4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds
8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10 * Removed a lot of unnecessary code and simplified things now that
11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13 * Speed up hash, lru, and free list operations. Use gfp() for allocating
14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM
16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
24 #include <linux/iomap.h>
26 #include <linux/percpu.h>
27 #include <linux/slab.h>
28 #include <linux/capability.h>
29 #include <linux/blkdev.h>
30 #include <linux/file.h>
31 #include <linux/quotaops.h>
32 #include <linux/highmem.h>
33 #include <linux/export.h>
34 #include <linux/backing-dev.h>
35 #include <linux/writeback.h>
36 #include <linux/hash.h>
37 #include <linux/suspend.h>
38 #include <linux/buffer_head.h>
39 #include <linux/task_io_accounting_ops.h>
40 #include <linux/bio.h>
41 #include <linux/notifier.h>
42 #include <linux/cpu.h>
43 #include <linux/bitops.h>
44 #include <linux/mpage.h>
45 #include <linux/bit_spinlock.h>
46 #include <trace/events/block.h>
48 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
);
49 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
50 unsigned long bio_flags
,
51 struct writeback_control
*wbc
);
53 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
55 void init_buffer(struct buffer_head
*bh
, bh_end_io_t
*handler
, void *private)
57 bh
->b_end_io
= handler
;
58 bh
->b_private
= private;
60 EXPORT_SYMBOL(init_buffer
);
62 inline void touch_buffer(struct buffer_head
*bh
)
64 trace_block_touch_buffer(bh
);
65 mark_page_accessed(bh
->b_page
);
67 EXPORT_SYMBOL(touch_buffer
);
69 void __lock_buffer(struct buffer_head
*bh
)
71 wait_on_bit_lock_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
73 EXPORT_SYMBOL(__lock_buffer
);
75 void unlock_buffer(struct buffer_head
*bh
)
77 clear_bit_unlock(BH_Lock
, &bh
->b_state
);
78 smp_mb__after_atomic();
79 wake_up_bit(&bh
->b_state
, BH_Lock
);
81 EXPORT_SYMBOL(unlock_buffer
);
84 * Returns if the page has dirty or writeback buffers. If all the buffers
85 * are unlocked and clean then the PageDirty information is stale. If
86 * any of the pages are locked, it is assumed they are locked for IO.
88 void buffer_check_dirty_writeback(struct page
*page
,
89 bool *dirty
, bool *writeback
)
91 struct buffer_head
*head
, *bh
;
95 BUG_ON(!PageLocked(page
));
97 if (!page_has_buffers(page
))
100 if (PageWriteback(page
))
103 head
= page_buffers(page
);
106 if (buffer_locked(bh
))
109 if (buffer_dirty(bh
))
112 bh
= bh
->b_this_page
;
113 } while (bh
!= head
);
115 EXPORT_SYMBOL(buffer_check_dirty_writeback
);
118 * Block until a buffer comes unlocked. This doesn't stop it
119 * from becoming locked again - you have to lock it yourself
120 * if you want to preserve its state.
122 void __wait_on_buffer(struct buffer_head
* bh
)
124 wait_on_bit_io(&bh
->b_state
, BH_Lock
, TASK_UNINTERRUPTIBLE
);
126 EXPORT_SYMBOL(__wait_on_buffer
);
129 __clear_page_buffers(struct page
*page
)
131 ClearPagePrivate(page
);
132 set_page_private(page
, 0);
136 static void buffer_io_error(struct buffer_head
*bh
, char *msg
)
138 if (!test_bit(BH_Quiet
, &bh
->b_state
))
139 printk_ratelimited(KERN_ERR
140 "Buffer I/O error on dev %pg, logical block %llu%s\n",
141 bh
->b_bdev
, (unsigned long long)bh
->b_blocknr
, msg
);
145 * End-of-IO handler helper function which does not touch the bh after
147 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
148 * a race there is benign: unlock_buffer() only use the bh's address for
149 * hashing after unlocking the buffer, so it doesn't actually touch the bh
152 static void __end_buffer_read_notouch(struct buffer_head
*bh
, int uptodate
)
155 set_buffer_uptodate(bh
);
157 /* This happens, due to failed read-ahead attempts. */
158 clear_buffer_uptodate(bh
);
164 * Default synchronous end-of-IO handler.. Just mark it up-to-date and
165 * unlock the buffer. This is what ll_rw_block uses too.
167 void end_buffer_read_sync(struct buffer_head
*bh
, int uptodate
)
169 __end_buffer_read_notouch(bh
, uptodate
);
172 EXPORT_SYMBOL(end_buffer_read_sync
);
174 void end_buffer_write_sync(struct buffer_head
*bh
, int uptodate
)
177 set_buffer_uptodate(bh
);
179 buffer_io_error(bh
, ", lost sync page write");
180 set_buffer_write_io_error(bh
);
181 clear_buffer_uptodate(bh
);
186 EXPORT_SYMBOL(end_buffer_write_sync
);
189 * Various filesystems appear to want __find_get_block to be non-blocking.
190 * But it's the page lock which protects the buffers. To get around this,
191 * we get exclusion from try_to_free_buffers with the blockdev mapping's
194 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
195 * may be quite high. This code could TryLock the page, and if that
196 * succeeds, there is no need to take private_lock. (But if
197 * private_lock is contended then so is mapping->tree_lock).
199 static struct buffer_head
*
200 __find_get_block_slow(struct block_device
*bdev
, sector_t block
)
202 struct inode
*bd_inode
= bdev
->bd_inode
;
203 struct address_space
*bd_mapping
= bd_inode
->i_mapping
;
204 struct buffer_head
*ret
= NULL
;
206 struct buffer_head
*bh
;
207 struct buffer_head
*head
;
211 index
= block
>> (PAGE_SHIFT
- bd_inode
->i_blkbits
);
212 page
= find_get_page_flags(bd_mapping
, index
, FGP_ACCESSED
);
216 spin_lock(&bd_mapping
->private_lock
);
217 if (!page_has_buffers(page
))
219 head
= page_buffers(page
);
222 if (!buffer_mapped(bh
))
224 else if (bh
->b_blocknr
== block
) {
229 bh
= bh
->b_this_page
;
230 } while (bh
!= head
);
232 /* we might be here because some of the buffers on this page are
233 * not mapped. This is due to various races between
234 * file io on the block device and getblk. It gets dealt with
235 * elsewhere, don't buffer_error if we had some unmapped buffers
238 printk("__find_get_block_slow() failed. "
239 "block=%llu, b_blocknr=%llu\n",
240 (unsigned long long)block
,
241 (unsigned long long)bh
->b_blocknr
);
242 printk("b_state=0x%08lx, b_size=%zu\n",
243 bh
->b_state
, bh
->b_size
);
244 printk("device %pg blocksize: %d\n", bdev
,
245 1 << bd_inode
->i_blkbits
);
248 spin_unlock(&bd_mapping
->private_lock
);
255 * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
257 static void free_more_memory(void)
262 wakeup_flusher_threads(1024, WB_REASON_FREE_MORE_MEM
);
265 for_each_online_node(nid
) {
267 z
= first_zones_zonelist(node_zonelist(nid
, GFP_NOFS
),
268 gfp_zone(GFP_NOFS
), NULL
);
270 try_to_free_pages(node_zonelist(nid
, GFP_NOFS
), 0,
276 * I/O completion handler for block_read_full_page() - pages
277 * which come unlocked at the end of I/O.
279 static void end_buffer_async_read(struct buffer_head
*bh
, int uptodate
)
282 struct buffer_head
*first
;
283 struct buffer_head
*tmp
;
285 int page_uptodate
= 1;
287 BUG_ON(!buffer_async_read(bh
));
291 set_buffer_uptodate(bh
);
293 clear_buffer_uptodate(bh
);
294 buffer_io_error(bh
, ", async page read");
299 * Be _very_ careful from here on. Bad things can happen if
300 * two buffer heads end IO at almost the same time and both
301 * decide that the page is now completely done.
303 first
= page_buffers(page
);
304 local_irq_save(flags
);
305 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
306 clear_buffer_async_read(bh
);
310 if (!buffer_uptodate(tmp
))
312 if (buffer_async_read(tmp
)) {
313 BUG_ON(!buffer_locked(tmp
));
316 tmp
= tmp
->b_this_page
;
318 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
319 local_irq_restore(flags
);
322 * If none of the buffers had errors and they are all
323 * uptodate then we can set the page uptodate.
325 if (page_uptodate
&& !PageError(page
))
326 SetPageUptodate(page
);
331 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
332 local_irq_restore(flags
);
337 * Completion handler for block_write_full_page() - pages which are unlocked
338 * during I/O, and which have PageWriteback cleared upon I/O completion.
340 void end_buffer_async_write(struct buffer_head
*bh
, int uptodate
)
343 struct buffer_head
*first
;
344 struct buffer_head
*tmp
;
347 BUG_ON(!buffer_async_write(bh
));
351 set_buffer_uptodate(bh
);
353 buffer_io_error(bh
, ", lost async page write");
354 mapping_set_error(page
->mapping
, -EIO
);
355 set_buffer_write_io_error(bh
);
356 clear_buffer_uptodate(bh
);
360 first
= page_buffers(page
);
361 local_irq_save(flags
);
362 bit_spin_lock(BH_Uptodate_Lock
, &first
->b_state
);
364 clear_buffer_async_write(bh
);
366 tmp
= bh
->b_this_page
;
368 if (buffer_async_write(tmp
)) {
369 BUG_ON(!buffer_locked(tmp
));
372 tmp
= tmp
->b_this_page
;
374 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
375 local_irq_restore(flags
);
376 end_page_writeback(page
);
380 bit_spin_unlock(BH_Uptodate_Lock
, &first
->b_state
);
381 local_irq_restore(flags
);
384 EXPORT_SYMBOL(end_buffer_async_write
);
387 * If a page's buffers are under async readin (end_buffer_async_read
388 * completion) then there is a possibility that another thread of
389 * control could lock one of the buffers after it has completed
390 * but while some of the other buffers have not completed. This
391 * locked buffer would confuse end_buffer_async_read() into not unlocking
392 * the page. So the absence of BH_Async_Read tells end_buffer_async_read()
393 * that this buffer is not under async I/O.
395 * The page comes unlocked when it has no locked buffer_async buffers
398 * PageLocked prevents anyone starting new async I/O reads any of
401 * PageWriteback is used to prevent simultaneous writeout of the same
404 * PageLocked prevents anyone from starting writeback of a page which is
405 * under read I/O (PageWriteback is only ever set against a locked page).
407 static void mark_buffer_async_read(struct buffer_head
*bh
)
409 bh
->b_end_io
= end_buffer_async_read
;
410 set_buffer_async_read(bh
);
413 static void mark_buffer_async_write_endio(struct buffer_head
*bh
,
414 bh_end_io_t
*handler
)
416 bh
->b_end_io
= handler
;
417 set_buffer_async_write(bh
);
420 void mark_buffer_async_write(struct buffer_head
*bh
)
422 mark_buffer_async_write_endio(bh
, end_buffer_async_write
);
424 EXPORT_SYMBOL(mark_buffer_async_write
);
428 * fs/buffer.c contains helper functions for buffer-backed address space's
429 * fsync functions. A common requirement for buffer-based filesystems is
430 * that certain data from the backing blockdev needs to be written out for
431 * a successful fsync(). For example, ext2 indirect blocks need to be
432 * written back and waited upon before fsync() returns.
434 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
435 * inode_has_buffers() and invalidate_inode_buffers() are provided for the
436 * management of a list of dependent buffers at ->i_mapping->private_list.
438 * Locking is a little subtle: try_to_free_buffers() will remove buffers
439 * from their controlling inode's queue when they are being freed. But
440 * try_to_free_buffers() will be operating against the *blockdev* mapping
441 * at the time, not against the S_ISREG file which depends on those buffers.
442 * So the locking for private_list is via the private_lock in the address_space
443 * which backs the buffers. Which is different from the address_space
444 * against which the buffers are listed. So for a particular address_space,
445 * mapping->private_lock does *not* protect mapping->private_list! In fact,
446 * mapping->private_list will always be protected by the backing blockdev's
449 * Which introduces a requirement: all buffers on an address_space's
450 * ->private_list must be from the same address_space: the blockdev's.
452 * address_spaces which do not place buffers at ->private_list via these
453 * utility functions are free to use private_lock and private_list for
454 * whatever they want. The only requirement is that list_empty(private_list)
455 * be true at clear_inode() time.
457 * FIXME: clear_inode should not call invalidate_inode_buffers(). The
458 * filesystems should do that. invalidate_inode_buffers() should just go
459 * BUG_ON(!list_empty).
461 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should
462 * take an address_space, not an inode. And it should be called
463 * mark_buffer_dirty_fsync() to clearly define why those buffers are being
466 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
467 * list if it is already on a list. Because if the buffer is on a list,
468 * it *must* already be on the right one. If not, the filesystem is being
469 * silly. This will save a ton of locking. But first we have to ensure
470 * that buffers are taken *off* the old inode's list when they are freed
471 * (presumably in truncate). That requires careful auditing of all
472 * filesystems (do it inside bforget()). It could also be done by bringing
477 * The buffer's backing address_space's private_lock must be held
479 static void __remove_assoc_queue(struct buffer_head
*bh
)
481 list_del_init(&bh
->b_assoc_buffers
);
482 WARN_ON(!bh
->b_assoc_map
);
483 if (buffer_write_io_error(bh
))
484 set_bit(AS_EIO
, &bh
->b_assoc_map
->flags
);
485 bh
->b_assoc_map
= NULL
;
488 int inode_has_buffers(struct inode
*inode
)
490 return !list_empty(&inode
->i_data
.private_list
);
494 * osync is designed to support O_SYNC io. It waits synchronously for
495 * all already-submitted IO to complete, but does not queue any new
496 * writes to the disk.
498 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
499 * you dirty the buffers, and then use osync_inode_buffers to wait for
500 * completion. Any other dirty buffers which are not yet queued for
501 * write will not be flushed to disk by the osync.
503 static int osync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
505 struct buffer_head
*bh
;
511 list_for_each_prev(p
, list
) {
513 if (buffer_locked(bh
)) {
517 if (!buffer_uptodate(bh
))
528 static void do_thaw_one(struct super_block
*sb
, void *unused
)
530 while (sb
->s_bdev
&& !thaw_bdev(sb
->s_bdev
, sb
))
531 printk(KERN_WARNING
"Emergency Thaw on %pg\n", sb
->s_bdev
);
534 static void do_thaw_all(struct work_struct
*work
)
536 iterate_supers(do_thaw_one
, NULL
);
538 printk(KERN_WARNING
"Emergency Thaw complete\n");
542 * emergency_thaw_all -- forcibly thaw every frozen filesystem
544 * Used for emergency unfreeze of all filesystems via SysRq
546 void emergency_thaw_all(void)
548 struct work_struct
*work
;
550 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
552 INIT_WORK(work
, do_thaw_all
);
558 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
559 * @mapping: the mapping which wants those buffers written
561 * Starts I/O against the buffers at mapping->private_list, and waits upon
564 * Basically, this is a convenience function for fsync().
565 * @mapping is a file or directory which needs those buffers to be written for
566 * a successful fsync().
568 int sync_mapping_buffers(struct address_space
*mapping
)
570 struct address_space
*buffer_mapping
= mapping
->private_data
;
572 if (buffer_mapping
== NULL
|| list_empty(&mapping
->private_list
))
575 return fsync_buffers_list(&buffer_mapping
->private_lock
,
576 &mapping
->private_list
);
578 EXPORT_SYMBOL(sync_mapping_buffers
);
581 * Called when we've recently written block `bblock', and it is known that
582 * `bblock' was for a buffer_boundary() buffer. This means that the block at
583 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's
584 * dirty, schedule it for IO. So that indirects merge nicely with their data.
586 void write_boundary_block(struct block_device
*bdev
,
587 sector_t bblock
, unsigned blocksize
)
589 struct buffer_head
*bh
= __find_get_block(bdev
, bblock
+ 1, blocksize
);
591 if (buffer_dirty(bh
))
592 ll_rw_block(REQ_OP_WRITE
, 0, 1, &bh
);
597 void mark_buffer_dirty_inode(struct buffer_head
*bh
, struct inode
*inode
)
599 struct address_space
*mapping
= inode
->i_mapping
;
600 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
602 mark_buffer_dirty(bh
);
603 if (!mapping
->private_data
) {
604 mapping
->private_data
= buffer_mapping
;
606 BUG_ON(mapping
->private_data
!= buffer_mapping
);
608 if (!bh
->b_assoc_map
) {
609 spin_lock(&buffer_mapping
->private_lock
);
610 list_move_tail(&bh
->b_assoc_buffers
,
611 &mapping
->private_list
);
612 bh
->b_assoc_map
= mapping
;
613 spin_unlock(&buffer_mapping
->private_lock
);
616 EXPORT_SYMBOL(mark_buffer_dirty_inode
);
619 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
622 * If warn is true, then emit a warning if the page is not uptodate and has
623 * not been truncated.
625 * The caller must hold lock_page_memcg().
627 static void __set_page_dirty(struct page
*page
, struct address_space
*mapping
,
632 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
633 if (page
->mapping
) { /* Race with truncate? */
634 WARN_ON_ONCE(warn
&& !PageUptodate(page
));
635 account_page_dirtied(page
, mapping
);
636 radix_tree_tag_set(&mapping
->page_tree
,
637 page_index(page
), PAGECACHE_TAG_DIRTY
);
639 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
643 * Add a page to the dirty page list.
645 * It is a sad fact of life that this function is called from several places
646 * deeply under spinlocking. It may not sleep.
648 * If the page has buffers, the uptodate buffers are set dirty, to preserve
649 * dirty-state coherency between the page and the buffers. It the page does
650 * not have buffers then when they are later attached they will all be set
653 * The buffers are dirtied before the page is dirtied. There's a small race
654 * window in which a writepage caller may see the page cleanness but not the
655 * buffer dirtiness. That's fine. If this code were to set the page dirty
656 * before the buffers, a concurrent writepage caller could clear the page dirty
657 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
658 * page on the dirty page list.
660 * We use private_lock to lock against try_to_free_buffers while using the
661 * page's buffer list. Also use this to protect against clean buffers being
662 * added to the page after it was set dirty.
664 * FIXME: may need to call ->reservepage here as well. That's rather up to the
665 * address_space though.
667 int __set_page_dirty_buffers(struct page
*page
)
670 struct address_space
*mapping
= page_mapping(page
);
672 if (unlikely(!mapping
))
673 return !TestSetPageDirty(page
);
675 spin_lock(&mapping
->private_lock
);
676 if (page_has_buffers(page
)) {
677 struct buffer_head
*head
= page_buffers(page
);
678 struct buffer_head
*bh
= head
;
681 set_buffer_dirty(bh
);
682 bh
= bh
->b_this_page
;
683 } while (bh
!= head
);
686 * Lock out page->mem_cgroup migration to keep PageDirty
687 * synchronized with per-memcg dirty page counters.
689 lock_page_memcg(page
);
690 newly_dirty
= !TestSetPageDirty(page
);
691 spin_unlock(&mapping
->private_lock
);
694 __set_page_dirty(page
, mapping
, 1);
696 unlock_page_memcg(page
);
699 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
703 EXPORT_SYMBOL(__set_page_dirty_buffers
);
706 * Write out and wait upon a list of buffers.
708 * We have conflicting pressures: we want to make sure that all
709 * initially dirty buffers get waited on, but that any subsequently
710 * dirtied buffers don't. After all, we don't want fsync to last
711 * forever if somebody is actively writing to the file.
713 * Do this in two main stages: first we copy dirty buffers to a
714 * temporary inode list, queueing the writes as we go. Then we clean
715 * up, waiting for those writes to complete.
717 * During this second stage, any subsequent updates to the file may end
718 * up refiling the buffer on the original inode's dirty list again, so
719 * there is a chance we will end up with a buffer queued for write but
720 * not yet completed on that list. So, as a final cleanup we go through
721 * the osync code to catch these locked, dirty buffers without requeuing
722 * any newly dirty buffers for write.
724 static int fsync_buffers_list(spinlock_t
*lock
, struct list_head
*list
)
726 struct buffer_head
*bh
;
727 struct list_head tmp
;
728 struct address_space
*mapping
;
730 struct blk_plug plug
;
732 INIT_LIST_HEAD(&tmp
);
733 blk_start_plug(&plug
);
736 while (!list_empty(list
)) {
737 bh
= BH_ENTRY(list
->next
);
738 mapping
= bh
->b_assoc_map
;
739 __remove_assoc_queue(bh
);
740 /* Avoid race with mark_buffer_dirty_inode() which does
741 * a lockless check and we rely on seeing the dirty bit */
743 if (buffer_dirty(bh
) || buffer_locked(bh
)) {
744 list_add(&bh
->b_assoc_buffers
, &tmp
);
745 bh
->b_assoc_map
= mapping
;
746 if (buffer_dirty(bh
)) {
750 * Ensure any pending I/O completes so that
751 * write_dirty_buffer() actually writes the
752 * current contents - it is a noop if I/O is
753 * still in flight on potentially older
756 write_dirty_buffer(bh
, WRITE_SYNC
);
759 * Kick off IO for the previous mapping. Note
760 * that we will not run the very last mapping,
761 * wait_on_buffer() will do that for us
762 * through sync_buffer().
771 blk_finish_plug(&plug
);
774 while (!list_empty(&tmp
)) {
775 bh
= BH_ENTRY(tmp
.prev
);
777 mapping
= bh
->b_assoc_map
;
778 __remove_assoc_queue(bh
);
779 /* Avoid race with mark_buffer_dirty_inode() which does
780 * a lockless check and we rely on seeing the dirty bit */
782 if (buffer_dirty(bh
)) {
783 list_add(&bh
->b_assoc_buffers
,
784 &mapping
->private_list
);
785 bh
->b_assoc_map
= mapping
;
789 if (!buffer_uptodate(bh
))
796 err2
= osync_buffers_list(lock
, list
);
804 * Invalidate any and all dirty buffers on a given inode. We are
805 * probably unmounting the fs, but that doesn't mean we have already
806 * done a sync(). Just drop the buffers from the inode list.
808 * NOTE: we take the inode's blockdev's mapping's private_lock. Which
809 * assumes that all the buffers are against the blockdev. Not true
812 void invalidate_inode_buffers(struct inode
*inode
)
814 if (inode_has_buffers(inode
)) {
815 struct address_space
*mapping
= &inode
->i_data
;
816 struct list_head
*list
= &mapping
->private_list
;
817 struct address_space
*buffer_mapping
= mapping
->private_data
;
819 spin_lock(&buffer_mapping
->private_lock
);
820 while (!list_empty(list
))
821 __remove_assoc_queue(BH_ENTRY(list
->next
));
822 spin_unlock(&buffer_mapping
->private_lock
);
825 EXPORT_SYMBOL(invalidate_inode_buffers
);
828 * Remove any clean buffers from the inode's buffer list. This is called
829 * when we're trying to free the inode itself. Those buffers can pin it.
831 * Returns true if all buffers were removed.
833 int remove_inode_buffers(struct inode
*inode
)
837 if (inode_has_buffers(inode
)) {
838 struct address_space
*mapping
= &inode
->i_data
;
839 struct list_head
*list
= &mapping
->private_list
;
840 struct address_space
*buffer_mapping
= mapping
->private_data
;
842 spin_lock(&buffer_mapping
->private_lock
);
843 while (!list_empty(list
)) {
844 struct buffer_head
*bh
= BH_ENTRY(list
->next
);
845 if (buffer_dirty(bh
)) {
849 __remove_assoc_queue(bh
);
851 spin_unlock(&buffer_mapping
->private_lock
);
857 * Create the appropriate buffers when given a page for data area and
858 * the size of each buffer.. Use the bh->b_this_page linked list to
859 * follow the buffers created. Return NULL if unable to create more
862 * The retry flag is used to differentiate async IO (paging, swapping)
863 * which may not fail from ordinary buffer allocations.
865 struct buffer_head
*alloc_page_buffers(struct page
*page
, unsigned long size
,
868 struct buffer_head
*bh
, *head
;
874 while ((offset
-= size
) >= 0) {
875 bh
= alloc_buffer_head(GFP_NOFS
);
879 bh
->b_this_page
= head
;
885 /* Link the buffer to its page */
886 set_bh_page(bh
, page
, offset
);
890 * In case anything failed, we just free everything we got.
896 head
= head
->b_this_page
;
897 free_buffer_head(bh
);
902 * Return failure for non-async IO requests. Async IO requests
903 * are not allowed to fail, so we have to wait until buffer heads
904 * become available. But we don't want tasks sleeping with
905 * partially complete buffers, so all were released above.
910 /* We're _really_ low on memory. Now we just
911 * wait for old buffer heads to become free due to
912 * finishing IO. Since this is an async request and
913 * the reserve list is empty, we're sure there are
914 * async buffer heads in use.
919 EXPORT_SYMBOL_GPL(alloc_page_buffers
);
922 link_dev_buffers(struct page
*page
, struct buffer_head
*head
)
924 struct buffer_head
*bh
, *tail
;
929 bh
= bh
->b_this_page
;
931 tail
->b_this_page
= head
;
932 attach_page_buffers(page
, head
);
935 static sector_t
blkdev_max_block(struct block_device
*bdev
, unsigned int size
)
937 sector_t retval
= ~((sector_t
)0);
938 loff_t sz
= i_size_read(bdev
->bd_inode
);
941 unsigned int sizebits
= blksize_bits(size
);
942 retval
= (sz
>> sizebits
);
948 * Initialise the state of a blockdev page's buffers.
951 init_page_buffers(struct page
*page
, struct block_device
*bdev
,
952 sector_t block
, int size
)
954 struct buffer_head
*head
= page_buffers(page
);
955 struct buffer_head
*bh
= head
;
956 int uptodate
= PageUptodate(page
);
957 sector_t end_block
= blkdev_max_block(I_BDEV(bdev
->bd_inode
), size
);
960 if (!buffer_mapped(bh
)) {
961 init_buffer(bh
, NULL
, NULL
);
963 bh
->b_blocknr
= block
;
965 set_buffer_uptodate(bh
);
966 if (block
< end_block
)
967 set_buffer_mapped(bh
);
970 bh
= bh
->b_this_page
;
971 } while (bh
!= head
);
974 * Caller needs to validate requested block against end of device.
980 * Create the page-cache page that contains the requested block.
982 * This is used purely for blockdev mappings.
985 grow_dev_page(struct block_device
*bdev
, sector_t block
,
986 pgoff_t index
, int size
, int sizebits
, gfp_t gfp
)
988 struct inode
*inode
= bdev
->bd_inode
;
990 struct buffer_head
*bh
;
992 int ret
= 0; /* Will call free_more_memory() */
995 gfp_mask
= mapping_gfp_constraint(inode
->i_mapping
, ~__GFP_FS
) | gfp
;
998 * XXX: __getblk_slow() can not really deal with failure and
999 * will endlessly loop on improvised global reclaim. Prefer
1000 * looping in the allocator rather than here, at least that
1001 * code knows what it's doing.
1003 gfp_mask
|= __GFP_NOFAIL
;
1005 page
= find_or_create_page(inode
->i_mapping
, index
, gfp_mask
);
1009 BUG_ON(!PageLocked(page
));
1011 if (page_has_buffers(page
)) {
1012 bh
= page_buffers(page
);
1013 if (bh
->b_size
== size
) {
1014 end_block
= init_page_buffers(page
, bdev
,
1015 (sector_t
)index
<< sizebits
,
1019 if (!try_to_free_buffers(page
))
1024 * Allocate some buffers for this page
1026 bh
= alloc_page_buffers(page
, size
, 0);
1031 * Link the page to the buffers and initialise them. Take the
1032 * lock to be atomic wrt __find_get_block(), which does not
1033 * run under the page lock.
1035 spin_lock(&inode
->i_mapping
->private_lock
);
1036 link_dev_buffers(page
, bh
);
1037 end_block
= init_page_buffers(page
, bdev
, (sector_t
)index
<< sizebits
,
1039 spin_unlock(&inode
->i_mapping
->private_lock
);
1041 ret
= (block
< end_block
) ? 1 : -ENXIO
;
1049 * Create buffers for the specified block device block's page. If
1050 * that page was dirty, the buffers are set dirty also.
1053 grow_buffers(struct block_device
*bdev
, sector_t block
, int size
, gfp_t gfp
)
1061 } while ((size
<< sizebits
) < PAGE_SIZE
);
1063 index
= block
>> sizebits
;
1066 * Check for a block which wants to lie outside our maximum possible
1067 * pagecache index. (this comparison is done using sector_t types).
1069 if (unlikely(index
!= block
>> sizebits
)) {
1070 printk(KERN_ERR
"%s: requested out-of-range block %llu for "
1072 __func__
, (unsigned long long)block
,
1077 /* Create a page with the proper size buffers.. */
1078 return grow_dev_page(bdev
, block
, index
, size
, sizebits
, gfp
);
1081 static struct buffer_head
*
1082 __getblk_slow(struct block_device
*bdev
, sector_t block
,
1083 unsigned size
, gfp_t gfp
)
1085 /* Size must be multiple of hard sectorsize */
1086 if (unlikely(size
& (bdev_logical_block_size(bdev
)-1) ||
1087 (size
< 512 || size
> PAGE_SIZE
))) {
1088 printk(KERN_ERR
"getblk(): invalid block size %d requested\n",
1090 printk(KERN_ERR
"logical block size: %d\n",
1091 bdev_logical_block_size(bdev
));
1098 struct buffer_head
*bh
;
1101 bh
= __find_get_block(bdev
, block
, size
);
1105 ret
= grow_buffers(bdev
, block
, size
, gfp
);
1114 * The relationship between dirty buffers and dirty pages:
1116 * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1117 * the page is tagged dirty in its radix tree.
1119 * At all times, the dirtiness of the buffers represents the dirtiness of
1120 * subsections of the page. If the page has buffers, the page dirty bit is
1121 * merely a hint about the true dirty state.
1123 * When a page is set dirty in its entirety, all its buffers are marked dirty
1124 * (if the page has buffers).
1126 * When a buffer is marked dirty, its page is dirtied, but the page's other
1129 * Also. When blockdev buffers are explicitly read with bread(), they
1130 * individually become uptodate. But their backing page remains not
1131 * uptodate - even if all of its buffers are uptodate. A subsequent
1132 * block_read_full_page() against that page will discover all the uptodate
1133 * buffers, will set the page uptodate and will perform no I/O.
1137 * mark_buffer_dirty - mark a buffer_head as needing writeout
1138 * @bh: the buffer_head to mark dirty
1140 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1141 * backing page dirty, then tag the page as dirty in its address_space's radix
1142 * tree and then attach the address_space's inode to its superblock's dirty
1145 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock,
1146 * mapping->tree_lock and mapping->host->i_lock.
1148 void mark_buffer_dirty(struct buffer_head
*bh
)
1150 WARN_ON_ONCE(!buffer_uptodate(bh
));
1152 trace_block_dirty_buffer(bh
);
1155 * Very *carefully* optimize the it-is-already-dirty case.
1157 * Don't let the final "is it dirty" escape to before we
1158 * perhaps modified the buffer.
1160 if (buffer_dirty(bh
)) {
1162 if (buffer_dirty(bh
))
1166 if (!test_set_buffer_dirty(bh
)) {
1167 struct page
*page
= bh
->b_page
;
1168 struct address_space
*mapping
= NULL
;
1170 lock_page_memcg(page
);
1171 if (!TestSetPageDirty(page
)) {
1172 mapping
= page_mapping(page
);
1174 __set_page_dirty(page
, mapping
, 0);
1176 unlock_page_memcg(page
);
1178 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1181 EXPORT_SYMBOL(mark_buffer_dirty
);
1184 * Decrement a buffer_head's reference count. If all buffers against a page
1185 * have zero reference count, are clean and unlocked, and if the page is clean
1186 * and unlocked then try_to_free_buffers() may strip the buffers from the page
1187 * in preparation for freeing it (sometimes, rarely, buffers are removed from
1188 * a page but it ends up not being freed, and buffers may later be reattached).
1190 void __brelse(struct buffer_head
* buf
)
1192 if (atomic_read(&buf
->b_count
)) {
1196 WARN(1, KERN_ERR
"VFS: brelse: Trying to free free buffer\n");
1198 EXPORT_SYMBOL(__brelse
);
1201 * bforget() is like brelse(), except it discards any
1202 * potentially dirty data.
1204 void __bforget(struct buffer_head
*bh
)
1206 clear_buffer_dirty(bh
);
1207 if (bh
->b_assoc_map
) {
1208 struct address_space
*buffer_mapping
= bh
->b_page
->mapping
;
1210 spin_lock(&buffer_mapping
->private_lock
);
1211 list_del_init(&bh
->b_assoc_buffers
);
1212 bh
->b_assoc_map
= NULL
;
1213 spin_unlock(&buffer_mapping
->private_lock
);
1217 EXPORT_SYMBOL(__bforget
);
1219 static struct buffer_head
*__bread_slow(struct buffer_head
*bh
)
1222 if (buffer_uptodate(bh
)) {
1227 bh
->b_end_io
= end_buffer_read_sync
;
1228 submit_bh(REQ_OP_READ
, 0, bh
);
1230 if (buffer_uptodate(bh
))
1238 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block().
1239 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their
1240 * refcount elevated by one when they're in an LRU. A buffer can only appear
1241 * once in a particular CPU's LRU. A single buffer can be present in multiple
1242 * CPU's LRUs at the same time.
1244 * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1245 * sb_find_get_block().
1247 * The LRUs themselves only need locking against invalidate_bh_lrus. We use
1248 * a local interrupt disable for that.
1251 #define BH_LRU_SIZE 16
1254 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1257 static DEFINE_PER_CPU(struct bh_lru
, bh_lrus
) = {{ NULL
}};
1260 #define bh_lru_lock() local_irq_disable()
1261 #define bh_lru_unlock() local_irq_enable()
1263 #define bh_lru_lock() preempt_disable()
1264 #define bh_lru_unlock() preempt_enable()
1267 static inline void check_irqs_on(void)
1269 #ifdef irqs_disabled
1270 BUG_ON(irqs_disabled());
1275 * The LRU management algorithm is dopey-but-simple. Sorry.
1277 static void bh_lru_install(struct buffer_head
*bh
)
1279 struct buffer_head
*evictee
= NULL
;
1283 if (__this_cpu_read(bh_lrus
.bhs
[0]) != bh
) {
1284 struct buffer_head
*bhs
[BH_LRU_SIZE
];
1290 for (in
= 0; in
< BH_LRU_SIZE
; in
++) {
1291 struct buffer_head
*bh2
=
1292 __this_cpu_read(bh_lrus
.bhs
[in
]);
1297 if (out
>= BH_LRU_SIZE
) {
1298 BUG_ON(evictee
!= NULL
);
1305 while (out
< BH_LRU_SIZE
)
1307 memcpy(this_cpu_ptr(&bh_lrus
.bhs
), bhs
, sizeof(bhs
));
1316 * Look up the bh in this cpu's LRU. If it's there, move it to the head.
1318 static struct buffer_head
*
1319 lookup_bh_lru(struct block_device
*bdev
, sector_t block
, unsigned size
)
1321 struct buffer_head
*ret
= NULL
;
1326 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1327 struct buffer_head
*bh
= __this_cpu_read(bh_lrus
.bhs
[i
]);
1329 if (bh
&& bh
->b_blocknr
== block
&& bh
->b_bdev
== bdev
&&
1330 bh
->b_size
== size
) {
1333 __this_cpu_write(bh_lrus
.bhs
[i
],
1334 __this_cpu_read(bh_lrus
.bhs
[i
- 1]));
1337 __this_cpu_write(bh_lrus
.bhs
[0], bh
);
1349 * Perform a pagecache lookup for the matching buffer. If it's there, refresh
1350 * it in the LRU and mark it as accessed. If it is not present then return
1353 struct buffer_head
*
1354 __find_get_block(struct block_device
*bdev
, sector_t block
, unsigned size
)
1356 struct buffer_head
*bh
= lookup_bh_lru(bdev
, block
, size
);
1359 /* __find_get_block_slow will mark the page accessed */
1360 bh
= __find_get_block_slow(bdev
, block
);
1368 EXPORT_SYMBOL(__find_get_block
);
1371 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1372 * which corresponds to the passed block_device, block and size. The
1373 * returned buffer has its reference count incremented.
1375 * __getblk_gfp() will lock up the machine if grow_dev_page's
1376 * try_to_free_buffers() attempt is failing. FIXME, perhaps?
1378 struct buffer_head
*
1379 __getblk_gfp(struct block_device
*bdev
, sector_t block
,
1380 unsigned size
, gfp_t gfp
)
1382 struct buffer_head
*bh
= __find_get_block(bdev
, block
, size
);
1386 bh
= __getblk_slow(bdev
, block
, size
, gfp
);
1389 EXPORT_SYMBOL(__getblk_gfp
);
1392 * Do async read-ahead on a buffer..
1394 void __breadahead(struct block_device
*bdev
, sector_t block
, unsigned size
)
1396 struct buffer_head
*bh
= __getblk(bdev
, block
, size
);
1398 ll_rw_block(REQ_OP_READ
, REQ_RAHEAD
, 1, &bh
);
1402 EXPORT_SYMBOL(__breadahead
);
1405 * __bread_gfp() - reads a specified block and returns the bh
1406 * @bdev: the block_device to read from
1407 * @block: number of block
1408 * @size: size (in bytes) to read
1409 * @gfp: page allocation flag
1411 * Reads a specified block, and returns buffer head that contains it.
1412 * The page cache can be allocated from non-movable area
1413 * not to prevent page migration if you set gfp to zero.
1414 * It returns NULL if the block was unreadable.
1416 struct buffer_head
*
1417 __bread_gfp(struct block_device
*bdev
, sector_t block
,
1418 unsigned size
, gfp_t gfp
)
1420 struct buffer_head
*bh
= __getblk_gfp(bdev
, block
, size
, gfp
);
1422 if (likely(bh
) && !buffer_uptodate(bh
))
1423 bh
= __bread_slow(bh
);
1426 EXPORT_SYMBOL(__bread_gfp
);
1429 * invalidate_bh_lrus() is called rarely - but not only at unmount.
1430 * This doesn't race because it runs in each cpu either in irq
1431 * or with preempt disabled.
1433 static void invalidate_bh_lru(void *arg
)
1435 struct bh_lru
*b
= &get_cpu_var(bh_lrus
);
1438 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1442 put_cpu_var(bh_lrus
);
1445 static bool has_bh_in_lru(int cpu
, void *dummy
)
1447 struct bh_lru
*b
= per_cpu_ptr(&bh_lrus
, cpu
);
1450 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
1458 void invalidate_bh_lrus(void)
1460 on_each_cpu_cond(has_bh_in_lru
, invalidate_bh_lru
, NULL
, 1, GFP_KERNEL
);
1462 EXPORT_SYMBOL_GPL(invalidate_bh_lrus
);
1464 void set_bh_page(struct buffer_head
*bh
,
1465 struct page
*page
, unsigned long offset
)
1468 BUG_ON(offset
>= PAGE_SIZE
);
1469 if (PageHighMem(page
))
1471 * This catches illegal uses and preserves the offset:
1473 bh
->b_data
= (char *)(0 + offset
);
1475 bh
->b_data
= page_address(page
) + offset
;
1477 EXPORT_SYMBOL(set_bh_page
);
1480 * Called when truncating a buffer on a page completely.
1483 /* Bits that are cleared during an invalidate */
1484 #define BUFFER_FLAGS_DISCARD \
1485 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1486 1 << BH_Delay | 1 << BH_Unwritten)
1488 static void discard_buffer(struct buffer_head
* bh
)
1490 unsigned long b_state
, b_state_old
;
1493 clear_buffer_dirty(bh
);
1495 b_state
= bh
->b_state
;
1497 b_state_old
= cmpxchg(&bh
->b_state
, b_state
,
1498 (b_state
& ~BUFFER_FLAGS_DISCARD
));
1499 if (b_state_old
== b_state
)
1501 b_state
= b_state_old
;
1507 * block_invalidatepage - invalidate part or all of a buffer-backed page
1509 * @page: the page which is affected
1510 * @offset: start of the range to invalidate
1511 * @length: length of the range to invalidate
1513 * block_invalidatepage() is called when all or part of the page has become
1514 * invalidated by a truncate operation.
1516 * block_invalidatepage() does not have to release all buffers, but it must
1517 * ensure that no dirty buffer is left outside @offset and that no I/O
1518 * is underway against any of the blocks which are outside the truncation
1519 * point. Because the caller is about to free (and possibly reuse) those
1522 void block_invalidatepage(struct page
*page
, unsigned int offset
,
1523 unsigned int length
)
1525 struct buffer_head
*head
, *bh
, *next
;
1526 unsigned int curr_off
= 0;
1527 unsigned int stop
= length
+ offset
;
1529 BUG_ON(!PageLocked(page
));
1530 if (!page_has_buffers(page
))
1534 * Check for overflow
1536 BUG_ON(stop
> PAGE_SIZE
|| stop
< length
);
1538 head
= page_buffers(page
);
1541 unsigned int next_off
= curr_off
+ bh
->b_size
;
1542 next
= bh
->b_this_page
;
1545 * Are we still fully in range ?
1547 if (next_off
> stop
)
1551 * is this block fully invalidated?
1553 if (offset
<= curr_off
)
1555 curr_off
= next_off
;
1557 } while (bh
!= head
);
1560 * We release buffers only if the entire page is being invalidated.
1561 * The get_block cached value has been unconditionally invalidated,
1562 * so real IO is not possible anymore.
1565 try_to_release_page(page
, 0);
1569 EXPORT_SYMBOL(block_invalidatepage
);
1573 * We attach and possibly dirty the buffers atomically wrt
1574 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers
1575 * is already excluded via the page lock.
1577 void create_empty_buffers(struct page
*page
,
1578 unsigned long blocksize
, unsigned long b_state
)
1580 struct buffer_head
*bh
, *head
, *tail
;
1582 head
= alloc_page_buffers(page
, blocksize
, 1);
1585 bh
->b_state
|= b_state
;
1587 bh
= bh
->b_this_page
;
1589 tail
->b_this_page
= head
;
1591 spin_lock(&page
->mapping
->private_lock
);
1592 if (PageUptodate(page
) || PageDirty(page
)) {
1595 if (PageDirty(page
))
1596 set_buffer_dirty(bh
);
1597 if (PageUptodate(page
))
1598 set_buffer_uptodate(bh
);
1599 bh
= bh
->b_this_page
;
1600 } while (bh
!= head
);
1602 attach_page_buffers(page
, head
);
1603 spin_unlock(&page
->mapping
->private_lock
);
1605 EXPORT_SYMBOL(create_empty_buffers
);
1608 * We are taking a block for data and we don't want any output from any
1609 * buffer-cache aliases starting from return from that function and
1610 * until the moment when something will explicitly mark the buffer
1611 * dirty (hopefully that will not happen until we will free that block ;-)
1612 * We don't even need to mark it not-uptodate - nobody can expect
1613 * anything from a newly allocated buffer anyway. We used to used
1614 * unmap_buffer() for such invalidation, but that was wrong. We definitely
1615 * don't want to mark the alias unmapped, for example - it would confuse
1616 * anyone who might pick it with bread() afterwards...
1618 * Also.. Note that bforget() doesn't lock the buffer. So there can
1619 * be writeout I/O going on against recently-freed buffers. We don't
1620 * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1621 * only if we really need to. That happens here.
1623 void unmap_underlying_metadata(struct block_device
*bdev
, sector_t block
)
1625 struct buffer_head
*old_bh
;
1629 old_bh
= __find_get_block_slow(bdev
, block
);
1631 clear_buffer_dirty(old_bh
);
1632 wait_on_buffer(old_bh
);
1633 clear_buffer_req(old_bh
);
1637 EXPORT_SYMBOL(unmap_underlying_metadata
);
1640 * Size is a power-of-two in the range 512..PAGE_SIZE,
1641 * and the case we care about most is PAGE_SIZE.
1643 * So this *could* possibly be written with those
1644 * constraints in mind (relevant mostly if some
1645 * architecture has a slow bit-scan instruction)
1647 static inline int block_size_bits(unsigned int blocksize
)
1649 return ilog2(blocksize
);
1652 static struct buffer_head
*create_page_buffers(struct page
*page
, struct inode
*inode
, unsigned int b_state
)
1654 BUG_ON(!PageLocked(page
));
1656 if (!page_has_buffers(page
))
1657 create_empty_buffers(page
, 1 << ACCESS_ONCE(inode
->i_blkbits
), b_state
);
1658 return page_buffers(page
);
1662 * NOTE! All mapped/uptodate combinations are valid:
1664 * Mapped Uptodate Meaning
1666 * No No "unknown" - must do get_block()
1667 * No Yes "hole" - zero-filled
1668 * Yes No "allocated" - allocated on disk, not read in
1669 * Yes Yes "valid" - allocated and up-to-date in memory.
1671 * "Dirty" is valid only with the last case (mapped+uptodate).
1675 * While block_write_full_page is writing back the dirty buffers under
1676 * the page lock, whoever dirtied the buffers may decide to clean them
1677 * again at any time. We handle that by only looking at the buffer
1678 * state inside lock_buffer().
1680 * If block_write_full_page() is called for regular writeback
1681 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1682 * locked buffer. This only can happen if someone has written the buffer
1683 * directly, with submit_bh(). At the address_space level PageWriteback
1684 * prevents this contention from occurring.
1686 * If block_write_full_page() is called with wbc->sync_mode ==
1687 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC; this
1688 * causes the writes to be flagged as synchronous writes.
1690 int __block_write_full_page(struct inode
*inode
, struct page
*page
,
1691 get_block_t
*get_block
, struct writeback_control
*wbc
,
1692 bh_end_io_t
*handler
)
1696 sector_t last_block
;
1697 struct buffer_head
*bh
, *head
;
1698 unsigned int blocksize
, bbits
;
1699 int nr_underway
= 0;
1700 int write_flags
= (wbc
->sync_mode
== WB_SYNC_ALL
? WRITE_SYNC
: 0);
1702 head
= create_page_buffers(page
, inode
,
1703 (1 << BH_Dirty
)|(1 << BH_Uptodate
));
1706 * Be very careful. We have no exclusion from __set_page_dirty_buffers
1707 * here, and the (potentially unmapped) buffers may become dirty at
1708 * any time. If a buffer becomes dirty here after we've inspected it
1709 * then we just miss that fact, and the page stays dirty.
1711 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1712 * handle that here by just cleaning them.
1716 blocksize
= bh
->b_size
;
1717 bbits
= block_size_bits(blocksize
);
1719 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1720 last_block
= (i_size_read(inode
) - 1) >> bbits
;
1723 * Get all the dirty buffers mapped to disk addresses and
1724 * handle any aliases from the underlying blockdev's mapping.
1727 if (block
> last_block
) {
1729 * mapped buffers outside i_size will occur, because
1730 * this page can be outside i_size when there is a
1731 * truncate in progress.
1734 * The buffer was zeroed by block_write_full_page()
1736 clear_buffer_dirty(bh
);
1737 set_buffer_uptodate(bh
);
1738 } else if ((!buffer_mapped(bh
) || buffer_delay(bh
)) &&
1740 WARN_ON(bh
->b_size
!= blocksize
);
1741 err
= get_block(inode
, block
, bh
, 1);
1744 clear_buffer_delay(bh
);
1745 if (buffer_new(bh
)) {
1746 /* blockdev mappings never come here */
1747 clear_buffer_new(bh
);
1748 unmap_underlying_metadata(bh
->b_bdev
,
1752 bh
= bh
->b_this_page
;
1754 } while (bh
!= head
);
1757 if (!buffer_mapped(bh
))
1760 * If it's a fully non-blocking write attempt and we cannot
1761 * lock the buffer then redirty the page. Note that this can
1762 * potentially cause a busy-wait loop from writeback threads
1763 * and kswapd activity, but those code paths have their own
1764 * higher-level throttling.
1766 if (wbc
->sync_mode
!= WB_SYNC_NONE
) {
1768 } else if (!trylock_buffer(bh
)) {
1769 redirty_page_for_writepage(wbc
, page
);
1772 if (test_clear_buffer_dirty(bh
)) {
1773 mark_buffer_async_write_endio(bh
, handler
);
1777 } while ((bh
= bh
->b_this_page
) != head
);
1780 * The page and its buffers are protected by PageWriteback(), so we can
1781 * drop the bh refcounts early.
1783 BUG_ON(PageWriteback(page
));
1784 set_page_writeback(page
);
1787 struct buffer_head
*next
= bh
->b_this_page
;
1788 if (buffer_async_write(bh
)) {
1789 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
, 0, wbc
);
1793 } while (bh
!= head
);
1798 if (nr_underway
== 0) {
1800 * The page was marked dirty, but the buffers were
1801 * clean. Someone wrote them back by hand with
1802 * ll_rw_block/submit_bh. A rare case.
1804 end_page_writeback(page
);
1807 * The page and buffer_heads can be released at any time from
1815 * ENOSPC, or some other error. We may already have added some
1816 * blocks to the file, so we need to write these out to avoid
1817 * exposing stale data.
1818 * The page is currently locked and not marked for writeback
1821 /* Recovery: lock and submit the mapped buffers */
1823 if (buffer_mapped(bh
) && buffer_dirty(bh
) &&
1824 !buffer_delay(bh
)) {
1826 mark_buffer_async_write_endio(bh
, handler
);
1829 * The buffer may have been set dirty during
1830 * attachment to a dirty page.
1832 clear_buffer_dirty(bh
);
1834 } while ((bh
= bh
->b_this_page
) != head
);
1836 BUG_ON(PageWriteback(page
));
1837 mapping_set_error(page
->mapping
, err
);
1838 set_page_writeback(page
);
1840 struct buffer_head
*next
= bh
->b_this_page
;
1841 if (buffer_async_write(bh
)) {
1842 clear_buffer_dirty(bh
);
1843 submit_bh_wbc(REQ_OP_WRITE
, write_flags
, bh
, 0, wbc
);
1847 } while (bh
!= head
);
1851 EXPORT_SYMBOL(__block_write_full_page
);
1854 * If a page has any new buffers, zero them out here, and mark them uptodate
1855 * and dirty so they'll be written out (in order to prevent uninitialised
1856 * block data from leaking). And clear the new bit.
1858 void page_zero_new_buffers(struct page
*page
, unsigned from
, unsigned to
)
1860 unsigned int block_start
, block_end
;
1861 struct buffer_head
*head
, *bh
;
1863 BUG_ON(!PageLocked(page
));
1864 if (!page_has_buffers(page
))
1867 bh
= head
= page_buffers(page
);
1870 block_end
= block_start
+ bh
->b_size
;
1872 if (buffer_new(bh
)) {
1873 if (block_end
> from
&& block_start
< to
) {
1874 if (!PageUptodate(page
)) {
1875 unsigned start
, size
;
1877 start
= max(from
, block_start
);
1878 size
= min(to
, block_end
) - start
;
1880 zero_user(page
, start
, size
);
1881 set_buffer_uptodate(bh
);
1884 clear_buffer_new(bh
);
1885 mark_buffer_dirty(bh
);
1889 block_start
= block_end
;
1890 bh
= bh
->b_this_page
;
1891 } while (bh
!= head
);
1893 EXPORT_SYMBOL(page_zero_new_buffers
);
1896 iomap_to_bh(struct inode
*inode
, sector_t block
, struct buffer_head
*bh
,
1897 struct iomap
*iomap
)
1899 loff_t offset
= block
<< inode
->i_blkbits
;
1901 bh
->b_bdev
= iomap
->bdev
;
1904 * Block points to offset in file we need to map, iomap contains
1905 * the offset at which the map starts. If the map ends before the
1906 * current block, then do not map the buffer and let the caller
1909 BUG_ON(offset
>= iomap
->offset
+ iomap
->length
);
1911 switch (iomap
->type
) {
1914 * If the buffer is not up to date or beyond the current EOF,
1915 * we need to mark it as new to ensure sub-block zeroing is
1916 * executed if necessary.
1918 if (!buffer_uptodate(bh
) ||
1919 (offset
>= i_size_read(inode
)))
1922 case IOMAP_DELALLOC
:
1923 if (!buffer_uptodate(bh
) ||
1924 (offset
>= i_size_read(inode
)))
1926 set_buffer_uptodate(bh
);
1927 set_buffer_mapped(bh
);
1928 set_buffer_delay(bh
);
1930 case IOMAP_UNWRITTEN
:
1932 * For unwritten regions, we always need to ensure that
1933 * sub-block writes cause the regions in the block we are not
1934 * writing to are zeroed. Set the buffer as new to ensure this.
1937 set_buffer_unwritten(bh
);
1940 if (offset
>= i_size_read(inode
))
1942 bh
->b_blocknr
= (iomap
->blkno
>> (inode
->i_blkbits
- 9)) +
1943 ((offset
- iomap
->offset
) >> inode
->i_blkbits
);
1944 set_buffer_mapped(bh
);
1949 int __block_write_begin_int(struct page
*page
, loff_t pos
, unsigned len
,
1950 get_block_t
*get_block
, struct iomap
*iomap
)
1952 unsigned from
= pos
& (PAGE_SIZE
- 1);
1953 unsigned to
= from
+ len
;
1954 struct inode
*inode
= page
->mapping
->host
;
1955 unsigned block_start
, block_end
;
1958 unsigned blocksize
, bbits
;
1959 struct buffer_head
*bh
, *head
, *wait
[2], **wait_bh
=wait
;
1961 BUG_ON(!PageLocked(page
));
1962 BUG_ON(from
> PAGE_SIZE
);
1963 BUG_ON(to
> PAGE_SIZE
);
1966 head
= create_page_buffers(page
, inode
, 0);
1967 blocksize
= head
->b_size
;
1968 bbits
= block_size_bits(blocksize
);
1970 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1972 for(bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1973 block
++, block_start
=block_end
, bh
= bh
->b_this_page
) {
1974 block_end
= block_start
+ blocksize
;
1975 if (block_end
<= from
|| block_start
>= to
) {
1976 if (PageUptodate(page
)) {
1977 if (!buffer_uptodate(bh
))
1978 set_buffer_uptodate(bh
);
1983 clear_buffer_new(bh
);
1984 if (!buffer_mapped(bh
)) {
1985 WARN_ON(bh
->b_size
!= blocksize
);
1987 err
= get_block(inode
, block
, bh
, 1);
1991 iomap_to_bh(inode
, block
, bh
, iomap
);
1994 if (buffer_new(bh
)) {
1995 unmap_underlying_metadata(bh
->b_bdev
,
1997 if (PageUptodate(page
)) {
1998 clear_buffer_new(bh
);
1999 set_buffer_uptodate(bh
);
2000 mark_buffer_dirty(bh
);
2003 if (block_end
> to
|| block_start
< from
)
2004 zero_user_segments(page
,
2010 if (PageUptodate(page
)) {
2011 if (!buffer_uptodate(bh
))
2012 set_buffer_uptodate(bh
);
2015 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
2016 !buffer_unwritten(bh
) &&
2017 (block_start
< from
|| block_end
> to
)) {
2018 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2023 * If we issued read requests - let them complete.
2025 while(wait_bh
> wait
) {
2026 wait_on_buffer(*--wait_bh
);
2027 if (!buffer_uptodate(*wait_bh
))
2031 page_zero_new_buffers(page
, from
, to
);
2035 int __block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
2036 get_block_t
*get_block
)
2038 return __block_write_begin_int(page
, pos
, len
, get_block
, NULL
);
2040 EXPORT_SYMBOL(__block_write_begin
);
2042 static int __block_commit_write(struct inode
*inode
, struct page
*page
,
2043 unsigned from
, unsigned to
)
2045 unsigned block_start
, block_end
;
2048 struct buffer_head
*bh
, *head
;
2050 bh
= head
= page_buffers(page
);
2051 blocksize
= bh
->b_size
;
2055 block_end
= block_start
+ blocksize
;
2056 if (block_end
<= from
|| block_start
>= to
) {
2057 if (!buffer_uptodate(bh
))
2060 set_buffer_uptodate(bh
);
2061 mark_buffer_dirty(bh
);
2063 clear_buffer_new(bh
);
2065 block_start
= block_end
;
2066 bh
= bh
->b_this_page
;
2067 } while (bh
!= head
);
2070 * If this is a partial write which happened to make all buffers
2071 * uptodate then we can optimize away a bogus readpage() for
2072 * the next read(). Here we 'discover' whether the page went
2073 * uptodate as a result of this (potentially partial) write.
2076 SetPageUptodate(page
);
2081 * block_write_begin takes care of the basic task of block allocation and
2082 * bringing partial write blocks uptodate first.
2084 * The filesystem needs to handle block truncation upon failure.
2086 int block_write_begin(struct address_space
*mapping
, loff_t pos
, unsigned len
,
2087 unsigned flags
, struct page
**pagep
, get_block_t
*get_block
)
2089 pgoff_t index
= pos
>> PAGE_SHIFT
;
2093 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2097 status
= __block_write_begin(page
, pos
, len
, get_block
);
2098 if (unlikely(status
)) {
2107 EXPORT_SYMBOL(block_write_begin
);
2109 int block_write_end(struct file
*file
, struct address_space
*mapping
,
2110 loff_t pos
, unsigned len
, unsigned copied
,
2111 struct page
*page
, void *fsdata
)
2113 struct inode
*inode
= mapping
->host
;
2116 start
= pos
& (PAGE_SIZE
- 1);
2118 if (unlikely(copied
< len
)) {
2120 * The buffers that were written will now be uptodate, so we
2121 * don't have to worry about a readpage reading them and
2122 * overwriting a partial write. However if we have encountered
2123 * a short write and only partially written into a buffer, it
2124 * will not be marked uptodate, so a readpage might come in and
2125 * destroy our partial write.
2127 * Do the simplest thing, and just treat any short write to a
2128 * non uptodate page as a zero-length write, and force the
2129 * caller to redo the whole thing.
2131 if (!PageUptodate(page
))
2134 page_zero_new_buffers(page
, start
+copied
, start
+len
);
2136 flush_dcache_page(page
);
2138 /* This could be a short (even 0-length) commit */
2139 __block_commit_write(inode
, page
, start
, start
+copied
);
2143 EXPORT_SYMBOL(block_write_end
);
2145 int generic_write_end(struct file
*file
, struct address_space
*mapping
,
2146 loff_t pos
, unsigned len
, unsigned copied
,
2147 struct page
*page
, void *fsdata
)
2149 struct inode
*inode
= mapping
->host
;
2150 loff_t old_size
= inode
->i_size
;
2151 int i_size_changed
= 0;
2153 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
2156 * No need to use i_size_read() here, the i_size
2157 * cannot change under us because we hold i_mutex.
2159 * But it's important to update i_size while still holding page lock:
2160 * page writeout could otherwise come in and zero beyond i_size.
2162 if (pos
+copied
> inode
->i_size
) {
2163 i_size_write(inode
, pos
+copied
);
2171 pagecache_isize_extended(inode
, old_size
, pos
);
2173 * Don't mark the inode dirty under page lock. First, it unnecessarily
2174 * makes the holding time of page lock longer. Second, it forces lock
2175 * ordering of page lock and transaction start for journaling
2179 mark_inode_dirty(inode
);
2183 EXPORT_SYMBOL(generic_write_end
);
2186 * block_is_partially_uptodate checks whether buffers within a page are
2189 * Returns true if all buffers which correspond to a file portion
2190 * we want to read are uptodate.
2192 int block_is_partially_uptodate(struct page
*page
, unsigned long from
,
2193 unsigned long count
)
2195 unsigned block_start
, block_end
, blocksize
;
2197 struct buffer_head
*bh
, *head
;
2200 if (!page_has_buffers(page
))
2203 head
= page_buffers(page
);
2204 blocksize
= head
->b_size
;
2205 to
= min_t(unsigned, PAGE_SIZE
- from
, count
);
2207 if (from
< blocksize
&& to
> PAGE_SIZE
- blocksize
)
2213 block_end
= block_start
+ blocksize
;
2214 if (block_end
> from
&& block_start
< to
) {
2215 if (!buffer_uptodate(bh
)) {
2219 if (block_end
>= to
)
2222 block_start
= block_end
;
2223 bh
= bh
->b_this_page
;
2224 } while (bh
!= head
);
2228 EXPORT_SYMBOL(block_is_partially_uptodate
);
2231 * Generic "read page" function for block devices that have the normal
2232 * get_block functionality. This is most of the block device filesystems.
2233 * Reads the page asynchronously --- the unlock_buffer() and
2234 * set/clear_buffer_uptodate() functions propagate buffer state into the
2235 * page struct once IO has completed.
2237 int block_read_full_page(struct page
*page
, get_block_t
*get_block
)
2239 struct inode
*inode
= page
->mapping
->host
;
2240 sector_t iblock
, lblock
;
2241 struct buffer_head
*bh
, *head
, *arr
[MAX_BUF_PER_PAGE
];
2242 unsigned int blocksize
, bbits
;
2244 int fully_mapped
= 1;
2246 head
= create_page_buffers(page
, inode
, 0);
2247 blocksize
= head
->b_size
;
2248 bbits
= block_size_bits(blocksize
);
2250 iblock
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
2251 lblock
= (i_size_read(inode
)+blocksize
-1) >> bbits
;
2257 if (buffer_uptodate(bh
))
2260 if (!buffer_mapped(bh
)) {
2264 if (iblock
< lblock
) {
2265 WARN_ON(bh
->b_size
!= blocksize
);
2266 err
= get_block(inode
, iblock
, bh
, 0);
2270 if (!buffer_mapped(bh
)) {
2271 zero_user(page
, i
* blocksize
, blocksize
);
2273 set_buffer_uptodate(bh
);
2277 * get_block() might have updated the buffer
2280 if (buffer_uptodate(bh
))
2284 } while (i
++, iblock
++, (bh
= bh
->b_this_page
) != head
);
2287 SetPageMappedToDisk(page
);
2291 * All buffers are uptodate - we can set the page uptodate
2292 * as well. But not if get_block() returned an error.
2294 if (!PageError(page
))
2295 SetPageUptodate(page
);
2300 /* Stage two: lock the buffers */
2301 for (i
= 0; i
< nr
; i
++) {
2304 mark_buffer_async_read(bh
);
2308 * Stage 3: start the IO. Check for uptodateness
2309 * inside the buffer lock in case another process reading
2310 * the underlying blockdev brought it uptodate (the sct fix).
2312 for (i
= 0; i
< nr
; i
++) {
2314 if (buffer_uptodate(bh
))
2315 end_buffer_async_read(bh
, 1);
2317 submit_bh(REQ_OP_READ
, 0, bh
);
2321 EXPORT_SYMBOL(block_read_full_page
);
2323 /* utility function for filesystems that need to do work on expanding
2324 * truncates. Uses filesystem pagecache writes to allow the filesystem to
2325 * deal with the hole.
2327 int generic_cont_expand_simple(struct inode
*inode
, loff_t size
)
2329 struct address_space
*mapping
= inode
->i_mapping
;
2334 err
= inode_newsize_ok(inode
, size
);
2338 err
= pagecache_write_begin(NULL
, mapping
, size
, 0,
2339 AOP_FLAG_UNINTERRUPTIBLE
|AOP_FLAG_CONT_EXPAND
,
2344 err
= pagecache_write_end(NULL
, mapping
, size
, 0, 0, page
, fsdata
);
2350 EXPORT_SYMBOL(generic_cont_expand_simple
);
2352 static int cont_expand_zero(struct file
*file
, struct address_space
*mapping
,
2353 loff_t pos
, loff_t
*bytes
)
2355 struct inode
*inode
= mapping
->host
;
2356 unsigned int blocksize
= i_blocksize(inode
);
2359 pgoff_t index
, curidx
;
2361 unsigned zerofrom
, offset
, len
;
2364 index
= pos
>> PAGE_SHIFT
;
2365 offset
= pos
& ~PAGE_MASK
;
2367 while (index
> (curidx
= (curpos
= *bytes
)>>PAGE_SHIFT
)) {
2368 zerofrom
= curpos
& ~PAGE_MASK
;
2369 if (zerofrom
& (blocksize
-1)) {
2370 *bytes
|= (blocksize
-1);
2373 len
= PAGE_SIZE
- zerofrom
;
2375 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2376 AOP_FLAG_UNINTERRUPTIBLE
,
2380 zero_user(page
, zerofrom
, len
);
2381 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2388 balance_dirty_pages_ratelimited(mapping
);
2390 if (unlikely(fatal_signal_pending(current
))) {
2396 /* page covers the boundary, find the boundary offset */
2397 if (index
== curidx
) {
2398 zerofrom
= curpos
& ~PAGE_MASK
;
2399 /* if we will expand the thing last block will be filled */
2400 if (offset
<= zerofrom
) {
2403 if (zerofrom
& (blocksize
-1)) {
2404 *bytes
|= (blocksize
-1);
2407 len
= offset
- zerofrom
;
2409 err
= pagecache_write_begin(file
, mapping
, curpos
, len
,
2410 AOP_FLAG_UNINTERRUPTIBLE
,
2414 zero_user(page
, zerofrom
, len
);
2415 err
= pagecache_write_end(file
, mapping
, curpos
, len
, len
,
2427 * For moronic filesystems that do not allow holes in file.
2428 * We may have to extend the file.
2430 int cont_write_begin(struct file
*file
, struct address_space
*mapping
,
2431 loff_t pos
, unsigned len
, unsigned flags
,
2432 struct page
**pagep
, void **fsdata
,
2433 get_block_t
*get_block
, loff_t
*bytes
)
2435 struct inode
*inode
= mapping
->host
;
2436 unsigned int blocksize
= i_blocksize(inode
);
2437 unsigned int zerofrom
;
2440 err
= cont_expand_zero(file
, mapping
, pos
, bytes
);
2444 zerofrom
= *bytes
& ~PAGE_MASK
;
2445 if (pos
+len
> *bytes
&& zerofrom
& (blocksize
-1)) {
2446 *bytes
|= (blocksize
-1);
2450 return block_write_begin(mapping
, pos
, len
, flags
, pagep
, get_block
);
2452 EXPORT_SYMBOL(cont_write_begin
);
2454 int block_commit_write(struct page
*page
, unsigned from
, unsigned to
)
2456 struct inode
*inode
= page
->mapping
->host
;
2457 __block_commit_write(inode
,page
,from
,to
);
2460 EXPORT_SYMBOL(block_commit_write
);
2463 * block_page_mkwrite() is not allowed to change the file size as it gets
2464 * called from a page fault handler when a page is first dirtied. Hence we must
2465 * be careful to check for EOF conditions here. We set the page up correctly
2466 * for a written page which means we get ENOSPC checking when writing into
2467 * holes and correct delalloc and unwritten extent mapping on filesystems that
2468 * support these features.
2470 * We are not allowed to take the i_mutex here so we have to play games to
2471 * protect against truncate races as the page could now be beyond EOF. Because
2472 * truncate writes the inode size before removing pages, once we have the
2473 * page lock we can determine safely if the page is beyond EOF. If it is not
2474 * beyond EOF, then the page is guaranteed safe against truncation until we
2477 * Direct callers of this function should protect against filesystem freezing
2478 * using sb_start_pagefault() - sb_end_pagefault() functions.
2480 int block_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
,
2481 get_block_t get_block
)
2483 struct page
*page
= vmf
->page
;
2484 struct inode
*inode
= file_inode(vma
->vm_file
);
2490 size
= i_size_read(inode
);
2491 if ((page
->mapping
!= inode
->i_mapping
) ||
2492 (page_offset(page
) > size
)) {
2493 /* We overload EFAULT to mean page got truncated */
2498 /* page is wholly or partially inside EOF */
2499 if (((page
->index
+ 1) << PAGE_SHIFT
) > size
)
2500 end
= size
& ~PAGE_MASK
;
2504 ret
= __block_write_begin(page
, 0, end
, get_block
);
2506 ret
= block_commit_write(page
, 0, end
);
2508 if (unlikely(ret
< 0))
2510 set_page_dirty(page
);
2511 wait_for_stable_page(page
);
2517 EXPORT_SYMBOL(block_page_mkwrite
);
2520 * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2521 * immediately, while under the page lock. So it needs a special end_io
2522 * handler which does not touch the bh after unlocking it.
2524 static void end_buffer_read_nobh(struct buffer_head
*bh
, int uptodate
)
2526 __end_buffer_read_notouch(bh
, uptodate
);
2530 * Attach the singly-linked list of buffers created by nobh_write_begin, to
2531 * the page (converting it to circular linked list and taking care of page
2534 static void attach_nobh_buffers(struct page
*page
, struct buffer_head
*head
)
2536 struct buffer_head
*bh
;
2538 BUG_ON(!PageLocked(page
));
2540 spin_lock(&page
->mapping
->private_lock
);
2543 if (PageDirty(page
))
2544 set_buffer_dirty(bh
);
2545 if (!bh
->b_this_page
)
2546 bh
->b_this_page
= head
;
2547 bh
= bh
->b_this_page
;
2548 } while (bh
!= head
);
2549 attach_page_buffers(page
, head
);
2550 spin_unlock(&page
->mapping
->private_lock
);
2554 * On entry, the page is fully not uptodate.
2555 * On exit the page is fully uptodate in the areas outside (from,to)
2556 * The filesystem needs to handle block truncation upon failure.
2558 int nobh_write_begin(struct address_space
*mapping
,
2559 loff_t pos
, unsigned len
, unsigned flags
,
2560 struct page
**pagep
, void **fsdata
,
2561 get_block_t
*get_block
)
2563 struct inode
*inode
= mapping
->host
;
2564 const unsigned blkbits
= inode
->i_blkbits
;
2565 const unsigned blocksize
= 1 << blkbits
;
2566 struct buffer_head
*head
, *bh
;
2570 unsigned block_in_page
;
2571 unsigned block_start
, block_end
;
2572 sector_t block_in_file
;
2575 int is_mapped_to_disk
= 1;
2577 index
= pos
>> PAGE_SHIFT
;
2578 from
= pos
& (PAGE_SIZE
- 1);
2581 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2587 if (page_has_buffers(page
)) {
2588 ret
= __block_write_begin(page
, pos
, len
, get_block
);
2594 if (PageMappedToDisk(page
))
2598 * Allocate buffers so that we can keep track of state, and potentially
2599 * attach them to the page if an error occurs. In the common case of
2600 * no error, they will just be freed again without ever being attached
2601 * to the page (which is all OK, because we're under the page lock).
2603 * Be careful: the buffer linked list is a NULL terminated one, rather
2604 * than the circular one we're used to.
2606 head
= alloc_page_buffers(page
, blocksize
, 0);
2612 block_in_file
= (sector_t
)page
->index
<< (PAGE_SHIFT
- blkbits
);
2615 * We loop across all blocks in the page, whether or not they are
2616 * part of the affected region. This is so we can discover if the
2617 * page is fully mapped-to-disk.
2619 for (block_start
= 0, block_in_page
= 0, bh
= head
;
2620 block_start
< PAGE_SIZE
;
2621 block_in_page
++, block_start
+= blocksize
, bh
= bh
->b_this_page
) {
2624 block_end
= block_start
+ blocksize
;
2627 if (block_start
>= to
)
2629 ret
= get_block(inode
, block_in_file
+ block_in_page
,
2633 if (!buffer_mapped(bh
))
2634 is_mapped_to_disk
= 0;
2636 unmap_underlying_metadata(bh
->b_bdev
, bh
->b_blocknr
);
2637 if (PageUptodate(page
)) {
2638 set_buffer_uptodate(bh
);
2641 if (buffer_new(bh
) || !buffer_mapped(bh
)) {
2642 zero_user_segments(page
, block_start
, from
,
2646 if (buffer_uptodate(bh
))
2647 continue; /* reiserfs does this */
2648 if (block_start
< from
|| block_end
> to
) {
2650 bh
->b_end_io
= end_buffer_read_nobh
;
2651 submit_bh(REQ_OP_READ
, 0, bh
);
2658 * The page is locked, so these buffers are protected from
2659 * any VM or truncate activity. Hence we don't need to care
2660 * for the buffer_head refcounts.
2662 for (bh
= head
; bh
; bh
= bh
->b_this_page
) {
2664 if (!buffer_uptodate(bh
))
2671 if (is_mapped_to_disk
)
2672 SetPageMappedToDisk(page
);
2674 *fsdata
= head
; /* to be released by nobh_write_end */
2681 * Error recovery is a bit difficult. We need to zero out blocks that
2682 * were newly allocated, and dirty them to ensure they get written out.
2683 * Buffers need to be attached to the page at this point, otherwise
2684 * the handling of potential IO errors during writeout would be hard
2685 * (could try doing synchronous writeout, but what if that fails too?)
2687 attach_nobh_buffers(page
, head
);
2688 page_zero_new_buffers(page
, from
, to
);
2697 EXPORT_SYMBOL(nobh_write_begin
);
2699 int nobh_write_end(struct file
*file
, struct address_space
*mapping
,
2700 loff_t pos
, unsigned len
, unsigned copied
,
2701 struct page
*page
, void *fsdata
)
2703 struct inode
*inode
= page
->mapping
->host
;
2704 struct buffer_head
*head
= fsdata
;
2705 struct buffer_head
*bh
;
2706 BUG_ON(fsdata
!= NULL
&& page_has_buffers(page
));
2708 if (unlikely(copied
< len
) && head
)
2709 attach_nobh_buffers(page
, head
);
2710 if (page_has_buffers(page
))
2711 return generic_write_end(file
, mapping
, pos
, len
,
2712 copied
, page
, fsdata
);
2714 SetPageUptodate(page
);
2715 set_page_dirty(page
);
2716 if (pos
+copied
> inode
->i_size
) {
2717 i_size_write(inode
, pos
+copied
);
2718 mark_inode_dirty(inode
);
2726 head
= head
->b_this_page
;
2727 free_buffer_head(bh
);
2732 EXPORT_SYMBOL(nobh_write_end
);
2735 * nobh_writepage() - based on block_full_write_page() except
2736 * that it tries to operate without attaching bufferheads to
2739 int nobh_writepage(struct page
*page
, get_block_t
*get_block
,
2740 struct writeback_control
*wbc
)
2742 struct inode
* const inode
= page
->mapping
->host
;
2743 loff_t i_size
= i_size_read(inode
);
2744 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2748 /* Is the page fully inside i_size? */
2749 if (page
->index
< end_index
)
2752 /* Is the page fully outside i_size? (truncate in progress) */
2753 offset
= i_size
& (PAGE_SIZE
-1);
2754 if (page
->index
>= end_index
+1 || !offset
) {
2756 * The page may have dirty, unmapped buffers. For example,
2757 * they may have been added in ext3_writepage(). Make them
2758 * freeable here, so the page does not leak.
2761 /* Not really sure about this - do we need this ? */
2762 if (page
->mapping
->a_ops
->invalidatepage
)
2763 page
->mapping
->a_ops
->invalidatepage(page
, offset
);
2766 return 0; /* don't care */
2770 * The page straddles i_size. It must be zeroed out on each and every
2771 * writepage invocation because it may be mmapped. "A file is mapped
2772 * in multiples of the page size. For a file that is not a multiple of
2773 * the page size, the remaining memory is zeroed when mapped, and
2774 * writes to that region are not written out to the file."
2776 zero_user_segment(page
, offset
, PAGE_SIZE
);
2778 ret
= mpage_writepage(page
, get_block
, wbc
);
2780 ret
= __block_write_full_page(inode
, page
, get_block
, wbc
,
2781 end_buffer_async_write
);
2784 EXPORT_SYMBOL(nobh_writepage
);
2786 int nobh_truncate_page(struct address_space
*mapping
,
2787 loff_t from
, get_block_t
*get_block
)
2789 pgoff_t index
= from
>> PAGE_SHIFT
;
2790 unsigned offset
= from
& (PAGE_SIZE
-1);
2793 unsigned length
, pos
;
2794 struct inode
*inode
= mapping
->host
;
2796 struct buffer_head map_bh
;
2799 blocksize
= i_blocksize(inode
);
2800 length
= offset
& (blocksize
- 1);
2802 /* Block boundary? Nothing to do */
2806 length
= blocksize
- length
;
2807 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2809 page
= grab_cache_page(mapping
, index
);
2814 if (page_has_buffers(page
)) {
2818 return block_truncate_page(mapping
, from
, get_block
);
2821 /* Find the buffer that contains "offset" */
2823 while (offset
>= pos
) {
2828 map_bh
.b_size
= blocksize
;
2830 err
= get_block(inode
, iblock
, &map_bh
, 0);
2833 /* unmapped? It's a hole - nothing to do */
2834 if (!buffer_mapped(&map_bh
))
2837 /* Ok, it's mapped. Make sure it's up-to-date */
2838 if (!PageUptodate(page
)) {
2839 err
= mapping
->a_ops
->readpage(NULL
, page
);
2845 if (!PageUptodate(page
)) {
2849 if (page_has_buffers(page
))
2852 zero_user(page
, offset
, length
);
2853 set_page_dirty(page
);
2862 EXPORT_SYMBOL(nobh_truncate_page
);
2864 int block_truncate_page(struct address_space
*mapping
,
2865 loff_t from
, get_block_t
*get_block
)
2867 pgoff_t index
= from
>> PAGE_SHIFT
;
2868 unsigned offset
= from
& (PAGE_SIZE
-1);
2871 unsigned length
, pos
;
2872 struct inode
*inode
= mapping
->host
;
2874 struct buffer_head
*bh
;
2877 blocksize
= i_blocksize(inode
);
2878 length
= offset
& (blocksize
- 1);
2880 /* Block boundary? Nothing to do */
2884 length
= blocksize
- length
;
2885 iblock
= (sector_t
)index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
2887 page
= grab_cache_page(mapping
, index
);
2892 if (!page_has_buffers(page
))
2893 create_empty_buffers(page
, blocksize
, 0);
2895 /* Find the buffer that contains "offset" */
2896 bh
= page_buffers(page
);
2898 while (offset
>= pos
) {
2899 bh
= bh
->b_this_page
;
2905 if (!buffer_mapped(bh
)) {
2906 WARN_ON(bh
->b_size
!= blocksize
);
2907 err
= get_block(inode
, iblock
, bh
, 0);
2910 /* unmapped? It's a hole - nothing to do */
2911 if (!buffer_mapped(bh
))
2915 /* Ok, it's mapped. Make sure it's up-to-date */
2916 if (PageUptodate(page
))
2917 set_buffer_uptodate(bh
);
2919 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) && !buffer_unwritten(bh
)) {
2921 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
2923 /* Uhhuh. Read error. Complain and punt. */
2924 if (!buffer_uptodate(bh
))
2928 zero_user(page
, offset
, length
);
2929 mark_buffer_dirty(bh
);
2938 EXPORT_SYMBOL(block_truncate_page
);
2941 * The generic ->writepage function for buffer-backed address_spaces
2943 int block_write_full_page(struct page
*page
, get_block_t
*get_block
,
2944 struct writeback_control
*wbc
)
2946 struct inode
* const inode
= page
->mapping
->host
;
2947 loff_t i_size
= i_size_read(inode
);
2948 const pgoff_t end_index
= i_size
>> PAGE_SHIFT
;
2951 /* Is the page fully inside i_size? */
2952 if (page
->index
< end_index
)
2953 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2954 end_buffer_async_write
);
2956 /* Is the page fully outside i_size? (truncate in progress) */
2957 offset
= i_size
& (PAGE_SIZE
-1);
2958 if (page
->index
>= end_index
+1 || !offset
) {
2960 * The page may have dirty, unmapped buffers. For example,
2961 * they may have been added in ext3_writepage(). Make them
2962 * freeable here, so the page does not leak.
2964 do_invalidatepage(page
, 0, PAGE_SIZE
);
2966 return 0; /* don't care */
2970 * The page straddles i_size. It must be zeroed out on each and every
2971 * writepage invocation because it may be mmapped. "A file is mapped
2972 * in multiples of the page size. For a file that is not a multiple of
2973 * the page size, the remaining memory is zeroed when mapped, and
2974 * writes to that region are not written out to the file."
2976 zero_user_segment(page
, offset
, PAGE_SIZE
);
2977 return __block_write_full_page(inode
, page
, get_block
, wbc
,
2978 end_buffer_async_write
);
2980 EXPORT_SYMBOL(block_write_full_page
);
2982 sector_t
generic_block_bmap(struct address_space
*mapping
, sector_t block
,
2983 get_block_t
*get_block
)
2985 struct buffer_head tmp
;
2986 struct inode
*inode
= mapping
->host
;
2989 tmp
.b_size
= i_blocksize(inode
);
2990 get_block(inode
, block
, &tmp
, 0);
2991 return tmp
.b_blocknr
;
2993 EXPORT_SYMBOL(generic_block_bmap
);
2995 static void end_bio_bh_io_sync(struct bio
*bio
)
2997 struct buffer_head
*bh
= bio
->bi_private
;
2999 if (unlikely(bio_flagged(bio
, BIO_QUIET
)))
3000 set_bit(BH_Quiet
, &bh
->b_state
);
3002 bh
->b_end_io(bh
, !bio
->bi_error
);
3007 * This allows us to do IO even on the odd last sectors
3008 * of a device, even if the block size is some multiple
3009 * of the physical sector size.
3011 * We'll just truncate the bio to the size of the device,
3012 * and clear the end of the buffer head manually.
3014 * Truly out-of-range accesses will turn into actual IO
3015 * errors, this only handles the "we need to be able to
3016 * do IO at the final sector" case.
3018 void guard_bio_eod(int op
, struct bio
*bio
)
3021 struct bio_vec
*bvec
= &bio
->bi_io_vec
[bio
->bi_vcnt
- 1];
3022 unsigned truncated_bytes
;
3024 maxsector
= i_size_read(bio
->bi_bdev
->bd_inode
) >> 9;
3029 * If the *whole* IO is past the end of the device,
3030 * let it through, and the IO layer will turn it into
3033 if (unlikely(bio
->bi_iter
.bi_sector
>= maxsector
))
3036 maxsector
-= bio
->bi_iter
.bi_sector
;
3037 if (likely((bio
->bi_iter
.bi_size
>> 9) <= maxsector
))
3040 /* Uhhuh. We've got a bio that straddles the device size! */
3041 truncated_bytes
= bio
->bi_iter
.bi_size
- (maxsector
<< 9);
3043 /* Truncate the bio.. */
3044 bio
->bi_iter
.bi_size
-= truncated_bytes
;
3045 bvec
->bv_len
-= truncated_bytes
;
3047 /* ..and clear the end of the buffer for reads */
3048 if (op
== REQ_OP_READ
) {
3049 zero_user(bvec
->bv_page
, bvec
->bv_offset
+ bvec
->bv_len
,
3054 static int submit_bh_wbc(int op
, int op_flags
, struct buffer_head
*bh
,
3055 unsigned long bio_flags
, struct writeback_control
*wbc
)
3059 BUG_ON(!buffer_locked(bh
));
3060 BUG_ON(!buffer_mapped(bh
));
3061 BUG_ON(!bh
->b_end_io
);
3062 BUG_ON(buffer_delay(bh
));
3063 BUG_ON(buffer_unwritten(bh
));
3066 * Only clear out a write error when rewriting
3068 if (test_set_buffer_req(bh
) && (op
== REQ_OP_WRITE
))
3069 clear_buffer_write_io_error(bh
);
3072 * from here on down, it's all bio -- do the initial mapping,
3073 * submit_bio -> generic_make_request may further map this bio around
3075 bio
= bio_alloc(GFP_NOIO
, 1);
3078 wbc_init_bio(wbc
, bio
);
3079 wbc_account_io(wbc
, bh
->b_page
, bh
->b_size
);
3082 bio
->bi_iter
.bi_sector
= bh
->b_blocknr
* (bh
->b_size
>> 9);
3083 bio
->bi_bdev
= bh
->b_bdev
;
3085 bio_add_page(bio
, bh
->b_page
, bh
->b_size
, bh_offset(bh
));
3086 BUG_ON(bio
->bi_iter
.bi_size
!= bh
->b_size
);
3088 bio
->bi_end_io
= end_bio_bh_io_sync
;
3089 bio
->bi_private
= bh
;
3090 bio
->bi_flags
|= bio_flags
;
3092 /* Take care of bh's that straddle the end of the device */
3093 guard_bio_eod(op
, bio
);
3095 if (buffer_meta(bh
))
3096 op_flags
|= REQ_META
;
3097 if (buffer_prio(bh
))
3098 op_flags
|= REQ_PRIO
;
3099 bio_set_op_attrs(bio
, op
, op_flags
);
3105 int _submit_bh(int op
, int op_flags
, struct buffer_head
*bh
,
3106 unsigned long bio_flags
)
3108 return submit_bh_wbc(op
, op_flags
, bh
, bio_flags
, NULL
);
3110 EXPORT_SYMBOL_GPL(_submit_bh
);
3112 int submit_bh(int op
, int op_flags
, struct buffer_head
*bh
)
3114 return submit_bh_wbc(op
, op_flags
, bh
, 0, NULL
);
3116 EXPORT_SYMBOL(submit_bh
);
3119 * ll_rw_block: low-level access to block devices (DEPRECATED)
3120 * @op: whether to %READ or %WRITE
3121 * @op_flags: rq_flag_bits
3122 * @nr: number of &struct buffer_heads in the array
3123 * @bhs: array of pointers to &struct buffer_head
3125 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3126 * requests an I/O operation on them, either a %REQ_OP_READ or a %REQ_OP_WRITE.
3127 * @op_flags contains flags modifying the detailed I/O behavior, most notably
3130 * This function drops any buffer that it cannot get a lock on (with the
3131 * BH_Lock state bit), any buffer that appears to be clean when doing a write
3132 * request, and any buffer that appears to be up-to-date when doing read
3133 * request. Further it marks as clean buffers that are processed for
3134 * writing (the buffer cache won't assume that they are actually clean
3135 * until the buffer gets unlocked).
3137 * ll_rw_block sets b_end_io to simple completion handler that marks
3138 * the buffer up-to-date (if appropriate), unlocks the buffer and wakes
3141 * All of the buffers must be for the same device, and must also be a
3142 * multiple of the current approved size for the device.
3144 void ll_rw_block(int op
, int op_flags
, int nr
, struct buffer_head
*bhs
[])
3148 for (i
= 0; i
< nr
; i
++) {
3149 struct buffer_head
*bh
= bhs
[i
];
3151 if (!trylock_buffer(bh
))
3154 if (test_clear_buffer_dirty(bh
)) {
3155 bh
->b_end_io
= end_buffer_write_sync
;
3157 submit_bh(op
, op_flags
, bh
);
3161 if (!buffer_uptodate(bh
)) {
3162 bh
->b_end_io
= end_buffer_read_sync
;
3164 submit_bh(op
, op_flags
, bh
);
3171 EXPORT_SYMBOL(ll_rw_block
);
3173 void write_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3176 if (!test_clear_buffer_dirty(bh
)) {
3180 bh
->b_end_io
= end_buffer_write_sync
;
3182 submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3184 EXPORT_SYMBOL(write_dirty_buffer
);
3187 * For a data-integrity writeout, we need to wait upon any in-progress I/O
3188 * and then start new I/O and then wait upon it. The caller must have a ref on
3191 int __sync_dirty_buffer(struct buffer_head
*bh
, int op_flags
)
3195 WARN_ON(atomic_read(&bh
->b_count
) < 1);
3197 if (test_clear_buffer_dirty(bh
)) {
3199 bh
->b_end_io
= end_buffer_write_sync
;
3200 ret
= submit_bh(REQ_OP_WRITE
, op_flags
, bh
);
3202 if (!ret
&& !buffer_uptodate(bh
))
3209 EXPORT_SYMBOL(__sync_dirty_buffer
);
3211 int sync_dirty_buffer(struct buffer_head
*bh
)
3213 return __sync_dirty_buffer(bh
, WRITE_SYNC
);
3215 EXPORT_SYMBOL(sync_dirty_buffer
);
3218 * try_to_free_buffers() checks if all the buffers on this particular page
3219 * are unused, and releases them if so.
3221 * Exclusion against try_to_free_buffers may be obtained by either
3222 * locking the page or by holding its mapping's private_lock.
3224 * If the page is dirty but all the buffers are clean then we need to
3225 * be sure to mark the page clean as well. This is because the page
3226 * may be against a block device, and a later reattachment of buffers
3227 * to a dirty page will set *all* buffers dirty. Which would corrupt
3228 * filesystem data on the same device.
3230 * The same applies to regular filesystem pages: if all the buffers are
3231 * clean then we set the page clean and proceed. To do that, we require
3232 * total exclusion from __set_page_dirty_buffers(). That is obtained with
3235 * try_to_free_buffers() is non-blocking.
3237 static inline int buffer_busy(struct buffer_head
*bh
)
3239 return atomic_read(&bh
->b_count
) |
3240 (bh
->b_state
& ((1 << BH_Dirty
) | (1 << BH_Lock
)));
3244 drop_buffers(struct page
*page
, struct buffer_head
**buffers_to_free
)
3246 struct buffer_head
*head
= page_buffers(page
);
3247 struct buffer_head
*bh
;
3251 if (buffer_write_io_error(bh
) && page
->mapping
)
3252 mapping_set_error(page
->mapping
, -EIO
);
3253 if (buffer_busy(bh
))
3255 bh
= bh
->b_this_page
;
3256 } while (bh
!= head
);
3259 struct buffer_head
*next
= bh
->b_this_page
;
3261 if (bh
->b_assoc_map
)
3262 __remove_assoc_queue(bh
);
3264 } while (bh
!= head
);
3265 *buffers_to_free
= head
;
3266 __clear_page_buffers(page
);
3272 int try_to_free_buffers(struct page
*page
)
3274 struct address_space
* const mapping
= page
->mapping
;
3275 struct buffer_head
*buffers_to_free
= NULL
;
3278 BUG_ON(!PageLocked(page
));
3279 if (PageWriteback(page
))
3282 if (mapping
== NULL
) { /* can this still happen? */
3283 ret
= drop_buffers(page
, &buffers_to_free
);
3287 spin_lock(&mapping
->private_lock
);
3288 ret
= drop_buffers(page
, &buffers_to_free
);
3291 * If the filesystem writes its buffers by hand (eg ext3)
3292 * then we can have clean buffers against a dirty page. We
3293 * clean the page here; otherwise the VM will never notice
3294 * that the filesystem did any IO at all.
3296 * Also, during truncate, discard_buffer will have marked all
3297 * the page's buffers clean. We discover that here and clean
3300 * private_lock must be held over this entire operation in order
3301 * to synchronise against __set_page_dirty_buffers and prevent the
3302 * dirty bit from being lost.
3305 cancel_dirty_page(page
);
3306 spin_unlock(&mapping
->private_lock
);
3308 if (buffers_to_free
) {
3309 struct buffer_head
*bh
= buffers_to_free
;
3312 struct buffer_head
*next
= bh
->b_this_page
;
3313 free_buffer_head(bh
);
3315 } while (bh
!= buffers_to_free
);
3319 EXPORT_SYMBOL(try_to_free_buffers
);
3322 * There are no bdflush tunables left. But distributions are
3323 * still running obsolete flush daemons, so we terminate them here.
3325 * Use of bdflush() is deprecated and will be removed in a future kernel.
3326 * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3328 SYSCALL_DEFINE2(bdflush
, int, func
, long, data
)
3330 static int msg_count
;
3332 if (!capable(CAP_SYS_ADMIN
))
3335 if (msg_count
< 5) {
3338 "warning: process `%s' used the obsolete bdflush"
3339 " system call\n", current
->comm
);
3340 printk(KERN_INFO
"Fix your initscripts?\n");
3349 * Buffer-head allocation
3351 static struct kmem_cache
*bh_cachep __read_mostly
;
3354 * Once the number of bh's in the machine exceeds this level, we start
3355 * stripping them in writeback.
3357 static unsigned long max_buffer_heads
;
3359 int buffer_heads_over_limit
;
3361 struct bh_accounting
{
3362 int nr
; /* Number of live bh's */
3363 int ratelimit
; /* Limit cacheline bouncing */
3366 static DEFINE_PER_CPU(struct bh_accounting
, bh_accounting
) = {0, 0};
3368 static void recalc_bh_state(void)
3373 if (__this_cpu_inc_return(bh_accounting
.ratelimit
) - 1 < 4096)
3375 __this_cpu_write(bh_accounting
.ratelimit
, 0);
3376 for_each_online_cpu(i
)
3377 tot
+= per_cpu(bh_accounting
, i
).nr
;
3378 buffer_heads_over_limit
= (tot
> max_buffer_heads
);
3381 struct buffer_head
*alloc_buffer_head(gfp_t gfp_flags
)
3383 struct buffer_head
*ret
= kmem_cache_zalloc(bh_cachep
, gfp_flags
);
3385 INIT_LIST_HEAD(&ret
->b_assoc_buffers
);
3387 __this_cpu_inc(bh_accounting
.nr
);
3393 EXPORT_SYMBOL(alloc_buffer_head
);
3395 void free_buffer_head(struct buffer_head
*bh
)
3397 BUG_ON(!list_empty(&bh
->b_assoc_buffers
));
3398 kmem_cache_free(bh_cachep
, bh
);
3400 __this_cpu_dec(bh_accounting
.nr
);
3404 EXPORT_SYMBOL(free_buffer_head
);
3406 static void buffer_exit_cpu(int cpu
)
3409 struct bh_lru
*b
= &per_cpu(bh_lrus
, cpu
);
3411 for (i
= 0; i
< BH_LRU_SIZE
; i
++) {
3415 this_cpu_add(bh_accounting
.nr
, per_cpu(bh_accounting
, cpu
).nr
);
3416 per_cpu(bh_accounting
, cpu
).nr
= 0;
3419 static int buffer_cpu_notify(struct notifier_block
*self
,
3420 unsigned long action
, void *hcpu
)
3422 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
)
3423 buffer_exit_cpu((unsigned long)hcpu
);
3428 * bh_uptodate_or_lock - Test whether the buffer is uptodate
3429 * @bh: struct buffer_head
3431 * Return true if the buffer is up-to-date and false,
3432 * with the buffer locked, if not.
3434 int bh_uptodate_or_lock(struct buffer_head
*bh
)
3436 if (!buffer_uptodate(bh
)) {
3438 if (!buffer_uptodate(bh
))
3444 EXPORT_SYMBOL(bh_uptodate_or_lock
);
3447 * bh_submit_read - Submit a locked buffer for reading
3448 * @bh: struct buffer_head
3450 * Returns zero on success and -EIO on error.
3452 int bh_submit_read(struct buffer_head
*bh
)
3454 BUG_ON(!buffer_locked(bh
));
3456 if (buffer_uptodate(bh
)) {
3462 bh
->b_end_io
= end_buffer_read_sync
;
3463 submit_bh(REQ_OP_READ
, 0, bh
);
3465 if (buffer_uptodate(bh
))
3469 EXPORT_SYMBOL(bh_submit_read
);
3471 void __init
buffer_init(void)
3473 unsigned long nrpages
;
3475 bh_cachep
= kmem_cache_create("buffer_head",
3476 sizeof(struct buffer_head
), 0,
3477 (SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|
3482 * Limit the bh occupancy to 10% of ZONE_NORMAL
3484 nrpages
= (nr_free_buffer_pages() * 10) / 100;
3485 max_buffer_heads
= nrpages
* (PAGE_SIZE
/ sizeof(struct buffer_head
));
3486 hotcpu_notifier(buffer_cpu_notify
, 0);