backlight: fix typo in tosa_lcd.c
[linux/fpc-iii.git] / mm / compaction.c
blobc4bc5acf865d7124cd8597b94663425525ad63d9
1 /*
2 * linux/mm/compaction.c
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/compaction.h>
23 * compact_control is used to track pages being migrated and the free pages
24 * they are being migrated to during memory compaction. The free_pfn starts
25 * at the end of a zone and migrate_pfn begins at the start. Movable pages
26 * are moved to the end of a zone during a compaction run and the run
27 * completes when free_pfn <= migrate_pfn
29 struct compact_control {
30 struct list_head freepages; /* List of free pages to migrate to */
31 struct list_head migratepages; /* List of pages being migrated */
32 unsigned long nr_freepages; /* Number of isolated free pages */
33 unsigned long nr_migratepages; /* Number of pages to migrate */
34 unsigned long free_pfn; /* isolate_freepages search base */
35 unsigned long migrate_pfn; /* isolate_migratepages search base */
36 bool sync; /* Synchronous migration */
38 /* Account for isolated anon and file pages */
39 unsigned long nr_anon;
40 unsigned long nr_file;
42 unsigned int order; /* order a direct compactor needs */
43 int migratetype; /* MOVABLE, RECLAIMABLE etc */
44 struct zone *zone;
47 static unsigned long release_freepages(struct list_head *freelist)
49 struct page *page, *next;
50 unsigned long count = 0;
52 list_for_each_entry_safe(page, next, freelist, lru) {
53 list_del(&page->lru);
54 __free_page(page);
55 count++;
58 return count;
61 /* Isolate free pages onto a private freelist. Must hold zone->lock */
62 static unsigned long isolate_freepages_block(struct zone *zone,
63 unsigned long blockpfn,
64 struct list_head *freelist)
66 unsigned long zone_end_pfn, end_pfn;
67 int nr_scanned = 0, total_isolated = 0;
68 struct page *cursor;
70 /* Get the last PFN we should scan for free pages at */
71 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
72 end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
74 /* Find the first usable PFN in the block to initialse page cursor */
75 for (; blockpfn < end_pfn; blockpfn++) {
76 if (pfn_valid_within(blockpfn))
77 break;
79 cursor = pfn_to_page(blockpfn);
81 /* Isolate free pages. This assumes the block is valid */
82 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
83 int isolated, i;
84 struct page *page = cursor;
86 if (!pfn_valid_within(blockpfn))
87 continue;
88 nr_scanned++;
90 if (!PageBuddy(page))
91 continue;
93 /* Found a free page, break it into order-0 pages */
94 isolated = split_free_page(page);
95 total_isolated += isolated;
96 for (i = 0; i < isolated; i++) {
97 list_add(&page->lru, freelist);
98 page++;
101 /* If a page was split, advance to the end of it */
102 if (isolated) {
103 blockpfn += isolated - 1;
104 cursor += isolated - 1;
108 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
109 return total_isolated;
112 /* Returns true if the page is within a block suitable for migration to */
113 static bool suitable_migration_target(struct page *page)
116 int migratetype = get_pageblock_migratetype(page);
118 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
119 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
120 return false;
122 /* If the page is a large free page, then allow migration */
123 if (PageBuddy(page) && page_order(page) >= pageblock_order)
124 return true;
126 /* If the block is MIGRATE_MOVABLE, allow migration */
127 if (migratetype == MIGRATE_MOVABLE)
128 return true;
130 /* Otherwise skip the block */
131 return false;
135 * Based on information in the current compact_control, find blocks
136 * suitable for isolating free pages from and then isolate them.
138 static void isolate_freepages(struct zone *zone,
139 struct compact_control *cc)
141 struct page *page;
142 unsigned long high_pfn, low_pfn, pfn;
143 unsigned long flags;
144 int nr_freepages = cc->nr_freepages;
145 struct list_head *freelist = &cc->freepages;
148 * Initialise the free scanner. The starting point is where we last
149 * scanned from (or the end of the zone if starting). The low point
150 * is the end of the pageblock the migration scanner is using.
152 pfn = cc->free_pfn;
153 low_pfn = cc->migrate_pfn + pageblock_nr_pages;
156 * Take care that if the migration scanner is at the end of the zone
157 * that the free scanner does not accidentally move to the next zone
158 * in the next isolation cycle.
160 high_pfn = min(low_pfn, pfn);
163 * Isolate free pages until enough are available to migrate the
164 * pages on cc->migratepages. We stop searching if the migrate
165 * and free page scanners meet or enough free pages are isolated.
167 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
168 pfn -= pageblock_nr_pages) {
169 unsigned long isolated;
171 if (!pfn_valid(pfn))
172 continue;
175 * Check for overlapping nodes/zones. It's possible on some
176 * configurations to have a setup like
177 * node0 node1 node0
178 * i.e. it's possible that all pages within a zones range of
179 * pages do not belong to a single zone.
181 page = pfn_to_page(pfn);
182 if (page_zone(page) != zone)
183 continue;
185 /* Check the block is suitable for migration */
186 if (!suitable_migration_target(page))
187 continue;
190 * Found a block suitable for isolating free pages from. Now
191 * we disabled interrupts, double check things are ok and
192 * isolate the pages. This is to minimise the time IRQs
193 * are disabled
195 isolated = 0;
196 spin_lock_irqsave(&zone->lock, flags);
197 if (suitable_migration_target(page)) {
198 isolated = isolate_freepages_block(zone, pfn, freelist);
199 nr_freepages += isolated;
201 spin_unlock_irqrestore(&zone->lock, flags);
204 * Record the highest PFN we isolated pages from. When next
205 * looking for free pages, the search will restart here as
206 * page migration may have returned some pages to the allocator
208 if (isolated)
209 high_pfn = max(high_pfn, pfn);
212 /* split_free_page does not map the pages */
213 list_for_each_entry(page, freelist, lru) {
214 arch_alloc_page(page, 0);
215 kernel_map_pages(page, 1, 1);
218 cc->free_pfn = high_pfn;
219 cc->nr_freepages = nr_freepages;
222 /* Update the number of anon and file isolated pages in the zone */
223 static void acct_isolated(struct zone *zone, struct compact_control *cc)
225 struct page *page;
226 unsigned int count[NR_LRU_LISTS] = { 0, };
228 list_for_each_entry(page, &cc->migratepages, lru) {
229 int lru = page_lru_base_type(page);
230 count[lru]++;
233 cc->nr_anon = count[LRU_ACTIVE_ANON] + count[LRU_INACTIVE_ANON];
234 cc->nr_file = count[LRU_ACTIVE_FILE] + count[LRU_INACTIVE_FILE];
235 __mod_zone_page_state(zone, NR_ISOLATED_ANON, cc->nr_anon);
236 __mod_zone_page_state(zone, NR_ISOLATED_FILE, cc->nr_file);
239 /* Similar to reclaim, but different enough that they don't share logic */
240 static bool too_many_isolated(struct zone *zone)
242 unsigned long active, inactive, isolated;
244 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
245 zone_page_state(zone, NR_INACTIVE_ANON);
246 active = zone_page_state(zone, NR_ACTIVE_FILE) +
247 zone_page_state(zone, NR_ACTIVE_ANON);
248 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
249 zone_page_state(zone, NR_ISOLATED_ANON);
251 return isolated > (inactive + active) / 2;
254 /* possible outcome of isolate_migratepages */
255 typedef enum {
256 ISOLATE_ABORT, /* Abort compaction now */
257 ISOLATE_NONE, /* No pages isolated, continue scanning */
258 ISOLATE_SUCCESS, /* Pages isolated, migrate */
259 } isolate_migrate_t;
262 * Isolate all pages that can be migrated from the block pointed to by
263 * the migrate scanner within compact_control.
265 static isolate_migrate_t isolate_migratepages(struct zone *zone,
266 struct compact_control *cc)
268 unsigned long low_pfn, end_pfn;
269 unsigned long last_pageblock_nr = 0, pageblock_nr;
270 unsigned long nr_scanned = 0, nr_isolated = 0;
271 struct list_head *migratelist = &cc->migratepages;
273 /* Do not scan outside zone boundaries */
274 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
276 /* Only scan within a pageblock boundary */
277 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
279 /* Do not cross the free scanner or scan within a memory hole */
280 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
281 cc->migrate_pfn = end_pfn;
282 return ISOLATE_NONE;
286 * Ensure that there are not too many pages isolated from the LRU
287 * list by either parallel reclaimers or compaction. If there are,
288 * delay for some time until fewer pages are isolated
290 while (unlikely(too_many_isolated(zone))) {
291 /* async migration should just abort */
292 if (!cc->sync)
293 return ISOLATE_ABORT;
295 congestion_wait(BLK_RW_ASYNC, HZ/10);
297 if (fatal_signal_pending(current))
298 return ISOLATE_ABORT;
301 /* Time to isolate some pages for migration */
302 cond_resched();
303 spin_lock_irq(&zone->lru_lock);
304 for (; low_pfn < end_pfn; low_pfn++) {
305 struct page *page;
306 bool locked = true;
308 /* give a chance to irqs before checking need_resched() */
309 if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
310 spin_unlock_irq(&zone->lru_lock);
311 locked = false;
313 if (need_resched() || spin_is_contended(&zone->lru_lock)) {
314 if (locked)
315 spin_unlock_irq(&zone->lru_lock);
316 cond_resched();
317 spin_lock_irq(&zone->lru_lock);
318 if (fatal_signal_pending(current))
319 break;
320 } else if (!locked)
321 spin_lock_irq(&zone->lru_lock);
324 * migrate_pfn does not necessarily start aligned to a
325 * pageblock. Ensure that pfn_valid is called when moving
326 * into a new MAX_ORDER_NR_PAGES range in case of large
327 * memory holes within the zone
329 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
330 if (!pfn_valid(low_pfn)) {
331 low_pfn += MAX_ORDER_NR_PAGES - 1;
332 continue;
336 if (!pfn_valid_within(low_pfn))
337 continue;
338 nr_scanned++;
341 * Get the page and ensure the page is within the same zone.
342 * See the comment in isolate_freepages about overlapping
343 * nodes. It is deliberate that the new zone lock is not taken
344 * as memory compaction should not move pages between nodes.
346 page = pfn_to_page(low_pfn);
347 if (page_zone(page) != zone)
348 continue;
350 /* Skip if free */
351 if (PageBuddy(page))
352 continue;
355 * For async migration, also only scan in MOVABLE blocks. Async
356 * migration is optimistic to see if the minimum amount of work
357 * satisfies the allocation
359 pageblock_nr = low_pfn >> pageblock_order;
360 if (!cc->sync && last_pageblock_nr != pageblock_nr &&
361 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
362 low_pfn += pageblock_nr_pages;
363 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
364 last_pageblock_nr = pageblock_nr;
365 continue;
368 if (!PageLRU(page))
369 continue;
372 * PageLRU is set, and lru_lock excludes isolation,
373 * splitting and collapsing (collapsing has already
374 * happened if PageLRU is set).
376 if (PageTransHuge(page)) {
377 low_pfn += (1 << compound_order(page)) - 1;
378 continue;
381 /* Try isolate the page */
382 if (__isolate_lru_page(page, ISOLATE_BOTH, 0) != 0)
383 continue;
385 VM_BUG_ON(PageTransCompound(page));
387 /* Successfully isolated */
388 del_page_from_lru_list(zone, page, page_lru(page));
389 list_add(&page->lru, migratelist);
390 cc->nr_migratepages++;
391 nr_isolated++;
393 /* Avoid isolating too much */
394 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
395 break;
398 acct_isolated(zone, cc);
400 spin_unlock_irq(&zone->lru_lock);
401 cc->migrate_pfn = low_pfn;
403 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
405 return ISOLATE_SUCCESS;
409 * This is a migrate-callback that "allocates" freepages by taking pages
410 * from the isolated freelists in the block we are migrating to.
412 static struct page *compaction_alloc(struct page *migratepage,
413 unsigned long data,
414 int **result)
416 struct compact_control *cc = (struct compact_control *)data;
417 struct page *freepage;
419 /* Isolate free pages if necessary */
420 if (list_empty(&cc->freepages)) {
421 isolate_freepages(cc->zone, cc);
423 if (list_empty(&cc->freepages))
424 return NULL;
427 freepage = list_entry(cc->freepages.next, struct page, lru);
428 list_del(&freepage->lru);
429 cc->nr_freepages--;
431 return freepage;
435 * We cannot control nr_migratepages and nr_freepages fully when migration is
436 * running as migrate_pages() has no knowledge of compact_control. When
437 * migration is complete, we count the number of pages on the lists by hand.
439 static void update_nr_listpages(struct compact_control *cc)
441 int nr_migratepages = 0;
442 int nr_freepages = 0;
443 struct page *page;
445 list_for_each_entry(page, &cc->migratepages, lru)
446 nr_migratepages++;
447 list_for_each_entry(page, &cc->freepages, lru)
448 nr_freepages++;
450 cc->nr_migratepages = nr_migratepages;
451 cc->nr_freepages = nr_freepages;
454 static int compact_finished(struct zone *zone,
455 struct compact_control *cc)
457 unsigned int order;
458 unsigned long watermark;
460 if (fatal_signal_pending(current))
461 return COMPACT_PARTIAL;
463 /* Compaction run completes if the migrate and free scanner meet */
464 if (cc->free_pfn <= cc->migrate_pfn)
465 return COMPACT_COMPLETE;
468 * order == -1 is expected when compacting via
469 * /proc/sys/vm/compact_memory
471 if (cc->order == -1)
472 return COMPACT_CONTINUE;
474 /* Compaction run is not finished if the watermark is not met */
475 watermark = low_wmark_pages(zone);
476 watermark += (1 << cc->order);
478 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
479 return COMPACT_CONTINUE;
481 /* Direct compactor: Is a suitable page free? */
482 for (order = cc->order; order < MAX_ORDER; order++) {
483 /* Job done if page is free of the right migratetype */
484 if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
485 return COMPACT_PARTIAL;
487 /* Job done if allocation would set block type */
488 if (order >= pageblock_order && zone->free_area[order].nr_free)
489 return COMPACT_PARTIAL;
492 return COMPACT_CONTINUE;
496 * compaction_suitable: Is this suitable to run compaction on this zone now?
497 * Returns
498 * COMPACT_SKIPPED - If there are too few free pages for compaction
499 * COMPACT_PARTIAL - If the allocation would succeed without compaction
500 * COMPACT_CONTINUE - If compaction should run now
502 unsigned long compaction_suitable(struct zone *zone, int order)
504 int fragindex;
505 unsigned long watermark;
508 * order == -1 is expected when compacting via
509 * /proc/sys/vm/compact_memory
511 if (order == -1)
512 return COMPACT_CONTINUE;
515 * Watermarks for order-0 must be met for compaction. Note the 2UL.
516 * This is because during migration, copies of pages need to be
517 * allocated and for a short time, the footprint is higher
519 watermark = low_wmark_pages(zone) + (2UL << order);
520 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
521 return COMPACT_SKIPPED;
524 * fragmentation index determines if allocation failures are due to
525 * low memory or external fragmentation
527 * index of -1000 implies allocations might succeed depending on
528 * watermarks
529 * index towards 0 implies failure is due to lack of memory
530 * index towards 1000 implies failure is due to fragmentation
532 * Only compact if a failure would be due to fragmentation.
534 fragindex = fragmentation_index(zone, order);
535 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
536 return COMPACT_SKIPPED;
538 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
539 0, 0))
540 return COMPACT_PARTIAL;
542 return COMPACT_CONTINUE;
545 static int compact_zone(struct zone *zone, struct compact_control *cc)
547 int ret;
549 ret = compaction_suitable(zone, cc->order);
550 switch (ret) {
551 case COMPACT_PARTIAL:
552 case COMPACT_SKIPPED:
553 /* Compaction is likely to fail */
554 return ret;
555 case COMPACT_CONTINUE:
556 /* Fall through to compaction */
560 /* Setup to move all movable pages to the end of the zone */
561 cc->migrate_pfn = zone->zone_start_pfn;
562 cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
563 cc->free_pfn &= ~(pageblock_nr_pages-1);
565 migrate_prep_local();
567 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
568 unsigned long nr_migrate, nr_remaining;
569 int err;
571 switch (isolate_migratepages(zone, cc)) {
572 case ISOLATE_ABORT:
573 ret = COMPACT_PARTIAL;
574 goto out;
575 case ISOLATE_NONE:
576 continue;
577 case ISOLATE_SUCCESS:
581 nr_migrate = cc->nr_migratepages;
582 err = migrate_pages(&cc->migratepages, compaction_alloc,
583 (unsigned long)cc, false,
584 cc->sync);
585 update_nr_listpages(cc);
586 nr_remaining = cc->nr_migratepages;
588 count_vm_event(COMPACTBLOCKS);
589 count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
590 if (nr_remaining)
591 count_vm_events(COMPACTPAGEFAILED, nr_remaining);
592 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
593 nr_remaining);
595 /* Release LRU pages not migrated */
596 if (err) {
597 putback_lru_pages(&cc->migratepages);
598 cc->nr_migratepages = 0;
603 out:
604 /* Release free pages and check accounting */
605 cc->nr_freepages -= release_freepages(&cc->freepages);
606 VM_BUG_ON(cc->nr_freepages != 0);
608 return ret;
611 unsigned long compact_zone_order(struct zone *zone,
612 int order, gfp_t gfp_mask,
613 bool sync)
615 struct compact_control cc = {
616 .nr_freepages = 0,
617 .nr_migratepages = 0,
618 .order = order,
619 .migratetype = allocflags_to_migratetype(gfp_mask),
620 .zone = zone,
621 .sync = sync,
623 INIT_LIST_HEAD(&cc.freepages);
624 INIT_LIST_HEAD(&cc.migratepages);
626 return compact_zone(zone, &cc);
629 int sysctl_extfrag_threshold = 500;
632 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
633 * @zonelist: The zonelist used for the current allocation
634 * @order: The order of the current allocation
635 * @gfp_mask: The GFP mask of the current allocation
636 * @nodemask: The allowed nodes to allocate from
637 * @sync: Whether migration is synchronous or not
639 * This is the main entry point for direct page compaction.
641 unsigned long try_to_compact_pages(struct zonelist *zonelist,
642 int order, gfp_t gfp_mask, nodemask_t *nodemask,
643 bool sync)
645 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
646 int may_enter_fs = gfp_mask & __GFP_FS;
647 int may_perform_io = gfp_mask & __GFP_IO;
648 struct zoneref *z;
649 struct zone *zone;
650 int rc = COMPACT_SKIPPED;
653 * Check whether it is worth even starting compaction. The order check is
654 * made because an assumption is made that the page allocator can satisfy
655 * the "cheaper" orders without taking special steps
657 if (!order || !may_enter_fs || !may_perform_io)
658 return rc;
660 count_vm_event(COMPACTSTALL);
662 /* Compact each zone in the list */
663 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
664 nodemask) {
665 int status;
667 status = compact_zone_order(zone, order, gfp_mask, sync);
668 rc = max(status, rc);
670 /* If a normal allocation would succeed, stop compacting */
671 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
672 break;
675 return rc;
679 /* Compact all zones within a node */
680 static int compact_node(int nid)
682 int zoneid;
683 pg_data_t *pgdat;
684 struct zone *zone;
686 if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
687 return -EINVAL;
688 pgdat = NODE_DATA(nid);
690 /* Flush pending updates to the LRU lists */
691 lru_add_drain_all();
693 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
694 struct compact_control cc = {
695 .nr_freepages = 0,
696 .nr_migratepages = 0,
697 .order = -1,
700 zone = &pgdat->node_zones[zoneid];
701 if (!populated_zone(zone))
702 continue;
704 cc.zone = zone;
705 INIT_LIST_HEAD(&cc.freepages);
706 INIT_LIST_HEAD(&cc.migratepages);
708 compact_zone(zone, &cc);
710 VM_BUG_ON(!list_empty(&cc.freepages));
711 VM_BUG_ON(!list_empty(&cc.migratepages));
714 return 0;
717 /* Compact all nodes in the system */
718 static int compact_nodes(void)
720 int nid;
722 for_each_online_node(nid)
723 compact_node(nid);
725 return COMPACT_COMPLETE;
728 /* The written value is actually unused, all memory is compacted */
729 int sysctl_compact_memory;
731 /* This is the entry point for compacting all nodes via /proc/sys/vm */
732 int sysctl_compaction_handler(struct ctl_table *table, int write,
733 void __user *buffer, size_t *length, loff_t *ppos)
735 if (write)
736 return compact_nodes();
738 return 0;
741 int sysctl_extfrag_handler(struct ctl_table *table, int write,
742 void __user *buffer, size_t *length, loff_t *ppos)
744 proc_dointvec_minmax(table, write, buffer, length, ppos);
746 return 0;
749 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
750 ssize_t sysfs_compact_node(struct sys_device *dev,
751 struct sysdev_attribute *attr,
752 const char *buf, size_t count)
754 compact_node(dev->id);
756 return count;
758 static SYSDEV_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
760 int compaction_register_node(struct node *node)
762 return sysdev_create_file(&node->sysdev, &attr_compact);
765 void compaction_unregister_node(struct node *node)
767 return sysdev_remove_file(&node->sysdev, &attr_compact);
769 #endif /* CONFIG_SYSFS && CONFIG_NUMA */