1 // SPDX-License-Identifier: GPL-2.0-only
3 * linux/kernel/profile.c
4 * Simple profiling. Manages a direct-mapped profile hit count buffer,
5 * with configurable resolution, support for restricting the cpus on
6 * which profiling is done, and switching between cpu time and
7 * schedule() calls via kernel command line parameters passed at boot.
9 * Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
11 * Consolidation of architecture support code for profiling,
12 * Nadia Yvette Chambers, Oracle, July 2004
13 * Amortized hit count accounting via per-cpu open-addressed hashtables
14 * to resolve timer interrupt livelocks, Nadia Yvette Chambers,
18 #include <linux/export.h>
19 #include <linux/profile.h>
20 #include <linux/memblock.h>
21 #include <linux/notifier.h>
23 #include <linux/cpumask.h>
24 #include <linux/cpu.h>
25 #include <linux/highmem.h>
26 #include <linux/mutex.h>
27 #include <linux/slab.h>
28 #include <linux/vmalloc.h>
29 #include <linux/sched/stat.h>
31 #include <asm/sections.h>
32 #include <asm/irq_regs.h>
33 #include <asm/ptrace.h>
38 #define PROFILE_GRPSHIFT 3
39 #define PROFILE_GRPSZ (1 << PROFILE_GRPSHIFT)
40 #define NR_PROFILE_HIT (PAGE_SIZE/sizeof(struct profile_hit))
41 #define NR_PROFILE_GRP (NR_PROFILE_HIT/PROFILE_GRPSZ)
43 static atomic_t
*prof_buffer
;
44 static unsigned long prof_len
, prof_shift
;
46 int prof_on __read_mostly
;
47 EXPORT_SYMBOL_GPL(prof_on
);
49 static cpumask_var_t prof_cpu_mask
;
50 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
51 static DEFINE_PER_CPU(struct profile_hit
*[2], cpu_profile_hits
);
52 static DEFINE_PER_CPU(int, cpu_profile_flip
);
53 static DEFINE_MUTEX(profile_flip_mutex
);
54 #endif /* CONFIG_SMP */
56 int profile_setup(char *str
)
58 static const char schedstr
[] = "schedule";
59 static const char sleepstr
[] = "sleep";
60 static const char kvmstr
[] = "kvm";
63 if (!strncmp(str
, sleepstr
, strlen(sleepstr
))) {
64 #ifdef CONFIG_SCHEDSTATS
65 force_schedstat_enabled();
66 prof_on
= SLEEP_PROFILING
;
67 if (str
[strlen(sleepstr
)] == ',')
68 str
+= strlen(sleepstr
) + 1;
69 if (get_option(&str
, &par
))
71 pr_info("kernel sleep profiling enabled (shift: %ld)\n",
74 pr_warn("kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75 #endif /* CONFIG_SCHEDSTATS */
76 } else if (!strncmp(str
, schedstr
, strlen(schedstr
))) {
77 prof_on
= SCHED_PROFILING
;
78 if (str
[strlen(schedstr
)] == ',')
79 str
+= strlen(schedstr
) + 1;
80 if (get_option(&str
, &par
))
82 pr_info("kernel schedule profiling enabled (shift: %ld)\n",
84 } else if (!strncmp(str
, kvmstr
, strlen(kvmstr
))) {
85 prof_on
= KVM_PROFILING
;
86 if (str
[strlen(kvmstr
)] == ',')
87 str
+= strlen(kvmstr
) + 1;
88 if (get_option(&str
, &par
))
90 pr_info("kernel KVM profiling enabled (shift: %ld)\n",
92 } else if (get_option(&str
, &par
)) {
94 prof_on
= CPU_PROFILING
;
95 pr_info("kernel profiling enabled (shift: %ld)\n",
100 __setup("profile=", profile_setup
);
103 int __ref
profile_init(void)
109 /* only text is profiled */
110 prof_len
= (_etext
- _stext
) >> prof_shift
;
111 buffer_bytes
= prof_len
*sizeof(atomic_t
);
113 if (!alloc_cpumask_var(&prof_cpu_mask
, GFP_KERNEL
))
116 cpumask_copy(prof_cpu_mask
, cpu_possible_mask
);
118 prof_buffer
= kzalloc(buffer_bytes
, GFP_KERNEL
|__GFP_NOWARN
);
122 prof_buffer
= alloc_pages_exact(buffer_bytes
,
123 GFP_KERNEL
|__GFP_ZERO
|__GFP_NOWARN
);
127 prof_buffer
= vzalloc(buffer_bytes
);
131 free_cpumask_var(prof_cpu_mask
);
135 /* Profile event notifications */
137 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier
);
138 static ATOMIC_NOTIFIER_HEAD(task_free_notifier
);
139 static BLOCKING_NOTIFIER_HEAD(munmap_notifier
);
141 void profile_task_exit(struct task_struct
*task
)
143 blocking_notifier_call_chain(&task_exit_notifier
, 0, task
);
146 int profile_handoff_task(struct task_struct
*task
)
149 ret
= atomic_notifier_call_chain(&task_free_notifier
, 0, task
);
150 return (ret
== NOTIFY_OK
) ? 1 : 0;
153 void profile_munmap(unsigned long addr
)
155 blocking_notifier_call_chain(&munmap_notifier
, 0, (void *)addr
);
158 int task_handoff_register(struct notifier_block
*n
)
160 return atomic_notifier_chain_register(&task_free_notifier
, n
);
162 EXPORT_SYMBOL_GPL(task_handoff_register
);
164 int task_handoff_unregister(struct notifier_block
*n
)
166 return atomic_notifier_chain_unregister(&task_free_notifier
, n
);
168 EXPORT_SYMBOL_GPL(task_handoff_unregister
);
170 int profile_event_register(enum profile_type type
, struct notifier_block
*n
)
175 case PROFILE_TASK_EXIT
:
176 err
= blocking_notifier_chain_register(
177 &task_exit_notifier
, n
);
180 err
= blocking_notifier_chain_register(
181 &munmap_notifier
, n
);
187 EXPORT_SYMBOL_GPL(profile_event_register
);
189 int profile_event_unregister(enum profile_type type
, struct notifier_block
*n
)
194 case PROFILE_TASK_EXIT
:
195 err
= blocking_notifier_chain_unregister(
196 &task_exit_notifier
, n
);
199 err
= blocking_notifier_chain_unregister(
200 &munmap_notifier
, n
);
206 EXPORT_SYMBOL_GPL(profile_event_unregister
);
208 #if defined(CONFIG_SMP) && defined(CONFIG_PROC_FS)
210 * Each cpu has a pair of open-addressed hashtables for pending
211 * profile hits. read_profile() IPI's all cpus to request them
212 * to flip buffers and flushes their contents to prof_buffer itself.
213 * Flip requests are serialized by the profile_flip_mutex. The sole
214 * use of having a second hashtable is for avoiding cacheline
215 * contention that would otherwise happen during flushes of pending
216 * profile hits required for the accuracy of reported profile hits
217 * and so resurrect the interrupt livelock issue.
219 * The open-addressed hashtables are indexed by profile buffer slot
220 * and hold the number of pending hits to that profile buffer slot on
221 * a cpu in an entry. When the hashtable overflows, all pending hits
222 * are accounted to their corresponding profile buffer slots with
223 * atomic_add() and the hashtable emptied. As numerous pending hits
224 * may be accounted to a profile buffer slot in a hashtable entry,
225 * this amortizes a number of atomic profile buffer increments likely
226 * to be far larger than the number of entries in the hashtable,
227 * particularly given that the number of distinct profile buffer
228 * positions to which hits are accounted during short intervals (e.g.
229 * several seconds) is usually very small. Exclusion from buffer
230 * flipping is provided by interrupt disablement (note that for
231 * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
233 * The hash function is meant to be lightweight as opposed to strong,
234 * and was vaguely inspired by ppc64 firmware-supported inverted
235 * pagetable hash functions, but uses a full hashtable full of finite
236 * collision chains, not just pairs of them.
240 static void __profile_flip_buffers(void *unused
)
242 int cpu
= smp_processor_id();
244 per_cpu(cpu_profile_flip
, cpu
) = !per_cpu(cpu_profile_flip
, cpu
);
247 static void profile_flip_buffers(void)
251 mutex_lock(&profile_flip_mutex
);
252 j
= per_cpu(cpu_profile_flip
, get_cpu());
254 on_each_cpu(__profile_flip_buffers
, NULL
, 1);
255 for_each_online_cpu(cpu
) {
256 struct profile_hit
*hits
= per_cpu(cpu_profile_hits
, cpu
)[j
];
257 for (i
= 0; i
< NR_PROFILE_HIT
; ++i
) {
263 atomic_add(hits
[i
].hits
, &prof_buffer
[hits
[i
].pc
]);
264 hits
[i
].hits
= hits
[i
].pc
= 0;
267 mutex_unlock(&profile_flip_mutex
);
270 static void profile_discard_flip_buffers(void)
274 mutex_lock(&profile_flip_mutex
);
275 i
= per_cpu(cpu_profile_flip
, get_cpu());
277 on_each_cpu(__profile_flip_buffers
, NULL
, 1);
278 for_each_online_cpu(cpu
) {
279 struct profile_hit
*hits
= per_cpu(cpu_profile_hits
, cpu
)[i
];
280 memset(hits
, 0, NR_PROFILE_HIT
*sizeof(struct profile_hit
));
282 mutex_unlock(&profile_flip_mutex
);
285 static void do_profile_hits(int type
, void *__pc
, unsigned int nr_hits
)
287 unsigned long primary
, secondary
, flags
, pc
= (unsigned long)__pc
;
289 struct profile_hit
*hits
;
291 pc
= min((pc
- (unsigned long)_stext
) >> prof_shift
, prof_len
- 1);
292 i
= primary
= (pc
& (NR_PROFILE_GRP
- 1)) << PROFILE_GRPSHIFT
;
293 secondary
= (~(pc
<< 1) & (NR_PROFILE_GRP
- 1)) << PROFILE_GRPSHIFT
;
295 hits
= per_cpu(cpu_profile_hits
, cpu
)[per_cpu(cpu_profile_flip
, cpu
)];
301 * We buffer the global profiler buffer into a per-CPU
302 * queue and thus reduce the number of global (and possibly
303 * NUMA-alien) accesses. The write-queue is self-coalescing:
305 local_irq_save(flags
);
307 for (j
= 0; j
< PROFILE_GRPSZ
; ++j
) {
308 if (hits
[i
+ j
].pc
== pc
) {
309 hits
[i
+ j
].hits
+= nr_hits
;
311 } else if (!hits
[i
+ j
].hits
) {
313 hits
[i
+ j
].hits
= nr_hits
;
317 i
= (i
+ secondary
) & (NR_PROFILE_HIT
- 1);
318 } while (i
!= primary
);
321 * Add the current hit(s) and flush the write-queue out
322 * to the global buffer:
324 atomic_add(nr_hits
, &prof_buffer
[pc
]);
325 for (i
= 0; i
< NR_PROFILE_HIT
; ++i
) {
326 atomic_add(hits
[i
].hits
, &prof_buffer
[hits
[i
].pc
]);
327 hits
[i
].pc
= hits
[i
].hits
= 0;
330 local_irq_restore(flags
);
334 static int profile_dead_cpu(unsigned int cpu
)
339 if (cpumask_available(prof_cpu_mask
))
340 cpumask_clear_cpu(cpu
, prof_cpu_mask
);
342 for (i
= 0; i
< 2; i
++) {
343 if (per_cpu(cpu_profile_hits
, cpu
)[i
]) {
344 page
= virt_to_page(per_cpu(cpu_profile_hits
, cpu
)[i
]);
345 per_cpu(cpu_profile_hits
, cpu
)[i
] = NULL
;
352 static int profile_prepare_cpu(unsigned int cpu
)
354 int i
, node
= cpu_to_mem(cpu
);
357 per_cpu(cpu_profile_flip
, cpu
) = 0;
359 for (i
= 0; i
< 2; i
++) {
360 if (per_cpu(cpu_profile_hits
, cpu
)[i
])
363 page
= __alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
365 profile_dead_cpu(cpu
);
368 per_cpu(cpu_profile_hits
, cpu
)[i
] = page_address(page
);
374 static int profile_online_cpu(unsigned int cpu
)
376 if (cpumask_available(prof_cpu_mask
))
377 cpumask_set_cpu(cpu
, prof_cpu_mask
);
382 #else /* !CONFIG_SMP */
383 #define profile_flip_buffers() do { } while (0)
384 #define profile_discard_flip_buffers() do { } while (0)
386 static void do_profile_hits(int type
, void *__pc
, unsigned int nr_hits
)
389 pc
= ((unsigned long)__pc
- (unsigned long)_stext
) >> prof_shift
;
390 atomic_add(nr_hits
, &prof_buffer
[min(pc
, prof_len
- 1)]);
392 #endif /* !CONFIG_SMP */
394 void profile_hits(int type
, void *__pc
, unsigned int nr_hits
)
396 if (prof_on
!= type
|| !prof_buffer
)
398 do_profile_hits(type
, __pc
, nr_hits
);
400 EXPORT_SYMBOL_GPL(profile_hits
);
402 void profile_tick(int type
)
404 struct pt_regs
*regs
= get_irq_regs();
406 if (!user_mode(regs
) && cpumask_available(prof_cpu_mask
) &&
407 cpumask_test_cpu(smp_processor_id(), prof_cpu_mask
))
408 profile_hit(type
, (void *)profile_pc(regs
));
411 #ifdef CONFIG_PROC_FS
412 #include <linux/proc_fs.h>
413 #include <linux/seq_file.h>
414 #include <linux/uaccess.h>
416 static int prof_cpu_mask_proc_show(struct seq_file
*m
, void *v
)
418 seq_printf(m
, "%*pb\n", cpumask_pr_args(prof_cpu_mask
));
422 static int prof_cpu_mask_proc_open(struct inode
*inode
, struct file
*file
)
424 return single_open(file
, prof_cpu_mask_proc_show
, NULL
);
427 static ssize_t
prof_cpu_mask_proc_write(struct file
*file
,
428 const char __user
*buffer
, size_t count
, loff_t
*pos
)
430 cpumask_var_t new_value
;
433 if (!alloc_cpumask_var(&new_value
, GFP_KERNEL
))
436 err
= cpumask_parse_user(buffer
, count
, new_value
);
438 cpumask_copy(prof_cpu_mask
, new_value
);
441 free_cpumask_var(new_value
);
445 static const struct proc_ops prof_cpu_mask_proc_ops
= {
446 .proc_open
= prof_cpu_mask_proc_open
,
447 .proc_read
= seq_read
,
448 .proc_lseek
= seq_lseek
,
449 .proc_release
= single_release
,
450 .proc_write
= prof_cpu_mask_proc_write
,
453 void create_prof_cpu_mask(void)
455 /* create /proc/irq/prof_cpu_mask */
456 proc_create("irq/prof_cpu_mask", 0600, NULL
, &prof_cpu_mask_proc_ops
);
460 * This function accesses profiling information. The returned data is
461 * binary: the sampling step and the actual contents of the profile
462 * buffer. Use of the program readprofile is recommended in order to
463 * get meaningful info out of these data.
466 read_profile(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
468 unsigned long p
= *ppos
;
471 unsigned int sample_step
= 1 << prof_shift
;
473 profile_flip_buffers();
474 if (p
>= (prof_len
+1)*sizeof(unsigned int))
476 if (count
> (prof_len
+1)*sizeof(unsigned int) - p
)
477 count
= (prof_len
+1)*sizeof(unsigned int) - p
;
480 while (p
< sizeof(unsigned int) && count
> 0) {
481 if (put_user(*((char *)(&sample_step
)+p
), buf
))
483 buf
++; p
++; count
--; read
++;
485 pnt
= (char *)prof_buffer
+ p
- sizeof(atomic_t
);
486 if (copy_to_user(buf
, (void *)pnt
, count
))
494 * Writing to /proc/profile resets the counters
496 * Writing a 'profiling multiplier' value into it also re-sets the profiling
497 * interrupt frequency, on architectures that support this.
499 static ssize_t
write_profile(struct file
*file
, const char __user
*buf
,
500 size_t count
, loff_t
*ppos
)
503 extern int setup_profiling_timer(unsigned int multiplier
);
505 if (count
== sizeof(int)) {
506 unsigned int multiplier
;
508 if (copy_from_user(&multiplier
, buf
, sizeof(int)))
511 if (setup_profiling_timer(multiplier
))
515 profile_discard_flip_buffers();
516 memset(prof_buffer
, 0, prof_len
* sizeof(atomic_t
));
520 static const struct proc_ops profile_proc_ops
= {
521 .proc_read
= read_profile
,
522 .proc_write
= write_profile
,
523 .proc_lseek
= default_llseek
,
526 int __ref
create_proc_profile(void)
528 struct proc_dir_entry
*entry
;
530 enum cpuhp_state online_state
;
538 err
= cpuhp_setup_state(CPUHP_PROFILE_PREPARE
, "PROFILE_PREPARE",
539 profile_prepare_cpu
, profile_dead_cpu
);
543 err
= cpuhp_setup_state(CPUHP_AP_ONLINE_DYN
, "AP_PROFILE_ONLINE",
544 profile_online_cpu
, NULL
);
550 entry
= proc_create("profile", S_IWUSR
| S_IRUGO
,
551 NULL
, &profile_proc_ops
);
554 proc_set_size(entry
, (1 + prof_len
) * sizeof(atomic_t
));
559 cpuhp_remove_state(online_state
);
561 cpuhp_remove_state(CPUHP_PROFILE_PREPARE
);
565 subsys_initcall(create_proc_profile
);
566 #endif /* CONFIG_PROC_FS */