]
1082 if (!pid)
1083 goto out_attach;
1084 } else {
1086 * If the owner died bit is not set, then the pi_state
1087 * must have an owner. [7]
1089 if (!pi_state->owner)
1090 goto out_einval;
1094 * Bail out if user space manipulated the futex value. If pi
1095 * state exists then the owner TID must be the same as the
1096 * user space TID. [9/10]
1098 if (pid != task_pid_vnr(pi_state->owner))
1099 goto out_einval;
1101 out_attach:
1102 get_pi_state(pi_state);
1103 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1104 *ps = pi_state;
1105 return 0;
1107 out_einval:
1108 ret = -EINVAL;
1109 goto out_error;
1111 out_eagain:
1112 ret = -EAGAIN;
1113 goto out_error;
1115 out_efault:
1116 ret = -EFAULT;
1117 goto out_error;
1119 out_error:
1120 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1121 return ret;
1125 * wait_for_owner_exiting - Block until the owner has exited
1126 * @ret: owner's current futex lock status
1127 * @exiting: Pointer to the exiting task
1129 * Caller must hold a refcount on @exiting.
1131 static void wait_for_owner_exiting(int ret, struct task_struct *exiting)
1133 if (ret != -EBUSY) {
1134 WARN_ON_ONCE(exiting);
1135 return;
1138 if (WARN_ON_ONCE(ret == -EBUSY && !exiting))
1139 return;
1141 mutex_lock(&exiting->futex_exit_mutex);
1143 * No point in doing state checking here. If the waiter got here
1144 * while the task was in exec()->exec_futex_release() then it can
1145 * have any FUTEX_STATE_* value when the waiter has acquired the
1146 * mutex. OK, if running, EXITING or DEAD if it reached exit()
1147 * already. Highly unlikely and not a problem. Just one more round
1148 * through the futex maze.
1150 mutex_unlock(&exiting->futex_exit_mutex);
1152 put_task_struct(exiting);
1155 static int handle_exit_race(u32 __user *uaddr, u32 uval,
1156 struct task_struct *tsk)
1158 u32 uval2;
1161 * If the futex exit state is not yet FUTEX_STATE_DEAD, tell the
1162 * caller that the alleged owner is busy.
1164 if (tsk && tsk->futex_state != FUTEX_STATE_DEAD)
1165 return -EBUSY;
1168 * Reread the user space value to handle the following situation:
1170 * CPU0 CPU1
1172 * sys_exit() sys_futex()
1173 * do_exit() futex_lock_pi()
1174 * futex_lock_pi_atomic()
1175 * exit_signals(tsk) No waiters:
1176 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1177 * mm_release(tsk) Set waiter bit
1178 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1179 * Set owner died attach_to_pi_owner() {
1180 * *uaddr = 0xC0000000; tsk = get_task(PID);
1181 * } if (!tsk->flags & PF_EXITING) {
1182 * ... attach();
1183 * tsk->futex_state = } else {
1184 * FUTEX_STATE_DEAD; if (tsk->futex_state !=
1185 * FUTEX_STATE_DEAD)
1186 * return -EAGAIN;
1187 * return -ESRCH; <--- FAIL
1190 * Returning ESRCH unconditionally is wrong here because the
1191 * user space value has been changed by the exiting task.
1193 * The same logic applies to the case where the exiting task is
1194 * already gone.
1196 if (get_futex_value_locked(&uval2, uaddr))
1197 return -EFAULT;
1199 /* If the user space value has changed, try again. */
1200 if (uval2 != uval)
1201 return -EAGAIN;
1204 * The exiting task did not have a robust list, the robust list was
1205 * corrupted or the user space value in *uaddr is simply bogus.
1206 * Give up and tell user space.
1208 return -ESRCH;
1212 * Lookup the task for the TID provided from user space and attach to
1213 * it after doing proper sanity checks.
1215 static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
1216 struct futex_pi_state **ps,
1217 struct task_struct **exiting)
1219 pid_t pid = uval & FUTEX_TID_MASK;
1220 struct futex_pi_state *pi_state;
1221 struct task_struct *p;
1224 * We are the first waiter - try to look up the real owner and attach
1225 * the new pi_state to it, but bail out when TID = 0 [1]
1227 * The !pid check is paranoid. None of the call sites should end up
1228 * with pid == 0, but better safe than sorry. Let the caller retry
1230 if (!pid)
1231 return -EAGAIN;
1232 p = find_get_task_by_vpid(pid);
1233 if (!p)
1234 return handle_exit_race(uaddr, uval, NULL);
1236 if (unlikely(p->flags & PF_KTHREAD)) {
1237 put_task_struct(p);
1238 return -EPERM;
1242 * We need to look at the task state to figure out, whether the
1243 * task is exiting. To protect against the change of the task state
1244 * in futex_exit_release(), we do this protected by p->pi_lock:
1246 raw_spin_lock_irq(&p->pi_lock);
1247 if (unlikely(p->futex_state != FUTEX_STATE_OK)) {
1249 * The task is on the way out. When the futex state is
1250 * FUTEX_STATE_DEAD, we know that the task has finished
1251 * the cleanup:
1253 int ret = handle_exit_race(uaddr, uval, p);
1255 raw_spin_unlock_irq(&p->pi_lock);
1257 * If the owner task is between FUTEX_STATE_EXITING and
1258 * FUTEX_STATE_DEAD then store the task pointer and keep
1259 * the reference on the task struct. The calling code will
1260 * drop all locks, wait for the task to reach
1261 * FUTEX_STATE_DEAD and then drop the refcount. This is
1262 * required to prevent a live lock when the current task
1263 * preempted the exiting task between the two states.
1265 if (ret == -EBUSY)
1266 *exiting = p;
1267 else
1268 put_task_struct(p);
1269 return ret;
1273 * No existing pi state. First waiter. [2]
1275 * This creates pi_state, we have hb->lock held, this means nothing can
1276 * observe this state, wait_lock is irrelevant.
1278 pi_state = alloc_pi_state();
1281 * Initialize the pi_mutex in locked state and make @p
1282 * the owner of it:
1284 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1286 /* Store the key for possible exit cleanups: */
1287 pi_state->key = *key;
1289 WARN_ON(!list_empty(&pi_state->list));
1290 list_add(&pi_state->list, &p->pi_state_list);
1292 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1293 * because there is no concurrency as the object is not published yet.
1295 pi_state->owner = p;
1296 raw_spin_unlock_irq(&p->pi_lock);
1298 put_task_struct(p);
1300 *ps = pi_state;
1302 return 0;
1305 static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1306 struct futex_hash_bucket *hb,
1307 union futex_key *key, struct futex_pi_state **ps,
1308 struct task_struct **exiting)
1310 struct futex_q *top_waiter = futex_top_waiter(hb, key);
1313 * If there is a waiter on that futex, validate it and
1314 * attach to the pi_state when the validation succeeds.
1316 if (top_waiter)
1317 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1320 * We are the first waiter - try to look up the owner based on
1321 * @uval and attach to it.
1323 return attach_to_pi_owner(uaddr, uval, key, ps, exiting);
1326 static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1328 int err;
1329 u32 uninitialized_var(curval);
1331 if (unlikely(should_fail_futex(true)))
1332 return -EFAULT;
1334 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1335 if (unlikely(err))
1336 return err;
1338 /* If user space value changed, let the caller retry */
1339 return curval != uval ? -EAGAIN : 0;
1343 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1344 * @uaddr: the pi futex user address
1345 * @hb: the pi futex hash bucket
1346 * @key: the futex key associated with uaddr and hb
1347 * @ps: the pi_state pointer where we store the result of the
1348 * lookup
1349 * @task: the task to perform the atomic lock work for. This will
1350 * be "current" except in the case of requeue pi.
1351 * @exiting: Pointer to store the task pointer of the owner task
1352 * which is in the middle of exiting
1353 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1355 * Return:
1356 * - 0 - ready to wait;
1357 * - 1 - acquired the lock;
1358 * - <0 - error
1360 * The hb->lock and futex_key refs shall be held by the caller.
1362 * @exiting is only set when the return value is -EBUSY. If so, this holds
1363 * a refcount on the exiting task on return and the caller needs to drop it
1364 * after waiting for the exit to complete.
1366 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1367 union futex_key *key,
1368 struct futex_pi_state **ps,
1369 struct task_struct *task,
1370 struct task_struct **exiting,
1371 int set_waiters)
1373 u32 uval, newval, vpid = task_pid_vnr(task);
1374 struct futex_q *top_waiter;
1375 int ret;
1378 * Read the user space value first so we can validate a few
1379 * things before proceeding further.
1381 if (get_futex_value_locked(&uval, uaddr))
1382 return -EFAULT;
1384 if (unlikely(should_fail_futex(true)))
1385 return -EFAULT;
1388 * Detect deadlocks.
1390 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1391 return -EDEADLK;
1393 if ((unlikely(should_fail_futex(true))))
1394 return -EDEADLK;
1397 * Lookup existing state first. If it exists, try to attach to
1398 * its pi_state.
1400 top_waiter = futex_top_waiter(hb, key);
1401 if (top_waiter)
1402 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1405 * No waiter and user TID is 0. We are here because the
1406 * waiters or the owner died bit is set or called from
1407 * requeue_cmp_pi or for whatever reason something took the
1408 * syscall.
1410 if (!(uval & FUTEX_TID_MASK)) {
1412 * We take over the futex. No other waiters and the user space
1413 * TID is 0. We preserve the owner died bit.
1415 newval = uval & FUTEX_OWNER_DIED;
1416 newval |= vpid;
1418 /* The futex requeue_pi code can enforce the waiters bit */
1419 if (set_waiters)
1420 newval |= FUTEX_WAITERS;
1422 ret = lock_pi_update_atomic(uaddr, uval, newval);
1423 /* If the take over worked, return 1 */
1424 return ret < 0 ? ret : 1;
1428 * First waiter. Set the waiters bit before attaching ourself to
1429 * the owner. If owner tries to unlock, it will be forced into
1430 * the kernel and blocked on hb->lock.
1432 newval = uval | FUTEX_WAITERS;
1433 ret = lock_pi_update_atomic(uaddr, uval, newval);
1434 if (ret)
1435 return ret;
1437 * If the update of the user space value succeeded, we try to
1438 * attach to the owner. If that fails, no harm done, we only
1439 * set the FUTEX_WAITERS bit in the user space variable.
1441 return attach_to_pi_owner(uaddr, newval, key, ps, exiting);
1445 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1446 * @q: The futex_q to unqueue
1448 * The q->lock_ptr must not be NULL and must be held by the caller.
1450 static void __unqueue_futex(struct futex_q *q)
1452 struct futex_hash_bucket *hb;
1454 if (WARN_ON_SMP(!q->lock_ptr) || WARN_ON(plist_node_empty(&q->list)))
1455 return;
1456 lockdep_assert_held(q->lock_ptr);
1458 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1459 plist_del(&q->list, &hb->chain);
1460 hb_waiters_dec(hb);
1464 * The hash bucket lock must be held when this is called.
1465 * Afterwards, the futex_q must not be accessed. Callers
1466 * must ensure to later call wake_up_q() for the actual
1467 * wakeups to occur.
1469 static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1471 struct task_struct *p = q->task;
1473 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1474 return;
1476 get_task_struct(p);
1477 __unqueue_futex(q);
1479 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1480 * is written, without taking any locks. This is possible in the event
1481 * of a spurious wakeup, for example. A memory barrier is required here
1482 * to prevent the following store to lock_ptr from getting ahead of the
1483 * plist_del in __unqueue_futex().
1485 smp_store_release(&q->lock_ptr, NULL);
1488 * Queue the task for later wakeup for after we've released
1489 * the hb->lock.
1491 wake_q_add_safe(wake_q, p);
1495 * Caller must hold a reference on @pi_state.
1497 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1499 u32 uninitialized_var(curval), newval;
1500 struct task_struct *new_owner;
1501 bool postunlock = false;
1502 DEFINE_WAKE_Q(wake_q);
1503 int ret = 0;
1505 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1506 if (WARN_ON_ONCE(!new_owner)) {
1508 * As per the comment in futex_unlock_pi() this should not happen.
1510 * When this happens, give up our locks and try again, giving
1511 * the futex_lock_pi() instance time to complete, either by
1512 * waiting on the rtmutex or removing itself from the futex
1513 * queue.
1515 ret = -EAGAIN;
1516 goto out_unlock;
1520 * We pass it to the next owner. The WAITERS bit is always kept
1521 * enabled while there is PI state around. We cleanup the owner
1522 * died bit, because we are the owner.
1524 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1526 if (unlikely(should_fail_futex(true)))
1527 ret = -EFAULT;
1529 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1530 if (!ret && (curval != uval)) {
1532 * If a unconditional UNLOCK_PI operation (user space did not
1533 * try the TID->0 transition) raced with a waiter setting the
1534 * FUTEX_WAITERS flag between get_user() and locking the hash
1535 * bucket lock, retry the operation.
1537 if ((FUTEX_TID_MASK & curval) == uval)
1538 ret = -EAGAIN;
1539 else
1540 ret = -EINVAL;
1543 if (ret)
1544 goto out_unlock;
1547 * This is a point of no return; once we modify the uval there is no
1548 * going back and subsequent operations must not fail.
1551 raw_spin_lock(&pi_state->owner->pi_lock);
1552 WARN_ON(list_empty(&pi_state->list));
1553 list_del_init(&pi_state->list);
1554 raw_spin_unlock(&pi_state->owner->pi_lock);
1556 raw_spin_lock(&new_owner->pi_lock);
1557 WARN_ON(!list_empty(&pi_state->list));
1558 list_add(&pi_state->list, &new_owner->pi_state_list);
1559 pi_state->owner = new_owner;
1560 raw_spin_unlock(&new_owner->pi_lock);
1562 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
1564 out_unlock:
1565 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1567 if (postunlock)
1568 rt_mutex_postunlock(&wake_q);
1570 return ret;
1574 * Express the locking dependencies for lockdep:
1576 static inline void
1577 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1579 if (hb1 <= hb2) {
1580 spin_lock(&hb1->lock);
1581 if (hb1 < hb2)
1582 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1583 } else { /* hb1 > hb2 */
1584 spin_lock(&hb2->lock);
1585 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1589 static inline void
1590 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1592 spin_unlock(&hb1->lock);
1593 if (hb1 != hb2)
1594 spin_unlock(&hb2->lock);
1598 * Wake up waiters matching bitset queued on this futex (uaddr).
1600 static int
1601 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1603 struct futex_hash_bucket *hb;
1604 struct futex_q *this, *next;
1605 union futex_key key = FUTEX_KEY_INIT;
1606 int ret;
1607 DEFINE_WAKE_Q(wake_q);
1609 if (!bitset)
1610 return -EINVAL;
1612 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_READ);
1613 if (unlikely(ret != 0))
1614 goto out;
1616 hb = hash_futex(&key);
1618 /* Make sure we really have tasks to wakeup */
1619 if (!hb_waiters_pending(hb))
1620 goto out_put_key;
1622 spin_lock(&hb->lock);
1624 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1625 if (match_futex (&this->key, &key)) {
1626 if (this->pi_state || this->rt_waiter) {
1627 ret = -EINVAL;
1628 break;
1631 /* Check if one of the bits is set in both bitsets */
1632 if (!(this->bitset & bitset))
1633 continue;
1635 mark_wake_futex(&wake_q, this);
1636 if (++ret >= nr_wake)
1637 break;
1641 spin_unlock(&hb->lock);
1642 wake_up_q(&wake_q);
1643 out_put_key:
1644 put_futex_key(&key);
1645 out:
1646 return ret;
1649 static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1651 unsigned int op = (encoded_op & 0x70000000) >> 28;
1652 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
1653 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1654 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1655 int oldval, ret;
1657 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1658 if (oparg < 0 || oparg > 31) {
1659 char comm[sizeof(current->comm)];
1661 * kill this print and return -EINVAL when userspace
1662 * is sane again
1664 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1665 get_task_comm(comm, current), oparg);
1666 oparg &= 31;
1668 oparg = 1 << oparg;
1671 pagefault_disable();
1672 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1673 pagefault_enable();
1674 if (ret)
1675 return ret;
1677 switch (cmp) {
1678 case FUTEX_OP_CMP_EQ:
1679 return oldval == cmparg;
1680 case FUTEX_OP_CMP_NE:
1681 return oldval != cmparg;
1682 case FUTEX_OP_CMP_LT:
1683 return oldval < cmparg;
1684 case FUTEX_OP_CMP_GE:
1685 return oldval >= cmparg;
1686 case FUTEX_OP_CMP_LE:
1687 return oldval <= cmparg;
1688 case FUTEX_OP_CMP_GT:
1689 return oldval > cmparg;
1690 default:
1691 return -ENOSYS;
1696 * Wake up all waiters hashed on the physical page that is mapped
1697 * to this virtual address:
1699 static int
1700 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1701 int nr_wake, int nr_wake2, int op)
1703 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1704 struct futex_hash_bucket *hb1, *hb2;
1705 struct futex_q *this, *next;
1706 int ret, op_ret;
1707 DEFINE_WAKE_Q(wake_q);
1709 retry:
1710 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1711 if (unlikely(ret != 0))
1712 goto out;
1713 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
1714 if (unlikely(ret != 0))
1715 goto out_put_key1;
1717 hb1 = hash_futex(&key1);
1718 hb2 = hash_futex(&key2);
1720 retry_private:
1721 double_lock_hb(hb1, hb2);
1722 op_ret = futex_atomic_op_inuser(op, uaddr2);
1723 if (unlikely(op_ret < 0)) {
1724 double_unlock_hb(hb1, hb2);
1726 if (!IS_ENABLED(CONFIG_MMU) ||
1727 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1729 * we don't get EFAULT from MMU faults if we don't have
1730 * an MMU, but we might get them from range checking
1732 ret = op_ret;
1733 goto out_put_keys;
1736 if (op_ret == -EFAULT) {
1737 ret = fault_in_user_writeable(uaddr2);
1738 if (ret)
1739 goto out_put_keys;
1742 if (!(flags & FLAGS_SHARED)) {
1743 cond_resched();
1744 goto retry_private;
1747 put_futex_key(&key2);
1748 put_futex_key(&key1);
1749 cond_resched();
1750 goto retry;
1753 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1754 if (match_futex (&this->key, &key1)) {
1755 if (this->pi_state || this->rt_waiter) {
1756 ret = -EINVAL;
1757 goto out_unlock;
1759 mark_wake_futex(&wake_q, this);
1760 if (++ret >= nr_wake)
1761 break;
1765 if (op_ret > 0) {
1766 op_ret = 0;
1767 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1768 if (match_futex (&this->key, &key2)) {
1769 if (this->pi_state || this->rt_waiter) {
1770 ret = -EINVAL;
1771 goto out_unlock;
1773 mark_wake_futex(&wake_q, this);
1774 if (++op_ret >= nr_wake2)
1775 break;
1778 ret += op_ret;
1781 out_unlock:
1782 double_unlock_hb(hb1, hb2);
1783 wake_up_q(&wake_q);
1784 out_put_keys:
1785 put_futex_key(&key2);
1786 out_put_key1:
1787 put_futex_key(&key1);
1788 out:
1789 return ret;
1793 * requeue_futex() - Requeue a futex_q from one hb to another
1794 * @q: the futex_q to requeue
1795 * @hb1: the source hash_bucket
1796 * @hb2: the target hash_bucket
1797 * @key2: the new key for the requeued futex_q
1799 static inline
1800 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1801 struct futex_hash_bucket *hb2, union futex_key *key2)
1805 * If key1 and key2 hash to the same bucket, no need to
1806 * requeue.
1808 if (likely(&hb1->chain != &hb2->chain)) {
1809 plist_del(&q->list, &hb1->chain);
1810 hb_waiters_dec(hb1);
1811 hb_waiters_inc(hb2);
1812 plist_add(&q->list, &hb2->chain);
1813 q->lock_ptr = &hb2->lock;
1815 q->key = *key2;
1819 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1820 * @q: the futex_q
1821 * @key: the key of the requeue target futex
1822 * @hb: the hash_bucket of the requeue target futex
1824 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1825 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1826 * to the requeue target futex so the waiter can detect the wakeup on the right
1827 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1828 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1829 * to protect access to the pi_state to fixup the owner later. Must be called
1830 * with both q->lock_ptr and hb->lock held.
1832 static inline
1833 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1834 struct futex_hash_bucket *hb)
1836 q->key = *key;
1838 __unqueue_futex(q);
1840 WARN_ON(!q->rt_waiter);
1841 q->rt_waiter = NULL;
1843 q->lock_ptr = &hb->lock;
1845 wake_up_state(q->task, TASK_NORMAL);
1849 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1850 * @pifutex: the user address of the to futex
1851 * @hb1: the from futex hash bucket, must be locked by the caller
1852 * @hb2: the to futex hash bucket, must be locked by the caller
1853 * @key1: the from futex key
1854 * @key2: the to futex key
1855 * @ps: address to store the pi_state pointer
1856 * @exiting: Pointer to store the task pointer of the owner task
1857 * which is in the middle of exiting
1858 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1860 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1861 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1862 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1863 * hb1 and hb2 must be held by the caller.
1865 * @exiting is only set when the return value is -EBUSY. If so, this holds
1866 * a refcount on the exiting task on return and the caller needs to drop it
1867 * after waiting for the exit to complete.
1869 * Return:
1870 * - 0 - failed to acquire the lock atomically;
1871 * - >0 - acquired the lock, return value is vpid of the top_waiter
1872 * - <0 - error
1874 static int
1875 futex_proxy_trylock_atomic(u32 __user *pifutex, struct futex_hash_bucket *hb1,
1876 struct futex_hash_bucket *hb2, union futex_key *key1,
1877 union futex_key *key2, struct futex_pi_state **ps,
1878 struct task_struct **exiting, int set_waiters)
1880 struct futex_q *top_waiter = NULL;
1881 u32 curval;
1882 int ret, vpid;
1884 if (get_futex_value_locked(&curval, pifutex))
1885 return -EFAULT;
1887 if (unlikely(should_fail_futex(true)))
1888 return -EFAULT;
1891 * Find the top_waiter and determine if there are additional waiters.
1892 * If the caller intends to requeue more than 1 waiter to pifutex,
1893 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1894 * as we have means to handle the possible fault. If not, don't set
1895 * the bit unecessarily as it will force the subsequent unlock to enter
1896 * the kernel.
1898 top_waiter = futex_top_waiter(hb1, key1);
1900 /* There are no waiters, nothing for us to do. */
1901 if (!top_waiter)
1902 return 0;
1904 /* Ensure we requeue to the expected futex. */
1905 if (!match_futex(top_waiter->requeue_pi_key, key2))
1906 return -EINVAL;
1909 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1910 * the contended case or if set_waiters is 1. The pi_state is returned
1911 * in ps in contended cases.
1913 vpid = task_pid_vnr(top_waiter->task);
1914 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1915 exiting, set_waiters);
1916 if (ret == 1) {
1917 requeue_pi_wake_futex(top_waiter, key2, hb2);
1918 return vpid;
1920 return ret;
1924 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1925 * @uaddr1: source futex user address
1926 * @flags: futex flags (FLAGS_SHARED, etc.)
1927 * @uaddr2: target futex user address
1928 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1929 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1930 * @cmpval: @uaddr1 expected value (or %NULL)
1931 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1932 * pi futex (pi to pi requeue is not supported)
1934 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1935 * uaddr2 atomically on behalf of the top waiter.
1937 * Return:
1938 * - >=0 - on success, the number of tasks requeued or woken;
1939 * - <0 - on error
1941 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1942 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1943 u32 *cmpval, int requeue_pi)
1945 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1946 int task_count = 0, ret;
1947 struct futex_pi_state *pi_state = NULL;
1948 struct futex_hash_bucket *hb1, *hb2;
1949 struct futex_q *this, *next;
1950 DEFINE_WAKE_Q(wake_q);
1952 if (nr_wake < 0 || nr_requeue < 0)
1953 return -EINVAL;
1956 * When PI not supported: return -ENOSYS if requeue_pi is true,
1957 * consequently the compiler knows requeue_pi is always false past
1958 * this point which will optimize away all the conditional code
1959 * further down.
1961 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1962 return -ENOSYS;
1964 if (requeue_pi) {
1966 * Requeue PI only works on two distinct uaddrs. This
1967 * check is only valid for private futexes. See below.
1969 if (uaddr1 == uaddr2)
1970 return -EINVAL;
1973 * requeue_pi requires a pi_state, try to allocate it now
1974 * without any locks in case it fails.
1976 if (refill_pi_state_cache())
1977 return -ENOMEM;
1979 * requeue_pi must wake as many tasks as it can, up to nr_wake
1980 * + nr_requeue, since it acquires the rt_mutex prior to
1981 * returning to userspace, so as to not leave the rt_mutex with
1982 * waiters and no owner. However, second and third wake-ups
1983 * cannot be predicted as they involve race conditions with the
1984 * first wake and a fault while looking up the pi_state. Both
1985 * pthread_cond_signal() and pthread_cond_broadcast() should
1986 * use nr_wake=1.
1988 if (nr_wake != 1)
1989 return -EINVAL;
1992 retry:
1993 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, FUTEX_READ);
1994 if (unlikely(ret != 0))
1995 goto out;
1996 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1997 requeue_pi ? FUTEX_WRITE : FUTEX_READ);
1998 if (unlikely(ret != 0))
1999 goto out_put_key1;
2002 * The check above which compares uaddrs is not sufficient for
2003 * shared futexes. We need to compare the keys:
2005 if (requeue_pi && match_futex(&key1, &key2)) {
2006 ret = -EINVAL;
2007 goto out_put_keys;
2010 hb1 = hash_futex(&key1);
2011 hb2 = hash_futex(&key2);
2013 retry_private:
2014 hb_waiters_inc(hb2);
2015 double_lock_hb(hb1, hb2);
2017 if (likely(cmpval != NULL)) {
2018 u32 curval;
2020 ret = get_futex_value_locked(&curval, uaddr1);
2022 if (unlikely(ret)) {
2023 double_unlock_hb(hb1, hb2);
2024 hb_waiters_dec(hb2);
2026 ret = get_user(curval, uaddr1);
2027 if (ret)
2028 goto out_put_keys;
2030 if (!(flags & FLAGS_SHARED))
2031 goto retry_private;
2033 put_futex_key(&key2);
2034 put_futex_key(&key1);
2035 goto retry;
2037 if (curval != *cmpval) {
2038 ret = -EAGAIN;
2039 goto out_unlock;
2043 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
2044 struct task_struct *exiting = NULL;
2047 * Attempt to acquire uaddr2 and wake the top waiter. If we
2048 * intend to requeue waiters, force setting the FUTEX_WAITERS
2049 * bit. We force this here where we are able to easily handle
2050 * faults rather in the requeue loop below.
2052 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
2053 &key2, &pi_state,
2054 &exiting, nr_requeue);
2057 * At this point the top_waiter has either taken uaddr2 or is
2058 * waiting on it. If the former, then the pi_state will not
2059 * exist yet, look it up one more time to ensure we have a
2060 * reference to it. If the lock was taken, ret contains the
2061 * vpid of the top waiter task.
2062 * If the lock was not taken, we have pi_state and an initial
2063 * refcount on it. In case of an error we have nothing.
2065 if (ret > 0) {
2066 WARN_ON(pi_state);
2067 task_count++;
2069 * If we acquired the lock, then the user space value
2070 * of uaddr2 should be vpid. It cannot be changed by
2071 * the top waiter as it is blocked on hb2 lock if it
2072 * tries to do so. If something fiddled with it behind
2073 * our back the pi state lookup might unearth it. So
2074 * we rather use the known value than rereading and
2075 * handing potential crap to lookup_pi_state.
2077 * If that call succeeds then we have pi_state and an
2078 * initial refcount on it.
2080 ret = lookup_pi_state(uaddr2, ret, hb2, &key2,
2081 &pi_state, &exiting);
2084 switch (ret) {
2085 case 0:
2086 /* We hold a reference on the pi state. */
2087 break;
2089 /* If the above failed, then pi_state is NULL */
2090 case -EFAULT:
2091 double_unlock_hb(hb1, hb2);
2092 hb_waiters_dec(hb2);
2093 put_futex_key(&key2);
2094 put_futex_key(&key1);
2095 ret = fault_in_user_writeable(uaddr2);
2096 if (!ret)
2097 goto retry;
2098 goto out;
2099 case -EBUSY:
2100 case -EAGAIN:
2102 * Two reasons for this:
2103 * - EBUSY: Owner is exiting and we just wait for the
2104 * exit to complete.
2105 * - EAGAIN: The user space value changed.
2107 double_unlock_hb(hb1, hb2);
2108 hb_waiters_dec(hb2);
2109 put_futex_key(&key2);
2110 put_futex_key(&key1);
2112 * Handle the case where the owner is in the middle of
2113 * exiting. Wait for the exit to complete otherwise
2114 * this task might loop forever, aka. live lock.
2116 wait_for_owner_exiting(ret, exiting);
2117 cond_resched();
2118 goto retry;
2119 default:
2120 goto out_unlock;
2124 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2125 if (task_count - nr_wake >= nr_requeue)
2126 break;
2128 if (!match_futex(&this->key, &key1))
2129 continue;
2132 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2133 * be paired with each other and no other futex ops.
2135 * We should never be requeueing a futex_q with a pi_state,
2136 * which is awaiting a futex_unlock_pi().
2138 if ((requeue_pi && !this->rt_waiter) ||
2139 (!requeue_pi && this->rt_waiter) ||
2140 this->pi_state) {
2141 ret = -EINVAL;
2142 break;
2146 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2147 * lock, we already woke the top_waiter. If not, it will be
2148 * woken by futex_unlock_pi().
2150 if (++task_count <= nr_wake && !requeue_pi) {
2151 mark_wake_futex(&wake_q, this);
2152 continue;
2155 /* Ensure we requeue to the expected futex for requeue_pi. */
2156 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2157 ret = -EINVAL;
2158 break;
2162 * Requeue nr_requeue waiters and possibly one more in the case
2163 * of requeue_pi if we couldn't acquire the lock atomically.
2165 if (requeue_pi) {
2167 * Prepare the waiter to take the rt_mutex. Take a
2168 * refcount on the pi_state and store the pointer in
2169 * the futex_q object of the waiter.
2171 get_pi_state(pi_state);
2172 this->pi_state = pi_state;
2173 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2174 this->rt_waiter,
2175 this->task);
2176 if (ret == 1) {
2178 * We got the lock. We do neither drop the
2179 * refcount on pi_state nor clear
2180 * this->pi_state because the waiter needs the
2181 * pi_state for cleaning up the user space
2182 * value. It will drop the refcount after
2183 * doing so.
2185 requeue_pi_wake_futex(this, &key2, hb2);
2186 continue;
2187 } else if (ret) {
2189 * rt_mutex_start_proxy_lock() detected a
2190 * potential deadlock when we tried to queue
2191 * that waiter. Drop the pi_state reference
2192 * which we took above and remove the pointer
2193 * to the state from the waiters futex_q
2194 * object.
2196 this->pi_state = NULL;
2197 put_pi_state(pi_state);
2199 * We stop queueing more waiters and let user
2200 * space deal with the mess.
2202 break;
2205 requeue_futex(this, hb1, hb2, &key2);
2209 * We took an extra initial reference to the pi_state either
2210 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2211 * need to drop it here again.
2213 put_pi_state(pi_state);
2215 out_unlock:
2216 double_unlock_hb(hb1, hb2);
2217 wake_up_q(&wake_q);
2218 hb_waiters_dec(hb2);
2220 out_put_keys:
2221 put_futex_key(&key2);
2222 out_put_key1:
2223 put_futex_key(&key1);
2224 out:
2225 return ret ? ret : task_count;
2228 /* The key must be already stored in q->key. */
2229 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2230 __acquires(&hb->lock)
2232 struct futex_hash_bucket *hb;
2234 hb = hash_futex(&q->key);
2237 * Increment the counter before taking the lock so that
2238 * a potential waker won't miss a to-be-slept task that is
2239 * waiting for the spinlock. This is safe as all queue_lock()
2240 * users end up calling queue_me(). Similarly, for housekeeping,
2241 * decrement the counter at queue_unlock() when some error has
2242 * occurred and we don't end up adding the task to the list.
2244 hb_waiters_inc(hb); /* implies smp_mb(); (A) */
2246 q->lock_ptr = &hb->lock;
2248 spin_lock(&hb->lock);
2249 return hb;
2252 static inline void
2253 queue_unlock(struct futex_hash_bucket *hb)
2254 __releases(&hb->lock)
2256 spin_unlock(&hb->lock);
2257 hb_waiters_dec(hb);
2260 static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2262 int prio;
2265 * The priority used to register this element is
2266 * - either the real thread-priority for the real-time threads
2267 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2268 * - or MAX_RT_PRIO for non-RT threads.
2269 * Thus, all RT-threads are woken first in priority order, and
2270 * the others are woken last, in FIFO order.
2272 prio = min(current->normal_prio, MAX_RT_PRIO);
2274 plist_node_init(&q->list, prio);
2275 plist_add(&q->list, &hb->chain);
2276 q->task = current;
2280 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2281 * @q: The futex_q to enqueue
2282 * @hb: The destination hash bucket
2284 * The hb->lock must be held by the caller, and is released here. A call to
2285 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2286 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2287 * or nothing if the unqueue is done as part of the wake process and the unqueue
2288 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2289 * an example).
2291 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2292 __releases(&hb->lock)
2294 __queue_me(q, hb);
2295 spin_unlock(&hb->lock);
2299 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2300 * @q: The futex_q to unqueue
2302 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2303 * be paired with exactly one earlier call to queue_me().
2305 * Return:
2306 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2307 * - 0 - if the futex_q was already removed by the waking thread
2309 static int unqueue_me(struct futex_q *q)
2311 spinlock_t *lock_ptr;
2312 int ret = 0;
2314 /* In the common case we don't take the spinlock, which is nice. */
2315 retry:
2317 * q->lock_ptr can change between this read and the following spin_lock.
2318 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2319 * optimizing lock_ptr out of the logic below.
2321 lock_ptr = READ_ONCE(q->lock_ptr);
2322 if (lock_ptr != NULL) {
2323 spin_lock(lock_ptr);
2325 * q->lock_ptr can change between reading it and
2326 * spin_lock(), causing us to take the wrong lock. This
2327 * corrects the race condition.
2329 * Reasoning goes like this: if we have the wrong lock,
2330 * q->lock_ptr must have changed (maybe several times)
2331 * between reading it and the spin_lock(). It can
2332 * change again after the spin_lock() but only if it was
2333 * already changed before the spin_lock(). It cannot,
2334 * however, change back to the original value. Therefore
2335 * we can detect whether we acquired the correct lock.
2337 if (unlikely(lock_ptr != q->lock_ptr)) {
2338 spin_unlock(lock_ptr);
2339 goto retry;
2341 __unqueue_futex(q);
2343 BUG_ON(q->pi_state);
2345 spin_unlock(lock_ptr);
2346 ret = 1;
2349 return ret;
2353 * PI futexes can not be requeued and must remove themself from the
2354 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2355 * and dropped here.
2357 static void unqueue_me_pi(struct futex_q *q)
2358 __releases(q->lock_ptr)
2360 __unqueue_futex(q);
2362 BUG_ON(!q->pi_state);
2363 put_pi_state(q->pi_state);
2364 q->pi_state = NULL;
2366 spin_unlock(q->lock_ptr);
2369 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2370 struct task_struct *argowner)
2372 struct futex_pi_state *pi_state = q->pi_state;
2373 u32 uval, uninitialized_var(curval), newval;
2374 struct task_struct *oldowner, *newowner;
2375 u32 newtid;
2376 int ret, err = 0;
2378 lockdep_assert_held(q->lock_ptr);
2380 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2382 oldowner = pi_state->owner;
2385 * We are here because either:
2387 * - we stole the lock and pi_state->owner needs updating to reflect
2388 * that (@argowner == current),
2390 * or:
2392 * - someone stole our lock and we need to fix things to point to the
2393 * new owner (@argowner == NULL).
2395 * Either way, we have to replace the TID in the user space variable.
2396 * This must be atomic as we have to preserve the owner died bit here.
2398 * Note: We write the user space value _before_ changing the pi_state
2399 * because we can fault here. Imagine swapped out pages or a fork
2400 * that marked all the anonymous memory readonly for cow.
2402 * Modifying pi_state _before_ the user space value would leave the
2403 * pi_state in an inconsistent state when we fault here, because we
2404 * need to drop the locks to handle the fault. This might be observed
2405 * in the PID check in lookup_pi_state.
2407 retry:
2408 if (!argowner) {
2409 if (oldowner != current) {
2411 * We raced against a concurrent self; things are
2412 * already fixed up. Nothing to do.
2414 ret = 0;
2415 goto out_unlock;
2418 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2419 /* We got the lock after all, nothing to fix. */
2420 ret = 0;
2421 goto out_unlock;
2425 * Since we just failed the trylock; there must be an owner.
2427 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2428 BUG_ON(!newowner);
2429 } else {
2430 WARN_ON_ONCE(argowner != current);
2431 if (oldowner == current) {
2433 * We raced against a concurrent self; things are
2434 * already fixed up. Nothing to do.
2436 ret = 0;
2437 goto out_unlock;
2439 newowner = argowner;
2442 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2443 /* Owner died? */
2444 if (!pi_state->owner)
2445 newtid |= FUTEX_OWNER_DIED;
2447 err = get_futex_value_locked(&uval, uaddr);
2448 if (err)
2449 goto handle_err;
2451 for (;;) {
2452 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2454 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2455 if (err)
2456 goto handle_err;
2458 if (curval == uval)
2459 break;
2460 uval = curval;
2464 * We fixed up user space. Now we need to fix the pi_state
2465 * itself.
2467 if (pi_state->owner != NULL) {
2468 raw_spin_lock(&pi_state->owner->pi_lock);
2469 WARN_ON(list_empty(&pi_state->list));
2470 list_del_init(&pi_state->list);
2471 raw_spin_unlock(&pi_state->owner->pi_lock);
2474 pi_state->owner = newowner;
2476 raw_spin_lock(&newowner->pi_lock);
2477 WARN_ON(!list_empty(&pi_state->list));
2478 list_add(&pi_state->list, &newowner->pi_state_list);
2479 raw_spin_unlock(&newowner->pi_lock);
2480 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2482 return 0;
2485 * In order to reschedule or handle a page fault, we need to drop the
2486 * locks here. In the case of a fault, this gives the other task
2487 * (either the highest priority waiter itself or the task which stole
2488 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2489 * are back from handling the fault we need to check the pi_state after
2490 * reacquiring the locks and before trying to do another fixup. When
2491 * the fixup has been done already we simply return.
2493 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2494 * drop hb->lock since the caller owns the hb -> futex_q relation.
2495 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2497 handle_err:
2498 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2499 spin_unlock(q->lock_ptr);
2501 switch (err) {
2502 case -EFAULT:
2503 ret = fault_in_user_writeable(uaddr);
2504 break;
2506 case -EAGAIN:
2507 cond_resched();
2508 ret = 0;
2509 break;
2511 default:
2512 WARN_ON_ONCE(1);
2513 ret = err;
2514 break;
2517 spin_lock(q->lock_ptr);
2518 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2521 * Check if someone else fixed it for us:
2523 if (pi_state->owner != oldowner) {
2524 ret = 0;
2525 goto out_unlock;
2528 if (ret)
2529 goto out_unlock;
2531 goto retry;
2533 out_unlock:
2534 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2535 return ret;
2538 static long futex_wait_restart(struct restart_block *restart);
2541 * fixup_owner() - Post lock pi_state and corner case management
2542 * @uaddr: user address of the futex
2543 * @q: futex_q (contains pi_state and access to the rt_mutex)
2544 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2546 * After attempting to lock an rt_mutex, this function is called to cleanup
2547 * the pi_state owner as well as handle race conditions that may allow us to
2548 * acquire the lock. Must be called with the hb lock held.
2550 * Return:
2551 * - 1 - success, lock taken;
2552 * - 0 - success, lock not taken;
2553 * - <0 - on error (-EFAULT)
2555 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2557 int ret = 0;
2559 if (locked) {
2561 * Got the lock. We might not be the anticipated owner if we
2562 * did a lock-steal - fix up the PI-state in that case:
2564 * Speculative pi_state->owner read (we don't hold wait_lock);
2565 * since we own the lock pi_state->owner == current is the
2566 * stable state, anything else needs more attention.
2568 if (q->pi_state->owner != current)
2569 ret = fixup_pi_state_owner(uaddr, q, current);
2570 goto out;
2574 * If we didn't get the lock; check if anybody stole it from us. In
2575 * that case, we need to fix up the uval to point to them instead of
2576 * us, otherwise bad things happen. [10]
2578 * Another speculative read; pi_state->owner == current is unstable
2579 * but needs our attention.
2581 if (q->pi_state->owner == current) {
2582 ret = fixup_pi_state_owner(uaddr, q, NULL);
2583 goto out;
2587 * Paranoia check. If we did not take the lock, then we should not be
2588 * the owner of the rt_mutex.
2590 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2591 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2592 "pi-state %p\n", ret,
2593 q->pi_state->pi_mutex.owner,
2594 q->pi_state->owner);
2597 out:
2598 return ret ? ret : locked;
2602 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2603 * @hb: the futex hash bucket, must be locked by the caller
2604 * @q: the futex_q to queue up on
2605 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
2607 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2608 struct hrtimer_sleeper *timeout)
2611 * The task state is guaranteed to be set before another task can
2612 * wake it. set_current_state() is implemented using smp_store_mb() and
2613 * queue_me() calls spin_unlock() upon completion, both serializing
2614 * access to the hash list and forcing another memory barrier.
2616 set_current_state(TASK_INTERRUPTIBLE);
2617 queue_me(q, hb);
2619 /* Arm the timer */
2620 if (timeout)
2621 hrtimer_sleeper_start_expires(timeout, HRTIMER_MODE_ABS);
2624 * If we have been removed from the hash list, then another task
2625 * has tried to wake us, and we can skip the call to schedule().
2627 if (likely(!plist_node_empty(&q->list))) {
2629 * If the timer has already expired, current will already be
2630 * flagged for rescheduling. Only call schedule if there
2631 * is no timeout, or if it has yet to expire.
2633 if (!timeout || timeout->task)
2634 freezable_schedule();
2636 __set_current_state(TASK_RUNNING);
2640 * futex_wait_setup() - Prepare to wait on a futex
2641 * @uaddr: the futex userspace address
2642 * @val: the expected value
2643 * @flags: futex flags (FLAGS_SHARED, etc.)
2644 * @q: the associated futex_q
2645 * @hb: storage for hash_bucket pointer to be returned to caller
2647 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2648 * compare it with the expected value. Handle atomic faults internally.
2649 * Return with the hb lock held and a q.key reference on success, and unlocked
2650 * with no q.key reference on failure.
2652 * Return:
2653 * - 0 - uaddr contains val and hb has been locked;
2654 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2656 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2657 struct futex_q *q, struct futex_hash_bucket **hb)
2659 u32 uval;
2660 int ret;
2663 * Access the page AFTER the hash-bucket is locked.
2664 * Order is important:
2666 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2667 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2669 * The basic logical guarantee of a futex is that it blocks ONLY
2670 * if cond(var) is known to be true at the time of blocking, for
2671 * any cond. If we locked the hash-bucket after testing *uaddr, that
2672 * would open a race condition where we could block indefinitely with
2673 * cond(var) false, which would violate the guarantee.
2675 * On the other hand, we insert q and release the hash-bucket only
2676 * after testing *uaddr. This guarantees that futex_wait() will NOT
2677 * absorb a wakeup if *uaddr does not match the desired values
2678 * while the syscall executes.
2680 retry:
2681 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, FUTEX_READ);
2682 if (unlikely(ret != 0))
2683 return ret;
2685 retry_private:
2686 *hb = queue_lock(q);
2688 ret = get_futex_value_locked(&uval, uaddr);
2690 if (ret) {
2691 queue_unlock(*hb);
2693 ret = get_user(uval, uaddr);
2694 if (ret)
2695 goto out;
2697 if (!(flags & FLAGS_SHARED))
2698 goto retry_private;
2700 put_futex_key(&q->key);
2701 goto retry;
2704 if (uval != val) {
2705 queue_unlock(*hb);
2706 ret = -EWOULDBLOCK;
2709 out:
2710 if (ret)
2711 put_futex_key(&q->key);
2712 return ret;
2715 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2716 ktime_t *abs_time, u32 bitset)
2718 struct hrtimer_sleeper timeout, *to;
2719 struct restart_block *restart;
2720 struct futex_hash_bucket *hb;
2721 struct futex_q q = futex_q_init;
2722 int ret;
2724 if (!bitset)
2725 return -EINVAL;
2726 q.bitset = bitset;
2728 to = futex_setup_timer(abs_time, &timeout, flags,
2729 current->timer_slack_ns);
2730 retry:
2732 * Prepare to wait on uaddr. On success, holds hb lock and increments
2733 * q.key refs.
2735 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2736 if (ret)
2737 goto out;
2739 /* queue_me and wait for wakeup, timeout, or a signal. */
2740 futex_wait_queue_me(hb, &q, to);
2742 /* If we were woken (and unqueued), we succeeded, whatever. */
2743 ret = 0;
2744 /* unqueue_me() drops q.key ref */
2745 if (!unqueue_me(&q))
2746 goto out;
2747 ret = -ETIMEDOUT;
2748 if (to && !to->task)
2749 goto out;
2752 * We expect signal_pending(current), but we might be the
2753 * victim of a spurious wakeup as well.
2755 if (!signal_pending(current))
2756 goto retry;
2758 ret = -ERESTARTSYS;
2759 if (!abs_time)
2760 goto out;
2762 restart = &current->restart_block;
2763 restart->fn = futex_wait_restart;
2764 restart->futex.uaddr = uaddr;
2765 restart->futex.val = val;
2766 restart->futex.time = *abs_time;
2767 restart->futex.bitset = bitset;
2768 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2770 ret = -ERESTART_RESTARTBLOCK;
2772 out:
2773 if (to) {
2774 hrtimer_cancel(&to->timer);
2775 destroy_hrtimer_on_stack(&to->timer);
2777 return ret;
2781 static long futex_wait_restart(struct restart_block *restart)
2783 u32 __user *uaddr = restart->futex.uaddr;
2784 ktime_t t, *tp = NULL;
2786 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2787 t = restart->futex.time;
2788 tp = &t;
2790 restart->fn = do_no_restart_syscall;
2792 return (long)futex_wait(uaddr, restart->futex.flags,
2793 restart->futex.val, tp, restart->futex.bitset);
2798 * Userspace tried a 0 -> TID atomic transition of the futex value
2799 * and failed. The kernel side here does the whole locking operation:
2800 * if there are waiters then it will block as a consequence of relying
2801 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2802 * a 0 value of the futex too.).
2804 * Also serves as futex trylock_pi()'ing, and due semantics.
2806 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2807 ktime_t *time, int trylock)
2809 struct hrtimer_sleeper timeout, *to;
2810 struct futex_pi_state *pi_state = NULL;
2811 struct task_struct *exiting = NULL;
2812 struct rt_mutex_waiter rt_waiter;
2813 struct futex_hash_bucket *hb;
2814 struct futex_q q = futex_q_init;
2815 int res, ret;
2817 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2818 return -ENOSYS;
2820 if (refill_pi_state_cache())
2821 return -ENOMEM;
2823 to = futex_setup_timer(time, &timeout, FLAGS_CLOCKRT, 0);
2825 retry:
2826 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, FUTEX_WRITE);
2827 if (unlikely(ret != 0))
2828 goto out;
2830 retry_private:
2831 hb = queue_lock(&q);
2833 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current,
2834 &exiting, 0);
2835 if (unlikely(ret)) {
2837 * Atomic work succeeded and we got the lock,
2838 * or failed. Either way, we do _not_ block.
2840 switch (ret) {
2841 case 1:
2842 /* We got the lock. */
2843 ret = 0;
2844 goto out_unlock_put_key;
2845 case -EFAULT:
2846 goto uaddr_faulted;
2847 case -EBUSY:
2848 case -EAGAIN:
2850 * Two reasons for this:
2851 * - EBUSY: Task is exiting and we just wait for the
2852 * exit to complete.
2853 * - EAGAIN: The user space value changed.
2855 queue_unlock(hb);
2856 put_futex_key(&q.key);
2858 * Handle the case where the owner is in the middle of
2859 * exiting. Wait for the exit to complete otherwise
2860 * this task might loop forever, aka. live lock.
2862 wait_for_owner_exiting(ret, exiting);
2863 cond_resched();
2864 goto retry;
2865 default:
2866 goto out_unlock_put_key;
2870 WARN_ON(!q.pi_state);
2873 * Only actually queue now that the atomic ops are done:
2875 __queue_me(&q, hb);
2877 if (trylock) {
2878 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
2879 /* Fixup the trylock return value: */
2880 ret = ret ? 0 : -EWOULDBLOCK;
2881 goto no_block;
2884 rt_mutex_init_waiter(&rt_waiter);
2887 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2888 * hold it while doing rt_mutex_start_proxy(), because then it will
2889 * include hb->lock in the blocking chain, even through we'll not in
2890 * fact hold it while blocking. This will lead it to report -EDEADLK
2891 * and BUG when futex_unlock_pi() interleaves with this.
2893 * Therefore acquire wait_lock while holding hb->lock, but drop the
2894 * latter before calling __rt_mutex_start_proxy_lock(). This
2895 * interleaves with futex_unlock_pi() -- which does a similar lock
2896 * handoff -- such that the latter can observe the futex_q::pi_state
2897 * before __rt_mutex_start_proxy_lock() is done.
2899 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2900 spin_unlock(q.lock_ptr);
2902 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2903 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2904 * it sees the futex_q::pi_state.
2906 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2907 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2909 if (ret) {
2910 if (ret == 1)
2911 ret = 0;
2912 goto cleanup;
2915 if (unlikely(to))
2916 hrtimer_sleeper_start_expires(to, HRTIMER_MODE_ABS);
2918 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2920 cleanup:
2921 spin_lock(q.lock_ptr);
2923 * If we failed to acquire the lock (deadlock/signal/timeout), we must
2924 * first acquire the hb->lock before removing the lock from the
2925 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2926 * lists consistent.
2928 * In particular; it is important that futex_unlock_pi() can not
2929 * observe this inconsistency.
2931 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2932 ret = 0;
2934 no_block:
2936 * Fixup the pi_state owner and possibly acquire the lock if we
2937 * haven't already.
2939 res = fixup_owner(uaddr, &q, !ret);
2941 * If fixup_owner() returned an error, proprogate that. If it acquired
2942 * the lock, clear our -ETIMEDOUT or -EINTR.
2944 if (res)
2945 ret = (res < 0) ? res : 0;
2948 * If fixup_owner() faulted and was unable to handle the fault, unlock
2949 * it and return the fault to userspace.
2951 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2952 pi_state = q.pi_state;
2953 get_pi_state(pi_state);
2956 /* Unqueue and drop the lock */
2957 unqueue_me_pi(&q);
2959 if (pi_state) {
2960 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2961 put_pi_state(pi_state);
2964 goto out_put_key;
2966 out_unlock_put_key:
2967 queue_unlock(hb);
2969 out_put_key:
2970 put_futex_key(&q.key);
2971 out:
2972 if (to) {
2973 hrtimer_cancel(&to->timer);
2974 destroy_hrtimer_on_stack(&to->timer);
2976 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2978 uaddr_faulted:
2979 queue_unlock(hb);
2981 ret = fault_in_user_writeable(uaddr);
2982 if (ret)
2983 goto out_put_key;
2985 if (!(flags & FLAGS_SHARED))
2986 goto retry_private;
2988 put_futex_key(&q.key);
2989 goto retry;
2993 * Userspace attempted a TID -> 0 atomic transition, and failed.
2994 * This is the in-kernel slowpath: we look up the PI state (if any),
2995 * and do the rt-mutex unlock.
2997 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2999 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
3000 union futex_key key = FUTEX_KEY_INIT;
3001 struct futex_hash_bucket *hb;
3002 struct futex_q *top_waiter;
3003 int ret;
3005 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3006 return -ENOSYS;
3008 retry:
3009 if (get_user(uval, uaddr))
3010 return -EFAULT;
3012 * We release only a lock we actually own:
3014 if ((uval & FUTEX_TID_MASK) != vpid)
3015 return -EPERM;
3017 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, FUTEX_WRITE);
3018 if (ret)
3019 return ret;
3021 hb = hash_futex(&key);
3022 spin_lock(&hb->lock);
3025 * Check waiters first. We do not trust user space values at
3026 * all and we at least want to know if user space fiddled
3027 * with the futex value instead of blindly unlocking.
3029 top_waiter = futex_top_waiter(hb, &key);
3030 if (top_waiter) {
3031 struct futex_pi_state *pi_state = top_waiter->pi_state;
3033 ret = -EINVAL;
3034 if (!pi_state)
3035 goto out_unlock;
3038 * If current does not own the pi_state then the futex is
3039 * inconsistent and user space fiddled with the futex value.
3041 if (pi_state->owner != current)
3042 goto out_unlock;
3044 get_pi_state(pi_state);
3046 * By taking wait_lock while still holding hb->lock, we ensure
3047 * there is no point where we hold neither; and therefore
3048 * wake_futex_pi() must observe a state consistent with what we
3049 * observed.
3051 * In particular; this forces __rt_mutex_start_proxy() to
3052 * complete such that we're guaranteed to observe the
3053 * rt_waiter. Also see the WARN in wake_futex_pi().
3055 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
3056 spin_unlock(&hb->lock);
3058 /* drops pi_state->pi_mutex.wait_lock */
3059 ret = wake_futex_pi(uaddr, uval, pi_state);
3061 put_pi_state(pi_state);
3064 * Success, we're done! No tricky corner cases.
3066 if (!ret)
3067 goto out_putkey;
3069 * The atomic access to the futex value generated a
3070 * pagefault, so retry the user-access and the wakeup:
3072 if (ret == -EFAULT)
3073 goto pi_faulted;
3075 * A unconditional UNLOCK_PI op raced against a waiter
3076 * setting the FUTEX_WAITERS bit. Try again.
3078 if (ret == -EAGAIN)
3079 goto pi_retry;
3081 * wake_futex_pi has detected invalid state. Tell user
3082 * space.
3084 goto out_putkey;
3088 * We have no kernel internal state, i.e. no waiters in the
3089 * kernel. Waiters which are about to queue themselves are stuck
3090 * on hb->lock. So we can safely ignore them. We do neither
3091 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3092 * owner.
3094 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
3095 spin_unlock(&hb->lock);
3096 switch (ret) {
3097 case -EFAULT:
3098 goto pi_faulted;
3100 case -EAGAIN:
3101 goto pi_retry;
3103 default:
3104 WARN_ON_ONCE(1);
3105 goto out_putkey;
3110 * If uval has changed, let user space handle it.
3112 ret = (curval == uval) ? 0 : -EAGAIN;
3114 out_unlock:
3115 spin_unlock(&hb->lock);
3116 out_putkey:
3117 put_futex_key(&key);
3118 return ret;
3120 pi_retry:
3121 put_futex_key(&key);
3122 cond_resched();
3123 goto retry;
3125 pi_faulted:
3126 put_futex_key(&key);
3128 ret = fault_in_user_writeable(uaddr);
3129 if (!ret)
3130 goto retry;
3132 return ret;
3136 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3137 * @hb: the hash_bucket futex_q was original enqueued on
3138 * @q: the futex_q woken while waiting to be requeued
3139 * @key2: the futex_key of the requeue target futex
3140 * @timeout: the timeout associated with the wait (NULL if none)
3142 * Detect if the task was woken on the initial futex as opposed to the requeue
3143 * target futex. If so, determine if it was a timeout or a signal that caused
3144 * the wakeup and return the appropriate error code to the caller. Must be
3145 * called with the hb lock held.
3147 * Return:
3148 * - 0 = no early wakeup detected;
3149 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3151 static inline
3152 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3153 struct futex_q *q, union futex_key *key2,
3154 struct hrtimer_sleeper *timeout)
3156 int ret = 0;
3159 * With the hb lock held, we avoid races while we process the wakeup.
3160 * We only need to hold hb (and not hb2) to ensure atomicity as the
3161 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3162 * It can't be requeued from uaddr2 to something else since we don't
3163 * support a PI aware source futex for requeue.
3165 if (!match_futex(&q->key, key2)) {
3166 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3168 * We were woken prior to requeue by a timeout or a signal.
3169 * Unqueue the futex_q and determine which it was.
3171 plist_del(&q->list, &hb->chain);
3172 hb_waiters_dec(hb);
3174 /* Handle spurious wakeups gracefully */
3175 ret = -EWOULDBLOCK;
3176 if (timeout && !timeout->task)
3177 ret = -ETIMEDOUT;
3178 else if (signal_pending(current))
3179 ret = -ERESTARTNOINTR;
3181 return ret;
3185 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3186 * @uaddr: the futex we initially wait on (non-pi)
3187 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3188 * the same type, no requeueing from private to shared, etc.
3189 * @val: the expected value of uaddr
3190 * @abs_time: absolute timeout
3191 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
3192 * @uaddr2: the pi futex we will take prior to returning to user-space
3194 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3195 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3196 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3197 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3198 * without one, the pi logic would not know which task to boost/deboost, if
3199 * there was a need to.
3201 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3202 * via the following--
3203 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3204 * 2) wakeup on uaddr2 after a requeue
3205 * 3) signal
3206 * 4) timeout
3208 * If 3, cleanup and return -ERESTARTNOINTR.
3210 * If 2, we may then block on trying to take the rt_mutex and return via:
3211 * 5) successful lock
3212 * 6) signal
3213 * 7) timeout
3214 * 8) other lock acquisition failure
3216 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3218 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3220 * Return:
3221 * - 0 - On success;
3222 * - <0 - On error
3224 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3225 u32 val, ktime_t *abs_time, u32 bitset,
3226 u32 __user *uaddr2)
3228 struct hrtimer_sleeper timeout, *to;
3229 struct futex_pi_state *pi_state = NULL;
3230 struct rt_mutex_waiter rt_waiter;
3231 struct futex_hash_bucket *hb;
3232 union futex_key key2 = FUTEX_KEY_INIT;
3233 struct futex_q q = futex_q_init;
3234 int res, ret;
3236 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3237 return -ENOSYS;
3239 if (uaddr == uaddr2)
3240 return -EINVAL;
3242 if (!bitset)
3243 return -EINVAL;
3245 to = futex_setup_timer(abs_time, &timeout, flags,
3246 current->timer_slack_ns);
3249 * The waiter is allocated on our stack, manipulated by the requeue
3250 * code while we sleep on uaddr.
3252 rt_mutex_init_waiter(&rt_waiter);
3254 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, FUTEX_WRITE);
3255 if (unlikely(ret != 0))
3256 goto out;
3258 q.bitset = bitset;
3259 q.rt_waiter = &rt_waiter;
3260 q.requeue_pi_key = &key2;
3263 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3264 * count.
3266 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3267 if (ret)
3268 goto out_key2;
3271 * The check above which compares uaddrs is not sufficient for
3272 * shared futexes. We need to compare the keys:
3274 if (match_futex(&q.key, &key2)) {
3275 queue_unlock(hb);
3276 ret = -EINVAL;
3277 goto out_put_keys;
3280 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
3281 futex_wait_queue_me(hb, &q, to);
3283 spin_lock(&hb->lock);
3284 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3285 spin_unlock(&hb->lock);
3286 if (ret)
3287 goto out_put_keys;
3290 * In order for us to be here, we know our q.key == key2, and since
3291 * we took the hb->lock above, we also know that futex_requeue() has
3292 * completed and we no longer have to concern ourselves with a wakeup
3293 * race with the atomic proxy lock acquisition by the requeue code. The
3294 * futex_requeue dropped our key1 reference and incremented our key2
3295 * reference count.
3298 /* Check if the requeue code acquired the second futex for us. */
3299 if (!q.rt_waiter) {
3301 * Got the lock. We might not be the anticipated owner if we
3302 * did a lock-steal - fix up the PI-state in that case.
3304 if (q.pi_state && (q.pi_state->owner != current)) {
3305 spin_lock(q.lock_ptr);
3306 ret = fixup_pi_state_owner(uaddr2, &q, current);
3307 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3308 pi_state = q.pi_state;
3309 get_pi_state(pi_state);
3312 * Drop the reference to the pi state which
3313 * the requeue_pi() code acquired for us.
3315 put_pi_state(q.pi_state);
3316 spin_unlock(q.lock_ptr);
3318 } else {
3319 struct rt_mutex *pi_mutex;
3322 * We have been woken up by futex_unlock_pi(), a timeout, or a
3323 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3324 * the pi_state.
3326 WARN_ON(!q.pi_state);
3327 pi_mutex = &q.pi_state->pi_mutex;
3328 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
3330 spin_lock(q.lock_ptr);
3331 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3332 ret = 0;
3334 debug_rt_mutex_free_waiter(&rt_waiter);
3336 * Fixup the pi_state owner and possibly acquire the lock if we
3337 * haven't already.
3339 res = fixup_owner(uaddr2, &q, !ret);
3341 * If fixup_owner() returned an error, proprogate that. If it
3342 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3344 if (res)
3345 ret = (res < 0) ? res : 0;
3348 * If fixup_pi_state_owner() faulted and was unable to handle
3349 * the fault, unlock the rt_mutex and return the fault to
3350 * userspace.
3352 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3353 pi_state = q.pi_state;
3354 get_pi_state(pi_state);
3357 /* Unqueue and drop the lock. */
3358 unqueue_me_pi(&q);
3361 if (pi_state) {
3362 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3363 put_pi_state(pi_state);
3366 if (ret == -EINTR) {
3368 * We've already been requeued, but cannot restart by calling
3369 * futex_lock_pi() directly. We could restart this syscall, but
3370 * it would detect that the user space "val" changed and return
3371 * -EWOULDBLOCK. Save the overhead of the restart and return
3372 * -EWOULDBLOCK directly.
3374 ret = -EWOULDBLOCK;
3377 out_put_keys:
3378 put_futex_key(&q.key);
3379 out_key2:
3380 put_futex_key(&key2);
3382 out:
3383 if (to) {
3384 hrtimer_cancel(&to->timer);
3385 destroy_hrtimer_on_stack(&to->timer);
3387 return ret;
3391 * Support for robust futexes: the kernel cleans up held futexes at
3392 * thread exit time.
3394 * Implementation: user-space maintains a per-thread list of locks it
3395 * is holding. Upon do_exit(), the kernel carefully walks this list,
3396 * and marks all locks that are owned by this thread with the
3397 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3398 * always manipulated with the lock held, so the list is private and
3399 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3400 * field, to allow the kernel to clean up if the thread dies after
3401 * acquiring the lock, but just before it could have added itself to
3402 * the list. There can only be one such pending lock.
3406 * sys_set_robust_list() - Set the robust-futex list head of a task
3407 * @head: pointer to the list-head
3408 * @len: length of the list-head, as userspace expects
3410 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3411 size_t, len)
3413 if (!futex_cmpxchg_enabled)
3414 return -ENOSYS;
3416 * The kernel knows only one size for now:
3418 if (unlikely(len != sizeof(*head)))
3419 return -EINVAL;
3421 current->robust_list = head;
3423 return 0;
3427 * sys_get_robust_list() - Get the robust-futex list head of a task
3428 * @pid: pid of the process [zero for current task]
3429 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3430 * @len_ptr: pointer to a length field, the kernel fills in the header size
3432 SYSCALL_DEFINE3(get_robust_list, int, pid,
3433 struct robust_list_head __user * __user *, head_ptr,
3434 size_t __user *, len_ptr)
3436 struct robust_list_head __user *head;
3437 unsigned long ret;
3438 struct task_struct *p;
3440 if (!futex_cmpxchg_enabled)
3441 return -ENOSYS;
3443 rcu_read_lock();
3445 ret = -ESRCH;
3446 if (!pid)
3447 p = current;
3448 else {
3449 p = find_task_by_vpid(pid);
3450 if (!p)
3451 goto err_unlock;
3454 ret = -EPERM;
3455 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3456 goto err_unlock;
3458 head = p->robust_list;
3459 rcu_read_unlock();
3461 if (put_user(sizeof(*head), len_ptr))
3462 return -EFAULT;
3463 return put_user(head, head_ptr);
3465 err_unlock:
3466 rcu_read_unlock();
3468 return ret;
3471 /* Constants for the pending_op argument of handle_futex_death */
3472 #define HANDLE_DEATH_PENDING true
3473 #define HANDLE_DEATH_LIST false
3476 * Process a futex-list entry, check whether it's owned by the
3477 * dying task, and do notification if so:
3479 static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3480 bool pi, bool pending_op)
3482 u32 uval, uninitialized_var(nval), mval;
3483 int err;
3485 /* Futex address must be 32bit aligned */
3486 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3487 return -1;
3489 retry:
3490 if (get_user(uval, uaddr))
3491 return -1;
3494 * Special case for regular (non PI) futexes. The unlock path in
3495 * user space has two race scenarios:
3497 * 1. The unlock path releases the user space futex value and
3498 * before it can execute the futex() syscall to wake up
3499 * waiters it is killed.
3501 * 2. A woken up waiter is killed before it can acquire the
3502 * futex in user space.
3504 * In both cases the TID validation below prevents a wakeup of
3505 * potential waiters which can cause these waiters to block
3506 * forever.
3508 * In both cases the following conditions are met:
3510 * 1) task->robust_list->list_op_pending != NULL
3511 * @pending_op == true
3512 * 2) User space futex value == 0
3513 * 3) Regular futex: @pi == false
3515 * If these conditions are met, it is safe to attempt waking up a
3516 * potential waiter without touching the user space futex value and
3517 * trying to set the OWNER_DIED bit. The user space futex value is
3518 * uncontended and the rest of the user space mutex state is
3519 * consistent, so a woken waiter will just take over the
3520 * uncontended futex. Setting the OWNER_DIED bit would create
3521 * inconsistent state and malfunction of the user space owner died
3522 * handling.
3524 if (pending_op && !pi && !uval) {
3525 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3526 return 0;
3529 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3530 return 0;
3533 * Ok, this dying thread is truly holding a futex
3534 * of interest. Set the OWNER_DIED bit atomically
3535 * via cmpxchg, and if the value had FUTEX_WAITERS
3536 * set, wake up a waiter (if any). (We have to do a
3537 * futex_wake() even if OWNER_DIED is already set -
3538 * to handle the rare but possible case of recursive
3539 * thread-death.) The rest of the cleanup is done in
3540 * userspace.
3542 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3545 * We are not holding a lock here, but we want to have
3546 * the pagefault_disable/enable() protection because
3547 * we want to handle the fault gracefully. If the
3548 * access fails we try to fault in the futex with R/W
3549 * verification via get_user_pages. get_user() above
3550 * does not guarantee R/W access. If that fails we
3551 * give up and leave the futex locked.
3553 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3554 switch (err) {
3555 case -EFAULT:
3556 if (fault_in_user_writeable(uaddr))
3557 return -1;
3558 goto retry;
3560 case -EAGAIN:
3561 cond_resched();
3562 goto retry;
3564 default:
3565 WARN_ON_ONCE(1);
3566 return err;
3570 if (nval != uval)
3571 goto retry;
3574 * Wake robust non-PI futexes here. The wakeup of
3575 * PI futexes happens in exit_pi_state():
3577 if (!pi && (uval & FUTEX_WAITERS))
3578 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3580 return 0;
3584 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3586 static inline int fetch_robust_entry(struct robust_list __user **entry,
3587 struct robust_list __user * __user *head,
3588 unsigned int *pi)
3590 unsigned long uentry;
3592 if (get_user(uentry, (unsigned long __user *)head))
3593 return -EFAULT;
3595 *entry = (void __user *)(uentry & ~1UL);
3596 *pi = uentry & 1;
3598 return 0;
3602 * Walk curr->robust_list (very carefully, it's a userspace list!)
3603 * and mark any locks found there dead, and notify any waiters.
3605 * We silently return on any sign of list-walking problem.
3607 static void exit_robust_list(struct task_struct *curr)
3609 struct robust_list_head __user *head = curr->robust_list;
3610 struct robust_list __user *entry, *next_entry, *pending;
3611 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3612 unsigned int uninitialized_var(next_pi);
3613 unsigned long futex_offset;
3614 int rc;
3616 if (!futex_cmpxchg_enabled)
3617 return;
3620 * Fetch the list head (which was registered earlier, via
3621 * sys_set_robust_list()):
3623 if (fetch_robust_entry(&entry, &head->list.next, &pi))
3624 return;
3626 * Fetch the relative futex offset:
3628 if (get_user(futex_offset, &head->futex_offset))
3629 return;
3631 * Fetch any possibly pending lock-add first, and handle it
3632 * if it exists:
3634 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3635 return;
3637 next_entry = NULL; /* avoid warning with gcc */
3638 while (entry != &head->list) {
3640 * Fetch the next entry in the list before calling
3641 * handle_futex_death:
3643 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3645 * A pending lock might already be on the list, so
3646 * don't process it twice:
3648 if (entry != pending) {
3649 if (handle_futex_death((void __user *)entry + futex_offset,
3650 curr, pi, HANDLE_DEATH_LIST))
3651 return;
3653 if (rc)
3654 return;
3655 entry = next_entry;
3656 pi = next_pi;
3658 * Avoid excessively long or circular lists:
3660 if (!--limit)
3661 break;
3663 cond_resched();
3666 if (pending) {
3667 handle_futex_death((void __user *)pending + futex_offset,
3668 curr, pip, HANDLE_DEATH_PENDING);
3672 static void futex_cleanup(struct task_struct *tsk)
3674 if (unlikely(tsk->robust_list)) {
3675 exit_robust_list(tsk);
3676 tsk->robust_list = NULL;
3679 #ifdef CONFIG_COMPAT
3680 if (unlikely(tsk->compat_robust_list)) {
3681 compat_exit_robust_list(tsk);
3682 tsk->compat_robust_list = NULL;
3684 #endif
3686 if (unlikely(!list_empty(&tsk->pi_state_list)))
3687 exit_pi_state_list(tsk);
3691 * futex_exit_recursive - Set the tasks futex state to FUTEX_STATE_DEAD
3692 * @tsk: task to set the state on
3694 * Set the futex exit state of the task lockless. The futex waiter code
3695 * observes that state when a task is exiting and loops until the task has
3696 * actually finished the futex cleanup. The worst case for this is that the
3697 * waiter runs through the wait loop until the state becomes visible.
3699 * This is called from the recursive fault handling path in do_exit().
3701 * This is best effort. Either the futex exit code has run already or
3702 * not. If the OWNER_DIED bit has been set on the futex then the waiter can
3703 * take it over. If not, the problem is pushed back to user space. If the
3704 * futex exit code did not run yet, then an already queued waiter might
3705 * block forever, but there is nothing which can be done about that.
3707 void futex_exit_recursive(struct task_struct *tsk)
3709 /* If the state is FUTEX_STATE_EXITING then futex_exit_mutex is held */
3710 if (tsk->futex_state == FUTEX_STATE_EXITING)
3711 mutex_unlock(&tsk->futex_exit_mutex);
3712 tsk->futex_state = FUTEX_STATE_DEAD;
3715 static void futex_cleanup_begin(struct task_struct *tsk)
3718 * Prevent various race issues against a concurrent incoming waiter
3719 * including live locks by forcing the waiter to block on
3720 * tsk->futex_exit_mutex when it observes FUTEX_STATE_EXITING in
3721 * attach_to_pi_owner().
3723 mutex_lock(&tsk->futex_exit_mutex);
3726 * Switch the state to FUTEX_STATE_EXITING under tsk->pi_lock.
3728 * This ensures that all subsequent checks of tsk->futex_state in
3729 * attach_to_pi_owner() must observe FUTEX_STATE_EXITING with
3730 * tsk->pi_lock held.
3732 * It guarantees also that a pi_state which was queued right before
3733 * the state change under tsk->pi_lock by a concurrent waiter must
3734 * be observed in exit_pi_state_list().
3736 raw_spin_lock_irq(&tsk->pi_lock);
3737 tsk->futex_state = FUTEX_STATE_EXITING;
3738 raw_spin_unlock_irq(&tsk->pi_lock);
3741 static void futex_cleanup_end(struct task_struct *tsk, int state)
3744 * Lockless store. The only side effect is that an observer might
3745 * take another loop until it becomes visible.
3747 tsk->futex_state = state;
3749 * Drop the exit protection. This unblocks waiters which observed
3750 * FUTEX_STATE_EXITING to reevaluate the state.
3752 mutex_unlock(&tsk->futex_exit_mutex);
3755 void futex_exec_release(struct task_struct *tsk)
3758 * The state handling is done for consistency, but in the case of
3759 * exec() there is no way to prevent futher damage as the PID stays
3760 * the same. But for the unlikely and arguably buggy case that a
3761 * futex is held on exec(), this provides at least as much state
3762 * consistency protection which is possible.
3764 futex_cleanup_begin(tsk);
3765 futex_cleanup(tsk);
3767 * Reset the state to FUTEX_STATE_OK. The task is alive and about
3768 * exec a new binary.
3770 futex_cleanup_end(tsk, FUTEX_STATE_OK);
3773 void futex_exit_release(struct task_struct *tsk)
3775 futex_cleanup_begin(tsk);
3776 futex_cleanup(tsk);
3777 futex_cleanup_end(tsk, FUTEX_STATE_DEAD);
3780 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3781 u32 __user *uaddr2, u32 val2, u32 val3)
3783 int cmd = op & FUTEX_CMD_MASK;
3784 unsigned int flags = 0;
3786 if (!(op & FUTEX_PRIVATE_FLAG))
3787 flags |= FLAGS_SHARED;
3789 if (op & FUTEX_CLOCK_REALTIME) {
3790 flags |= FLAGS_CLOCKRT;
3791 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3792 cmd != FUTEX_WAIT_REQUEUE_PI)
3793 return -ENOSYS;
3796 switch (cmd) {
3797 case FUTEX_LOCK_PI:
3798 case FUTEX_UNLOCK_PI:
3799 case FUTEX_TRYLOCK_PI:
3800 case FUTEX_WAIT_REQUEUE_PI:
3801 case FUTEX_CMP_REQUEUE_PI:
3802 if (!futex_cmpxchg_enabled)
3803 return -ENOSYS;
3806 switch (cmd) {
3807 case FUTEX_WAIT:
3808 val3 = FUTEX_BITSET_MATCH_ANY;
3809 /* fall through */
3810 case FUTEX_WAIT_BITSET:
3811 return futex_wait(uaddr, flags, val, timeout, val3);
3812 case FUTEX_WAKE:
3813 val3 = FUTEX_BITSET_MATCH_ANY;
3814 /* fall through */
3815 case FUTEX_WAKE_BITSET:
3816 return futex_wake(uaddr, flags, val, val3);
3817 case FUTEX_REQUEUE:
3818 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3819 case FUTEX_CMP_REQUEUE:
3820 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3821 case FUTEX_WAKE_OP:
3822 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3823 case FUTEX_LOCK_PI:
3824 return futex_lock_pi(uaddr, flags, timeout, 0);
3825 case FUTEX_UNLOCK_PI:
3826 return futex_unlock_pi(uaddr, flags);
3827 case FUTEX_TRYLOCK_PI:
3828 return futex_lock_pi(uaddr, flags, NULL, 1);
3829 case FUTEX_WAIT_REQUEUE_PI:
3830 val3 = FUTEX_BITSET_MATCH_ANY;
3831 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3832 uaddr2);
3833 case FUTEX_CMP_REQUEUE_PI:
3834 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3836 return -ENOSYS;
3840 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3841 struct __kernel_timespec __user *, utime, u32 __user *, uaddr2,
3842 u32, val3)
3844 struct timespec64 ts;
3845 ktime_t t, *tp = NULL;
3846 u32 val2 = 0;
3847 int cmd = op & FUTEX_CMD_MASK;
3849 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3850 cmd == FUTEX_WAIT_BITSET ||
3851 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3852 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3853 return -EFAULT;
3854 if (get_timespec64(&ts, utime))
3855 return -EFAULT;
3856 if (!timespec64_valid(&ts))
3857 return -EINVAL;
3859 t = timespec64_to_ktime(ts);
3860 if (cmd == FUTEX_WAIT)
3861 t = ktime_add_safe(ktime_get(), t);
3862 tp = &t;
3865 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3866 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3868 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3869 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3870 val2 = (u32) (unsigned long) utime;
3872 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3875 #ifdef CONFIG_COMPAT
3877 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3879 static inline int
3880 compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3881 compat_uptr_t __user *head, unsigned int *pi)
3883 if (get_user(*uentry, head))
3884 return -EFAULT;
3886 *entry = compat_ptr((*uentry) & ~1);
3887 *pi = (unsigned int)(*uentry) & 1;
3889 return 0;
3892 static void __user *futex_uaddr(struct robust_list __user *entry,
3893 compat_long_t futex_offset)
3895 compat_uptr_t base = ptr_to_compat(entry);
3896 void __user *uaddr = compat_ptr(base + futex_offset);
3898 return uaddr;
3902 * Walk curr->robust_list (very carefully, it's a userspace list!)
3903 * and mark any locks found there dead, and notify any waiters.
3905 * We silently return on any sign of list-walking problem.
3907 static void compat_exit_robust_list(struct task_struct *curr)
3909 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3910 struct robust_list __user *entry, *next_entry, *pending;
3911 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3912 unsigned int uninitialized_var(next_pi);
3913 compat_uptr_t uentry, next_uentry, upending;
3914 compat_long_t futex_offset;
3915 int rc;
3917 if (!futex_cmpxchg_enabled)
3918 return;
3921 * Fetch the list head (which was registered earlier, via
3922 * sys_set_robust_list()):
3924 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3925 return;
3927 * Fetch the relative futex offset:
3929 if (get_user(futex_offset, &head->futex_offset))
3930 return;
3932 * Fetch any possibly pending lock-add first, and handle it
3933 * if it exists:
3935 if (compat_fetch_robust_entry(&upending, &pending,
3936 &head->list_op_pending, &pip))
3937 return;
3939 next_entry = NULL; /* avoid warning with gcc */
3940 while (entry != (struct robust_list __user *) &head->list) {
3942 * Fetch the next entry in the list before calling
3943 * handle_futex_death:
3945 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3946 (compat_uptr_t __user *)&entry->next, &next_pi);
3948 * A pending lock might already be on the list, so
3949 * dont process it twice:
3951 if (entry != pending) {
3952 void __user *uaddr = futex_uaddr(entry, futex_offset);
3954 if (handle_futex_death(uaddr, curr, pi,
3955 HANDLE_DEATH_LIST))
3956 return;
3958 if (rc)
3959 return;
3960 uentry = next_uentry;
3961 entry = next_entry;
3962 pi = next_pi;
3964 * Avoid excessively long or circular lists:
3966 if (!--limit)
3967 break;
3969 cond_resched();
3971 if (pending) {
3972 void __user *uaddr = futex_uaddr(pending, futex_offset);
3974 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
3978 COMPAT_SYSCALL_DEFINE2(set_robust_list,
3979 struct compat_robust_list_head __user *, head,
3980 compat_size_t, len)
3982 if (!futex_cmpxchg_enabled)
3983 return -ENOSYS;
3985 if (unlikely(len != sizeof(*head)))
3986 return -EINVAL;
3988 current->compat_robust_list = head;
3990 return 0;
3993 COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3994 compat_uptr_t __user *, head_ptr,
3995 compat_size_t __user *, len_ptr)
3997 struct compat_robust_list_head __user *head;
3998 unsigned long ret;
3999 struct task_struct *p;
4001 if (!futex_cmpxchg_enabled)
4002 return -ENOSYS;
4004 rcu_read_lock();
4006 ret = -ESRCH;
4007 if (!pid)
4008 p = current;
4009 else {
4010 p = find_task_by_vpid(pid);
4011 if (!p)
4012 goto err_unlock;
4015 ret = -EPERM;
4016 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
4017 goto err_unlock;
4019 head = p->compat_robust_list;
4020 rcu_read_unlock();
4022 if (put_user(sizeof(*head), len_ptr))
4023 return -EFAULT;
4024 return put_user(ptr_to_compat(head), head_ptr);
4026 err_unlock:
4027 rcu_read_unlock();
4029 return ret;
4031 #endif /* CONFIG_COMPAT */
4033 #ifdef CONFIG_COMPAT_32BIT_TIME
4034 SYSCALL_DEFINE6(futex_time32, u32 __user *, uaddr, int, op, u32, val,
4035 struct old_timespec32 __user *, utime, u32 __user *, uaddr2,
4036 u32, val3)
4038 struct timespec64 ts;
4039 ktime_t t, *tp = NULL;
4040 int val2 = 0;
4041 int cmd = op & FUTEX_CMD_MASK;
4043 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
4044 cmd == FUTEX_WAIT_BITSET ||
4045 cmd == FUTEX_WAIT_REQUEUE_PI)) {
4046 if (get_old_timespec32(&ts, utime))
4047 return -EFAULT;
4048 if (!timespec64_valid(&ts))
4049 return -EINVAL;
4051 t = timespec64_to_ktime(ts);
4052 if (cmd == FUTEX_WAIT)
4053 t = ktime_add_safe(ktime_get(), t);
4054 tp = &t;
4056 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
4057 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
4058 val2 = (int) (unsigned long) utime;
4060 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
4062 #endif /* CONFIG_COMPAT_32BIT_TIME */
4064 static void __init futex_detect_cmpxchg(void)
4066 #ifndef CONFIG_HAVE_FUTEX_CMPXCHG
4067 u32 curval;
4070 * This will fail and we want it. Some arch implementations do
4071 * runtime detection of the futex_atomic_cmpxchg_inatomic()
4072 * functionality. We want to know that before we call in any
4073 * of the complex code paths. Also we want to prevent
4074 * registration of robust lists in that case. NULL is
4075 * guaranteed to fault and we get -EFAULT on functional
4076 * implementation, the non-functional ones will return
4077 * -ENOSYS.
4079 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4080 futex_cmpxchg_enabled = 1;
4081 #endif
4084 static int __init futex_init(void)
4086 unsigned int futex_shift;
4087 unsigned long i;
4089 #if CONFIG_BASE_SMALL
4090 futex_hashsize = 16;
4091 #else
4092 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4093 #endif
4095 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4096 futex_hashsize, 0,
4097 futex_hashsize < 256 ? HASH_SMALL : 0,
4098 &futex_shift, NULL,
4099 futex_hashsize, futex_hashsize);
4100 futex_hashsize = 1UL << futex_shift;
4102 futex_detect_cmpxchg();
4104 for (i = 0; i < futex_hashsize; i++) {
4105 atomic_set(&futex_queues[i].waiters, 0);
4106 plist_head_init(&futex_queues[i].chain);
4107 spin_lock_init(&futex_queues[i].lock);
4110 return 0;
4112 core_initcall(futex_init);