scsi: aacraid: Make sure ioctl returns on controller reset
[linux/fpc-iii.git] / mm / sparse.c
blob6903c8fc308502eab4ca3570075cd6a881efa724
1 /*
2 * sparse memory mappings.
3 */
4 #include <linux/mm.h>
5 #include <linux/slab.h>
6 #include <linux/mmzone.h>
7 #include <linux/bootmem.h>
8 #include <linux/compiler.h>
9 #include <linux/highmem.h>
10 #include <linux/export.h>
11 #include <linux/spinlock.h>
12 #include <linux/vmalloc.h>
14 #include "internal.h"
15 #include <asm/dma.h>
16 #include <asm/pgalloc.h>
17 #include <asm/pgtable.h>
20 * Permanent SPARSEMEM data:
22 * 1) mem_section - memory sections, mem_map's for valid memory
24 #ifdef CONFIG_SPARSEMEM_EXTREME
25 struct mem_section *mem_section[NR_SECTION_ROOTS]
26 ____cacheline_internodealigned_in_smp;
27 #else
28 struct mem_section mem_section[NR_SECTION_ROOTS][SECTIONS_PER_ROOT]
29 ____cacheline_internodealigned_in_smp;
30 #endif
31 EXPORT_SYMBOL(mem_section);
33 #ifdef NODE_NOT_IN_PAGE_FLAGS
35 * If we did not store the node number in the page then we have to
36 * do a lookup in the section_to_node_table in order to find which
37 * node the page belongs to.
39 #if MAX_NUMNODES <= 256
40 static u8 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
41 #else
42 static u16 section_to_node_table[NR_MEM_SECTIONS] __cacheline_aligned;
43 #endif
45 int page_to_nid(const struct page *page)
47 return section_to_node_table[page_to_section(page)];
49 EXPORT_SYMBOL(page_to_nid);
51 static void set_section_nid(unsigned long section_nr, int nid)
53 section_to_node_table[section_nr] = nid;
55 #else /* !NODE_NOT_IN_PAGE_FLAGS */
56 static inline void set_section_nid(unsigned long section_nr, int nid)
59 #endif
61 #ifdef CONFIG_SPARSEMEM_EXTREME
62 static noinline struct mem_section __ref *sparse_index_alloc(int nid)
64 struct mem_section *section = NULL;
65 unsigned long array_size = SECTIONS_PER_ROOT *
66 sizeof(struct mem_section);
68 if (slab_is_available()) {
69 if (node_state(nid, N_HIGH_MEMORY))
70 section = kzalloc_node(array_size, GFP_KERNEL, nid);
71 else
72 section = kzalloc(array_size, GFP_KERNEL);
73 } else {
74 section = memblock_virt_alloc_node(array_size, nid);
77 return section;
80 static int __meminit sparse_index_init(unsigned long section_nr, int nid)
82 unsigned long root = SECTION_NR_TO_ROOT(section_nr);
83 struct mem_section *section;
85 if (mem_section[root])
86 return -EEXIST;
88 section = sparse_index_alloc(nid);
89 if (!section)
90 return -ENOMEM;
92 mem_section[root] = section;
94 return 0;
96 #else /* !SPARSEMEM_EXTREME */
97 static inline int sparse_index_init(unsigned long section_nr, int nid)
99 return 0;
101 #endif
103 #ifdef CONFIG_SPARSEMEM_EXTREME
104 int __section_nr(struct mem_section* ms)
106 unsigned long root_nr;
107 struct mem_section* root;
109 for (root_nr = 0; root_nr < NR_SECTION_ROOTS; root_nr++) {
110 root = __nr_to_section(root_nr * SECTIONS_PER_ROOT);
111 if (!root)
112 continue;
114 if ((ms >= root) && (ms < (root + SECTIONS_PER_ROOT)))
115 break;
118 VM_BUG_ON(root_nr == NR_SECTION_ROOTS);
120 return (root_nr * SECTIONS_PER_ROOT) + (ms - root);
122 #else
123 int __section_nr(struct mem_section* ms)
125 return (int)(ms - mem_section[0]);
127 #endif
130 * During early boot, before section_mem_map is used for an actual
131 * mem_map, we use section_mem_map to store the section's NUMA
132 * node. This keeps us from having to use another data structure. The
133 * node information is cleared just before we store the real mem_map.
135 static inline unsigned long sparse_encode_early_nid(int nid)
137 return (nid << SECTION_NID_SHIFT);
140 static inline int sparse_early_nid(struct mem_section *section)
142 return (section->section_mem_map >> SECTION_NID_SHIFT);
145 /* Validate the physical addressing limitations of the model */
146 void __meminit mminit_validate_memmodel_limits(unsigned long *start_pfn,
147 unsigned long *end_pfn)
149 unsigned long max_sparsemem_pfn = 1UL << (MAX_PHYSMEM_BITS-PAGE_SHIFT);
152 * Sanity checks - do not allow an architecture to pass
153 * in larger pfns than the maximum scope of sparsemem:
155 if (*start_pfn > max_sparsemem_pfn) {
156 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
157 "Start of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
158 *start_pfn, *end_pfn, max_sparsemem_pfn);
159 WARN_ON_ONCE(1);
160 *start_pfn = max_sparsemem_pfn;
161 *end_pfn = max_sparsemem_pfn;
162 } else if (*end_pfn > max_sparsemem_pfn) {
163 mminit_dprintk(MMINIT_WARNING, "pfnvalidation",
164 "End of range %lu -> %lu exceeds SPARSEMEM max %lu\n",
165 *start_pfn, *end_pfn, max_sparsemem_pfn);
166 WARN_ON_ONCE(1);
167 *end_pfn = max_sparsemem_pfn;
171 /* Record a memory area against a node. */
172 void __init memory_present(int nid, unsigned long start, unsigned long end)
174 unsigned long pfn;
176 start &= PAGE_SECTION_MASK;
177 mminit_validate_memmodel_limits(&start, &end);
178 for (pfn = start; pfn < end; pfn += PAGES_PER_SECTION) {
179 unsigned long section = pfn_to_section_nr(pfn);
180 struct mem_section *ms;
182 sparse_index_init(section, nid);
183 set_section_nid(section, nid);
185 ms = __nr_to_section(section);
186 if (!ms->section_mem_map)
187 ms->section_mem_map = sparse_encode_early_nid(nid) |
188 SECTION_MARKED_PRESENT;
193 * Only used by the i386 NUMA architecures, but relatively
194 * generic code.
196 unsigned long __init node_memmap_size_bytes(int nid, unsigned long start_pfn,
197 unsigned long end_pfn)
199 unsigned long pfn;
200 unsigned long nr_pages = 0;
202 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
203 for (pfn = start_pfn; pfn < end_pfn; pfn += PAGES_PER_SECTION) {
204 if (nid != early_pfn_to_nid(pfn))
205 continue;
207 if (pfn_present(pfn))
208 nr_pages += PAGES_PER_SECTION;
211 return nr_pages * sizeof(struct page);
215 * Subtle, we encode the real pfn into the mem_map such that
216 * the identity pfn - section_mem_map will return the actual
217 * physical page frame number.
219 static unsigned long sparse_encode_mem_map(struct page *mem_map, unsigned long pnum)
221 return (unsigned long)(mem_map - (section_nr_to_pfn(pnum)));
225 * Decode mem_map from the coded memmap
227 struct page *sparse_decode_mem_map(unsigned long coded_mem_map, unsigned long pnum)
229 /* mask off the extra low bits of information */
230 coded_mem_map &= SECTION_MAP_MASK;
231 return ((struct page *)coded_mem_map) + section_nr_to_pfn(pnum);
234 static int __meminit sparse_init_one_section(struct mem_section *ms,
235 unsigned long pnum, struct page *mem_map,
236 unsigned long *pageblock_bitmap)
238 if (!present_section(ms))
239 return -EINVAL;
241 ms->section_mem_map &= ~SECTION_MAP_MASK;
242 ms->section_mem_map |= sparse_encode_mem_map(mem_map, pnum) |
243 SECTION_HAS_MEM_MAP;
244 ms->pageblock_flags = pageblock_bitmap;
246 return 1;
249 unsigned long usemap_size(void)
251 return BITS_TO_LONGS(SECTION_BLOCKFLAGS_BITS) * sizeof(unsigned long);
254 #ifdef CONFIG_MEMORY_HOTPLUG
255 static unsigned long *__kmalloc_section_usemap(void)
257 return kmalloc(usemap_size(), GFP_KERNEL);
259 #endif /* CONFIG_MEMORY_HOTPLUG */
261 #ifdef CONFIG_MEMORY_HOTREMOVE
262 static unsigned long * __init
263 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
264 unsigned long size)
266 unsigned long goal, limit;
267 unsigned long *p;
268 int nid;
270 * A page may contain usemaps for other sections preventing the
271 * page being freed and making a section unremovable while
272 * other sections referencing the usemap remain active. Similarly,
273 * a pgdat can prevent a section being removed. If section A
274 * contains a pgdat and section B contains the usemap, both
275 * sections become inter-dependent. This allocates usemaps
276 * from the same section as the pgdat where possible to avoid
277 * this problem.
279 goal = __pa(pgdat) & (PAGE_SECTION_MASK << PAGE_SHIFT);
280 limit = goal + (1UL << PA_SECTION_SHIFT);
281 nid = early_pfn_to_nid(goal >> PAGE_SHIFT);
282 again:
283 p = memblock_virt_alloc_try_nid_nopanic(size,
284 SMP_CACHE_BYTES, goal, limit,
285 nid);
286 if (!p && limit) {
287 limit = 0;
288 goto again;
290 return p;
293 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
295 unsigned long usemap_snr, pgdat_snr;
296 static unsigned long old_usemap_snr = NR_MEM_SECTIONS;
297 static unsigned long old_pgdat_snr = NR_MEM_SECTIONS;
298 struct pglist_data *pgdat = NODE_DATA(nid);
299 int usemap_nid;
301 usemap_snr = pfn_to_section_nr(__pa(usemap) >> PAGE_SHIFT);
302 pgdat_snr = pfn_to_section_nr(__pa(pgdat) >> PAGE_SHIFT);
303 if (usemap_snr == pgdat_snr)
304 return;
306 if (old_usemap_snr == usemap_snr && old_pgdat_snr == pgdat_snr)
307 /* skip redundant message */
308 return;
310 old_usemap_snr = usemap_snr;
311 old_pgdat_snr = pgdat_snr;
313 usemap_nid = sparse_early_nid(__nr_to_section(usemap_snr));
314 if (usemap_nid != nid) {
315 pr_info("node %d must be removed before remove section %ld\n",
316 nid, usemap_snr);
317 return;
320 * There is a circular dependency.
321 * Some platforms allow un-removable section because they will just
322 * gather other removable sections for dynamic partitioning.
323 * Just notify un-removable section's number here.
325 pr_info("Section %ld and %ld (node %d) have a circular dependency on usemap and pgdat allocations\n",
326 usemap_snr, pgdat_snr, nid);
328 #else
329 static unsigned long * __init
330 sparse_early_usemaps_alloc_pgdat_section(struct pglist_data *pgdat,
331 unsigned long size)
333 return memblock_virt_alloc_node_nopanic(size, pgdat->node_id);
336 static void __init check_usemap_section_nr(int nid, unsigned long *usemap)
339 #endif /* CONFIG_MEMORY_HOTREMOVE */
341 static void __init sparse_early_usemaps_alloc_node(void *data,
342 unsigned long pnum_begin,
343 unsigned long pnum_end,
344 unsigned long usemap_count, int nodeid)
346 void *usemap;
347 unsigned long pnum;
348 unsigned long **usemap_map = (unsigned long **)data;
349 int size = usemap_size();
351 usemap = sparse_early_usemaps_alloc_pgdat_section(NODE_DATA(nodeid),
352 size * usemap_count);
353 if (!usemap) {
354 pr_warn("%s: allocation failed\n", __func__);
355 return;
358 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
359 if (!present_section_nr(pnum))
360 continue;
361 usemap_map[pnum] = usemap;
362 usemap += size;
363 check_usemap_section_nr(nodeid, usemap_map[pnum]);
367 #ifndef CONFIG_SPARSEMEM_VMEMMAP
368 struct page __init *sparse_mem_map_populate(unsigned long pnum, int nid)
370 struct page *map;
371 unsigned long size;
373 map = alloc_remap(nid, sizeof(struct page) * PAGES_PER_SECTION);
374 if (map)
375 return map;
377 size = PAGE_ALIGN(sizeof(struct page) * PAGES_PER_SECTION);
378 map = memblock_virt_alloc_try_nid(size,
379 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
380 BOOTMEM_ALLOC_ACCESSIBLE, nid);
381 return map;
383 void __init sparse_mem_maps_populate_node(struct page **map_map,
384 unsigned long pnum_begin,
385 unsigned long pnum_end,
386 unsigned long map_count, int nodeid)
388 void *map;
389 unsigned long pnum;
390 unsigned long size = sizeof(struct page) * PAGES_PER_SECTION;
392 map = alloc_remap(nodeid, size * map_count);
393 if (map) {
394 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
395 if (!present_section_nr(pnum))
396 continue;
397 map_map[pnum] = map;
398 map += size;
400 return;
403 size = PAGE_ALIGN(size);
404 map = memblock_virt_alloc_try_nid(size * map_count,
405 PAGE_SIZE, __pa(MAX_DMA_ADDRESS),
406 BOOTMEM_ALLOC_ACCESSIBLE, nodeid);
407 if (map) {
408 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
409 if (!present_section_nr(pnum))
410 continue;
411 map_map[pnum] = map;
412 map += size;
414 return;
417 /* fallback */
418 for (pnum = pnum_begin; pnum < pnum_end; pnum++) {
419 struct mem_section *ms;
421 if (!present_section_nr(pnum))
422 continue;
423 map_map[pnum] = sparse_mem_map_populate(pnum, nodeid);
424 if (map_map[pnum])
425 continue;
426 ms = __nr_to_section(pnum);
427 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
428 __func__);
429 ms->section_mem_map = 0;
432 #endif /* !CONFIG_SPARSEMEM_VMEMMAP */
434 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
435 static void __init sparse_early_mem_maps_alloc_node(void *data,
436 unsigned long pnum_begin,
437 unsigned long pnum_end,
438 unsigned long map_count, int nodeid)
440 struct page **map_map = (struct page **)data;
441 sparse_mem_maps_populate_node(map_map, pnum_begin, pnum_end,
442 map_count, nodeid);
444 #else
445 static struct page __init *sparse_early_mem_map_alloc(unsigned long pnum)
447 struct page *map;
448 struct mem_section *ms = __nr_to_section(pnum);
449 int nid = sparse_early_nid(ms);
451 map = sparse_mem_map_populate(pnum, nid);
452 if (map)
453 return map;
455 pr_err("%s: sparsemem memory map backing failed some memory will not be available\n",
456 __func__);
457 ms->section_mem_map = 0;
458 return NULL;
460 #endif
462 void __weak __meminit vmemmap_populate_print_last(void)
467 * alloc_usemap_and_memmap - memory alloction for pageblock flags and vmemmap
468 * @map: usemap_map for pageblock flags or mmap_map for vmemmap
470 static void __init alloc_usemap_and_memmap(void (*alloc_func)
471 (void *, unsigned long, unsigned long,
472 unsigned long, int), void *data)
474 unsigned long pnum;
475 unsigned long map_count;
476 int nodeid_begin = 0;
477 unsigned long pnum_begin = 0;
479 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
480 struct mem_section *ms;
482 if (!present_section_nr(pnum))
483 continue;
484 ms = __nr_to_section(pnum);
485 nodeid_begin = sparse_early_nid(ms);
486 pnum_begin = pnum;
487 break;
489 map_count = 1;
490 for (pnum = pnum_begin + 1; pnum < NR_MEM_SECTIONS; pnum++) {
491 struct mem_section *ms;
492 int nodeid;
494 if (!present_section_nr(pnum))
495 continue;
496 ms = __nr_to_section(pnum);
497 nodeid = sparse_early_nid(ms);
498 if (nodeid == nodeid_begin) {
499 map_count++;
500 continue;
502 /* ok, we need to take cake of from pnum_begin to pnum - 1*/
503 alloc_func(data, pnum_begin, pnum,
504 map_count, nodeid_begin);
505 /* new start, update count etc*/
506 nodeid_begin = nodeid;
507 pnum_begin = pnum;
508 map_count = 1;
510 /* ok, last chunk */
511 alloc_func(data, pnum_begin, NR_MEM_SECTIONS,
512 map_count, nodeid_begin);
516 * Allocate the accumulated non-linear sections, allocate a mem_map
517 * for each and record the physical to section mapping.
519 void __init sparse_init(void)
521 unsigned long pnum;
522 struct page *map;
523 unsigned long *usemap;
524 unsigned long **usemap_map;
525 int size;
526 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
527 int size2;
528 struct page **map_map;
529 #endif
531 /* see include/linux/mmzone.h 'struct mem_section' definition */
532 BUILD_BUG_ON(!is_power_of_2(sizeof(struct mem_section)));
534 /* Setup pageblock_order for HUGETLB_PAGE_SIZE_VARIABLE */
535 set_pageblock_order();
538 * map is using big page (aka 2M in x86 64 bit)
539 * usemap is less one page (aka 24 bytes)
540 * so alloc 2M (with 2M align) and 24 bytes in turn will
541 * make next 2M slip to one more 2M later.
542 * then in big system, the memory will have a lot of holes...
543 * here try to allocate 2M pages continuously.
545 * powerpc need to call sparse_init_one_section right after each
546 * sparse_early_mem_map_alloc, so allocate usemap_map at first.
548 size = sizeof(unsigned long *) * NR_MEM_SECTIONS;
549 usemap_map = memblock_virt_alloc(size, 0);
550 if (!usemap_map)
551 panic("can not allocate usemap_map\n");
552 alloc_usemap_and_memmap(sparse_early_usemaps_alloc_node,
553 (void *)usemap_map);
555 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
556 size2 = sizeof(struct page *) * NR_MEM_SECTIONS;
557 map_map = memblock_virt_alloc(size2, 0);
558 if (!map_map)
559 panic("can not allocate map_map\n");
560 alloc_usemap_and_memmap(sparse_early_mem_maps_alloc_node,
561 (void *)map_map);
562 #endif
564 for (pnum = 0; pnum < NR_MEM_SECTIONS; pnum++) {
565 if (!present_section_nr(pnum))
566 continue;
568 usemap = usemap_map[pnum];
569 if (!usemap)
570 continue;
572 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
573 map = map_map[pnum];
574 #else
575 map = sparse_early_mem_map_alloc(pnum);
576 #endif
577 if (!map)
578 continue;
580 sparse_init_one_section(__nr_to_section(pnum), pnum, map,
581 usemap);
584 vmemmap_populate_print_last();
586 #ifdef CONFIG_SPARSEMEM_ALLOC_MEM_MAP_TOGETHER
587 memblock_free_early(__pa(map_map), size2);
588 #endif
589 memblock_free_early(__pa(usemap_map), size);
592 #ifdef CONFIG_MEMORY_HOTPLUG
593 #ifdef CONFIG_SPARSEMEM_VMEMMAP
594 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
596 /* This will make the necessary allocations eventually. */
597 return sparse_mem_map_populate(pnum, nid);
599 static void __kfree_section_memmap(struct page *memmap)
601 unsigned long start = (unsigned long)memmap;
602 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
604 vmemmap_free(start, end);
606 #ifdef CONFIG_MEMORY_HOTREMOVE
607 static void free_map_bootmem(struct page *memmap)
609 unsigned long start = (unsigned long)memmap;
610 unsigned long end = (unsigned long)(memmap + PAGES_PER_SECTION);
612 vmemmap_free(start, end);
614 #endif /* CONFIG_MEMORY_HOTREMOVE */
615 #else
616 static struct page *__kmalloc_section_memmap(void)
618 struct page *page, *ret;
619 unsigned long memmap_size = sizeof(struct page) * PAGES_PER_SECTION;
621 page = alloc_pages(GFP_KERNEL|__GFP_NOWARN, get_order(memmap_size));
622 if (page)
623 goto got_map_page;
625 ret = vmalloc(memmap_size);
626 if (ret)
627 goto got_map_ptr;
629 return NULL;
630 got_map_page:
631 ret = (struct page *)pfn_to_kaddr(page_to_pfn(page));
632 got_map_ptr:
634 return ret;
637 static inline struct page *kmalloc_section_memmap(unsigned long pnum, int nid)
639 return __kmalloc_section_memmap();
642 static void __kfree_section_memmap(struct page *memmap)
644 if (is_vmalloc_addr(memmap))
645 vfree(memmap);
646 else
647 free_pages((unsigned long)memmap,
648 get_order(sizeof(struct page) * PAGES_PER_SECTION));
651 #ifdef CONFIG_MEMORY_HOTREMOVE
652 static void free_map_bootmem(struct page *memmap)
654 unsigned long maps_section_nr, removing_section_nr, i;
655 unsigned long magic, nr_pages;
656 struct page *page = virt_to_page(memmap);
658 nr_pages = PAGE_ALIGN(PAGES_PER_SECTION * sizeof(struct page))
659 >> PAGE_SHIFT;
661 for (i = 0; i < nr_pages; i++, page++) {
662 magic = (unsigned long) page->freelist;
664 BUG_ON(magic == NODE_INFO);
666 maps_section_nr = pfn_to_section_nr(page_to_pfn(page));
667 removing_section_nr = page_private(page);
670 * When this function is called, the removing section is
671 * logical offlined state. This means all pages are isolated
672 * from page allocator. If removing section's memmap is placed
673 * on the same section, it must not be freed.
674 * If it is freed, page allocator may allocate it which will
675 * be removed physically soon.
677 if (maps_section_nr != removing_section_nr)
678 put_page_bootmem(page);
681 #endif /* CONFIG_MEMORY_HOTREMOVE */
682 #endif /* CONFIG_SPARSEMEM_VMEMMAP */
685 * returns the number of sections whose mem_maps were properly
686 * set. If this is <=0, then that means that the passed-in
687 * map was not consumed and must be freed.
689 int __meminit sparse_add_one_section(struct zone *zone, unsigned long start_pfn)
691 unsigned long section_nr = pfn_to_section_nr(start_pfn);
692 struct pglist_data *pgdat = zone->zone_pgdat;
693 struct mem_section *ms;
694 struct page *memmap;
695 unsigned long *usemap;
696 unsigned long flags;
697 int ret;
700 * no locking for this, because it does its own
701 * plus, it does a kmalloc
703 ret = sparse_index_init(section_nr, pgdat->node_id);
704 if (ret < 0 && ret != -EEXIST)
705 return ret;
706 memmap = kmalloc_section_memmap(section_nr, pgdat->node_id);
707 if (!memmap)
708 return -ENOMEM;
709 usemap = __kmalloc_section_usemap();
710 if (!usemap) {
711 __kfree_section_memmap(memmap);
712 return -ENOMEM;
715 pgdat_resize_lock(pgdat, &flags);
717 ms = __pfn_to_section(start_pfn);
718 if (ms->section_mem_map & SECTION_MARKED_PRESENT) {
719 ret = -EEXIST;
720 goto out;
723 memset(memmap, 0, sizeof(struct page) * PAGES_PER_SECTION);
725 ms->section_mem_map |= SECTION_MARKED_PRESENT;
727 ret = sparse_init_one_section(ms, section_nr, memmap, usemap);
729 out:
730 pgdat_resize_unlock(pgdat, &flags);
731 if (ret <= 0) {
732 kfree(usemap);
733 __kfree_section_memmap(memmap);
735 return ret;
738 #ifdef CONFIG_MEMORY_HOTREMOVE
739 #ifdef CONFIG_MEMORY_FAILURE
740 static void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
742 int i;
744 if (!memmap)
745 return;
747 for (i = 0; i < nr_pages; i++) {
748 if (PageHWPoison(&memmap[i])) {
749 atomic_long_sub(1, &num_poisoned_pages);
750 ClearPageHWPoison(&memmap[i]);
754 #else
755 static inline void clear_hwpoisoned_pages(struct page *memmap, int nr_pages)
758 #endif
760 static void free_section_usemap(struct page *memmap, unsigned long *usemap)
762 struct page *usemap_page;
764 if (!usemap)
765 return;
767 usemap_page = virt_to_page(usemap);
769 * Check to see if allocation came from hot-plug-add
771 if (PageSlab(usemap_page) || PageCompound(usemap_page)) {
772 kfree(usemap);
773 if (memmap)
774 __kfree_section_memmap(memmap);
775 return;
779 * The usemap came from bootmem. This is packed with other usemaps
780 * on the section which has pgdat at boot time. Just keep it as is now.
783 if (memmap)
784 free_map_bootmem(memmap);
787 void sparse_remove_one_section(struct zone *zone, struct mem_section *ms,
788 unsigned long map_offset)
790 struct page *memmap = NULL;
791 unsigned long *usemap = NULL, flags;
792 struct pglist_data *pgdat = zone->zone_pgdat;
794 pgdat_resize_lock(pgdat, &flags);
795 if (ms->section_mem_map) {
796 usemap = ms->pageblock_flags;
797 memmap = sparse_decode_mem_map(ms->section_mem_map,
798 __section_nr(ms));
799 ms->section_mem_map = 0;
800 ms->pageblock_flags = NULL;
802 pgdat_resize_unlock(pgdat, &flags);
804 clear_hwpoisoned_pages(memmap + map_offset,
805 PAGES_PER_SECTION - map_offset);
806 free_section_usemap(memmap, usemap);
808 #endif /* CONFIG_MEMORY_HOTREMOVE */
809 #endif /* CONFIG_MEMORY_HOTPLUG */