drm/etnaviv: ensure write caches are flushed at end of user cmdstream
[linux/fpc-iii.git] / net / sctp / outqueue.c
blob72e54a416af64bd993b28c9380e3656996458375
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
7 * This file is part of the SCTP kernel implementation
9 * These functions implement the sctp_outq class. The outqueue handles
10 * bundling and queueing of outgoing SCTP chunks.
12 * This SCTP implementation is free software;
13 * you can redistribute it and/or modify it under the terms of
14 * the GNU General Public License as published by
15 * the Free Software Foundation; either version 2, or (at your option)
16 * any later version.
18 * This SCTP implementation is distributed in the hope that it
19 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
20 * ************************
21 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
22 * See the GNU General Public License for more details.
24 * You should have received a copy of the GNU General Public License
25 * along with GNU CC; see the file COPYING. If not, see
26 * <http://www.gnu.org/licenses/>.
28 * Please send any bug reports or fixes you make to the
29 * email address(es):
30 * lksctp developers <linux-sctp@vger.kernel.org>
32 * Written or modified by:
33 * La Monte H.P. Yarroll <piggy@acm.org>
34 * Karl Knutson <karl@athena.chicago.il.us>
35 * Perry Melange <pmelange@null.cc.uic.edu>
36 * Xingang Guo <xingang.guo@intel.com>
37 * Hui Huang <hui.huang@nokia.com>
38 * Sridhar Samudrala <sri@us.ibm.com>
39 * Jon Grimm <jgrimm@us.ibm.com>
42 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
44 #include <linux/types.h>
45 #include <linux/list.h> /* For struct list_head */
46 #include <linux/socket.h>
47 #include <linux/ip.h>
48 #include <linux/slab.h>
49 #include <net/sock.h> /* For skb_set_owner_w */
51 #include <net/sctp/sctp.h>
52 #include <net/sctp/sm.h>
54 /* Declare internal functions here. */
55 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn);
56 static void sctp_check_transmitted(struct sctp_outq *q,
57 struct list_head *transmitted_queue,
58 struct sctp_transport *transport,
59 union sctp_addr *saddr,
60 struct sctp_sackhdr *sack,
61 __u32 *highest_new_tsn);
63 static void sctp_mark_missing(struct sctp_outq *q,
64 struct list_head *transmitted_queue,
65 struct sctp_transport *transport,
66 __u32 highest_new_tsn,
67 int count_of_newacks);
69 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 sack_ctsn);
71 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp);
73 /* Add data to the front of the queue. */
74 static inline void sctp_outq_head_data(struct sctp_outq *q,
75 struct sctp_chunk *ch)
77 list_add(&ch->list, &q->out_chunk_list);
78 q->out_qlen += ch->skb->len;
81 /* Take data from the front of the queue. */
82 static inline struct sctp_chunk *sctp_outq_dequeue_data(struct sctp_outq *q)
84 struct sctp_chunk *ch = NULL;
86 if (!list_empty(&q->out_chunk_list)) {
87 struct list_head *entry = q->out_chunk_list.next;
89 ch = list_entry(entry, struct sctp_chunk, list);
90 list_del_init(entry);
91 q->out_qlen -= ch->skb->len;
93 return ch;
95 /* Add data chunk to the end of the queue. */
96 static inline void sctp_outq_tail_data(struct sctp_outq *q,
97 struct sctp_chunk *ch)
99 list_add_tail(&ch->list, &q->out_chunk_list);
100 q->out_qlen += ch->skb->len;
104 * SFR-CACC algorithm:
105 * D) If count_of_newacks is greater than or equal to 2
106 * and t was not sent to the current primary then the
107 * sender MUST NOT increment missing report count for t.
109 static inline int sctp_cacc_skip_3_1_d(struct sctp_transport *primary,
110 struct sctp_transport *transport,
111 int count_of_newacks)
113 if (count_of_newacks >= 2 && transport != primary)
114 return 1;
115 return 0;
119 * SFR-CACC algorithm:
120 * F) If count_of_newacks is less than 2, let d be the
121 * destination to which t was sent. If cacc_saw_newack
122 * is 0 for destination d, then the sender MUST NOT
123 * increment missing report count for t.
125 static inline int sctp_cacc_skip_3_1_f(struct sctp_transport *transport,
126 int count_of_newacks)
128 if (count_of_newacks < 2 &&
129 (transport && !transport->cacc.cacc_saw_newack))
130 return 1;
131 return 0;
135 * SFR-CACC algorithm:
136 * 3.1) If CYCLING_CHANGEOVER is 0, the sender SHOULD
137 * execute steps C, D, F.
139 * C has been implemented in sctp_outq_sack
141 static inline int sctp_cacc_skip_3_1(struct sctp_transport *primary,
142 struct sctp_transport *transport,
143 int count_of_newacks)
145 if (!primary->cacc.cycling_changeover) {
146 if (sctp_cacc_skip_3_1_d(primary, transport, count_of_newacks))
147 return 1;
148 if (sctp_cacc_skip_3_1_f(transport, count_of_newacks))
149 return 1;
150 return 0;
152 return 0;
156 * SFR-CACC algorithm:
157 * 3.2) Else if CYCLING_CHANGEOVER is 1, and t is less
158 * than next_tsn_at_change of the current primary, then
159 * the sender MUST NOT increment missing report count
160 * for t.
162 static inline int sctp_cacc_skip_3_2(struct sctp_transport *primary, __u32 tsn)
164 if (primary->cacc.cycling_changeover &&
165 TSN_lt(tsn, primary->cacc.next_tsn_at_change))
166 return 1;
167 return 0;
171 * SFR-CACC algorithm:
172 * 3) If the missing report count for TSN t is to be
173 * incremented according to [RFC2960] and
174 * [SCTP_STEWART-2002], and CHANGEOVER_ACTIVE is set,
175 * then the sender MUST further execute steps 3.1 and
176 * 3.2 to determine if the missing report count for
177 * TSN t SHOULD NOT be incremented.
179 * 3.3) If 3.1 and 3.2 do not dictate that the missing
180 * report count for t should not be incremented, then
181 * the sender SHOULD increment missing report count for
182 * t (according to [RFC2960] and [SCTP_STEWART_2002]).
184 static inline int sctp_cacc_skip(struct sctp_transport *primary,
185 struct sctp_transport *transport,
186 int count_of_newacks,
187 __u32 tsn)
189 if (primary->cacc.changeover_active &&
190 (sctp_cacc_skip_3_1(primary, transport, count_of_newacks) ||
191 sctp_cacc_skip_3_2(primary, tsn)))
192 return 1;
193 return 0;
196 /* Initialize an existing sctp_outq. This does the boring stuff.
197 * You still need to define handlers if you really want to DO
198 * something with this structure...
200 void sctp_outq_init(struct sctp_association *asoc, struct sctp_outq *q)
202 memset(q, 0, sizeof(struct sctp_outq));
204 q->asoc = asoc;
205 INIT_LIST_HEAD(&q->out_chunk_list);
206 INIT_LIST_HEAD(&q->control_chunk_list);
207 INIT_LIST_HEAD(&q->retransmit);
208 INIT_LIST_HEAD(&q->sacked);
209 INIT_LIST_HEAD(&q->abandoned);
212 /* Free the outqueue structure and any related pending chunks.
214 static void __sctp_outq_teardown(struct sctp_outq *q)
216 struct sctp_transport *transport;
217 struct list_head *lchunk, *temp;
218 struct sctp_chunk *chunk, *tmp;
220 /* Throw away unacknowledged chunks. */
221 list_for_each_entry(transport, &q->asoc->peer.transport_addr_list,
222 transports) {
223 while ((lchunk = sctp_list_dequeue(&transport->transmitted)) != NULL) {
224 chunk = list_entry(lchunk, struct sctp_chunk,
225 transmitted_list);
226 /* Mark as part of a failed message. */
227 sctp_chunk_fail(chunk, q->error);
228 sctp_chunk_free(chunk);
232 /* Throw away chunks that have been gap ACKed. */
233 list_for_each_safe(lchunk, temp, &q->sacked) {
234 list_del_init(lchunk);
235 chunk = list_entry(lchunk, struct sctp_chunk,
236 transmitted_list);
237 sctp_chunk_fail(chunk, q->error);
238 sctp_chunk_free(chunk);
241 /* Throw away any chunks in the retransmit queue. */
242 list_for_each_safe(lchunk, temp, &q->retransmit) {
243 list_del_init(lchunk);
244 chunk = list_entry(lchunk, struct sctp_chunk,
245 transmitted_list);
246 sctp_chunk_fail(chunk, q->error);
247 sctp_chunk_free(chunk);
250 /* Throw away any chunks that are in the abandoned queue. */
251 list_for_each_safe(lchunk, temp, &q->abandoned) {
252 list_del_init(lchunk);
253 chunk = list_entry(lchunk, struct sctp_chunk,
254 transmitted_list);
255 sctp_chunk_fail(chunk, q->error);
256 sctp_chunk_free(chunk);
259 /* Throw away any leftover data chunks. */
260 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
262 /* Mark as send failure. */
263 sctp_chunk_fail(chunk, q->error);
264 sctp_chunk_free(chunk);
267 /* Throw away any leftover control chunks. */
268 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
269 list_del_init(&chunk->list);
270 sctp_chunk_free(chunk);
274 void sctp_outq_teardown(struct sctp_outq *q)
276 __sctp_outq_teardown(q);
277 sctp_outq_init(q->asoc, q);
280 /* Free the outqueue structure and any related pending chunks. */
281 void sctp_outq_free(struct sctp_outq *q)
283 /* Throw away leftover chunks. */
284 __sctp_outq_teardown(q);
287 /* Put a new chunk in an sctp_outq. */
288 int sctp_outq_tail(struct sctp_outq *q, struct sctp_chunk *chunk, gfp_t gfp)
290 struct net *net = sock_net(q->asoc->base.sk);
291 int error = 0;
293 pr_debug("%s: outq:%p, chunk:%p[%s]\n", __func__, q, chunk,
294 chunk && chunk->chunk_hdr ?
295 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
296 "illegal chunk");
298 /* If it is data, queue it up, otherwise, send it
299 * immediately.
301 if (sctp_chunk_is_data(chunk)) {
302 /* Is it OK to queue data chunks? */
303 /* From 9. Termination of Association
305 * When either endpoint performs a shutdown, the
306 * association on each peer will stop accepting new
307 * data from its user and only deliver data in queue
308 * at the time of sending or receiving the SHUTDOWN
309 * chunk.
311 switch (q->asoc->state) {
312 case SCTP_STATE_CLOSED:
313 case SCTP_STATE_SHUTDOWN_PENDING:
314 case SCTP_STATE_SHUTDOWN_SENT:
315 case SCTP_STATE_SHUTDOWN_RECEIVED:
316 case SCTP_STATE_SHUTDOWN_ACK_SENT:
317 /* Cannot send after transport endpoint shutdown */
318 error = -ESHUTDOWN;
319 break;
321 default:
322 pr_debug("%s: outqueueing: outq:%p, chunk:%p[%s])\n",
323 __func__, q, chunk, chunk && chunk->chunk_hdr ?
324 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
325 "illegal chunk");
327 sctp_chunk_hold(chunk);
328 sctp_outq_tail_data(q, chunk);
329 if (chunk->asoc->prsctp_enable &&
330 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
331 chunk->asoc->sent_cnt_removable++;
332 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
333 SCTP_INC_STATS(net, SCTP_MIB_OUTUNORDERCHUNKS);
334 else
335 SCTP_INC_STATS(net, SCTP_MIB_OUTORDERCHUNKS);
336 break;
338 } else {
339 list_add_tail(&chunk->list, &q->control_chunk_list);
340 SCTP_INC_STATS(net, SCTP_MIB_OUTCTRLCHUNKS);
343 if (error < 0)
344 return error;
346 if (!q->cork)
347 error = sctp_outq_flush(q, 0, gfp);
349 return error;
352 /* Insert a chunk into the sorted list based on the TSNs. The retransmit list
353 * and the abandoned list are in ascending order.
355 static void sctp_insert_list(struct list_head *head, struct list_head *new)
357 struct list_head *pos;
358 struct sctp_chunk *nchunk, *lchunk;
359 __u32 ntsn, ltsn;
360 int done = 0;
362 nchunk = list_entry(new, struct sctp_chunk, transmitted_list);
363 ntsn = ntohl(nchunk->subh.data_hdr->tsn);
365 list_for_each(pos, head) {
366 lchunk = list_entry(pos, struct sctp_chunk, transmitted_list);
367 ltsn = ntohl(lchunk->subh.data_hdr->tsn);
368 if (TSN_lt(ntsn, ltsn)) {
369 list_add(new, pos->prev);
370 done = 1;
371 break;
374 if (!done)
375 list_add_tail(new, head);
378 static int sctp_prsctp_prune_sent(struct sctp_association *asoc,
379 struct sctp_sndrcvinfo *sinfo,
380 struct list_head *queue, int msg_len)
382 struct sctp_chunk *chk, *temp;
384 list_for_each_entry_safe(chk, temp, queue, transmitted_list) {
385 if (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
386 chk->prsctp_param <= sinfo->sinfo_timetolive)
387 continue;
389 list_del_init(&chk->transmitted_list);
390 sctp_insert_list(&asoc->outqueue.abandoned,
391 &chk->transmitted_list);
393 asoc->sent_cnt_removable--;
394 asoc->abandoned_sent[SCTP_PR_INDEX(PRIO)]++;
396 if (!chk->tsn_gap_acked) {
397 if (chk->transport)
398 chk->transport->flight_size -=
399 sctp_data_size(chk);
400 asoc->outqueue.outstanding_bytes -= sctp_data_size(chk);
403 msg_len -= SCTP_DATA_SNDSIZE(chk) +
404 sizeof(struct sk_buff) +
405 sizeof(struct sctp_chunk);
406 if (msg_len <= 0)
407 break;
410 return msg_len;
413 static int sctp_prsctp_prune_unsent(struct sctp_association *asoc,
414 struct sctp_sndrcvinfo *sinfo,
415 struct list_head *queue, int msg_len)
417 struct sctp_chunk *chk, *temp;
419 list_for_each_entry_safe(chk, temp, queue, list) {
420 if (!SCTP_PR_PRIO_ENABLED(chk->sinfo.sinfo_flags) ||
421 chk->prsctp_param <= sinfo->sinfo_timetolive)
422 continue;
424 list_del_init(&chk->list);
425 asoc->sent_cnt_removable--;
426 asoc->abandoned_unsent[SCTP_PR_INDEX(PRIO)]++;
428 msg_len -= SCTP_DATA_SNDSIZE(chk) +
429 sizeof(struct sk_buff) +
430 sizeof(struct sctp_chunk);
431 sctp_chunk_free(chk);
432 if (msg_len <= 0)
433 break;
436 return msg_len;
439 /* Abandon the chunks according their priorities */
440 void sctp_prsctp_prune(struct sctp_association *asoc,
441 struct sctp_sndrcvinfo *sinfo, int msg_len)
443 struct sctp_transport *transport;
445 if (!asoc->prsctp_enable || !asoc->sent_cnt_removable)
446 return;
448 msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
449 &asoc->outqueue.retransmit,
450 msg_len);
451 if (msg_len <= 0)
452 return;
454 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
455 transports) {
456 msg_len = sctp_prsctp_prune_sent(asoc, sinfo,
457 &transport->transmitted,
458 msg_len);
459 if (msg_len <= 0)
460 return;
463 sctp_prsctp_prune_unsent(asoc, sinfo,
464 &asoc->outqueue.out_chunk_list,
465 msg_len);
468 /* Mark all the eligible packets on a transport for retransmission. */
469 void sctp_retransmit_mark(struct sctp_outq *q,
470 struct sctp_transport *transport,
471 __u8 reason)
473 struct list_head *lchunk, *ltemp;
474 struct sctp_chunk *chunk;
476 /* Walk through the specified transmitted queue. */
477 list_for_each_safe(lchunk, ltemp, &transport->transmitted) {
478 chunk = list_entry(lchunk, struct sctp_chunk,
479 transmitted_list);
481 /* If the chunk is abandoned, move it to abandoned list. */
482 if (sctp_chunk_abandoned(chunk)) {
483 list_del_init(lchunk);
484 sctp_insert_list(&q->abandoned, lchunk);
486 /* If this chunk has not been previousely acked,
487 * stop considering it 'outstanding'. Our peer
488 * will most likely never see it since it will
489 * not be retransmitted
491 if (!chunk->tsn_gap_acked) {
492 if (chunk->transport)
493 chunk->transport->flight_size -=
494 sctp_data_size(chunk);
495 q->outstanding_bytes -= sctp_data_size(chunk);
496 q->asoc->peer.rwnd += sctp_data_size(chunk);
498 continue;
501 /* If we are doing retransmission due to a timeout or pmtu
502 * discovery, only the chunks that are not yet acked should
503 * be added to the retransmit queue.
505 if ((reason == SCTP_RTXR_FAST_RTX &&
506 (chunk->fast_retransmit == SCTP_NEED_FRTX)) ||
507 (reason != SCTP_RTXR_FAST_RTX && !chunk->tsn_gap_acked)) {
508 /* RFC 2960 6.2.1 Processing a Received SACK
510 * C) Any time a DATA chunk is marked for
511 * retransmission (via either T3-rtx timer expiration
512 * (Section 6.3.3) or via fast retransmit
513 * (Section 7.2.4)), add the data size of those
514 * chunks to the rwnd.
516 q->asoc->peer.rwnd += sctp_data_size(chunk);
517 q->outstanding_bytes -= sctp_data_size(chunk);
518 if (chunk->transport)
519 transport->flight_size -= sctp_data_size(chunk);
521 /* sctpimpguide-05 Section 2.8.2
522 * M5) If a T3-rtx timer expires, the
523 * 'TSN.Missing.Report' of all affected TSNs is set
524 * to 0.
526 chunk->tsn_missing_report = 0;
528 /* If a chunk that is being used for RTT measurement
529 * has to be retransmitted, we cannot use this chunk
530 * anymore for RTT measurements. Reset rto_pending so
531 * that a new RTT measurement is started when a new
532 * data chunk is sent.
534 if (chunk->rtt_in_progress) {
535 chunk->rtt_in_progress = 0;
536 transport->rto_pending = 0;
539 chunk->resent = 1;
541 /* Move the chunk to the retransmit queue. The chunks
542 * on the retransmit queue are always kept in order.
544 list_del_init(lchunk);
545 sctp_insert_list(&q->retransmit, lchunk);
549 pr_debug("%s: transport:%p, reason:%d, cwnd:%d, ssthresh:%d, "
550 "flight_size:%d, pba:%d\n", __func__, transport, reason,
551 transport->cwnd, transport->ssthresh, transport->flight_size,
552 transport->partial_bytes_acked);
555 /* Mark all the eligible packets on a transport for retransmission and force
556 * one packet out.
558 void sctp_retransmit(struct sctp_outq *q, struct sctp_transport *transport,
559 sctp_retransmit_reason_t reason)
561 struct net *net = sock_net(q->asoc->base.sk);
562 int error = 0;
564 switch (reason) {
565 case SCTP_RTXR_T3_RTX:
566 SCTP_INC_STATS(net, SCTP_MIB_T3_RETRANSMITS);
567 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_T3_RTX);
568 /* Update the retran path if the T3-rtx timer has expired for
569 * the current retran path.
571 if (transport == transport->asoc->peer.retran_path)
572 sctp_assoc_update_retran_path(transport->asoc);
573 transport->asoc->rtx_data_chunks +=
574 transport->asoc->unack_data;
575 break;
576 case SCTP_RTXR_FAST_RTX:
577 SCTP_INC_STATS(net, SCTP_MIB_FAST_RETRANSMITS);
578 sctp_transport_lower_cwnd(transport, SCTP_LOWER_CWND_FAST_RTX);
579 q->fast_rtx = 1;
580 break;
581 case SCTP_RTXR_PMTUD:
582 SCTP_INC_STATS(net, SCTP_MIB_PMTUD_RETRANSMITS);
583 break;
584 case SCTP_RTXR_T1_RTX:
585 SCTP_INC_STATS(net, SCTP_MIB_T1_RETRANSMITS);
586 transport->asoc->init_retries++;
587 break;
588 default:
589 BUG();
592 sctp_retransmit_mark(q, transport, reason);
594 /* PR-SCTP A5) Any time the T3-rtx timer expires, on any destination,
595 * the sender SHOULD try to advance the "Advanced.Peer.Ack.Point" by
596 * following the procedures outlined in C1 - C5.
598 if (reason == SCTP_RTXR_T3_RTX)
599 sctp_generate_fwdtsn(q, q->asoc->ctsn_ack_point);
601 /* Flush the queues only on timeout, since fast_rtx is only
602 * triggered during sack processing and the queue
603 * will be flushed at the end.
605 if (reason != SCTP_RTXR_FAST_RTX)
606 error = sctp_outq_flush(q, /* rtx_timeout */ 1, GFP_ATOMIC);
608 if (error)
609 q->asoc->base.sk->sk_err = -error;
613 * Transmit DATA chunks on the retransmit queue. Upon return from
614 * sctp_outq_flush_rtx() the packet 'pkt' may contain chunks which
615 * need to be transmitted by the caller.
616 * We assume that pkt->transport has already been set.
618 * The return value is a normal kernel error return value.
620 static int sctp_outq_flush_rtx(struct sctp_outq *q, struct sctp_packet *pkt,
621 int rtx_timeout, int *start_timer)
623 struct list_head *lqueue;
624 struct sctp_transport *transport = pkt->transport;
625 sctp_xmit_t status;
626 struct sctp_chunk *chunk, *chunk1;
627 int fast_rtx;
628 int error = 0;
629 int timer = 0;
630 int done = 0;
632 lqueue = &q->retransmit;
633 fast_rtx = q->fast_rtx;
635 /* This loop handles time-out retransmissions, fast retransmissions,
636 * and retransmissions due to opening of whindow.
638 * RFC 2960 6.3.3 Handle T3-rtx Expiration
640 * E3) Determine how many of the earliest (i.e., lowest TSN)
641 * outstanding DATA chunks for the address for which the
642 * T3-rtx has expired will fit into a single packet, subject
643 * to the MTU constraint for the path corresponding to the
644 * destination transport address to which the retransmission
645 * is being sent (this may be different from the address for
646 * which the timer expires [see Section 6.4]). Call this value
647 * K. Bundle and retransmit those K DATA chunks in a single
648 * packet to the destination endpoint.
650 * [Just to be painfully clear, if we are retransmitting
651 * because a timeout just happened, we should send only ONE
652 * packet of retransmitted data.]
654 * For fast retransmissions we also send only ONE packet. However,
655 * if we are just flushing the queue due to open window, we'll
656 * try to send as much as possible.
658 list_for_each_entry_safe(chunk, chunk1, lqueue, transmitted_list) {
659 /* If the chunk is abandoned, move it to abandoned list. */
660 if (sctp_chunk_abandoned(chunk)) {
661 list_del_init(&chunk->transmitted_list);
662 sctp_insert_list(&q->abandoned,
663 &chunk->transmitted_list);
664 continue;
667 /* Make sure that Gap Acked TSNs are not retransmitted. A
668 * simple approach is just to move such TSNs out of the
669 * way and into a 'transmitted' queue and skip to the
670 * next chunk.
672 if (chunk->tsn_gap_acked) {
673 list_move_tail(&chunk->transmitted_list,
674 &transport->transmitted);
675 continue;
678 /* If we are doing fast retransmit, ignore non-fast_rtransmit
679 * chunks
681 if (fast_rtx && !chunk->fast_retransmit)
682 continue;
684 redo:
685 /* Attempt to append this chunk to the packet. */
686 status = sctp_packet_append_chunk(pkt, chunk);
688 switch (status) {
689 case SCTP_XMIT_PMTU_FULL:
690 if (!pkt->has_data && !pkt->has_cookie_echo) {
691 /* If this packet did not contain DATA then
692 * retransmission did not happen, so do it
693 * again. We'll ignore the error here since
694 * control chunks are already freed so there
695 * is nothing we can do.
697 sctp_packet_transmit(pkt, GFP_ATOMIC);
698 goto redo;
701 /* Send this packet. */
702 error = sctp_packet_transmit(pkt, GFP_ATOMIC);
704 /* If we are retransmitting, we should only
705 * send a single packet.
706 * Otherwise, try appending this chunk again.
708 if (rtx_timeout || fast_rtx)
709 done = 1;
710 else
711 goto redo;
713 /* Bundle next chunk in the next round. */
714 break;
716 case SCTP_XMIT_RWND_FULL:
717 /* Send this packet. */
718 error = sctp_packet_transmit(pkt, GFP_ATOMIC);
720 /* Stop sending DATA as there is no more room
721 * at the receiver.
723 done = 1;
724 break;
726 case SCTP_XMIT_DELAY:
727 /* Send this packet. */
728 error = sctp_packet_transmit(pkt, GFP_ATOMIC);
730 /* Stop sending DATA because of nagle delay. */
731 done = 1;
732 break;
734 default:
735 /* The append was successful, so add this chunk to
736 * the transmitted list.
738 list_move_tail(&chunk->transmitted_list,
739 &transport->transmitted);
741 /* Mark the chunk as ineligible for fast retransmit
742 * after it is retransmitted.
744 if (chunk->fast_retransmit == SCTP_NEED_FRTX)
745 chunk->fast_retransmit = SCTP_DONT_FRTX;
747 q->asoc->stats.rtxchunks++;
748 break;
751 /* Set the timer if there were no errors */
752 if (!error && !timer)
753 timer = 1;
755 if (done)
756 break;
759 /* If we are here due to a retransmit timeout or a fast
760 * retransmit and if there are any chunks left in the retransmit
761 * queue that could not fit in the PMTU sized packet, they need
762 * to be marked as ineligible for a subsequent fast retransmit.
764 if (rtx_timeout || fast_rtx) {
765 list_for_each_entry(chunk1, lqueue, transmitted_list) {
766 if (chunk1->fast_retransmit == SCTP_NEED_FRTX)
767 chunk1->fast_retransmit = SCTP_DONT_FRTX;
771 *start_timer = timer;
773 /* Clear fast retransmit hint */
774 if (fast_rtx)
775 q->fast_rtx = 0;
777 return error;
780 /* Cork the outqueue so queued chunks are really queued. */
781 int sctp_outq_uncork(struct sctp_outq *q, gfp_t gfp)
783 if (q->cork)
784 q->cork = 0;
786 return sctp_outq_flush(q, 0, gfp);
791 * Try to flush an outqueue.
793 * Description: Send everything in q which we legally can, subject to
794 * congestion limitations.
795 * * Note: This function can be called from multiple contexts so appropriate
796 * locking concerns must be made. Today we use the sock lock to protect
797 * this function.
799 static int sctp_outq_flush(struct sctp_outq *q, int rtx_timeout, gfp_t gfp)
801 struct sctp_packet *packet;
802 struct sctp_packet singleton;
803 struct sctp_association *asoc = q->asoc;
804 __u16 sport = asoc->base.bind_addr.port;
805 __u16 dport = asoc->peer.port;
806 __u32 vtag = asoc->peer.i.init_tag;
807 struct sctp_transport *transport = NULL;
808 struct sctp_transport *new_transport;
809 struct sctp_chunk *chunk, *tmp;
810 sctp_xmit_t status;
811 int error = 0;
812 int start_timer = 0;
813 int one_packet = 0;
815 /* These transports have chunks to send. */
816 struct list_head transport_list;
817 struct list_head *ltransport;
819 INIT_LIST_HEAD(&transport_list);
820 packet = NULL;
823 * 6.10 Bundling
824 * ...
825 * When bundling control chunks with DATA chunks, an
826 * endpoint MUST place control chunks first in the outbound
827 * SCTP packet. The transmitter MUST transmit DATA chunks
828 * within a SCTP packet in increasing order of TSN.
829 * ...
832 list_for_each_entry_safe(chunk, tmp, &q->control_chunk_list, list) {
833 /* RFC 5061, 5.3
834 * F1) This means that until such time as the ASCONF
835 * containing the add is acknowledged, the sender MUST
836 * NOT use the new IP address as a source for ANY SCTP
837 * packet except on carrying an ASCONF Chunk.
839 if (asoc->src_out_of_asoc_ok &&
840 chunk->chunk_hdr->type != SCTP_CID_ASCONF)
841 continue;
843 list_del_init(&chunk->list);
845 /* Pick the right transport to use. */
846 new_transport = chunk->transport;
848 if (!new_transport) {
850 * If we have a prior transport pointer, see if
851 * the destination address of the chunk
852 * matches the destination address of the
853 * current transport. If not a match, then
854 * try to look up the transport with a given
855 * destination address. We do this because
856 * after processing ASCONFs, we may have new
857 * transports created.
859 if (transport &&
860 sctp_cmp_addr_exact(&chunk->dest,
861 &transport->ipaddr))
862 new_transport = transport;
863 else
864 new_transport = sctp_assoc_lookup_paddr(asoc,
865 &chunk->dest);
867 /* if we still don't have a new transport, then
868 * use the current active path.
870 if (!new_transport)
871 new_transport = asoc->peer.active_path;
872 } else if ((new_transport->state == SCTP_INACTIVE) ||
873 (new_transport->state == SCTP_UNCONFIRMED) ||
874 (new_transport->state == SCTP_PF)) {
875 /* If the chunk is Heartbeat or Heartbeat Ack,
876 * send it to chunk->transport, even if it's
877 * inactive.
879 * 3.3.6 Heartbeat Acknowledgement:
880 * ...
881 * A HEARTBEAT ACK is always sent to the source IP
882 * address of the IP datagram containing the
883 * HEARTBEAT chunk to which this ack is responding.
884 * ...
886 * ASCONF_ACKs also must be sent to the source.
888 if (chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT &&
889 chunk->chunk_hdr->type != SCTP_CID_HEARTBEAT_ACK &&
890 chunk->chunk_hdr->type != SCTP_CID_ASCONF_ACK)
891 new_transport = asoc->peer.active_path;
894 /* Are we switching transports?
895 * Take care of transport locks.
897 if (new_transport != transport) {
898 transport = new_transport;
899 if (list_empty(&transport->send_ready)) {
900 list_add_tail(&transport->send_ready,
901 &transport_list);
903 packet = &transport->packet;
904 sctp_packet_config(packet, vtag,
905 asoc->peer.ecn_capable);
908 switch (chunk->chunk_hdr->type) {
910 * 6.10 Bundling
911 * ...
912 * An endpoint MUST NOT bundle INIT, INIT ACK or SHUTDOWN
913 * COMPLETE with any other chunks. [Send them immediately.]
915 case SCTP_CID_INIT:
916 case SCTP_CID_INIT_ACK:
917 case SCTP_CID_SHUTDOWN_COMPLETE:
918 sctp_packet_init(&singleton, transport, sport, dport);
919 sctp_packet_config(&singleton, vtag, 0);
920 sctp_packet_append_chunk(&singleton, chunk);
921 error = sctp_packet_transmit(&singleton, gfp);
922 if (error < 0)
923 return error;
924 break;
926 case SCTP_CID_ABORT:
927 if (sctp_test_T_bit(chunk)) {
928 packet->vtag = asoc->c.my_vtag;
930 /* The following chunks are "response" chunks, i.e.
931 * they are generated in response to something we
932 * received. If we are sending these, then we can
933 * send only 1 packet containing these chunks.
935 case SCTP_CID_HEARTBEAT_ACK:
936 case SCTP_CID_SHUTDOWN_ACK:
937 case SCTP_CID_COOKIE_ACK:
938 case SCTP_CID_COOKIE_ECHO:
939 case SCTP_CID_ERROR:
940 case SCTP_CID_ECN_CWR:
941 case SCTP_CID_ASCONF_ACK:
942 one_packet = 1;
943 /* Fall through */
945 case SCTP_CID_SACK:
946 case SCTP_CID_HEARTBEAT:
947 case SCTP_CID_SHUTDOWN:
948 case SCTP_CID_ECN_ECNE:
949 case SCTP_CID_ASCONF:
950 case SCTP_CID_FWD_TSN:
951 status = sctp_packet_transmit_chunk(packet, chunk,
952 one_packet, gfp);
953 if (status != SCTP_XMIT_OK) {
954 /* put the chunk back */
955 list_add(&chunk->list, &q->control_chunk_list);
956 } else {
957 asoc->stats.octrlchunks++;
958 /* PR-SCTP C5) If a FORWARD TSN is sent, the
959 * sender MUST assure that at least one T3-rtx
960 * timer is running.
962 if (chunk->chunk_hdr->type == SCTP_CID_FWD_TSN) {
963 sctp_transport_reset_t3_rtx(transport);
964 transport->last_time_sent = jiffies;
967 break;
969 default:
970 /* We built a chunk with an illegal type! */
971 BUG();
975 if (q->asoc->src_out_of_asoc_ok)
976 goto sctp_flush_out;
978 /* Is it OK to send data chunks? */
979 switch (asoc->state) {
980 case SCTP_STATE_COOKIE_ECHOED:
981 /* Only allow bundling when this packet has a COOKIE-ECHO
982 * chunk.
984 if (!packet || !packet->has_cookie_echo)
985 break;
987 /* fallthru */
988 case SCTP_STATE_ESTABLISHED:
989 case SCTP_STATE_SHUTDOWN_PENDING:
990 case SCTP_STATE_SHUTDOWN_RECEIVED:
992 * RFC 2960 6.1 Transmission of DATA Chunks
994 * C) When the time comes for the sender to transmit,
995 * before sending new DATA chunks, the sender MUST
996 * first transmit any outstanding DATA chunks which
997 * are marked for retransmission (limited by the
998 * current cwnd).
1000 if (!list_empty(&q->retransmit)) {
1001 if (asoc->peer.retran_path->state == SCTP_UNCONFIRMED)
1002 goto sctp_flush_out;
1003 if (transport == asoc->peer.retran_path)
1004 goto retran;
1006 /* Switch transports & prepare the packet. */
1008 transport = asoc->peer.retran_path;
1010 if (list_empty(&transport->send_ready)) {
1011 list_add_tail(&transport->send_ready,
1012 &transport_list);
1015 packet = &transport->packet;
1016 sctp_packet_config(packet, vtag,
1017 asoc->peer.ecn_capable);
1018 retran:
1019 error = sctp_outq_flush_rtx(q, packet,
1020 rtx_timeout, &start_timer);
1022 if (start_timer) {
1023 sctp_transport_reset_t3_rtx(transport);
1024 transport->last_time_sent = jiffies;
1027 /* This can happen on COOKIE-ECHO resend. Only
1028 * one chunk can get bundled with a COOKIE-ECHO.
1030 if (packet->has_cookie_echo)
1031 goto sctp_flush_out;
1033 /* Don't send new data if there is still data
1034 * waiting to retransmit.
1036 if (!list_empty(&q->retransmit))
1037 goto sctp_flush_out;
1040 /* Apply Max.Burst limitation to the current transport in
1041 * case it will be used for new data. We are going to
1042 * rest it before we return, but we want to apply the limit
1043 * to the currently queued data.
1045 if (transport)
1046 sctp_transport_burst_limited(transport);
1048 /* Finally, transmit new packets. */
1049 while ((chunk = sctp_outq_dequeue_data(q)) != NULL) {
1050 /* RFC 2960 6.5 Every DATA chunk MUST carry a valid
1051 * stream identifier.
1053 if (chunk->sinfo.sinfo_stream >=
1054 asoc->c.sinit_num_ostreams) {
1056 /* Mark as failed send. */
1057 sctp_chunk_fail(chunk, SCTP_ERROR_INV_STRM);
1058 if (asoc->prsctp_enable &&
1059 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
1060 asoc->sent_cnt_removable--;
1061 sctp_chunk_free(chunk);
1062 continue;
1065 /* Has this chunk expired? */
1066 if (sctp_chunk_abandoned(chunk)) {
1067 sctp_chunk_fail(chunk, 0);
1068 sctp_chunk_free(chunk);
1069 continue;
1072 /* If there is a specified transport, use it.
1073 * Otherwise, we want to use the active path.
1075 new_transport = chunk->transport;
1076 if (!new_transport ||
1077 ((new_transport->state == SCTP_INACTIVE) ||
1078 (new_transport->state == SCTP_UNCONFIRMED) ||
1079 (new_transport->state == SCTP_PF)))
1080 new_transport = asoc->peer.active_path;
1081 if (new_transport->state == SCTP_UNCONFIRMED) {
1082 WARN_ONCE(1, "Atempt to send packet on unconfirmed path.");
1083 sctp_chunk_fail(chunk, 0);
1084 sctp_chunk_free(chunk);
1085 continue;
1088 /* Change packets if necessary. */
1089 if (new_transport != transport) {
1090 transport = new_transport;
1092 /* Schedule to have this transport's
1093 * packet flushed.
1095 if (list_empty(&transport->send_ready)) {
1096 list_add_tail(&transport->send_ready,
1097 &transport_list);
1100 packet = &transport->packet;
1101 sctp_packet_config(packet, vtag,
1102 asoc->peer.ecn_capable);
1103 /* We've switched transports, so apply the
1104 * Burst limit to the new transport.
1106 sctp_transport_burst_limited(transport);
1109 pr_debug("%s: outq:%p, chunk:%p[%s], tx-tsn:0x%x skb->head:%p "
1110 "skb->users:%d\n",
1111 __func__, q, chunk, chunk && chunk->chunk_hdr ?
1112 sctp_cname(SCTP_ST_CHUNK(chunk->chunk_hdr->type)) :
1113 "illegal chunk", ntohl(chunk->subh.data_hdr->tsn),
1114 chunk->skb ? chunk->skb->head : NULL, chunk->skb ?
1115 atomic_read(&chunk->skb->users) : -1);
1117 /* Add the chunk to the packet. */
1118 status = sctp_packet_transmit_chunk(packet, chunk, 0, gfp);
1120 switch (status) {
1121 case SCTP_XMIT_PMTU_FULL:
1122 case SCTP_XMIT_RWND_FULL:
1123 case SCTP_XMIT_DELAY:
1124 /* We could not append this chunk, so put
1125 * the chunk back on the output queue.
1127 pr_debug("%s: could not transmit tsn:0x%x, status:%d\n",
1128 __func__, ntohl(chunk->subh.data_hdr->tsn),
1129 status);
1131 sctp_outq_head_data(q, chunk);
1132 goto sctp_flush_out;
1134 case SCTP_XMIT_OK:
1135 /* The sender is in the SHUTDOWN-PENDING state,
1136 * The sender MAY set the I-bit in the DATA
1137 * chunk header.
1139 if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING)
1140 chunk->chunk_hdr->flags |= SCTP_DATA_SACK_IMM;
1141 if (chunk->chunk_hdr->flags & SCTP_DATA_UNORDERED)
1142 asoc->stats.ouodchunks++;
1143 else
1144 asoc->stats.oodchunks++;
1146 break;
1148 default:
1149 BUG();
1152 /* BUG: We assume that the sctp_packet_transmit()
1153 * call below will succeed all the time and add the
1154 * chunk to the transmitted list and restart the
1155 * timers.
1156 * It is possible that the call can fail under OOM
1157 * conditions.
1159 * Is this really a problem? Won't this behave
1160 * like a lost TSN?
1162 list_add_tail(&chunk->transmitted_list,
1163 &transport->transmitted);
1165 sctp_transport_reset_t3_rtx(transport);
1166 transport->last_time_sent = jiffies;
1168 /* Only let one DATA chunk get bundled with a
1169 * COOKIE-ECHO chunk.
1171 if (packet->has_cookie_echo)
1172 goto sctp_flush_out;
1174 break;
1176 default:
1177 /* Do nothing. */
1178 break;
1181 sctp_flush_out:
1183 /* Before returning, examine all the transports touched in
1184 * this call. Right now, we bluntly force clear all the
1185 * transports. Things might change after we implement Nagle.
1186 * But such an examination is still required.
1188 * --xguo
1190 while ((ltransport = sctp_list_dequeue(&transport_list)) != NULL) {
1191 struct sctp_transport *t = list_entry(ltransport,
1192 struct sctp_transport,
1193 send_ready);
1194 packet = &t->packet;
1195 if (!sctp_packet_empty(packet))
1196 error = sctp_packet_transmit(packet, gfp);
1198 /* Clear the burst limited state, if any */
1199 sctp_transport_burst_reset(t);
1202 return error;
1205 /* Update unack_data based on the incoming SACK chunk */
1206 static void sctp_sack_update_unack_data(struct sctp_association *assoc,
1207 struct sctp_sackhdr *sack)
1209 sctp_sack_variable_t *frags;
1210 __u16 unack_data;
1211 int i;
1213 unack_data = assoc->next_tsn - assoc->ctsn_ack_point - 1;
1215 frags = sack->variable;
1216 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); i++) {
1217 unack_data -= ((ntohs(frags[i].gab.end) -
1218 ntohs(frags[i].gab.start) + 1));
1221 assoc->unack_data = unack_data;
1224 /* This is where we REALLY process a SACK.
1226 * Process the SACK against the outqueue. Mostly, this just frees
1227 * things off the transmitted queue.
1229 int sctp_outq_sack(struct sctp_outq *q, struct sctp_chunk *chunk)
1231 struct sctp_association *asoc = q->asoc;
1232 struct sctp_sackhdr *sack = chunk->subh.sack_hdr;
1233 struct sctp_transport *transport;
1234 struct sctp_chunk *tchunk = NULL;
1235 struct list_head *lchunk, *transport_list, *temp;
1236 sctp_sack_variable_t *frags = sack->variable;
1237 __u32 sack_ctsn, ctsn, tsn;
1238 __u32 highest_tsn, highest_new_tsn;
1239 __u32 sack_a_rwnd;
1240 unsigned int outstanding;
1241 struct sctp_transport *primary = asoc->peer.primary_path;
1242 int count_of_newacks = 0;
1243 int gap_ack_blocks;
1244 u8 accum_moved = 0;
1246 /* Grab the association's destination address list. */
1247 transport_list = &asoc->peer.transport_addr_list;
1249 sack_ctsn = ntohl(sack->cum_tsn_ack);
1250 gap_ack_blocks = ntohs(sack->num_gap_ack_blocks);
1251 asoc->stats.gapcnt += gap_ack_blocks;
1253 * SFR-CACC algorithm:
1254 * On receipt of a SACK the sender SHOULD execute the
1255 * following statements.
1257 * 1) If the cumulative ack in the SACK passes next tsn_at_change
1258 * on the current primary, the CHANGEOVER_ACTIVE flag SHOULD be
1259 * cleared. The CYCLING_CHANGEOVER flag SHOULD also be cleared for
1260 * all destinations.
1261 * 2) If the SACK contains gap acks and the flag CHANGEOVER_ACTIVE
1262 * is set the receiver of the SACK MUST take the following actions:
1264 * A) Initialize the cacc_saw_newack to 0 for all destination
1265 * addresses.
1267 * Only bother if changeover_active is set. Otherwise, this is
1268 * totally suboptimal to do on every SACK.
1270 if (primary->cacc.changeover_active) {
1271 u8 clear_cycling = 0;
1273 if (TSN_lte(primary->cacc.next_tsn_at_change, sack_ctsn)) {
1274 primary->cacc.changeover_active = 0;
1275 clear_cycling = 1;
1278 if (clear_cycling || gap_ack_blocks) {
1279 list_for_each_entry(transport, transport_list,
1280 transports) {
1281 if (clear_cycling)
1282 transport->cacc.cycling_changeover = 0;
1283 if (gap_ack_blocks)
1284 transport->cacc.cacc_saw_newack = 0;
1289 /* Get the highest TSN in the sack. */
1290 highest_tsn = sack_ctsn;
1291 if (gap_ack_blocks)
1292 highest_tsn += ntohs(frags[gap_ack_blocks - 1].gab.end);
1294 if (TSN_lt(asoc->highest_sacked, highest_tsn))
1295 asoc->highest_sacked = highest_tsn;
1297 highest_new_tsn = sack_ctsn;
1299 /* Run through the retransmit queue. Credit bytes received
1300 * and free those chunks that we can.
1302 sctp_check_transmitted(q, &q->retransmit, NULL, NULL, sack, &highest_new_tsn);
1304 /* Run through the transmitted queue.
1305 * Credit bytes received and free those chunks which we can.
1307 * This is a MASSIVE candidate for optimization.
1309 list_for_each_entry(transport, transport_list, transports) {
1310 sctp_check_transmitted(q, &transport->transmitted,
1311 transport, &chunk->source, sack,
1312 &highest_new_tsn);
1314 * SFR-CACC algorithm:
1315 * C) Let count_of_newacks be the number of
1316 * destinations for which cacc_saw_newack is set.
1318 if (transport->cacc.cacc_saw_newack)
1319 count_of_newacks++;
1322 /* Move the Cumulative TSN Ack Point if appropriate. */
1323 if (TSN_lt(asoc->ctsn_ack_point, sack_ctsn)) {
1324 asoc->ctsn_ack_point = sack_ctsn;
1325 accum_moved = 1;
1328 if (gap_ack_blocks) {
1330 if (asoc->fast_recovery && accum_moved)
1331 highest_new_tsn = highest_tsn;
1333 list_for_each_entry(transport, transport_list, transports)
1334 sctp_mark_missing(q, &transport->transmitted, transport,
1335 highest_new_tsn, count_of_newacks);
1338 /* Update unack_data field in the assoc. */
1339 sctp_sack_update_unack_data(asoc, sack);
1341 ctsn = asoc->ctsn_ack_point;
1343 /* Throw away stuff rotting on the sack queue. */
1344 list_for_each_safe(lchunk, temp, &q->sacked) {
1345 tchunk = list_entry(lchunk, struct sctp_chunk,
1346 transmitted_list);
1347 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1348 if (TSN_lte(tsn, ctsn)) {
1349 list_del_init(&tchunk->transmitted_list);
1350 if (asoc->prsctp_enable &&
1351 SCTP_PR_PRIO_ENABLED(chunk->sinfo.sinfo_flags))
1352 asoc->sent_cnt_removable--;
1353 sctp_chunk_free(tchunk);
1357 /* ii) Set rwnd equal to the newly received a_rwnd minus the
1358 * number of bytes still outstanding after processing the
1359 * Cumulative TSN Ack and the Gap Ack Blocks.
1362 sack_a_rwnd = ntohl(sack->a_rwnd);
1363 asoc->peer.zero_window_announced = !sack_a_rwnd;
1364 outstanding = q->outstanding_bytes;
1366 if (outstanding < sack_a_rwnd)
1367 sack_a_rwnd -= outstanding;
1368 else
1369 sack_a_rwnd = 0;
1371 asoc->peer.rwnd = sack_a_rwnd;
1373 sctp_generate_fwdtsn(q, sack_ctsn);
1375 pr_debug("%s: sack cumulative tsn ack:0x%x\n", __func__, sack_ctsn);
1376 pr_debug("%s: cumulative tsn ack of assoc:%p is 0x%x, "
1377 "advertised peer ack point:0x%x\n", __func__, asoc, ctsn,
1378 asoc->adv_peer_ack_point);
1380 return sctp_outq_is_empty(q);
1383 /* Is the outqueue empty?
1384 * The queue is empty when we have not pending data, no in-flight data
1385 * and nothing pending retransmissions.
1387 int sctp_outq_is_empty(const struct sctp_outq *q)
1389 return q->out_qlen == 0 && q->outstanding_bytes == 0 &&
1390 list_empty(&q->retransmit);
1393 /********************************************************************
1394 * 2nd Level Abstractions
1395 ********************************************************************/
1397 /* Go through a transport's transmitted list or the association's retransmit
1398 * list and move chunks that are acked by the Cumulative TSN Ack to q->sacked.
1399 * The retransmit list will not have an associated transport.
1401 * I added coherent debug information output. --xguo
1403 * Instead of printing 'sacked' or 'kept' for each TSN on the
1404 * transmitted_queue, we print a range: SACKED: TSN1-TSN2, TSN3, TSN4-TSN5.
1405 * KEPT TSN6-TSN7, etc.
1407 static void sctp_check_transmitted(struct sctp_outq *q,
1408 struct list_head *transmitted_queue,
1409 struct sctp_transport *transport,
1410 union sctp_addr *saddr,
1411 struct sctp_sackhdr *sack,
1412 __u32 *highest_new_tsn_in_sack)
1414 struct list_head *lchunk;
1415 struct sctp_chunk *tchunk;
1416 struct list_head tlist;
1417 __u32 tsn;
1418 __u32 sack_ctsn;
1419 __u32 rtt;
1420 __u8 restart_timer = 0;
1421 int bytes_acked = 0;
1422 int migrate_bytes = 0;
1423 bool forward_progress = false;
1425 sack_ctsn = ntohl(sack->cum_tsn_ack);
1427 INIT_LIST_HEAD(&tlist);
1429 /* The while loop will skip empty transmitted queues. */
1430 while (NULL != (lchunk = sctp_list_dequeue(transmitted_queue))) {
1431 tchunk = list_entry(lchunk, struct sctp_chunk,
1432 transmitted_list);
1434 if (sctp_chunk_abandoned(tchunk)) {
1435 /* Move the chunk to abandoned list. */
1436 sctp_insert_list(&q->abandoned, lchunk);
1438 /* If this chunk has not been acked, stop
1439 * considering it as 'outstanding'.
1441 if (!tchunk->tsn_gap_acked) {
1442 if (tchunk->transport)
1443 tchunk->transport->flight_size -=
1444 sctp_data_size(tchunk);
1445 q->outstanding_bytes -= sctp_data_size(tchunk);
1447 continue;
1450 tsn = ntohl(tchunk->subh.data_hdr->tsn);
1451 if (sctp_acked(sack, tsn)) {
1452 /* If this queue is the retransmit queue, the
1453 * retransmit timer has already reclaimed
1454 * the outstanding bytes for this chunk, so only
1455 * count bytes associated with a transport.
1457 if (transport) {
1458 /* If this chunk is being used for RTT
1459 * measurement, calculate the RTT and update
1460 * the RTO using this value.
1462 * 6.3.1 C5) Karn's algorithm: RTT measurements
1463 * MUST NOT be made using packets that were
1464 * retransmitted (and thus for which it is
1465 * ambiguous whether the reply was for the
1466 * first instance of the packet or a later
1467 * instance).
1469 if (!tchunk->tsn_gap_acked &&
1470 !tchunk->resent &&
1471 tchunk->rtt_in_progress) {
1472 tchunk->rtt_in_progress = 0;
1473 rtt = jiffies - tchunk->sent_at;
1474 sctp_transport_update_rto(transport,
1475 rtt);
1479 /* If the chunk hasn't been marked as ACKED,
1480 * mark it and account bytes_acked if the
1481 * chunk had a valid transport (it will not
1482 * have a transport if ASCONF had deleted it
1483 * while DATA was outstanding).
1485 if (!tchunk->tsn_gap_acked) {
1486 tchunk->tsn_gap_acked = 1;
1487 if (TSN_lt(*highest_new_tsn_in_sack, tsn))
1488 *highest_new_tsn_in_sack = tsn;
1489 bytes_acked += sctp_data_size(tchunk);
1490 if (!tchunk->transport)
1491 migrate_bytes += sctp_data_size(tchunk);
1492 forward_progress = true;
1495 if (TSN_lte(tsn, sack_ctsn)) {
1496 /* RFC 2960 6.3.2 Retransmission Timer Rules
1498 * R3) Whenever a SACK is received
1499 * that acknowledges the DATA chunk
1500 * with the earliest outstanding TSN
1501 * for that address, restart T3-rtx
1502 * timer for that address with its
1503 * current RTO.
1505 restart_timer = 1;
1506 forward_progress = true;
1508 if (!tchunk->tsn_gap_acked) {
1510 * SFR-CACC algorithm:
1511 * 2) If the SACK contains gap acks
1512 * and the flag CHANGEOVER_ACTIVE is
1513 * set the receiver of the SACK MUST
1514 * take the following action:
1516 * B) For each TSN t being acked that
1517 * has not been acked in any SACK so
1518 * far, set cacc_saw_newack to 1 for
1519 * the destination that the TSN was
1520 * sent to.
1522 if (transport &&
1523 sack->num_gap_ack_blocks &&
1524 q->asoc->peer.primary_path->cacc.
1525 changeover_active)
1526 transport->cacc.cacc_saw_newack
1527 = 1;
1530 list_add_tail(&tchunk->transmitted_list,
1531 &q->sacked);
1532 } else {
1533 /* RFC2960 7.2.4, sctpimpguide-05 2.8.2
1534 * M2) Each time a SACK arrives reporting
1535 * 'Stray DATA chunk(s)' record the highest TSN
1536 * reported as newly acknowledged, call this
1537 * value 'HighestTSNinSack'. A newly
1538 * acknowledged DATA chunk is one not
1539 * previously acknowledged in a SACK.
1541 * When the SCTP sender of data receives a SACK
1542 * chunk that acknowledges, for the first time,
1543 * the receipt of a DATA chunk, all the still
1544 * unacknowledged DATA chunks whose TSN is
1545 * older than that newly acknowledged DATA
1546 * chunk, are qualified as 'Stray DATA chunks'.
1548 list_add_tail(lchunk, &tlist);
1550 } else {
1551 if (tchunk->tsn_gap_acked) {
1552 pr_debug("%s: receiver reneged on data TSN:0x%x\n",
1553 __func__, tsn);
1555 tchunk->tsn_gap_acked = 0;
1557 if (tchunk->transport)
1558 bytes_acked -= sctp_data_size(tchunk);
1560 /* RFC 2960 6.3.2 Retransmission Timer Rules
1562 * R4) Whenever a SACK is received missing a
1563 * TSN that was previously acknowledged via a
1564 * Gap Ack Block, start T3-rtx for the
1565 * destination address to which the DATA
1566 * chunk was originally
1567 * transmitted if it is not already running.
1569 restart_timer = 1;
1572 list_add_tail(lchunk, &tlist);
1576 if (transport) {
1577 if (bytes_acked) {
1578 struct sctp_association *asoc = transport->asoc;
1580 /* We may have counted DATA that was migrated
1581 * to this transport due to DEL-IP operation.
1582 * Subtract those bytes, since the were never
1583 * send on this transport and shouldn't be
1584 * credited to this transport.
1586 bytes_acked -= migrate_bytes;
1588 /* 8.2. When an outstanding TSN is acknowledged,
1589 * the endpoint shall clear the error counter of
1590 * the destination transport address to which the
1591 * DATA chunk was last sent.
1592 * The association's overall error counter is
1593 * also cleared.
1595 transport->error_count = 0;
1596 transport->asoc->overall_error_count = 0;
1597 forward_progress = true;
1600 * While in SHUTDOWN PENDING, we may have started
1601 * the T5 shutdown guard timer after reaching the
1602 * retransmission limit. Stop that timer as soon
1603 * as the receiver acknowledged any data.
1605 if (asoc->state == SCTP_STATE_SHUTDOWN_PENDING &&
1606 del_timer(&asoc->timers
1607 [SCTP_EVENT_TIMEOUT_T5_SHUTDOWN_GUARD]))
1608 sctp_association_put(asoc);
1610 /* Mark the destination transport address as
1611 * active if it is not so marked.
1613 if ((transport->state == SCTP_INACTIVE ||
1614 transport->state == SCTP_UNCONFIRMED) &&
1615 sctp_cmp_addr_exact(&transport->ipaddr, saddr)) {
1616 sctp_assoc_control_transport(
1617 transport->asoc,
1618 transport,
1619 SCTP_TRANSPORT_UP,
1620 SCTP_RECEIVED_SACK);
1623 sctp_transport_raise_cwnd(transport, sack_ctsn,
1624 bytes_acked);
1626 transport->flight_size -= bytes_acked;
1627 if (transport->flight_size == 0)
1628 transport->partial_bytes_acked = 0;
1629 q->outstanding_bytes -= bytes_acked + migrate_bytes;
1630 } else {
1631 /* RFC 2960 6.1, sctpimpguide-06 2.15.2
1632 * When a sender is doing zero window probing, it
1633 * should not timeout the association if it continues
1634 * to receive new packets from the receiver. The
1635 * reason is that the receiver MAY keep its window
1636 * closed for an indefinite time.
1637 * A sender is doing zero window probing when the
1638 * receiver's advertised window is zero, and there is
1639 * only one data chunk in flight to the receiver.
1641 * Allow the association to timeout while in SHUTDOWN
1642 * PENDING or SHUTDOWN RECEIVED in case the receiver
1643 * stays in zero window mode forever.
1645 if (!q->asoc->peer.rwnd &&
1646 !list_empty(&tlist) &&
1647 (sack_ctsn+2 == q->asoc->next_tsn) &&
1648 q->asoc->state < SCTP_STATE_SHUTDOWN_PENDING) {
1649 pr_debug("%s: sack received for zero window "
1650 "probe:%u\n", __func__, sack_ctsn);
1652 q->asoc->overall_error_count = 0;
1653 transport->error_count = 0;
1657 /* RFC 2960 6.3.2 Retransmission Timer Rules
1659 * R2) Whenever all outstanding data sent to an address have
1660 * been acknowledged, turn off the T3-rtx timer of that
1661 * address.
1663 if (!transport->flight_size) {
1664 if (del_timer(&transport->T3_rtx_timer))
1665 sctp_transport_put(transport);
1666 } else if (restart_timer) {
1667 if (!mod_timer(&transport->T3_rtx_timer,
1668 jiffies + transport->rto))
1669 sctp_transport_hold(transport);
1672 if (forward_progress) {
1673 if (transport->dst)
1674 dst_confirm(transport->dst);
1678 list_splice(&tlist, transmitted_queue);
1681 /* Mark chunks as missing and consequently may get retransmitted. */
1682 static void sctp_mark_missing(struct sctp_outq *q,
1683 struct list_head *transmitted_queue,
1684 struct sctp_transport *transport,
1685 __u32 highest_new_tsn_in_sack,
1686 int count_of_newacks)
1688 struct sctp_chunk *chunk;
1689 __u32 tsn;
1690 char do_fast_retransmit = 0;
1691 struct sctp_association *asoc = q->asoc;
1692 struct sctp_transport *primary = asoc->peer.primary_path;
1694 list_for_each_entry(chunk, transmitted_queue, transmitted_list) {
1696 tsn = ntohl(chunk->subh.data_hdr->tsn);
1698 /* RFC 2960 7.2.4, sctpimpguide-05 2.8.2 M3) Examine all
1699 * 'Unacknowledged TSN's', if the TSN number of an
1700 * 'Unacknowledged TSN' is smaller than the 'HighestTSNinSack'
1701 * value, increment the 'TSN.Missing.Report' count on that
1702 * chunk if it has NOT been fast retransmitted or marked for
1703 * fast retransmit already.
1705 if (chunk->fast_retransmit == SCTP_CAN_FRTX &&
1706 !chunk->tsn_gap_acked &&
1707 TSN_lt(tsn, highest_new_tsn_in_sack)) {
1709 /* SFR-CACC may require us to skip marking
1710 * this chunk as missing.
1712 if (!transport || !sctp_cacc_skip(primary,
1713 chunk->transport,
1714 count_of_newacks, tsn)) {
1715 chunk->tsn_missing_report++;
1717 pr_debug("%s: tsn:0x%x missing counter:%d\n",
1718 __func__, tsn, chunk->tsn_missing_report);
1722 * M4) If any DATA chunk is found to have a
1723 * 'TSN.Missing.Report'
1724 * value larger than or equal to 3, mark that chunk for
1725 * retransmission and start the fast retransmit procedure.
1728 if (chunk->tsn_missing_report >= 3) {
1729 chunk->fast_retransmit = SCTP_NEED_FRTX;
1730 do_fast_retransmit = 1;
1734 if (transport) {
1735 if (do_fast_retransmit)
1736 sctp_retransmit(q, transport, SCTP_RTXR_FAST_RTX);
1738 pr_debug("%s: transport:%p, cwnd:%d, ssthresh:%d, "
1739 "flight_size:%d, pba:%d\n", __func__, transport,
1740 transport->cwnd, transport->ssthresh,
1741 transport->flight_size, transport->partial_bytes_acked);
1745 /* Is the given TSN acked by this packet? */
1746 static int sctp_acked(struct sctp_sackhdr *sack, __u32 tsn)
1748 int i;
1749 sctp_sack_variable_t *frags;
1750 __u16 gap;
1751 __u32 ctsn = ntohl(sack->cum_tsn_ack);
1753 if (TSN_lte(tsn, ctsn))
1754 goto pass;
1756 /* 3.3.4 Selective Acknowledgement (SACK) (3):
1758 * Gap Ack Blocks:
1759 * These fields contain the Gap Ack Blocks. They are repeated
1760 * for each Gap Ack Block up to the number of Gap Ack Blocks
1761 * defined in the Number of Gap Ack Blocks field. All DATA
1762 * chunks with TSNs greater than or equal to (Cumulative TSN
1763 * Ack + Gap Ack Block Start) and less than or equal to
1764 * (Cumulative TSN Ack + Gap Ack Block End) of each Gap Ack
1765 * Block are assumed to have been received correctly.
1768 frags = sack->variable;
1769 gap = tsn - ctsn;
1770 for (i = 0; i < ntohs(sack->num_gap_ack_blocks); ++i) {
1771 if (TSN_lte(ntohs(frags[i].gab.start), gap) &&
1772 TSN_lte(gap, ntohs(frags[i].gab.end)))
1773 goto pass;
1776 return 0;
1777 pass:
1778 return 1;
1781 static inline int sctp_get_skip_pos(struct sctp_fwdtsn_skip *skiplist,
1782 int nskips, __be16 stream)
1784 int i;
1786 for (i = 0; i < nskips; i++) {
1787 if (skiplist[i].stream == stream)
1788 return i;
1790 return i;
1793 /* Create and add a fwdtsn chunk to the outq's control queue if needed. */
1794 static void sctp_generate_fwdtsn(struct sctp_outq *q, __u32 ctsn)
1796 struct sctp_association *asoc = q->asoc;
1797 struct sctp_chunk *ftsn_chunk = NULL;
1798 struct sctp_fwdtsn_skip ftsn_skip_arr[10];
1799 int nskips = 0;
1800 int skip_pos = 0;
1801 __u32 tsn;
1802 struct sctp_chunk *chunk;
1803 struct list_head *lchunk, *temp;
1805 if (!asoc->peer.prsctp_capable)
1806 return;
1808 /* PR-SCTP C1) Let SackCumAck be the Cumulative TSN ACK carried in the
1809 * received SACK.
1811 * If (Advanced.Peer.Ack.Point < SackCumAck), then update
1812 * Advanced.Peer.Ack.Point to be equal to SackCumAck.
1814 if (TSN_lt(asoc->adv_peer_ack_point, ctsn))
1815 asoc->adv_peer_ack_point = ctsn;
1817 /* PR-SCTP C2) Try to further advance the "Advanced.Peer.Ack.Point"
1818 * locally, that is, to move "Advanced.Peer.Ack.Point" up as long as
1819 * the chunk next in the out-queue space is marked as "abandoned" as
1820 * shown in the following example:
1822 * Assuming that a SACK arrived with the Cumulative TSN ACK 102
1823 * and the Advanced.Peer.Ack.Point is updated to this value:
1825 * out-queue at the end of ==> out-queue after Adv.Ack.Point
1826 * normal SACK processing local advancement
1827 * ... ...
1828 * Adv.Ack.Pt-> 102 acked 102 acked
1829 * 103 abandoned 103 abandoned
1830 * 104 abandoned Adv.Ack.P-> 104 abandoned
1831 * 105 105
1832 * 106 acked 106 acked
1833 * ... ...
1835 * In this example, the data sender successfully advanced the
1836 * "Advanced.Peer.Ack.Point" from 102 to 104 locally.
1838 list_for_each_safe(lchunk, temp, &q->abandoned) {
1839 chunk = list_entry(lchunk, struct sctp_chunk,
1840 transmitted_list);
1841 tsn = ntohl(chunk->subh.data_hdr->tsn);
1843 /* Remove any chunks in the abandoned queue that are acked by
1844 * the ctsn.
1846 if (TSN_lte(tsn, ctsn)) {
1847 list_del_init(lchunk);
1848 sctp_chunk_free(chunk);
1849 } else {
1850 if (TSN_lte(tsn, asoc->adv_peer_ack_point+1)) {
1851 asoc->adv_peer_ack_point = tsn;
1852 if (chunk->chunk_hdr->flags &
1853 SCTP_DATA_UNORDERED)
1854 continue;
1855 skip_pos = sctp_get_skip_pos(&ftsn_skip_arr[0],
1856 nskips,
1857 chunk->subh.data_hdr->stream);
1858 ftsn_skip_arr[skip_pos].stream =
1859 chunk->subh.data_hdr->stream;
1860 ftsn_skip_arr[skip_pos].ssn =
1861 chunk->subh.data_hdr->ssn;
1862 if (skip_pos == nskips)
1863 nskips++;
1864 if (nskips == 10)
1865 break;
1866 } else
1867 break;
1871 /* PR-SCTP C3) If, after step C1 and C2, the "Advanced.Peer.Ack.Point"
1872 * is greater than the Cumulative TSN ACK carried in the received
1873 * SACK, the data sender MUST send the data receiver a FORWARD TSN
1874 * chunk containing the latest value of the
1875 * "Advanced.Peer.Ack.Point".
1877 * C4) For each "abandoned" TSN the sender of the FORWARD TSN SHOULD
1878 * list each stream and sequence number in the forwarded TSN. This
1879 * information will enable the receiver to easily find any
1880 * stranded TSN's waiting on stream reorder queues. Each stream
1881 * SHOULD only be reported once; this means that if multiple
1882 * abandoned messages occur in the same stream then only the
1883 * highest abandoned stream sequence number is reported. If the
1884 * total size of the FORWARD TSN does NOT fit in a single MTU then
1885 * the sender of the FORWARD TSN SHOULD lower the
1886 * Advanced.Peer.Ack.Point to the last TSN that will fit in a
1887 * single MTU.
1889 if (asoc->adv_peer_ack_point > ctsn)
1890 ftsn_chunk = sctp_make_fwdtsn(asoc, asoc->adv_peer_ack_point,
1891 nskips, &ftsn_skip_arr[0]);
1893 if (ftsn_chunk) {
1894 list_add_tail(&ftsn_chunk->list, &q->control_chunk_list);
1895 SCTP_INC_STATS(sock_net(asoc->base.sk), SCTP_MIB_OUTCTRLCHUNKS);