powerpc/power8: Fix secondary CPUs hanging on boot for HV=0
[linux/fpc-iii.git] / kernel / futex.c
blobb26dcfc02c9489b3ca00bfd076f2208bb4964366
1 /*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
47 #include <linux/slab.h>
48 #include <linux/poll.h>
49 #include <linux/fs.h>
50 #include <linux/file.h>
51 #include <linux/jhash.h>
52 #include <linux/init.h>
53 #include <linux/futex.h>
54 #include <linux/mount.h>
55 #include <linux/pagemap.h>
56 #include <linux/syscalls.h>
57 #include <linux/signal.h>
58 #include <linux/export.h>
59 #include <linux/magic.h>
60 #include <linux/pid.h>
61 #include <linux/nsproxy.h>
62 #include <linux/ptrace.h>
63 #include <linux/sched/rt.h>
65 #include <asm/futex.h>
67 #include "rtmutex_common.h"
69 int __read_mostly futex_cmpxchg_enabled;
71 #define FUTEX_HASHBITS (CONFIG_BASE_SMALL ? 4 : 8)
74 * Futex flags used to encode options to functions and preserve them across
75 * restarts.
77 #define FLAGS_SHARED 0x01
78 #define FLAGS_CLOCKRT 0x02
79 #define FLAGS_HAS_TIMEOUT 0x04
82 * Priority Inheritance state:
84 struct futex_pi_state {
86 * list of 'owned' pi_state instances - these have to be
87 * cleaned up in do_exit() if the task exits prematurely:
89 struct list_head list;
92 * The PI object:
94 struct rt_mutex pi_mutex;
96 struct task_struct *owner;
97 atomic_t refcount;
99 union futex_key key;
103 * struct futex_q - The hashed futex queue entry, one per waiting task
104 * @list: priority-sorted list of tasks waiting on this futex
105 * @task: the task waiting on the futex
106 * @lock_ptr: the hash bucket lock
107 * @key: the key the futex is hashed on
108 * @pi_state: optional priority inheritance state
109 * @rt_waiter: rt_waiter storage for use with requeue_pi
110 * @requeue_pi_key: the requeue_pi target futex key
111 * @bitset: bitset for the optional bitmasked wakeup
113 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
114 * we can wake only the relevant ones (hashed queues may be shared).
116 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
117 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
118 * The order of wakeup is always to make the first condition true, then
119 * the second.
121 * PI futexes are typically woken before they are removed from the hash list via
122 * the rt_mutex code. See unqueue_me_pi().
124 struct futex_q {
125 struct plist_node list;
127 struct task_struct *task;
128 spinlock_t *lock_ptr;
129 union futex_key key;
130 struct futex_pi_state *pi_state;
131 struct rt_mutex_waiter *rt_waiter;
132 union futex_key *requeue_pi_key;
133 u32 bitset;
136 static const struct futex_q futex_q_init = {
137 /* list gets initialized in queue_me()*/
138 .key = FUTEX_KEY_INIT,
139 .bitset = FUTEX_BITSET_MATCH_ANY
143 * Hash buckets are shared by all the futex_keys that hash to the same
144 * location. Each key may have multiple futex_q structures, one for each task
145 * waiting on a futex.
147 struct futex_hash_bucket {
148 spinlock_t lock;
149 struct plist_head chain;
152 static struct futex_hash_bucket futex_queues[1<<FUTEX_HASHBITS];
155 * We hash on the keys returned from get_futex_key (see below).
157 static struct futex_hash_bucket *hash_futex(union futex_key *key)
159 u32 hash = jhash2((u32*)&key->both.word,
160 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
161 key->both.offset);
162 return &futex_queues[hash & ((1 << FUTEX_HASHBITS)-1)];
166 * Return 1 if two futex_keys are equal, 0 otherwise.
168 static inline int match_futex(union futex_key *key1, union futex_key *key2)
170 return (key1 && key2
171 && key1->both.word == key2->both.word
172 && key1->both.ptr == key2->both.ptr
173 && key1->both.offset == key2->both.offset);
177 * Take a reference to the resource addressed by a key.
178 * Can be called while holding spinlocks.
181 static void get_futex_key_refs(union futex_key *key)
183 if (!key->both.ptr)
184 return;
186 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
187 case FUT_OFF_INODE:
188 ihold(key->shared.inode);
189 break;
190 case FUT_OFF_MMSHARED:
191 atomic_inc(&key->private.mm->mm_count);
192 break;
197 * Drop a reference to the resource addressed by a key.
198 * The hash bucket spinlock must not be held.
200 static void drop_futex_key_refs(union futex_key *key)
202 if (!key->both.ptr) {
203 /* If we're here then we tried to put a key we failed to get */
204 WARN_ON_ONCE(1);
205 return;
208 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
209 case FUT_OFF_INODE:
210 iput(key->shared.inode);
211 break;
212 case FUT_OFF_MMSHARED:
213 mmdrop(key->private.mm);
214 break;
219 * get_futex_key() - Get parameters which are the keys for a futex
220 * @uaddr: virtual address of the futex
221 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
222 * @key: address where result is stored.
223 * @rw: mapping needs to be read/write (values: VERIFY_READ,
224 * VERIFY_WRITE)
226 * Return: a negative error code or 0
228 * The key words are stored in *key on success.
230 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
231 * offset_within_page). For private mappings, it's (uaddr, current->mm).
232 * We can usually work out the index without swapping in the page.
234 * lock_page() might sleep, the caller should not hold a spinlock.
236 static int
237 get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
239 unsigned long address = (unsigned long)uaddr;
240 struct mm_struct *mm = current->mm;
241 struct page *page, *page_head;
242 int err, ro = 0;
245 * The futex address must be "naturally" aligned.
247 key->both.offset = address % PAGE_SIZE;
248 if (unlikely((address % sizeof(u32)) != 0))
249 return -EINVAL;
250 address -= key->both.offset;
253 * PROCESS_PRIVATE futexes are fast.
254 * As the mm cannot disappear under us and the 'key' only needs
255 * virtual address, we dont even have to find the underlying vma.
256 * Note : We do have to check 'uaddr' is a valid user address,
257 * but access_ok() should be faster than find_vma()
259 if (!fshared) {
260 if (unlikely(!access_ok(VERIFY_WRITE, uaddr, sizeof(u32))))
261 return -EFAULT;
262 key->private.mm = mm;
263 key->private.address = address;
264 get_futex_key_refs(key);
265 return 0;
268 again:
269 err = get_user_pages_fast(address, 1, 1, &page);
271 * If write access is not required (eg. FUTEX_WAIT), try
272 * and get read-only access.
274 if (err == -EFAULT && rw == VERIFY_READ) {
275 err = get_user_pages_fast(address, 1, 0, &page);
276 ro = 1;
278 if (err < 0)
279 return err;
280 else
281 err = 0;
283 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
284 page_head = page;
285 if (unlikely(PageTail(page))) {
286 put_page(page);
287 /* serialize against __split_huge_page_splitting() */
288 local_irq_disable();
289 if (likely(__get_user_pages_fast(address, 1, 1, &page) == 1)) {
290 page_head = compound_head(page);
292 * page_head is valid pointer but we must pin
293 * it before taking the PG_lock and/or
294 * PG_compound_lock. The moment we re-enable
295 * irqs __split_huge_page_splitting() can
296 * return and the head page can be freed from
297 * under us. We can't take the PG_lock and/or
298 * PG_compound_lock on a page that could be
299 * freed from under us.
301 if (page != page_head) {
302 get_page(page_head);
303 put_page(page);
305 local_irq_enable();
306 } else {
307 local_irq_enable();
308 goto again;
311 #else
312 page_head = compound_head(page);
313 if (page != page_head) {
314 get_page(page_head);
315 put_page(page);
317 #endif
319 lock_page(page_head);
322 * If page_head->mapping is NULL, then it cannot be a PageAnon
323 * page; but it might be the ZERO_PAGE or in the gate area or
324 * in a special mapping (all cases which we are happy to fail);
325 * or it may have been a good file page when get_user_pages_fast
326 * found it, but truncated or holepunched or subjected to
327 * invalidate_complete_page2 before we got the page lock (also
328 * cases which we are happy to fail). And we hold a reference,
329 * so refcount care in invalidate_complete_page's remove_mapping
330 * prevents drop_caches from setting mapping to NULL beneath us.
332 * The case we do have to guard against is when memory pressure made
333 * shmem_writepage move it from filecache to swapcache beneath us:
334 * an unlikely race, but we do need to retry for page_head->mapping.
336 if (!page_head->mapping) {
337 int shmem_swizzled = PageSwapCache(page_head);
338 unlock_page(page_head);
339 put_page(page_head);
340 if (shmem_swizzled)
341 goto again;
342 return -EFAULT;
346 * Private mappings are handled in a simple way.
348 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
349 * it's a read-only handle, it's expected that futexes attach to
350 * the object not the particular process.
352 if (PageAnon(page_head)) {
354 * A RO anonymous page will never change and thus doesn't make
355 * sense for futex operations.
357 if (ro) {
358 err = -EFAULT;
359 goto out;
362 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
363 key->private.mm = mm;
364 key->private.address = address;
365 } else {
366 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
367 key->shared.inode = page_head->mapping->host;
368 key->shared.pgoff = page_head->index;
371 get_futex_key_refs(key);
373 out:
374 unlock_page(page_head);
375 put_page(page_head);
376 return err;
379 static inline void put_futex_key(union futex_key *key)
381 drop_futex_key_refs(key);
385 * fault_in_user_writeable() - Fault in user address and verify RW access
386 * @uaddr: pointer to faulting user space address
388 * Slow path to fixup the fault we just took in the atomic write
389 * access to @uaddr.
391 * We have no generic implementation of a non-destructive write to the
392 * user address. We know that we faulted in the atomic pagefault
393 * disabled section so we can as well avoid the #PF overhead by
394 * calling get_user_pages() right away.
396 static int fault_in_user_writeable(u32 __user *uaddr)
398 struct mm_struct *mm = current->mm;
399 int ret;
401 down_read(&mm->mmap_sem);
402 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
403 FAULT_FLAG_WRITE);
404 up_read(&mm->mmap_sem);
406 return ret < 0 ? ret : 0;
410 * futex_top_waiter() - Return the highest priority waiter on a futex
411 * @hb: the hash bucket the futex_q's reside in
412 * @key: the futex key (to distinguish it from other futex futex_q's)
414 * Must be called with the hb lock held.
416 static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
417 union futex_key *key)
419 struct futex_q *this;
421 plist_for_each_entry(this, &hb->chain, list) {
422 if (match_futex(&this->key, key))
423 return this;
425 return NULL;
428 static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
429 u32 uval, u32 newval)
431 int ret;
433 pagefault_disable();
434 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
435 pagefault_enable();
437 return ret;
440 static int get_futex_value_locked(u32 *dest, u32 __user *from)
442 int ret;
444 pagefault_disable();
445 ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
446 pagefault_enable();
448 return ret ? -EFAULT : 0;
453 * PI code:
455 static int refill_pi_state_cache(void)
457 struct futex_pi_state *pi_state;
459 if (likely(current->pi_state_cache))
460 return 0;
462 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
464 if (!pi_state)
465 return -ENOMEM;
467 INIT_LIST_HEAD(&pi_state->list);
468 /* pi_mutex gets initialized later */
469 pi_state->owner = NULL;
470 atomic_set(&pi_state->refcount, 1);
471 pi_state->key = FUTEX_KEY_INIT;
473 current->pi_state_cache = pi_state;
475 return 0;
478 static struct futex_pi_state * alloc_pi_state(void)
480 struct futex_pi_state *pi_state = current->pi_state_cache;
482 WARN_ON(!pi_state);
483 current->pi_state_cache = NULL;
485 return pi_state;
488 static void free_pi_state(struct futex_pi_state *pi_state)
490 if (!atomic_dec_and_test(&pi_state->refcount))
491 return;
494 * If pi_state->owner is NULL, the owner is most probably dying
495 * and has cleaned up the pi_state already
497 if (pi_state->owner) {
498 raw_spin_lock_irq(&pi_state->owner->pi_lock);
499 list_del_init(&pi_state->list);
500 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
502 rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
505 if (current->pi_state_cache)
506 kfree(pi_state);
507 else {
509 * pi_state->list is already empty.
510 * clear pi_state->owner.
511 * refcount is at 0 - put it back to 1.
513 pi_state->owner = NULL;
514 atomic_set(&pi_state->refcount, 1);
515 current->pi_state_cache = pi_state;
520 * Look up the task based on what TID userspace gave us.
521 * We dont trust it.
523 static struct task_struct * futex_find_get_task(pid_t pid)
525 struct task_struct *p;
527 rcu_read_lock();
528 p = find_task_by_vpid(pid);
529 if (p)
530 get_task_struct(p);
532 rcu_read_unlock();
534 return p;
538 * This task is holding PI mutexes at exit time => bad.
539 * Kernel cleans up PI-state, but userspace is likely hosed.
540 * (Robust-futex cleanup is separate and might save the day for userspace.)
542 void exit_pi_state_list(struct task_struct *curr)
544 struct list_head *next, *head = &curr->pi_state_list;
545 struct futex_pi_state *pi_state;
546 struct futex_hash_bucket *hb;
547 union futex_key key = FUTEX_KEY_INIT;
549 if (!futex_cmpxchg_enabled)
550 return;
552 * We are a ZOMBIE and nobody can enqueue itself on
553 * pi_state_list anymore, but we have to be careful
554 * versus waiters unqueueing themselves:
556 raw_spin_lock_irq(&curr->pi_lock);
557 while (!list_empty(head)) {
559 next = head->next;
560 pi_state = list_entry(next, struct futex_pi_state, list);
561 key = pi_state->key;
562 hb = hash_futex(&key);
563 raw_spin_unlock_irq(&curr->pi_lock);
565 spin_lock(&hb->lock);
567 raw_spin_lock_irq(&curr->pi_lock);
569 * We dropped the pi-lock, so re-check whether this
570 * task still owns the PI-state:
572 if (head->next != next) {
573 spin_unlock(&hb->lock);
574 continue;
577 WARN_ON(pi_state->owner != curr);
578 WARN_ON(list_empty(&pi_state->list));
579 list_del_init(&pi_state->list);
580 pi_state->owner = NULL;
581 raw_spin_unlock_irq(&curr->pi_lock);
583 rt_mutex_unlock(&pi_state->pi_mutex);
585 spin_unlock(&hb->lock);
587 raw_spin_lock_irq(&curr->pi_lock);
589 raw_spin_unlock_irq(&curr->pi_lock);
592 static int
593 lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
594 union futex_key *key, struct futex_pi_state **ps)
596 struct futex_pi_state *pi_state = NULL;
597 struct futex_q *this, *next;
598 struct plist_head *head;
599 struct task_struct *p;
600 pid_t pid = uval & FUTEX_TID_MASK;
602 head = &hb->chain;
604 plist_for_each_entry_safe(this, next, head, list) {
605 if (match_futex(&this->key, key)) {
607 * Another waiter already exists - bump up
608 * the refcount and return its pi_state:
610 pi_state = this->pi_state;
612 * Userspace might have messed up non-PI and PI futexes
614 if (unlikely(!pi_state))
615 return -EINVAL;
617 WARN_ON(!atomic_read(&pi_state->refcount));
620 * When pi_state->owner is NULL then the owner died
621 * and another waiter is on the fly. pi_state->owner
622 * is fixed up by the task which acquires
623 * pi_state->rt_mutex.
625 * We do not check for pid == 0 which can happen when
626 * the owner died and robust_list_exit() cleared the
627 * TID.
629 if (pid && pi_state->owner) {
631 * Bail out if user space manipulated the
632 * futex value.
634 if (pid != task_pid_vnr(pi_state->owner))
635 return -EINVAL;
638 atomic_inc(&pi_state->refcount);
639 *ps = pi_state;
641 return 0;
646 * We are the first waiter - try to look up the real owner and attach
647 * the new pi_state to it, but bail out when TID = 0
649 if (!pid)
650 return -ESRCH;
651 p = futex_find_get_task(pid);
652 if (!p)
653 return -ESRCH;
656 * We need to look at the task state flags to figure out,
657 * whether the task is exiting. To protect against the do_exit
658 * change of the task flags, we do this protected by
659 * p->pi_lock:
661 raw_spin_lock_irq(&p->pi_lock);
662 if (unlikely(p->flags & PF_EXITING)) {
664 * The task is on the way out. When PF_EXITPIDONE is
665 * set, we know that the task has finished the
666 * cleanup:
668 int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
670 raw_spin_unlock_irq(&p->pi_lock);
671 put_task_struct(p);
672 return ret;
675 pi_state = alloc_pi_state();
678 * Initialize the pi_mutex in locked state and make 'p'
679 * the owner of it:
681 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
683 /* Store the key for possible exit cleanups: */
684 pi_state->key = *key;
686 WARN_ON(!list_empty(&pi_state->list));
687 list_add(&pi_state->list, &p->pi_state_list);
688 pi_state->owner = p;
689 raw_spin_unlock_irq(&p->pi_lock);
691 put_task_struct(p);
693 *ps = pi_state;
695 return 0;
699 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
700 * @uaddr: the pi futex user address
701 * @hb: the pi futex hash bucket
702 * @key: the futex key associated with uaddr and hb
703 * @ps: the pi_state pointer where we store the result of the
704 * lookup
705 * @task: the task to perform the atomic lock work for. This will
706 * be "current" except in the case of requeue pi.
707 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
709 * Return:
710 * 0 - ready to wait;
711 * 1 - acquired the lock;
712 * <0 - error
714 * The hb->lock and futex_key refs shall be held by the caller.
716 static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
717 union futex_key *key,
718 struct futex_pi_state **ps,
719 struct task_struct *task, int set_waiters)
721 int lock_taken, ret, force_take = 0;
722 u32 uval, newval, curval, vpid = task_pid_vnr(task);
724 retry:
725 ret = lock_taken = 0;
728 * To avoid races, we attempt to take the lock here again
729 * (by doing a 0 -> TID atomic cmpxchg), while holding all
730 * the locks. It will most likely not succeed.
732 newval = vpid;
733 if (set_waiters)
734 newval |= FUTEX_WAITERS;
736 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
737 return -EFAULT;
740 * Detect deadlocks.
742 if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
743 return -EDEADLK;
746 * Surprise - we got the lock. Just return to userspace:
748 if (unlikely(!curval))
749 return 1;
751 uval = curval;
754 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
755 * to wake at the next unlock.
757 newval = curval | FUTEX_WAITERS;
760 * Should we force take the futex? See below.
762 if (unlikely(force_take)) {
764 * Keep the OWNER_DIED and the WAITERS bit and set the
765 * new TID value.
767 newval = (curval & ~FUTEX_TID_MASK) | vpid;
768 force_take = 0;
769 lock_taken = 1;
772 if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
773 return -EFAULT;
774 if (unlikely(curval != uval))
775 goto retry;
778 * We took the lock due to forced take over.
780 if (unlikely(lock_taken))
781 return 1;
784 * We dont have the lock. Look up the PI state (or create it if
785 * we are the first waiter):
787 ret = lookup_pi_state(uval, hb, key, ps);
789 if (unlikely(ret)) {
790 switch (ret) {
791 case -ESRCH:
793 * We failed to find an owner for this
794 * futex. So we have no pi_state to block
795 * on. This can happen in two cases:
797 * 1) The owner died
798 * 2) A stale FUTEX_WAITERS bit
800 * Re-read the futex value.
802 if (get_futex_value_locked(&curval, uaddr))
803 return -EFAULT;
806 * If the owner died or we have a stale
807 * WAITERS bit the owner TID in the user space
808 * futex is 0.
810 if (!(curval & FUTEX_TID_MASK)) {
811 force_take = 1;
812 goto retry;
814 default:
815 break;
819 return ret;
823 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
824 * @q: The futex_q to unqueue
826 * The q->lock_ptr must not be NULL and must be held by the caller.
828 static void __unqueue_futex(struct futex_q *q)
830 struct futex_hash_bucket *hb;
832 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
833 || WARN_ON(plist_node_empty(&q->list)))
834 return;
836 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
837 plist_del(&q->list, &hb->chain);
841 * The hash bucket lock must be held when this is called.
842 * Afterwards, the futex_q must not be accessed.
844 static void wake_futex(struct futex_q *q)
846 struct task_struct *p = q->task;
848 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
849 return;
852 * We set q->lock_ptr = NULL _before_ we wake up the task. If
853 * a non-futex wake up happens on another CPU then the task
854 * might exit and p would dereference a non-existing task
855 * struct. Prevent this by holding a reference on p across the
856 * wake up.
858 get_task_struct(p);
860 __unqueue_futex(q);
862 * The waiting task can free the futex_q as soon as
863 * q->lock_ptr = NULL is written, without taking any locks. A
864 * memory barrier is required here to prevent the following
865 * store to lock_ptr from getting ahead of the plist_del.
867 smp_wmb();
868 q->lock_ptr = NULL;
870 wake_up_state(p, TASK_NORMAL);
871 put_task_struct(p);
874 static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
876 struct task_struct *new_owner;
877 struct futex_pi_state *pi_state = this->pi_state;
878 u32 uninitialized_var(curval), newval;
880 if (!pi_state)
881 return -EINVAL;
884 * If current does not own the pi_state then the futex is
885 * inconsistent and user space fiddled with the futex value.
887 if (pi_state->owner != current)
888 return -EINVAL;
890 raw_spin_lock(&pi_state->pi_mutex.wait_lock);
891 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
894 * It is possible that the next waiter (the one that brought
895 * this owner to the kernel) timed out and is no longer
896 * waiting on the lock.
898 if (!new_owner)
899 new_owner = this->task;
902 * We pass it to the next owner. (The WAITERS bit is always
903 * kept enabled while there is PI state around. We must also
904 * preserve the owner died bit.)
906 if (!(uval & FUTEX_OWNER_DIED)) {
907 int ret = 0;
909 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
911 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
912 ret = -EFAULT;
913 else if (curval != uval)
914 ret = -EINVAL;
915 if (ret) {
916 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
917 return ret;
921 raw_spin_lock_irq(&pi_state->owner->pi_lock);
922 WARN_ON(list_empty(&pi_state->list));
923 list_del_init(&pi_state->list);
924 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
926 raw_spin_lock_irq(&new_owner->pi_lock);
927 WARN_ON(!list_empty(&pi_state->list));
928 list_add(&pi_state->list, &new_owner->pi_state_list);
929 pi_state->owner = new_owner;
930 raw_spin_unlock_irq(&new_owner->pi_lock);
932 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
933 rt_mutex_unlock(&pi_state->pi_mutex);
935 return 0;
938 static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
940 u32 uninitialized_var(oldval);
943 * There is no waiter, so we unlock the futex. The owner died
944 * bit has not to be preserved here. We are the owner:
946 if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
947 return -EFAULT;
948 if (oldval != uval)
949 return -EAGAIN;
951 return 0;
955 * Express the locking dependencies for lockdep:
957 static inline void
958 double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
960 if (hb1 <= hb2) {
961 spin_lock(&hb1->lock);
962 if (hb1 < hb2)
963 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
964 } else { /* hb1 > hb2 */
965 spin_lock(&hb2->lock);
966 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
970 static inline void
971 double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
973 spin_unlock(&hb1->lock);
974 if (hb1 != hb2)
975 spin_unlock(&hb2->lock);
979 * Wake up waiters matching bitset queued on this futex (uaddr).
981 static int
982 futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
984 struct futex_hash_bucket *hb;
985 struct futex_q *this, *next;
986 struct plist_head *head;
987 union futex_key key = FUTEX_KEY_INIT;
988 int ret;
990 if (!bitset)
991 return -EINVAL;
993 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
994 if (unlikely(ret != 0))
995 goto out;
997 hb = hash_futex(&key);
998 spin_lock(&hb->lock);
999 head = &hb->chain;
1001 plist_for_each_entry_safe(this, next, head, list) {
1002 if (match_futex (&this->key, &key)) {
1003 if (this->pi_state || this->rt_waiter) {
1004 ret = -EINVAL;
1005 break;
1008 /* Check if one of the bits is set in both bitsets */
1009 if (!(this->bitset & bitset))
1010 continue;
1012 wake_futex(this);
1013 if (++ret >= nr_wake)
1014 break;
1018 spin_unlock(&hb->lock);
1019 put_futex_key(&key);
1020 out:
1021 return ret;
1025 * Wake up all waiters hashed on the physical page that is mapped
1026 * to this virtual address:
1028 static int
1029 futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1030 int nr_wake, int nr_wake2, int op)
1032 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1033 struct futex_hash_bucket *hb1, *hb2;
1034 struct plist_head *head;
1035 struct futex_q *this, *next;
1036 int ret, op_ret;
1038 retry:
1039 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1040 if (unlikely(ret != 0))
1041 goto out;
1042 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1043 if (unlikely(ret != 0))
1044 goto out_put_key1;
1046 hb1 = hash_futex(&key1);
1047 hb2 = hash_futex(&key2);
1049 retry_private:
1050 double_lock_hb(hb1, hb2);
1051 op_ret = futex_atomic_op_inuser(op, uaddr2);
1052 if (unlikely(op_ret < 0)) {
1054 double_unlock_hb(hb1, hb2);
1056 #ifndef CONFIG_MMU
1058 * we don't get EFAULT from MMU faults if we don't have an MMU,
1059 * but we might get them from range checking
1061 ret = op_ret;
1062 goto out_put_keys;
1063 #endif
1065 if (unlikely(op_ret != -EFAULT)) {
1066 ret = op_ret;
1067 goto out_put_keys;
1070 ret = fault_in_user_writeable(uaddr2);
1071 if (ret)
1072 goto out_put_keys;
1074 if (!(flags & FLAGS_SHARED))
1075 goto retry_private;
1077 put_futex_key(&key2);
1078 put_futex_key(&key1);
1079 goto retry;
1082 head = &hb1->chain;
1084 plist_for_each_entry_safe(this, next, head, list) {
1085 if (match_futex (&this->key, &key1)) {
1086 if (this->pi_state || this->rt_waiter) {
1087 ret = -EINVAL;
1088 goto out_unlock;
1090 wake_futex(this);
1091 if (++ret >= nr_wake)
1092 break;
1096 if (op_ret > 0) {
1097 head = &hb2->chain;
1099 op_ret = 0;
1100 plist_for_each_entry_safe(this, next, head, list) {
1101 if (match_futex (&this->key, &key2)) {
1102 if (this->pi_state || this->rt_waiter) {
1103 ret = -EINVAL;
1104 goto out_unlock;
1106 wake_futex(this);
1107 if (++op_ret >= nr_wake2)
1108 break;
1111 ret += op_ret;
1114 out_unlock:
1115 double_unlock_hb(hb1, hb2);
1116 out_put_keys:
1117 put_futex_key(&key2);
1118 out_put_key1:
1119 put_futex_key(&key1);
1120 out:
1121 return ret;
1125 * requeue_futex() - Requeue a futex_q from one hb to another
1126 * @q: the futex_q to requeue
1127 * @hb1: the source hash_bucket
1128 * @hb2: the target hash_bucket
1129 * @key2: the new key for the requeued futex_q
1131 static inline
1132 void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1133 struct futex_hash_bucket *hb2, union futex_key *key2)
1137 * If key1 and key2 hash to the same bucket, no need to
1138 * requeue.
1140 if (likely(&hb1->chain != &hb2->chain)) {
1141 plist_del(&q->list, &hb1->chain);
1142 plist_add(&q->list, &hb2->chain);
1143 q->lock_ptr = &hb2->lock;
1145 get_futex_key_refs(key2);
1146 q->key = *key2;
1150 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1151 * @q: the futex_q
1152 * @key: the key of the requeue target futex
1153 * @hb: the hash_bucket of the requeue target futex
1155 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1156 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1157 * to the requeue target futex so the waiter can detect the wakeup on the right
1158 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1159 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1160 * to protect access to the pi_state to fixup the owner later. Must be called
1161 * with both q->lock_ptr and hb->lock held.
1163 static inline
1164 void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1165 struct futex_hash_bucket *hb)
1167 get_futex_key_refs(key);
1168 q->key = *key;
1170 __unqueue_futex(q);
1172 WARN_ON(!q->rt_waiter);
1173 q->rt_waiter = NULL;
1175 q->lock_ptr = &hb->lock;
1177 wake_up_state(q->task, TASK_NORMAL);
1181 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1182 * @pifutex: the user address of the to futex
1183 * @hb1: the from futex hash bucket, must be locked by the caller
1184 * @hb2: the to futex hash bucket, must be locked by the caller
1185 * @key1: the from futex key
1186 * @key2: the to futex key
1187 * @ps: address to store the pi_state pointer
1188 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1190 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1191 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1192 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1193 * hb1 and hb2 must be held by the caller.
1195 * Return:
1196 * 0 - failed to acquire the lock atomically;
1197 * 1 - acquired the lock;
1198 * <0 - error
1200 static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1201 struct futex_hash_bucket *hb1,
1202 struct futex_hash_bucket *hb2,
1203 union futex_key *key1, union futex_key *key2,
1204 struct futex_pi_state **ps, int set_waiters)
1206 struct futex_q *top_waiter = NULL;
1207 u32 curval;
1208 int ret;
1210 if (get_futex_value_locked(&curval, pifutex))
1211 return -EFAULT;
1214 * Find the top_waiter and determine if there are additional waiters.
1215 * If the caller intends to requeue more than 1 waiter to pifutex,
1216 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1217 * as we have means to handle the possible fault. If not, don't set
1218 * the bit unecessarily as it will force the subsequent unlock to enter
1219 * the kernel.
1221 top_waiter = futex_top_waiter(hb1, key1);
1223 /* There are no waiters, nothing for us to do. */
1224 if (!top_waiter)
1225 return 0;
1227 /* Ensure we requeue to the expected futex. */
1228 if (!match_futex(top_waiter->requeue_pi_key, key2))
1229 return -EINVAL;
1232 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1233 * the contended case or if set_waiters is 1. The pi_state is returned
1234 * in ps in contended cases.
1236 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1237 set_waiters);
1238 if (ret == 1)
1239 requeue_pi_wake_futex(top_waiter, key2, hb2);
1241 return ret;
1245 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1246 * @uaddr1: source futex user address
1247 * @flags: futex flags (FLAGS_SHARED, etc.)
1248 * @uaddr2: target futex user address
1249 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1250 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1251 * @cmpval: @uaddr1 expected value (or %NULL)
1252 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
1253 * pi futex (pi to pi requeue is not supported)
1255 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1256 * uaddr2 atomically on behalf of the top waiter.
1258 * Return:
1259 * >=0 - on success, the number of tasks requeued or woken;
1260 * <0 - on error
1262 static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1263 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1264 u32 *cmpval, int requeue_pi)
1266 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1267 int drop_count = 0, task_count = 0, ret;
1268 struct futex_pi_state *pi_state = NULL;
1269 struct futex_hash_bucket *hb1, *hb2;
1270 struct plist_head *head1;
1271 struct futex_q *this, *next;
1272 u32 curval2;
1274 if (requeue_pi) {
1276 * requeue_pi requires a pi_state, try to allocate it now
1277 * without any locks in case it fails.
1279 if (refill_pi_state_cache())
1280 return -ENOMEM;
1282 * requeue_pi must wake as many tasks as it can, up to nr_wake
1283 * + nr_requeue, since it acquires the rt_mutex prior to
1284 * returning to userspace, so as to not leave the rt_mutex with
1285 * waiters and no owner. However, second and third wake-ups
1286 * cannot be predicted as they involve race conditions with the
1287 * first wake and a fault while looking up the pi_state. Both
1288 * pthread_cond_signal() and pthread_cond_broadcast() should
1289 * use nr_wake=1.
1291 if (nr_wake != 1)
1292 return -EINVAL;
1295 retry:
1296 if (pi_state != NULL) {
1298 * We will have to lookup the pi_state again, so free this one
1299 * to keep the accounting correct.
1301 free_pi_state(pi_state);
1302 pi_state = NULL;
1305 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1306 if (unlikely(ret != 0))
1307 goto out;
1308 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1309 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1310 if (unlikely(ret != 0))
1311 goto out_put_key1;
1313 hb1 = hash_futex(&key1);
1314 hb2 = hash_futex(&key2);
1316 retry_private:
1317 double_lock_hb(hb1, hb2);
1319 if (likely(cmpval != NULL)) {
1320 u32 curval;
1322 ret = get_futex_value_locked(&curval, uaddr1);
1324 if (unlikely(ret)) {
1325 double_unlock_hb(hb1, hb2);
1327 ret = get_user(curval, uaddr1);
1328 if (ret)
1329 goto out_put_keys;
1331 if (!(flags & FLAGS_SHARED))
1332 goto retry_private;
1334 put_futex_key(&key2);
1335 put_futex_key(&key1);
1336 goto retry;
1338 if (curval != *cmpval) {
1339 ret = -EAGAIN;
1340 goto out_unlock;
1344 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1346 * Attempt to acquire uaddr2 and wake the top waiter. If we
1347 * intend to requeue waiters, force setting the FUTEX_WAITERS
1348 * bit. We force this here where we are able to easily handle
1349 * faults rather in the requeue loop below.
1351 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1352 &key2, &pi_state, nr_requeue);
1355 * At this point the top_waiter has either taken uaddr2 or is
1356 * waiting on it. If the former, then the pi_state will not
1357 * exist yet, look it up one more time to ensure we have a
1358 * reference to it.
1360 if (ret == 1) {
1361 WARN_ON(pi_state);
1362 drop_count++;
1363 task_count++;
1364 ret = get_futex_value_locked(&curval2, uaddr2);
1365 if (!ret)
1366 ret = lookup_pi_state(curval2, hb2, &key2,
1367 &pi_state);
1370 switch (ret) {
1371 case 0:
1372 break;
1373 case -EFAULT:
1374 double_unlock_hb(hb1, hb2);
1375 put_futex_key(&key2);
1376 put_futex_key(&key1);
1377 ret = fault_in_user_writeable(uaddr2);
1378 if (!ret)
1379 goto retry;
1380 goto out;
1381 case -EAGAIN:
1382 /* The owner was exiting, try again. */
1383 double_unlock_hb(hb1, hb2);
1384 put_futex_key(&key2);
1385 put_futex_key(&key1);
1386 cond_resched();
1387 goto retry;
1388 default:
1389 goto out_unlock;
1393 head1 = &hb1->chain;
1394 plist_for_each_entry_safe(this, next, head1, list) {
1395 if (task_count - nr_wake >= nr_requeue)
1396 break;
1398 if (!match_futex(&this->key, &key1))
1399 continue;
1402 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1403 * be paired with each other and no other futex ops.
1405 * We should never be requeueing a futex_q with a pi_state,
1406 * which is awaiting a futex_unlock_pi().
1408 if ((requeue_pi && !this->rt_waiter) ||
1409 (!requeue_pi && this->rt_waiter) ||
1410 this->pi_state) {
1411 ret = -EINVAL;
1412 break;
1416 * Wake nr_wake waiters. For requeue_pi, if we acquired the
1417 * lock, we already woke the top_waiter. If not, it will be
1418 * woken by futex_unlock_pi().
1420 if (++task_count <= nr_wake && !requeue_pi) {
1421 wake_futex(this);
1422 continue;
1425 /* Ensure we requeue to the expected futex for requeue_pi. */
1426 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1427 ret = -EINVAL;
1428 break;
1432 * Requeue nr_requeue waiters and possibly one more in the case
1433 * of requeue_pi if we couldn't acquire the lock atomically.
1435 if (requeue_pi) {
1436 /* Prepare the waiter to take the rt_mutex. */
1437 atomic_inc(&pi_state->refcount);
1438 this->pi_state = pi_state;
1439 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1440 this->rt_waiter,
1441 this->task, 1);
1442 if (ret == 1) {
1443 /* We got the lock. */
1444 requeue_pi_wake_futex(this, &key2, hb2);
1445 drop_count++;
1446 continue;
1447 } else if (ret) {
1448 /* -EDEADLK */
1449 this->pi_state = NULL;
1450 free_pi_state(pi_state);
1451 goto out_unlock;
1454 requeue_futex(this, hb1, hb2, &key2);
1455 drop_count++;
1458 out_unlock:
1459 double_unlock_hb(hb1, hb2);
1462 * drop_futex_key_refs() must be called outside the spinlocks. During
1463 * the requeue we moved futex_q's from the hash bucket at key1 to the
1464 * one at key2 and updated their key pointer. We no longer need to
1465 * hold the references to key1.
1467 while (--drop_count >= 0)
1468 drop_futex_key_refs(&key1);
1470 out_put_keys:
1471 put_futex_key(&key2);
1472 out_put_key1:
1473 put_futex_key(&key1);
1474 out:
1475 if (pi_state != NULL)
1476 free_pi_state(pi_state);
1477 return ret ? ret : task_count;
1480 /* The key must be already stored in q->key. */
1481 static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1482 __acquires(&hb->lock)
1484 struct futex_hash_bucket *hb;
1486 hb = hash_futex(&q->key);
1487 q->lock_ptr = &hb->lock;
1489 spin_lock(&hb->lock);
1490 return hb;
1493 static inline void
1494 queue_unlock(struct futex_q *q, struct futex_hash_bucket *hb)
1495 __releases(&hb->lock)
1497 spin_unlock(&hb->lock);
1501 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1502 * @q: The futex_q to enqueue
1503 * @hb: The destination hash bucket
1505 * The hb->lock must be held by the caller, and is released here. A call to
1506 * queue_me() is typically paired with exactly one call to unqueue_me(). The
1507 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1508 * or nothing if the unqueue is done as part of the wake process and the unqueue
1509 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1510 * an example).
1512 static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1513 __releases(&hb->lock)
1515 int prio;
1518 * The priority used to register this element is
1519 * - either the real thread-priority for the real-time threads
1520 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1521 * - or MAX_RT_PRIO for non-RT threads.
1522 * Thus, all RT-threads are woken first in priority order, and
1523 * the others are woken last, in FIFO order.
1525 prio = min(current->normal_prio, MAX_RT_PRIO);
1527 plist_node_init(&q->list, prio);
1528 plist_add(&q->list, &hb->chain);
1529 q->task = current;
1530 spin_unlock(&hb->lock);
1534 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1535 * @q: The futex_q to unqueue
1537 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1538 * be paired with exactly one earlier call to queue_me().
1540 * Return:
1541 * 1 - if the futex_q was still queued (and we removed unqueued it);
1542 * 0 - if the futex_q was already removed by the waking thread
1544 static int unqueue_me(struct futex_q *q)
1546 spinlock_t *lock_ptr;
1547 int ret = 0;
1549 /* In the common case we don't take the spinlock, which is nice. */
1550 retry:
1551 lock_ptr = q->lock_ptr;
1552 barrier();
1553 if (lock_ptr != NULL) {
1554 spin_lock(lock_ptr);
1556 * q->lock_ptr can change between reading it and
1557 * spin_lock(), causing us to take the wrong lock. This
1558 * corrects the race condition.
1560 * Reasoning goes like this: if we have the wrong lock,
1561 * q->lock_ptr must have changed (maybe several times)
1562 * between reading it and the spin_lock(). It can
1563 * change again after the spin_lock() but only if it was
1564 * already changed before the spin_lock(). It cannot,
1565 * however, change back to the original value. Therefore
1566 * we can detect whether we acquired the correct lock.
1568 if (unlikely(lock_ptr != q->lock_ptr)) {
1569 spin_unlock(lock_ptr);
1570 goto retry;
1572 __unqueue_futex(q);
1574 BUG_ON(q->pi_state);
1576 spin_unlock(lock_ptr);
1577 ret = 1;
1580 drop_futex_key_refs(&q->key);
1581 return ret;
1585 * PI futexes can not be requeued and must remove themself from the
1586 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1587 * and dropped here.
1589 static void unqueue_me_pi(struct futex_q *q)
1590 __releases(q->lock_ptr)
1592 __unqueue_futex(q);
1594 BUG_ON(!q->pi_state);
1595 free_pi_state(q->pi_state);
1596 q->pi_state = NULL;
1598 spin_unlock(q->lock_ptr);
1602 * Fixup the pi_state owner with the new owner.
1604 * Must be called with hash bucket lock held and mm->sem held for non
1605 * private futexes.
1607 static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1608 struct task_struct *newowner)
1610 u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1611 struct futex_pi_state *pi_state = q->pi_state;
1612 struct task_struct *oldowner = pi_state->owner;
1613 u32 uval, uninitialized_var(curval), newval;
1614 int ret;
1616 /* Owner died? */
1617 if (!pi_state->owner)
1618 newtid |= FUTEX_OWNER_DIED;
1621 * We are here either because we stole the rtmutex from the
1622 * previous highest priority waiter or we are the highest priority
1623 * waiter but failed to get the rtmutex the first time.
1624 * We have to replace the newowner TID in the user space variable.
1625 * This must be atomic as we have to preserve the owner died bit here.
1627 * Note: We write the user space value _before_ changing the pi_state
1628 * because we can fault here. Imagine swapped out pages or a fork
1629 * that marked all the anonymous memory readonly for cow.
1631 * Modifying pi_state _before_ the user space value would
1632 * leave the pi_state in an inconsistent state when we fault
1633 * here, because we need to drop the hash bucket lock to
1634 * handle the fault. This might be observed in the PID check
1635 * in lookup_pi_state.
1637 retry:
1638 if (get_futex_value_locked(&uval, uaddr))
1639 goto handle_fault;
1641 while (1) {
1642 newval = (uval & FUTEX_OWNER_DIED) | newtid;
1644 if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1645 goto handle_fault;
1646 if (curval == uval)
1647 break;
1648 uval = curval;
1652 * We fixed up user space. Now we need to fix the pi_state
1653 * itself.
1655 if (pi_state->owner != NULL) {
1656 raw_spin_lock_irq(&pi_state->owner->pi_lock);
1657 WARN_ON(list_empty(&pi_state->list));
1658 list_del_init(&pi_state->list);
1659 raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1662 pi_state->owner = newowner;
1664 raw_spin_lock_irq(&newowner->pi_lock);
1665 WARN_ON(!list_empty(&pi_state->list));
1666 list_add(&pi_state->list, &newowner->pi_state_list);
1667 raw_spin_unlock_irq(&newowner->pi_lock);
1668 return 0;
1671 * To handle the page fault we need to drop the hash bucket
1672 * lock here. That gives the other task (either the highest priority
1673 * waiter itself or the task which stole the rtmutex) the
1674 * chance to try the fixup of the pi_state. So once we are
1675 * back from handling the fault we need to check the pi_state
1676 * after reacquiring the hash bucket lock and before trying to
1677 * do another fixup. When the fixup has been done already we
1678 * simply return.
1680 handle_fault:
1681 spin_unlock(q->lock_ptr);
1683 ret = fault_in_user_writeable(uaddr);
1685 spin_lock(q->lock_ptr);
1688 * Check if someone else fixed it for us:
1690 if (pi_state->owner != oldowner)
1691 return 0;
1693 if (ret)
1694 return ret;
1696 goto retry;
1699 static long futex_wait_restart(struct restart_block *restart);
1702 * fixup_owner() - Post lock pi_state and corner case management
1703 * @uaddr: user address of the futex
1704 * @q: futex_q (contains pi_state and access to the rt_mutex)
1705 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
1707 * After attempting to lock an rt_mutex, this function is called to cleanup
1708 * the pi_state owner as well as handle race conditions that may allow us to
1709 * acquire the lock. Must be called with the hb lock held.
1711 * Return:
1712 * 1 - success, lock taken;
1713 * 0 - success, lock not taken;
1714 * <0 - on error (-EFAULT)
1716 static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
1718 struct task_struct *owner;
1719 int ret = 0;
1721 if (locked) {
1723 * Got the lock. We might not be the anticipated owner if we
1724 * did a lock-steal - fix up the PI-state in that case:
1726 if (q->pi_state->owner != current)
1727 ret = fixup_pi_state_owner(uaddr, q, current);
1728 goto out;
1732 * Catch the rare case, where the lock was released when we were on the
1733 * way back before we locked the hash bucket.
1735 if (q->pi_state->owner == current) {
1737 * Try to get the rt_mutex now. This might fail as some other
1738 * task acquired the rt_mutex after we removed ourself from the
1739 * rt_mutex waiters list.
1741 if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
1742 locked = 1;
1743 goto out;
1747 * pi_state is incorrect, some other task did a lock steal and
1748 * we returned due to timeout or signal without taking the
1749 * rt_mutex. Too late.
1751 raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
1752 owner = rt_mutex_owner(&q->pi_state->pi_mutex);
1753 if (!owner)
1754 owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
1755 raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
1756 ret = fixup_pi_state_owner(uaddr, q, owner);
1757 goto out;
1761 * Paranoia check. If we did not take the lock, then we should not be
1762 * the owner of the rt_mutex.
1764 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
1765 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
1766 "pi-state %p\n", ret,
1767 q->pi_state->pi_mutex.owner,
1768 q->pi_state->owner);
1770 out:
1771 return ret ? ret : locked;
1775 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
1776 * @hb: the futex hash bucket, must be locked by the caller
1777 * @q: the futex_q to queue up on
1778 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
1780 static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
1781 struct hrtimer_sleeper *timeout)
1784 * The task state is guaranteed to be set before another task can
1785 * wake it. set_current_state() is implemented using set_mb() and
1786 * queue_me() calls spin_unlock() upon completion, both serializing
1787 * access to the hash list and forcing another memory barrier.
1789 set_current_state(TASK_INTERRUPTIBLE);
1790 queue_me(q, hb);
1792 /* Arm the timer */
1793 if (timeout) {
1794 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
1795 if (!hrtimer_active(&timeout->timer))
1796 timeout->task = NULL;
1800 * If we have been removed from the hash list, then another task
1801 * has tried to wake us, and we can skip the call to schedule().
1803 if (likely(!plist_node_empty(&q->list))) {
1805 * If the timer has already expired, current will already be
1806 * flagged for rescheduling. Only call schedule if there
1807 * is no timeout, or if it has yet to expire.
1809 if (!timeout || timeout->task)
1810 schedule();
1812 __set_current_state(TASK_RUNNING);
1816 * futex_wait_setup() - Prepare to wait on a futex
1817 * @uaddr: the futex userspace address
1818 * @val: the expected value
1819 * @flags: futex flags (FLAGS_SHARED, etc.)
1820 * @q: the associated futex_q
1821 * @hb: storage for hash_bucket pointer to be returned to caller
1823 * Setup the futex_q and locate the hash_bucket. Get the futex value and
1824 * compare it with the expected value. Handle atomic faults internally.
1825 * Return with the hb lock held and a q.key reference on success, and unlocked
1826 * with no q.key reference on failure.
1828 * Return:
1829 * 0 - uaddr contains val and hb has been locked;
1830 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
1832 static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
1833 struct futex_q *q, struct futex_hash_bucket **hb)
1835 u32 uval;
1836 int ret;
1839 * Access the page AFTER the hash-bucket is locked.
1840 * Order is important:
1842 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
1843 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
1845 * The basic logical guarantee of a futex is that it blocks ONLY
1846 * if cond(var) is known to be true at the time of blocking, for
1847 * any cond. If we locked the hash-bucket after testing *uaddr, that
1848 * would open a race condition where we could block indefinitely with
1849 * cond(var) false, which would violate the guarantee.
1851 * On the other hand, we insert q and release the hash-bucket only
1852 * after testing *uaddr. This guarantees that futex_wait() will NOT
1853 * absorb a wakeup if *uaddr does not match the desired values
1854 * while the syscall executes.
1856 retry:
1857 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
1858 if (unlikely(ret != 0))
1859 return ret;
1861 retry_private:
1862 *hb = queue_lock(q);
1864 ret = get_futex_value_locked(&uval, uaddr);
1866 if (ret) {
1867 queue_unlock(q, *hb);
1869 ret = get_user(uval, uaddr);
1870 if (ret)
1871 goto out;
1873 if (!(flags & FLAGS_SHARED))
1874 goto retry_private;
1876 put_futex_key(&q->key);
1877 goto retry;
1880 if (uval != val) {
1881 queue_unlock(q, *hb);
1882 ret = -EWOULDBLOCK;
1885 out:
1886 if (ret)
1887 put_futex_key(&q->key);
1888 return ret;
1891 static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
1892 ktime_t *abs_time, u32 bitset)
1894 struct hrtimer_sleeper timeout, *to = NULL;
1895 struct restart_block *restart;
1896 struct futex_hash_bucket *hb;
1897 struct futex_q q = futex_q_init;
1898 int ret;
1900 if (!bitset)
1901 return -EINVAL;
1902 q.bitset = bitset;
1904 if (abs_time) {
1905 to = &timeout;
1907 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
1908 CLOCK_REALTIME : CLOCK_MONOTONIC,
1909 HRTIMER_MODE_ABS);
1910 hrtimer_init_sleeper(to, current);
1911 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
1912 current->timer_slack_ns);
1915 retry:
1917 * Prepare to wait on uaddr. On success, holds hb lock and increments
1918 * q.key refs.
1920 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
1921 if (ret)
1922 goto out;
1924 /* queue_me and wait for wakeup, timeout, or a signal. */
1925 futex_wait_queue_me(hb, &q, to);
1927 /* If we were woken (and unqueued), we succeeded, whatever. */
1928 ret = 0;
1929 /* unqueue_me() drops q.key ref */
1930 if (!unqueue_me(&q))
1931 goto out;
1932 ret = -ETIMEDOUT;
1933 if (to && !to->task)
1934 goto out;
1937 * We expect signal_pending(current), but we might be the
1938 * victim of a spurious wakeup as well.
1940 if (!signal_pending(current))
1941 goto retry;
1943 ret = -ERESTARTSYS;
1944 if (!abs_time)
1945 goto out;
1947 restart = &current_thread_info()->restart_block;
1948 restart->fn = futex_wait_restart;
1949 restart->futex.uaddr = uaddr;
1950 restart->futex.val = val;
1951 restart->futex.time = abs_time->tv64;
1952 restart->futex.bitset = bitset;
1953 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
1955 ret = -ERESTART_RESTARTBLOCK;
1957 out:
1958 if (to) {
1959 hrtimer_cancel(&to->timer);
1960 destroy_hrtimer_on_stack(&to->timer);
1962 return ret;
1966 static long futex_wait_restart(struct restart_block *restart)
1968 u32 __user *uaddr = restart->futex.uaddr;
1969 ktime_t t, *tp = NULL;
1971 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
1972 t.tv64 = restart->futex.time;
1973 tp = &t;
1975 restart->fn = do_no_restart_syscall;
1977 return (long)futex_wait(uaddr, restart->futex.flags,
1978 restart->futex.val, tp, restart->futex.bitset);
1983 * Userspace tried a 0 -> TID atomic transition of the futex value
1984 * and failed. The kernel side here does the whole locking operation:
1985 * if there are waiters then it will block, it does PI, etc. (Due to
1986 * races the kernel might see a 0 value of the futex too.)
1988 static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
1989 ktime_t *time, int trylock)
1991 struct hrtimer_sleeper timeout, *to = NULL;
1992 struct futex_hash_bucket *hb;
1993 struct futex_q q = futex_q_init;
1994 int res, ret;
1996 if (refill_pi_state_cache())
1997 return -ENOMEM;
1999 if (time) {
2000 to = &timeout;
2001 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2002 HRTIMER_MODE_ABS);
2003 hrtimer_init_sleeper(to, current);
2004 hrtimer_set_expires(&to->timer, *time);
2007 retry:
2008 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2009 if (unlikely(ret != 0))
2010 goto out;
2012 retry_private:
2013 hb = queue_lock(&q);
2015 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2016 if (unlikely(ret)) {
2017 switch (ret) {
2018 case 1:
2019 /* We got the lock. */
2020 ret = 0;
2021 goto out_unlock_put_key;
2022 case -EFAULT:
2023 goto uaddr_faulted;
2024 case -EAGAIN:
2026 * Task is exiting and we just wait for the
2027 * exit to complete.
2029 queue_unlock(&q, hb);
2030 put_futex_key(&q.key);
2031 cond_resched();
2032 goto retry;
2033 default:
2034 goto out_unlock_put_key;
2039 * Only actually queue now that the atomic ops are done:
2041 queue_me(&q, hb);
2043 WARN_ON(!q.pi_state);
2045 * Block on the PI mutex:
2047 if (!trylock)
2048 ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2049 else {
2050 ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2051 /* Fixup the trylock return value: */
2052 ret = ret ? 0 : -EWOULDBLOCK;
2055 spin_lock(q.lock_ptr);
2057 * Fixup the pi_state owner and possibly acquire the lock if we
2058 * haven't already.
2060 res = fixup_owner(uaddr, &q, !ret);
2062 * If fixup_owner() returned an error, proprogate that. If it acquired
2063 * the lock, clear our -ETIMEDOUT or -EINTR.
2065 if (res)
2066 ret = (res < 0) ? res : 0;
2069 * If fixup_owner() faulted and was unable to handle the fault, unlock
2070 * it and return the fault to userspace.
2072 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2073 rt_mutex_unlock(&q.pi_state->pi_mutex);
2075 /* Unqueue and drop the lock */
2076 unqueue_me_pi(&q);
2078 goto out_put_key;
2080 out_unlock_put_key:
2081 queue_unlock(&q, hb);
2083 out_put_key:
2084 put_futex_key(&q.key);
2085 out:
2086 if (to)
2087 destroy_hrtimer_on_stack(&to->timer);
2088 return ret != -EINTR ? ret : -ERESTARTNOINTR;
2090 uaddr_faulted:
2091 queue_unlock(&q, hb);
2093 ret = fault_in_user_writeable(uaddr);
2094 if (ret)
2095 goto out_put_key;
2097 if (!(flags & FLAGS_SHARED))
2098 goto retry_private;
2100 put_futex_key(&q.key);
2101 goto retry;
2105 * Userspace attempted a TID -> 0 atomic transition, and failed.
2106 * This is the in-kernel slowpath: we look up the PI state (if any),
2107 * and do the rt-mutex unlock.
2109 static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2111 struct futex_hash_bucket *hb;
2112 struct futex_q *this, *next;
2113 struct plist_head *head;
2114 union futex_key key = FUTEX_KEY_INIT;
2115 u32 uval, vpid = task_pid_vnr(current);
2116 int ret;
2118 retry:
2119 if (get_user(uval, uaddr))
2120 return -EFAULT;
2122 * We release only a lock we actually own:
2124 if ((uval & FUTEX_TID_MASK) != vpid)
2125 return -EPERM;
2127 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2128 if (unlikely(ret != 0))
2129 goto out;
2131 hb = hash_futex(&key);
2132 spin_lock(&hb->lock);
2135 * To avoid races, try to do the TID -> 0 atomic transition
2136 * again. If it succeeds then we can return without waking
2137 * anyone else up:
2139 if (!(uval & FUTEX_OWNER_DIED) &&
2140 cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2141 goto pi_faulted;
2143 * Rare case: we managed to release the lock atomically,
2144 * no need to wake anyone else up:
2146 if (unlikely(uval == vpid))
2147 goto out_unlock;
2150 * Ok, other tasks may need to be woken up - check waiters
2151 * and do the wakeup if necessary:
2153 head = &hb->chain;
2155 plist_for_each_entry_safe(this, next, head, list) {
2156 if (!match_futex (&this->key, &key))
2157 continue;
2158 ret = wake_futex_pi(uaddr, uval, this);
2160 * The atomic access to the futex value
2161 * generated a pagefault, so retry the
2162 * user-access and the wakeup:
2164 if (ret == -EFAULT)
2165 goto pi_faulted;
2166 goto out_unlock;
2169 * No waiters - kernel unlocks the futex:
2171 if (!(uval & FUTEX_OWNER_DIED)) {
2172 ret = unlock_futex_pi(uaddr, uval);
2173 if (ret == -EFAULT)
2174 goto pi_faulted;
2177 out_unlock:
2178 spin_unlock(&hb->lock);
2179 put_futex_key(&key);
2181 out:
2182 return ret;
2184 pi_faulted:
2185 spin_unlock(&hb->lock);
2186 put_futex_key(&key);
2188 ret = fault_in_user_writeable(uaddr);
2189 if (!ret)
2190 goto retry;
2192 return ret;
2196 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2197 * @hb: the hash_bucket futex_q was original enqueued on
2198 * @q: the futex_q woken while waiting to be requeued
2199 * @key2: the futex_key of the requeue target futex
2200 * @timeout: the timeout associated with the wait (NULL if none)
2202 * Detect if the task was woken on the initial futex as opposed to the requeue
2203 * target futex. If so, determine if it was a timeout or a signal that caused
2204 * the wakeup and return the appropriate error code to the caller. Must be
2205 * called with the hb lock held.
2207 * Return:
2208 * 0 = no early wakeup detected;
2209 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2211 static inline
2212 int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2213 struct futex_q *q, union futex_key *key2,
2214 struct hrtimer_sleeper *timeout)
2216 int ret = 0;
2219 * With the hb lock held, we avoid races while we process the wakeup.
2220 * We only need to hold hb (and not hb2) to ensure atomicity as the
2221 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2222 * It can't be requeued from uaddr2 to something else since we don't
2223 * support a PI aware source futex for requeue.
2225 if (!match_futex(&q->key, key2)) {
2226 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2228 * We were woken prior to requeue by a timeout or a signal.
2229 * Unqueue the futex_q and determine which it was.
2231 plist_del(&q->list, &hb->chain);
2233 /* Handle spurious wakeups gracefully */
2234 ret = -EWOULDBLOCK;
2235 if (timeout && !timeout->task)
2236 ret = -ETIMEDOUT;
2237 else if (signal_pending(current))
2238 ret = -ERESTARTNOINTR;
2240 return ret;
2244 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2245 * @uaddr: the futex we initially wait on (non-pi)
2246 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2247 * the same type, no requeueing from private to shared, etc.
2248 * @val: the expected value of uaddr
2249 * @abs_time: absolute timeout
2250 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
2251 * @uaddr2: the pi futex we will take prior to returning to user-space
2253 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2254 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
2255 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2256 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
2257 * without one, the pi logic would not know which task to boost/deboost, if
2258 * there was a need to.
2260 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2261 * via the following--
2262 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2263 * 2) wakeup on uaddr2 after a requeue
2264 * 3) signal
2265 * 4) timeout
2267 * If 3, cleanup and return -ERESTARTNOINTR.
2269 * If 2, we may then block on trying to take the rt_mutex and return via:
2270 * 5) successful lock
2271 * 6) signal
2272 * 7) timeout
2273 * 8) other lock acquisition failure
2275 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2277 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2279 * Return:
2280 * 0 - On success;
2281 * <0 - On error
2283 static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2284 u32 val, ktime_t *abs_time, u32 bitset,
2285 u32 __user *uaddr2)
2287 struct hrtimer_sleeper timeout, *to = NULL;
2288 struct rt_mutex_waiter rt_waiter;
2289 struct rt_mutex *pi_mutex = NULL;
2290 struct futex_hash_bucket *hb;
2291 union futex_key key2 = FUTEX_KEY_INIT;
2292 struct futex_q q = futex_q_init;
2293 int res, ret;
2295 if (uaddr == uaddr2)
2296 return -EINVAL;
2298 if (!bitset)
2299 return -EINVAL;
2301 if (abs_time) {
2302 to = &timeout;
2303 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2304 CLOCK_REALTIME : CLOCK_MONOTONIC,
2305 HRTIMER_MODE_ABS);
2306 hrtimer_init_sleeper(to, current);
2307 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2308 current->timer_slack_ns);
2312 * The waiter is allocated on our stack, manipulated by the requeue
2313 * code while we sleep on uaddr.
2315 debug_rt_mutex_init_waiter(&rt_waiter);
2316 rt_waiter.task = NULL;
2318 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2319 if (unlikely(ret != 0))
2320 goto out;
2322 q.bitset = bitset;
2323 q.rt_waiter = &rt_waiter;
2324 q.requeue_pi_key = &key2;
2327 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2328 * count.
2330 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2331 if (ret)
2332 goto out_key2;
2334 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
2335 futex_wait_queue_me(hb, &q, to);
2337 spin_lock(&hb->lock);
2338 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2339 spin_unlock(&hb->lock);
2340 if (ret)
2341 goto out_put_keys;
2344 * In order for us to be here, we know our q.key == key2, and since
2345 * we took the hb->lock above, we also know that futex_requeue() has
2346 * completed and we no longer have to concern ourselves with a wakeup
2347 * race with the atomic proxy lock acquisition by the requeue code. The
2348 * futex_requeue dropped our key1 reference and incremented our key2
2349 * reference count.
2352 /* Check if the requeue code acquired the second futex for us. */
2353 if (!q.rt_waiter) {
2355 * Got the lock. We might not be the anticipated owner if we
2356 * did a lock-steal - fix up the PI-state in that case.
2358 if (q.pi_state && (q.pi_state->owner != current)) {
2359 spin_lock(q.lock_ptr);
2360 ret = fixup_pi_state_owner(uaddr2, &q, current);
2361 spin_unlock(q.lock_ptr);
2363 } else {
2365 * We have been woken up by futex_unlock_pi(), a timeout, or a
2366 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
2367 * the pi_state.
2369 WARN_ON(!q.pi_state);
2370 pi_mutex = &q.pi_state->pi_mutex;
2371 ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2372 debug_rt_mutex_free_waiter(&rt_waiter);
2374 spin_lock(q.lock_ptr);
2376 * Fixup the pi_state owner and possibly acquire the lock if we
2377 * haven't already.
2379 res = fixup_owner(uaddr2, &q, !ret);
2381 * If fixup_owner() returned an error, proprogate that. If it
2382 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2384 if (res)
2385 ret = (res < 0) ? res : 0;
2387 /* Unqueue and drop the lock. */
2388 unqueue_me_pi(&q);
2392 * If fixup_pi_state_owner() faulted and was unable to handle the
2393 * fault, unlock the rt_mutex and return the fault to userspace.
2395 if (ret == -EFAULT) {
2396 if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2397 rt_mutex_unlock(pi_mutex);
2398 } else if (ret == -EINTR) {
2400 * We've already been requeued, but cannot restart by calling
2401 * futex_lock_pi() directly. We could restart this syscall, but
2402 * it would detect that the user space "val" changed and return
2403 * -EWOULDBLOCK. Save the overhead of the restart and return
2404 * -EWOULDBLOCK directly.
2406 ret = -EWOULDBLOCK;
2409 out_put_keys:
2410 put_futex_key(&q.key);
2411 out_key2:
2412 put_futex_key(&key2);
2414 out:
2415 if (to) {
2416 hrtimer_cancel(&to->timer);
2417 destroy_hrtimer_on_stack(&to->timer);
2419 return ret;
2423 * Support for robust futexes: the kernel cleans up held futexes at
2424 * thread exit time.
2426 * Implementation: user-space maintains a per-thread list of locks it
2427 * is holding. Upon do_exit(), the kernel carefully walks this list,
2428 * and marks all locks that are owned by this thread with the
2429 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2430 * always manipulated with the lock held, so the list is private and
2431 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2432 * field, to allow the kernel to clean up if the thread dies after
2433 * acquiring the lock, but just before it could have added itself to
2434 * the list. There can only be one such pending lock.
2438 * sys_set_robust_list() - Set the robust-futex list head of a task
2439 * @head: pointer to the list-head
2440 * @len: length of the list-head, as userspace expects
2442 SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2443 size_t, len)
2445 if (!futex_cmpxchg_enabled)
2446 return -ENOSYS;
2448 * The kernel knows only one size for now:
2450 if (unlikely(len != sizeof(*head)))
2451 return -EINVAL;
2453 current->robust_list = head;
2455 return 0;
2459 * sys_get_robust_list() - Get the robust-futex list head of a task
2460 * @pid: pid of the process [zero for current task]
2461 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
2462 * @len_ptr: pointer to a length field, the kernel fills in the header size
2464 SYSCALL_DEFINE3(get_robust_list, int, pid,
2465 struct robust_list_head __user * __user *, head_ptr,
2466 size_t __user *, len_ptr)
2468 struct robust_list_head __user *head;
2469 unsigned long ret;
2470 struct task_struct *p;
2472 if (!futex_cmpxchg_enabled)
2473 return -ENOSYS;
2475 rcu_read_lock();
2477 ret = -ESRCH;
2478 if (!pid)
2479 p = current;
2480 else {
2481 p = find_task_by_vpid(pid);
2482 if (!p)
2483 goto err_unlock;
2486 ret = -EPERM;
2487 if (!ptrace_may_access(p, PTRACE_MODE_READ))
2488 goto err_unlock;
2490 head = p->robust_list;
2491 rcu_read_unlock();
2493 if (put_user(sizeof(*head), len_ptr))
2494 return -EFAULT;
2495 return put_user(head, head_ptr);
2497 err_unlock:
2498 rcu_read_unlock();
2500 return ret;
2504 * Process a futex-list entry, check whether it's owned by the
2505 * dying task, and do notification if so:
2507 int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2509 u32 uval, uninitialized_var(nval), mval;
2511 retry:
2512 if (get_user(uval, uaddr))
2513 return -1;
2515 if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2517 * Ok, this dying thread is truly holding a futex
2518 * of interest. Set the OWNER_DIED bit atomically
2519 * via cmpxchg, and if the value had FUTEX_WAITERS
2520 * set, wake up a waiter (if any). (We have to do a
2521 * futex_wake() even if OWNER_DIED is already set -
2522 * to handle the rare but possible case of recursive
2523 * thread-death.) The rest of the cleanup is done in
2524 * userspace.
2526 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2528 * We are not holding a lock here, but we want to have
2529 * the pagefault_disable/enable() protection because
2530 * we want to handle the fault gracefully. If the
2531 * access fails we try to fault in the futex with R/W
2532 * verification via get_user_pages. get_user() above
2533 * does not guarantee R/W access. If that fails we
2534 * give up and leave the futex locked.
2536 if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2537 if (fault_in_user_writeable(uaddr))
2538 return -1;
2539 goto retry;
2541 if (nval != uval)
2542 goto retry;
2545 * Wake robust non-PI futexes here. The wakeup of
2546 * PI futexes happens in exit_pi_state():
2548 if (!pi && (uval & FUTEX_WAITERS))
2549 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2551 return 0;
2555 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2557 static inline int fetch_robust_entry(struct robust_list __user **entry,
2558 struct robust_list __user * __user *head,
2559 unsigned int *pi)
2561 unsigned long uentry;
2563 if (get_user(uentry, (unsigned long __user *)head))
2564 return -EFAULT;
2566 *entry = (void __user *)(uentry & ~1UL);
2567 *pi = uentry & 1;
2569 return 0;
2573 * Walk curr->robust_list (very carefully, it's a userspace list!)
2574 * and mark any locks found there dead, and notify any waiters.
2576 * We silently return on any sign of list-walking problem.
2578 void exit_robust_list(struct task_struct *curr)
2580 struct robust_list_head __user *head = curr->robust_list;
2581 struct robust_list __user *entry, *next_entry, *pending;
2582 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2583 unsigned int uninitialized_var(next_pi);
2584 unsigned long futex_offset;
2585 int rc;
2587 if (!futex_cmpxchg_enabled)
2588 return;
2591 * Fetch the list head (which was registered earlier, via
2592 * sys_set_robust_list()):
2594 if (fetch_robust_entry(&entry, &head->list.next, &pi))
2595 return;
2597 * Fetch the relative futex offset:
2599 if (get_user(futex_offset, &head->futex_offset))
2600 return;
2602 * Fetch any possibly pending lock-add first, and handle it
2603 * if it exists:
2605 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2606 return;
2608 next_entry = NULL; /* avoid warning with gcc */
2609 while (entry != &head->list) {
2611 * Fetch the next entry in the list before calling
2612 * handle_futex_death:
2614 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2616 * A pending lock might already be on the list, so
2617 * don't process it twice:
2619 if (entry != pending)
2620 if (handle_futex_death((void __user *)entry + futex_offset,
2621 curr, pi))
2622 return;
2623 if (rc)
2624 return;
2625 entry = next_entry;
2626 pi = next_pi;
2628 * Avoid excessively long or circular lists:
2630 if (!--limit)
2631 break;
2633 cond_resched();
2636 if (pending)
2637 handle_futex_death((void __user *)pending + futex_offset,
2638 curr, pip);
2641 long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2642 u32 __user *uaddr2, u32 val2, u32 val3)
2644 int cmd = op & FUTEX_CMD_MASK;
2645 unsigned int flags = 0;
2647 if (!(op & FUTEX_PRIVATE_FLAG))
2648 flags |= FLAGS_SHARED;
2650 if (op & FUTEX_CLOCK_REALTIME) {
2651 flags |= FLAGS_CLOCKRT;
2652 if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
2653 return -ENOSYS;
2656 switch (cmd) {
2657 case FUTEX_LOCK_PI:
2658 case FUTEX_UNLOCK_PI:
2659 case FUTEX_TRYLOCK_PI:
2660 case FUTEX_WAIT_REQUEUE_PI:
2661 case FUTEX_CMP_REQUEUE_PI:
2662 if (!futex_cmpxchg_enabled)
2663 return -ENOSYS;
2666 switch (cmd) {
2667 case FUTEX_WAIT:
2668 val3 = FUTEX_BITSET_MATCH_ANY;
2669 case FUTEX_WAIT_BITSET:
2670 return futex_wait(uaddr, flags, val, timeout, val3);
2671 case FUTEX_WAKE:
2672 val3 = FUTEX_BITSET_MATCH_ANY;
2673 case FUTEX_WAKE_BITSET:
2674 return futex_wake(uaddr, flags, val, val3);
2675 case FUTEX_REQUEUE:
2676 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2677 case FUTEX_CMP_REQUEUE:
2678 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2679 case FUTEX_WAKE_OP:
2680 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2681 case FUTEX_LOCK_PI:
2682 return futex_lock_pi(uaddr, flags, val, timeout, 0);
2683 case FUTEX_UNLOCK_PI:
2684 return futex_unlock_pi(uaddr, flags);
2685 case FUTEX_TRYLOCK_PI:
2686 return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2687 case FUTEX_WAIT_REQUEUE_PI:
2688 val3 = FUTEX_BITSET_MATCH_ANY;
2689 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2690 uaddr2);
2691 case FUTEX_CMP_REQUEUE_PI:
2692 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2694 return -ENOSYS;
2698 SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
2699 struct timespec __user *, utime, u32 __user *, uaddr2,
2700 u32, val3)
2702 struct timespec ts;
2703 ktime_t t, *tp = NULL;
2704 u32 val2 = 0;
2705 int cmd = op & FUTEX_CMD_MASK;
2707 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
2708 cmd == FUTEX_WAIT_BITSET ||
2709 cmd == FUTEX_WAIT_REQUEUE_PI)) {
2710 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
2711 return -EFAULT;
2712 if (!timespec_valid(&ts))
2713 return -EINVAL;
2715 t = timespec_to_ktime(ts);
2716 if (cmd == FUTEX_WAIT)
2717 t = ktime_add_safe(ktime_get(), t);
2718 tp = &t;
2721 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
2722 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
2724 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
2725 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
2726 val2 = (u32) (unsigned long) utime;
2728 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
2731 static int __init futex_init(void)
2733 u32 curval;
2734 int i;
2737 * This will fail and we want it. Some arch implementations do
2738 * runtime detection of the futex_atomic_cmpxchg_inatomic()
2739 * functionality. We want to know that before we call in any
2740 * of the complex code paths. Also we want to prevent
2741 * registration of robust lists in that case. NULL is
2742 * guaranteed to fault and we get -EFAULT on functional
2743 * implementation, the non-functional ones will return
2744 * -ENOSYS.
2746 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
2747 futex_cmpxchg_enabled = 1;
2749 for (i = 0; i < ARRAY_SIZE(futex_queues); i++) {
2750 plist_head_init(&futex_queues[i].chain);
2751 spin_lock_init(&futex_queues[i].lock);
2754 return 0;
2756 __initcall(futex_init);