2 * An async IO implementation for Linux
3 * Written by Benjamin LaHaise <bcrl@kvack.org>
5 * Implements an efficient asynchronous io interface.
7 * Copyright 2000, 2001, 2002 Red Hat, Inc. All Rights Reserved.
8 * Copyright 2018 Christoph Hellwig.
10 * See ../COPYING for licensing terms.
12 #define pr_fmt(fmt) "%s: " fmt, __func__
14 #include <linux/kernel.h>
15 #include <linux/init.h>
16 #include <linux/errno.h>
17 #include <linux/time.h>
18 #include <linux/aio_abi.h>
19 #include <linux/export.h>
20 #include <linux/syscalls.h>
21 #include <linux/backing-dev.h>
22 #include <linux/refcount.h>
23 #include <linux/uio.h>
25 #include <linux/sched/signal.h>
27 #include <linux/file.h>
29 #include <linux/mman.h>
30 #include <linux/mmu_context.h>
31 #include <linux/percpu.h>
32 #include <linux/slab.h>
33 #include <linux/timer.h>
34 #include <linux/aio.h>
35 #include <linux/highmem.h>
36 #include <linux/workqueue.h>
37 #include <linux/security.h>
38 #include <linux/eventfd.h>
39 #include <linux/blkdev.h>
40 #include <linux/compat.h>
41 #include <linux/migrate.h>
42 #include <linux/ramfs.h>
43 #include <linux/percpu-refcount.h>
44 #include <linux/mount.h>
45 #include <linux/pseudo_fs.h>
47 #include <asm/kmap_types.h>
48 #include <linux/uaccess.h>
49 #include <linux/nospec.h>
55 #define AIO_RING_MAGIC 0xa10a10a1
56 #define AIO_RING_COMPAT_FEATURES 1
57 #define AIO_RING_INCOMPAT_FEATURES 0
59 unsigned id
; /* kernel internal index number */
60 unsigned nr
; /* number of io_events */
61 unsigned head
; /* Written to by userland or under ring_lock
62 * mutex by aio_read_events_ring(). */
66 unsigned compat_features
;
67 unsigned incompat_features
;
68 unsigned header_length
; /* size of aio_ring */
71 struct io_event io_events
[0];
72 }; /* 128 bytes + ring size */
75 * Plugging is meant to work with larger batches of IOs. If we don't
76 * have more than the below, then don't bother setting up a plug.
78 #define AIO_PLUG_THRESHOLD 2
80 #define AIO_RING_PAGES 8
85 struct kioctx __rcu
*table
[];
89 unsigned reqs_available
;
93 struct completion comp
;
98 struct percpu_ref users
;
101 struct percpu_ref reqs
;
103 unsigned long user_id
;
105 struct __percpu kioctx_cpu
*cpu
;
108 * For percpu reqs_available, number of slots we move to/from global
113 * This is what userspace passed to io_setup(), it's not used for
114 * anything but counting against the global max_reqs quota.
116 * The real limit is nr_events - 1, which will be larger (see
121 /* Size of ringbuffer, in units of struct io_event */
124 unsigned long mmap_base
;
125 unsigned long mmap_size
;
127 struct page
**ring_pages
;
130 struct rcu_work free_rwork
; /* see free_ioctx() */
133 * signals when all in-flight requests are done
135 struct ctx_rq_wait
*rq_wait
;
139 * This counts the number of available slots in the ringbuffer,
140 * so we avoid overflowing it: it's decremented (if positive)
141 * when allocating a kiocb and incremented when the resulting
142 * io_event is pulled off the ringbuffer.
144 * We batch accesses to it with a percpu version.
146 atomic_t reqs_available
;
147 } ____cacheline_aligned_in_smp
;
151 struct list_head active_reqs
; /* used for cancellation */
152 } ____cacheline_aligned_in_smp
;
155 struct mutex ring_lock
;
156 wait_queue_head_t wait
;
157 } ____cacheline_aligned_in_smp
;
161 unsigned completed_events
;
162 spinlock_t completion_lock
;
163 } ____cacheline_aligned_in_smp
;
165 struct page
*internal_pages
[AIO_RING_PAGES
];
166 struct file
*aio_ring_file
;
172 * First field must be the file pointer in all the
173 * iocb unions! See also 'struct kiocb' in <linux/fs.h>
177 struct work_struct work
;
183 struct wait_queue_head
*head
;
187 struct wait_queue_entry wait
;
188 struct work_struct work
;
192 * NOTE! Each of the iocb union members has the file pointer
193 * as the first entry in their struct definition. So you can
194 * access the file pointer through any of the sub-structs,
195 * or directly as just 'ki_filp' in this struct.
199 struct file
*ki_filp
;
201 struct fsync_iocb fsync
;
202 struct poll_iocb poll
;
205 struct kioctx
*ki_ctx
;
206 kiocb_cancel_fn
*ki_cancel
;
208 struct io_event ki_res
;
210 struct list_head ki_list
; /* the aio core uses this
211 * for cancellation */
212 refcount_t ki_refcnt
;
215 * If the aio_resfd field of the userspace iocb is not zero,
216 * this is the underlying eventfd context to deliver events to.
218 struct eventfd_ctx
*ki_eventfd
;
221 /*------ sysctl variables----*/
222 static DEFINE_SPINLOCK(aio_nr_lock
);
223 unsigned long aio_nr
; /* current system wide number of aio requests */
224 unsigned long aio_max_nr
= 0x10000; /* system wide maximum number of aio requests */
225 /*----end sysctl variables---*/
227 static struct kmem_cache
*kiocb_cachep
;
228 static struct kmem_cache
*kioctx_cachep
;
230 static struct vfsmount
*aio_mnt
;
232 static const struct file_operations aio_ring_fops
;
233 static const struct address_space_operations aio_ctx_aops
;
235 static struct file
*aio_private_file(struct kioctx
*ctx
, loff_t nr_pages
)
238 struct inode
*inode
= alloc_anon_inode(aio_mnt
->mnt_sb
);
240 return ERR_CAST(inode
);
242 inode
->i_mapping
->a_ops
= &aio_ctx_aops
;
243 inode
->i_mapping
->private_data
= ctx
;
244 inode
->i_size
= PAGE_SIZE
* nr_pages
;
246 file
= alloc_file_pseudo(inode
, aio_mnt
, "[aio]",
247 O_RDWR
, &aio_ring_fops
);
253 static int aio_init_fs_context(struct fs_context
*fc
)
255 if (!init_pseudo(fc
, AIO_RING_MAGIC
))
257 fc
->s_iflags
|= SB_I_NOEXEC
;
262 * Creates the slab caches used by the aio routines, panic on
263 * failure as this is done early during the boot sequence.
265 static int __init
aio_setup(void)
267 static struct file_system_type aio_fs
= {
269 .init_fs_context
= aio_init_fs_context
,
270 .kill_sb
= kill_anon_super
,
272 aio_mnt
= kern_mount(&aio_fs
);
274 panic("Failed to create aio fs mount.");
276 kiocb_cachep
= KMEM_CACHE(aio_kiocb
, SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
277 kioctx_cachep
= KMEM_CACHE(kioctx
,SLAB_HWCACHE_ALIGN
|SLAB_PANIC
);
280 __initcall(aio_setup
);
282 static void put_aio_ring_file(struct kioctx
*ctx
)
284 struct file
*aio_ring_file
= ctx
->aio_ring_file
;
285 struct address_space
*i_mapping
;
288 truncate_setsize(file_inode(aio_ring_file
), 0);
290 /* Prevent further access to the kioctx from migratepages */
291 i_mapping
= aio_ring_file
->f_mapping
;
292 spin_lock(&i_mapping
->private_lock
);
293 i_mapping
->private_data
= NULL
;
294 ctx
->aio_ring_file
= NULL
;
295 spin_unlock(&i_mapping
->private_lock
);
301 static void aio_free_ring(struct kioctx
*ctx
)
305 /* Disconnect the kiotx from the ring file. This prevents future
306 * accesses to the kioctx from page migration.
308 put_aio_ring_file(ctx
);
310 for (i
= 0; i
< ctx
->nr_pages
; i
++) {
312 pr_debug("pid(%d) [%d] page->count=%d\n", current
->pid
, i
,
313 page_count(ctx
->ring_pages
[i
]));
314 page
= ctx
->ring_pages
[i
];
317 ctx
->ring_pages
[i
] = NULL
;
321 if (ctx
->ring_pages
&& ctx
->ring_pages
!= ctx
->internal_pages
) {
322 kfree(ctx
->ring_pages
);
323 ctx
->ring_pages
= NULL
;
327 static int aio_ring_mremap(struct vm_area_struct
*vma
)
329 struct file
*file
= vma
->vm_file
;
330 struct mm_struct
*mm
= vma
->vm_mm
;
331 struct kioctx_table
*table
;
332 int i
, res
= -EINVAL
;
334 spin_lock(&mm
->ioctx_lock
);
336 table
= rcu_dereference(mm
->ioctx_table
);
337 for (i
= 0; i
< table
->nr
; i
++) {
340 ctx
= rcu_dereference(table
->table
[i
]);
341 if (ctx
&& ctx
->aio_ring_file
== file
) {
342 if (!atomic_read(&ctx
->dead
)) {
343 ctx
->user_id
= ctx
->mmap_base
= vma
->vm_start
;
351 spin_unlock(&mm
->ioctx_lock
);
355 static const struct vm_operations_struct aio_ring_vm_ops
= {
356 .mremap
= aio_ring_mremap
,
357 #if IS_ENABLED(CONFIG_MMU)
358 .fault
= filemap_fault
,
359 .map_pages
= filemap_map_pages
,
360 .page_mkwrite
= filemap_page_mkwrite
,
364 static int aio_ring_mmap(struct file
*file
, struct vm_area_struct
*vma
)
366 vma
->vm_flags
|= VM_DONTEXPAND
;
367 vma
->vm_ops
= &aio_ring_vm_ops
;
371 static const struct file_operations aio_ring_fops
= {
372 .mmap
= aio_ring_mmap
,
375 #if IS_ENABLED(CONFIG_MIGRATION)
376 static int aio_migratepage(struct address_space
*mapping
, struct page
*new,
377 struct page
*old
, enum migrate_mode mode
)
385 * We cannot support the _NO_COPY case here, because copy needs to
386 * happen under the ctx->completion_lock. That does not work with the
387 * migration workflow of MIGRATE_SYNC_NO_COPY.
389 if (mode
== MIGRATE_SYNC_NO_COPY
)
394 /* mapping->private_lock here protects against the kioctx teardown. */
395 spin_lock(&mapping
->private_lock
);
396 ctx
= mapping
->private_data
;
402 /* The ring_lock mutex. The prevents aio_read_events() from writing
403 * to the ring's head, and prevents page migration from mucking in
404 * a partially initialized kiotx.
406 if (!mutex_trylock(&ctx
->ring_lock
)) {
412 if (idx
< (pgoff_t
)ctx
->nr_pages
) {
413 /* Make sure the old page hasn't already been changed */
414 if (ctx
->ring_pages
[idx
] != old
)
422 /* Writeback must be complete */
423 BUG_ON(PageWriteback(old
));
426 rc
= migrate_page_move_mapping(mapping
, new, old
, 1);
427 if (rc
!= MIGRATEPAGE_SUCCESS
) {
432 /* Take completion_lock to prevent other writes to the ring buffer
433 * while the old page is copied to the new. This prevents new
434 * events from being lost.
436 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
437 migrate_page_copy(new, old
);
438 BUG_ON(ctx
->ring_pages
[idx
] != old
);
439 ctx
->ring_pages
[idx
] = new;
440 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
442 /* The old page is no longer accessible. */
446 mutex_unlock(&ctx
->ring_lock
);
448 spin_unlock(&mapping
->private_lock
);
453 static const struct address_space_operations aio_ctx_aops
= {
454 .set_page_dirty
= __set_page_dirty_no_writeback
,
455 #if IS_ENABLED(CONFIG_MIGRATION)
456 .migratepage
= aio_migratepage
,
460 static int aio_setup_ring(struct kioctx
*ctx
, unsigned int nr_events
)
462 struct aio_ring
*ring
;
463 struct mm_struct
*mm
= current
->mm
;
464 unsigned long size
, unused
;
469 /* Compensate for the ring buffer's head/tail overlap entry */
470 nr_events
+= 2; /* 1 is required, 2 for good luck */
472 size
= sizeof(struct aio_ring
);
473 size
+= sizeof(struct io_event
) * nr_events
;
475 nr_pages
= PFN_UP(size
);
479 file
= aio_private_file(ctx
, nr_pages
);
481 ctx
->aio_ring_file
= NULL
;
485 ctx
->aio_ring_file
= file
;
486 nr_events
= (PAGE_SIZE
* nr_pages
- sizeof(struct aio_ring
))
487 / sizeof(struct io_event
);
489 ctx
->ring_pages
= ctx
->internal_pages
;
490 if (nr_pages
> AIO_RING_PAGES
) {
491 ctx
->ring_pages
= kcalloc(nr_pages
, sizeof(struct page
*),
493 if (!ctx
->ring_pages
) {
494 put_aio_ring_file(ctx
);
499 for (i
= 0; i
< nr_pages
; i
++) {
501 page
= find_or_create_page(file
->f_mapping
,
502 i
, GFP_HIGHUSER
| __GFP_ZERO
);
505 pr_debug("pid(%d) page[%d]->count=%d\n",
506 current
->pid
, i
, page_count(page
));
507 SetPageUptodate(page
);
510 ctx
->ring_pages
[i
] = page
;
514 if (unlikely(i
!= nr_pages
)) {
519 ctx
->mmap_size
= nr_pages
* PAGE_SIZE
;
520 pr_debug("attempting mmap of %lu bytes\n", ctx
->mmap_size
);
522 if (down_write_killable(&mm
->mmap_sem
)) {
528 ctx
->mmap_base
= do_mmap_pgoff(ctx
->aio_ring_file
, 0, ctx
->mmap_size
,
529 PROT_READ
| PROT_WRITE
,
530 MAP_SHARED
, 0, &unused
, NULL
);
531 up_write(&mm
->mmap_sem
);
532 if (IS_ERR((void *)ctx
->mmap_base
)) {
538 pr_debug("mmap address: 0x%08lx\n", ctx
->mmap_base
);
540 ctx
->user_id
= ctx
->mmap_base
;
541 ctx
->nr_events
= nr_events
; /* trusted copy */
543 ring
= kmap_atomic(ctx
->ring_pages
[0]);
544 ring
->nr
= nr_events
; /* user copy */
546 ring
->head
= ring
->tail
= 0;
547 ring
->magic
= AIO_RING_MAGIC
;
548 ring
->compat_features
= AIO_RING_COMPAT_FEATURES
;
549 ring
->incompat_features
= AIO_RING_INCOMPAT_FEATURES
;
550 ring
->header_length
= sizeof(struct aio_ring
);
552 flush_dcache_page(ctx
->ring_pages
[0]);
557 #define AIO_EVENTS_PER_PAGE (PAGE_SIZE / sizeof(struct io_event))
558 #define AIO_EVENTS_FIRST_PAGE ((PAGE_SIZE - sizeof(struct aio_ring)) / sizeof(struct io_event))
559 #define AIO_EVENTS_OFFSET (AIO_EVENTS_PER_PAGE - AIO_EVENTS_FIRST_PAGE)
561 void kiocb_set_cancel_fn(struct kiocb
*iocb
, kiocb_cancel_fn
*cancel
)
563 struct aio_kiocb
*req
= container_of(iocb
, struct aio_kiocb
, rw
);
564 struct kioctx
*ctx
= req
->ki_ctx
;
567 if (WARN_ON_ONCE(!list_empty(&req
->ki_list
)))
570 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
571 list_add_tail(&req
->ki_list
, &ctx
->active_reqs
);
572 req
->ki_cancel
= cancel
;
573 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
575 EXPORT_SYMBOL(kiocb_set_cancel_fn
);
578 * free_ioctx() should be RCU delayed to synchronize against the RCU
579 * protected lookup_ioctx() and also needs process context to call
580 * aio_free_ring(). Use rcu_work.
582 static void free_ioctx(struct work_struct
*work
)
584 struct kioctx
*ctx
= container_of(to_rcu_work(work
), struct kioctx
,
586 pr_debug("freeing %p\n", ctx
);
589 free_percpu(ctx
->cpu
);
590 percpu_ref_exit(&ctx
->reqs
);
591 percpu_ref_exit(&ctx
->users
);
592 kmem_cache_free(kioctx_cachep
, ctx
);
595 static void free_ioctx_reqs(struct percpu_ref
*ref
)
597 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, reqs
);
599 /* At this point we know that there are no any in-flight requests */
600 if (ctx
->rq_wait
&& atomic_dec_and_test(&ctx
->rq_wait
->count
))
601 complete(&ctx
->rq_wait
->comp
);
603 /* Synchronize against RCU protected table->table[] dereferences */
604 INIT_RCU_WORK(&ctx
->free_rwork
, free_ioctx
);
605 queue_rcu_work(system_wq
, &ctx
->free_rwork
);
609 * When this function runs, the kioctx has been removed from the "hash table"
610 * and ctx->users has dropped to 0, so we know no more kiocbs can be submitted -
611 * now it's safe to cancel any that need to be.
613 static void free_ioctx_users(struct percpu_ref
*ref
)
615 struct kioctx
*ctx
= container_of(ref
, struct kioctx
, users
);
616 struct aio_kiocb
*req
;
618 spin_lock_irq(&ctx
->ctx_lock
);
620 while (!list_empty(&ctx
->active_reqs
)) {
621 req
= list_first_entry(&ctx
->active_reqs
,
622 struct aio_kiocb
, ki_list
);
623 req
->ki_cancel(&req
->rw
);
624 list_del_init(&req
->ki_list
);
627 spin_unlock_irq(&ctx
->ctx_lock
);
629 percpu_ref_kill(&ctx
->reqs
);
630 percpu_ref_put(&ctx
->reqs
);
633 static int ioctx_add_table(struct kioctx
*ctx
, struct mm_struct
*mm
)
636 struct kioctx_table
*table
, *old
;
637 struct aio_ring
*ring
;
639 spin_lock(&mm
->ioctx_lock
);
640 table
= rcu_dereference_raw(mm
->ioctx_table
);
644 for (i
= 0; i
< table
->nr
; i
++)
645 if (!rcu_access_pointer(table
->table
[i
])) {
647 rcu_assign_pointer(table
->table
[i
], ctx
);
648 spin_unlock(&mm
->ioctx_lock
);
650 /* While kioctx setup is in progress,
651 * we are protected from page migration
652 * changes ring_pages by ->ring_lock.
654 ring
= kmap_atomic(ctx
->ring_pages
[0]);
660 new_nr
= (table
? table
->nr
: 1) * 4;
661 spin_unlock(&mm
->ioctx_lock
);
663 table
= kzalloc(sizeof(*table
) + sizeof(struct kioctx
*) *
670 spin_lock(&mm
->ioctx_lock
);
671 old
= rcu_dereference_raw(mm
->ioctx_table
);
674 rcu_assign_pointer(mm
->ioctx_table
, table
);
675 } else if (table
->nr
> old
->nr
) {
676 memcpy(table
->table
, old
->table
,
677 old
->nr
* sizeof(struct kioctx
*));
679 rcu_assign_pointer(mm
->ioctx_table
, table
);
688 static void aio_nr_sub(unsigned nr
)
690 spin_lock(&aio_nr_lock
);
691 if (WARN_ON(aio_nr
- nr
> aio_nr
))
695 spin_unlock(&aio_nr_lock
);
699 * Allocates and initializes an ioctx. Returns an ERR_PTR if it failed.
701 static struct kioctx
*ioctx_alloc(unsigned nr_events
)
703 struct mm_struct
*mm
= current
->mm
;
708 * Store the original nr_events -- what userspace passed to io_setup(),
709 * for counting against the global limit -- before it changes.
711 unsigned int max_reqs
= nr_events
;
714 * We keep track of the number of available ringbuffer slots, to prevent
715 * overflow (reqs_available), and we also use percpu counters for this.
717 * So since up to half the slots might be on other cpu's percpu counters
718 * and unavailable, double nr_events so userspace sees what they
719 * expected: additionally, we move req_batch slots to/from percpu
720 * counters at a time, so make sure that isn't 0:
722 nr_events
= max(nr_events
, num_possible_cpus() * 4);
725 /* Prevent overflows */
726 if (nr_events
> (0x10000000U
/ sizeof(struct io_event
))) {
727 pr_debug("ENOMEM: nr_events too high\n");
728 return ERR_PTR(-EINVAL
);
731 if (!nr_events
|| (unsigned long)max_reqs
> aio_max_nr
)
732 return ERR_PTR(-EAGAIN
);
734 ctx
= kmem_cache_zalloc(kioctx_cachep
, GFP_KERNEL
);
736 return ERR_PTR(-ENOMEM
);
738 ctx
->max_reqs
= max_reqs
;
740 spin_lock_init(&ctx
->ctx_lock
);
741 spin_lock_init(&ctx
->completion_lock
);
742 mutex_init(&ctx
->ring_lock
);
743 /* Protect against page migration throughout kiotx setup by keeping
744 * the ring_lock mutex held until setup is complete. */
745 mutex_lock(&ctx
->ring_lock
);
746 init_waitqueue_head(&ctx
->wait
);
748 INIT_LIST_HEAD(&ctx
->active_reqs
);
750 if (percpu_ref_init(&ctx
->users
, free_ioctx_users
, 0, GFP_KERNEL
))
753 if (percpu_ref_init(&ctx
->reqs
, free_ioctx_reqs
, 0, GFP_KERNEL
))
756 ctx
->cpu
= alloc_percpu(struct kioctx_cpu
);
760 err
= aio_setup_ring(ctx
, nr_events
);
764 atomic_set(&ctx
->reqs_available
, ctx
->nr_events
- 1);
765 ctx
->req_batch
= (ctx
->nr_events
- 1) / (num_possible_cpus() * 4);
766 if (ctx
->req_batch
< 1)
769 /* limit the number of system wide aios */
770 spin_lock(&aio_nr_lock
);
771 if (aio_nr
+ ctx
->max_reqs
> aio_max_nr
||
772 aio_nr
+ ctx
->max_reqs
< aio_nr
) {
773 spin_unlock(&aio_nr_lock
);
777 aio_nr
+= ctx
->max_reqs
;
778 spin_unlock(&aio_nr_lock
);
780 percpu_ref_get(&ctx
->users
); /* io_setup() will drop this ref */
781 percpu_ref_get(&ctx
->reqs
); /* free_ioctx_users() will drop this */
783 err
= ioctx_add_table(ctx
, mm
);
787 /* Release the ring_lock mutex now that all setup is complete. */
788 mutex_unlock(&ctx
->ring_lock
);
790 pr_debug("allocated ioctx %p[%ld]: mm=%p mask=0x%x\n",
791 ctx
, ctx
->user_id
, mm
, ctx
->nr_events
);
795 aio_nr_sub(ctx
->max_reqs
);
797 atomic_set(&ctx
->dead
, 1);
799 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
802 mutex_unlock(&ctx
->ring_lock
);
803 free_percpu(ctx
->cpu
);
804 percpu_ref_exit(&ctx
->reqs
);
805 percpu_ref_exit(&ctx
->users
);
806 kmem_cache_free(kioctx_cachep
, ctx
);
807 pr_debug("error allocating ioctx %d\n", err
);
812 * Cancels all outstanding aio requests on an aio context. Used
813 * when the processes owning a context have all exited to encourage
814 * the rapid destruction of the kioctx.
816 static int kill_ioctx(struct mm_struct
*mm
, struct kioctx
*ctx
,
817 struct ctx_rq_wait
*wait
)
819 struct kioctx_table
*table
;
821 spin_lock(&mm
->ioctx_lock
);
822 if (atomic_xchg(&ctx
->dead
, 1)) {
823 spin_unlock(&mm
->ioctx_lock
);
827 table
= rcu_dereference_raw(mm
->ioctx_table
);
828 WARN_ON(ctx
!= rcu_access_pointer(table
->table
[ctx
->id
]));
829 RCU_INIT_POINTER(table
->table
[ctx
->id
], NULL
);
830 spin_unlock(&mm
->ioctx_lock
);
832 /* free_ioctx_reqs() will do the necessary RCU synchronization */
833 wake_up_all(&ctx
->wait
);
836 * It'd be more correct to do this in free_ioctx(), after all
837 * the outstanding kiocbs have finished - but by then io_destroy
838 * has already returned, so io_setup() could potentially return
839 * -EAGAIN with no ioctxs actually in use (as far as userspace
842 aio_nr_sub(ctx
->max_reqs
);
845 vm_munmap(ctx
->mmap_base
, ctx
->mmap_size
);
848 percpu_ref_kill(&ctx
->users
);
853 * exit_aio: called when the last user of mm goes away. At this point, there is
854 * no way for any new requests to be submited or any of the io_* syscalls to be
855 * called on the context.
857 * There may be outstanding kiocbs, but free_ioctx() will explicitly wait on
860 void exit_aio(struct mm_struct
*mm
)
862 struct kioctx_table
*table
= rcu_dereference_raw(mm
->ioctx_table
);
863 struct ctx_rq_wait wait
;
869 atomic_set(&wait
.count
, table
->nr
);
870 init_completion(&wait
.comp
);
873 for (i
= 0; i
< table
->nr
; ++i
) {
875 rcu_dereference_protected(table
->table
[i
], true);
883 * We don't need to bother with munmap() here - exit_mmap(mm)
884 * is coming and it'll unmap everything. And we simply can't,
885 * this is not necessarily our ->mm.
886 * Since kill_ioctx() uses non-zero ->mmap_size as indicator
887 * that it needs to unmap the area, just set it to 0.
890 kill_ioctx(mm
, ctx
, &wait
);
893 if (!atomic_sub_and_test(skipped
, &wait
.count
)) {
894 /* Wait until all IO for the context are done. */
895 wait_for_completion(&wait
.comp
);
898 RCU_INIT_POINTER(mm
->ioctx_table
, NULL
);
902 static void put_reqs_available(struct kioctx
*ctx
, unsigned nr
)
904 struct kioctx_cpu
*kcpu
;
907 local_irq_save(flags
);
908 kcpu
= this_cpu_ptr(ctx
->cpu
);
909 kcpu
->reqs_available
+= nr
;
911 while (kcpu
->reqs_available
>= ctx
->req_batch
* 2) {
912 kcpu
->reqs_available
-= ctx
->req_batch
;
913 atomic_add(ctx
->req_batch
, &ctx
->reqs_available
);
916 local_irq_restore(flags
);
919 static bool __get_reqs_available(struct kioctx
*ctx
)
921 struct kioctx_cpu
*kcpu
;
925 local_irq_save(flags
);
926 kcpu
= this_cpu_ptr(ctx
->cpu
);
927 if (!kcpu
->reqs_available
) {
928 int old
, avail
= atomic_read(&ctx
->reqs_available
);
931 if (avail
< ctx
->req_batch
)
935 avail
= atomic_cmpxchg(&ctx
->reqs_available
,
936 avail
, avail
- ctx
->req_batch
);
937 } while (avail
!= old
);
939 kcpu
->reqs_available
+= ctx
->req_batch
;
943 kcpu
->reqs_available
--;
945 local_irq_restore(flags
);
949 /* refill_reqs_available
950 * Updates the reqs_available reference counts used for tracking the
951 * number of free slots in the completion ring. This can be called
952 * from aio_complete() (to optimistically update reqs_available) or
953 * from aio_get_req() (the we're out of events case). It must be
954 * called holding ctx->completion_lock.
956 static void refill_reqs_available(struct kioctx
*ctx
, unsigned head
,
959 unsigned events_in_ring
, completed
;
961 /* Clamp head since userland can write to it. */
962 head
%= ctx
->nr_events
;
964 events_in_ring
= tail
- head
;
966 events_in_ring
= ctx
->nr_events
- (head
- tail
);
968 completed
= ctx
->completed_events
;
969 if (events_in_ring
< completed
)
970 completed
-= events_in_ring
;
977 ctx
->completed_events
-= completed
;
978 put_reqs_available(ctx
, completed
);
981 /* user_refill_reqs_available
982 * Called to refill reqs_available when aio_get_req() encounters an
983 * out of space in the completion ring.
985 static void user_refill_reqs_available(struct kioctx
*ctx
)
987 spin_lock_irq(&ctx
->completion_lock
);
988 if (ctx
->completed_events
) {
989 struct aio_ring
*ring
;
992 /* Access of ring->head may race with aio_read_events_ring()
993 * here, but that's okay since whether we read the old version
994 * or the new version, and either will be valid. The important
995 * part is that head cannot pass tail since we prevent
996 * aio_complete() from updating tail by holding
997 * ctx->completion_lock. Even if head is invalid, the check
998 * against ctx->completed_events below will make sure we do the
1001 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1003 kunmap_atomic(ring
);
1005 refill_reqs_available(ctx
, head
, ctx
->tail
);
1008 spin_unlock_irq(&ctx
->completion_lock
);
1011 static bool get_reqs_available(struct kioctx
*ctx
)
1013 if (__get_reqs_available(ctx
))
1015 user_refill_reqs_available(ctx
);
1016 return __get_reqs_available(ctx
);
1020 * Allocate a slot for an aio request.
1021 * Returns NULL if no requests are free.
1023 * The refcount is initialized to 2 - one for the async op completion,
1024 * one for the synchronous code that does this.
1026 static inline struct aio_kiocb
*aio_get_req(struct kioctx
*ctx
)
1028 struct aio_kiocb
*req
;
1030 req
= kmem_cache_alloc(kiocb_cachep
, GFP_KERNEL
);
1034 if (unlikely(!get_reqs_available(ctx
))) {
1035 kmem_cache_free(kiocb_cachep
, req
);
1039 percpu_ref_get(&ctx
->reqs
);
1041 INIT_LIST_HEAD(&req
->ki_list
);
1042 refcount_set(&req
->ki_refcnt
, 2);
1043 req
->ki_eventfd
= NULL
;
1047 static struct kioctx
*lookup_ioctx(unsigned long ctx_id
)
1049 struct aio_ring __user
*ring
= (void __user
*)ctx_id
;
1050 struct mm_struct
*mm
= current
->mm
;
1051 struct kioctx
*ctx
, *ret
= NULL
;
1052 struct kioctx_table
*table
;
1055 if (get_user(id
, &ring
->id
))
1059 table
= rcu_dereference(mm
->ioctx_table
);
1061 if (!table
|| id
>= table
->nr
)
1064 id
= array_index_nospec(id
, table
->nr
);
1065 ctx
= rcu_dereference(table
->table
[id
]);
1066 if (ctx
&& ctx
->user_id
== ctx_id
) {
1067 if (percpu_ref_tryget_live(&ctx
->users
))
1075 static inline void iocb_destroy(struct aio_kiocb
*iocb
)
1077 if (iocb
->ki_eventfd
)
1078 eventfd_ctx_put(iocb
->ki_eventfd
);
1080 fput(iocb
->ki_filp
);
1081 percpu_ref_put(&iocb
->ki_ctx
->reqs
);
1082 kmem_cache_free(kiocb_cachep
, iocb
);
1086 * Called when the io request on the given iocb is complete.
1088 static void aio_complete(struct aio_kiocb
*iocb
)
1090 struct kioctx
*ctx
= iocb
->ki_ctx
;
1091 struct aio_ring
*ring
;
1092 struct io_event
*ev_page
, *event
;
1093 unsigned tail
, pos
, head
;
1094 unsigned long flags
;
1097 * Add a completion event to the ring buffer. Must be done holding
1098 * ctx->completion_lock to prevent other code from messing with the tail
1099 * pointer since we might be called from irq context.
1101 spin_lock_irqsave(&ctx
->completion_lock
, flags
);
1104 pos
= tail
+ AIO_EVENTS_OFFSET
;
1106 if (++tail
>= ctx
->nr_events
)
1109 ev_page
= kmap_atomic(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1110 event
= ev_page
+ pos
% AIO_EVENTS_PER_PAGE
;
1112 *event
= iocb
->ki_res
;
1114 kunmap_atomic(ev_page
);
1115 flush_dcache_page(ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
]);
1117 pr_debug("%p[%u]: %p: %p %Lx %Lx %Lx\n", ctx
, tail
, iocb
,
1118 (void __user
*)(unsigned long)iocb
->ki_res
.obj
,
1119 iocb
->ki_res
.data
, iocb
->ki_res
.res
, iocb
->ki_res
.res2
);
1121 /* after flagging the request as done, we
1122 * must never even look at it again
1124 smp_wmb(); /* make event visible before updating tail */
1128 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1131 kunmap_atomic(ring
);
1132 flush_dcache_page(ctx
->ring_pages
[0]);
1134 ctx
->completed_events
++;
1135 if (ctx
->completed_events
> 1)
1136 refill_reqs_available(ctx
, head
, tail
);
1137 spin_unlock_irqrestore(&ctx
->completion_lock
, flags
);
1139 pr_debug("added to ring %p at [%u]\n", iocb
, tail
);
1142 * Check if the user asked us to deliver the result through an
1143 * eventfd. The eventfd_signal() function is safe to be called
1146 if (iocb
->ki_eventfd
)
1147 eventfd_signal(iocb
->ki_eventfd
, 1);
1150 * We have to order our ring_info tail store above and test
1151 * of the wait list below outside the wait lock. This is
1152 * like in wake_up_bit() where clearing a bit has to be
1153 * ordered with the unlocked test.
1157 if (waitqueue_active(&ctx
->wait
))
1158 wake_up(&ctx
->wait
);
1161 static inline void iocb_put(struct aio_kiocb
*iocb
)
1163 if (refcount_dec_and_test(&iocb
->ki_refcnt
)) {
1169 /* aio_read_events_ring
1170 * Pull an event off of the ioctx's event ring. Returns the number of
1173 static long aio_read_events_ring(struct kioctx
*ctx
,
1174 struct io_event __user
*event
, long nr
)
1176 struct aio_ring
*ring
;
1177 unsigned head
, tail
, pos
;
1182 * The mutex can block and wake us up and that will cause
1183 * wait_event_interruptible_hrtimeout() to schedule without sleeping
1184 * and repeat. This should be rare enough that it doesn't cause
1185 * peformance issues. See the comment in read_events() for more detail.
1187 sched_annotate_sleep();
1188 mutex_lock(&ctx
->ring_lock
);
1190 /* Access to ->ring_pages here is protected by ctx->ring_lock. */
1191 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1194 kunmap_atomic(ring
);
1197 * Ensure that once we've read the current tail pointer, that
1198 * we also see the events that were stored up to the tail.
1202 pr_debug("h%u t%u m%u\n", head
, tail
, ctx
->nr_events
);
1207 head
%= ctx
->nr_events
;
1208 tail
%= ctx
->nr_events
;
1212 struct io_event
*ev
;
1215 avail
= (head
<= tail
? tail
: ctx
->nr_events
) - head
;
1219 pos
= head
+ AIO_EVENTS_OFFSET
;
1220 page
= ctx
->ring_pages
[pos
/ AIO_EVENTS_PER_PAGE
];
1221 pos
%= AIO_EVENTS_PER_PAGE
;
1223 avail
= min(avail
, nr
- ret
);
1224 avail
= min_t(long, avail
, AIO_EVENTS_PER_PAGE
- pos
);
1227 copy_ret
= copy_to_user(event
+ ret
, ev
+ pos
,
1228 sizeof(*ev
) * avail
);
1231 if (unlikely(copy_ret
)) {
1238 head
%= ctx
->nr_events
;
1241 ring
= kmap_atomic(ctx
->ring_pages
[0]);
1243 kunmap_atomic(ring
);
1244 flush_dcache_page(ctx
->ring_pages
[0]);
1246 pr_debug("%li h%u t%u\n", ret
, head
, tail
);
1248 mutex_unlock(&ctx
->ring_lock
);
1253 static bool aio_read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1254 struct io_event __user
*event
, long *i
)
1256 long ret
= aio_read_events_ring(ctx
, event
+ *i
, nr
- *i
);
1261 if (unlikely(atomic_read(&ctx
->dead
)))
1267 return ret
< 0 || *i
>= min_nr
;
1270 static long read_events(struct kioctx
*ctx
, long min_nr
, long nr
,
1271 struct io_event __user
*event
,
1277 * Note that aio_read_events() is being called as the conditional - i.e.
1278 * we're calling it after prepare_to_wait() has set task state to
1279 * TASK_INTERRUPTIBLE.
1281 * But aio_read_events() can block, and if it blocks it's going to flip
1282 * the task state back to TASK_RUNNING.
1284 * This should be ok, provided it doesn't flip the state back to
1285 * TASK_RUNNING and return 0 too much - that causes us to spin. That
1286 * will only happen if the mutex_lock() call blocks, and we then find
1287 * the ringbuffer empty. So in practice we should be ok, but it's
1288 * something to be aware of when touching this code.
1291 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
);
1293 wait_event_interruptible_hrtimeout(ctx
->wait
,
1294 aio_read_events(ctx
, min_nr
, nr
, event
, &ret
),
1300 * Create an aio_context capable of receiving at least nr_events.
1301 * ctxp must not point to an aio_context that already exists, and
1302 * must be initialized to 0 prior to the call. On successful
1303 * creation of the aio_context, *ctxp is filled in with the resulting
1304 * handle. May fail with -EINVAL if *ctxp is not initialized,
1305 * if the specified nr_events exceeds internal limits. May fail
1306 * with -EAGAIN if the specified nr_events exceeds the user's limit
1307 * of available events. May fail with -ENOMEM if insufficient kernel
1308 * resources are available. May fail with -EFAULT if an invalid
1309 * pointer is passed for ctxp. Will fail with -ENOSYS if not
1312 SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, aio_context_t __user
*, ctxp
)
1314 struct kioctx
*ioctx
= NULL
;
1318 ret
= get_user(ctx
, ctxp
);
1323 if (unlikely(ctx
|| nr_events
== 0)) {
1324 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1329 ioctx
= ioctx_alloc(nr_events
);
1330 ret
= PTR_ERR(ioctx
);
1331 if (!IS_ERR(ioctx
)) {
1332 ret
= put_user(ioctx
->user_id
, ctxp
);
1334 kill_ioctx(current
->mm
, ioctx
, NULL
);
1335 percpu_ref_put(&ioctx
->users
);
1342 #ifdef CONFIG_COMPAT
1343 COMPAT_SYSCALL_DEFINE2(io_setup
, unsigned, nr_events
, u32 __user
*, ctx32p
)
1345 struct kioctx
*ioctx
= NULL
;
1349 ret
= get_user(ctx
, ctx32p
);
1354 if (unlikely(ctx
|| nr_events
== 0)) {
1355 pr_debug("EINVAL: ctx %lu nr_events %u\n",
1360 ioctx
= ioctx_alloc(nr_events
);
1361 ret
= PTR_ERR(ioctx
);
1362 if (!IS_ERR(ioctx
)) {
1363 /* truncating is ok because it's a user address */
1364 ret
= put_user((u32
)ioctx
->user_id
, ctx32p
);
1366 kill_ioctx(current
->mm
, ioctx
, NULL
);
1367 percpu_ref_put(&ioctx
->users
);
1376 * Destroy the aio_context specified. May cancel any outstanding
1377 * AIOs and block on completion. Will fail with -ENOSYS if not
1378 * implemented. May fail with -EINVAL if the context pointed to
1381 SYSCALL_DEFINE1(io_destroy
, aio_context_t
, ctx
)
1383 struct kioctx
*ioctx
= lookup_ioctx(ctx
);
1384 if (likely(NULL
!= ioctx
)) {
1385 struct ctx_rq_wait wait
;
1388 init_completion(&wait
.comp
);
1389 atomic_set(&wait
.count
, 1);
1391 /* Pass requests_done to kill_ioctx() where it can be set
1392 * in a thread-safe way. If we try to set it here then we have
1393 * a race condition if two io_destroy() called simultaneously.
1395 ret
= kill_ioctx(current
->mm
, ioctx
, &wait
);
1396 percpu_ref_put(&ioctx
->users
);
1398 /* Wait until all IO for the context are done. Otherwise kernel
1399 * keep using user-space buffers even if user thinks the context
1403 wait_for_completion(&wait
.comp
);
1407 pr_debug("EINVAL: invalid context id\n");
1411 static void aio_remove_iocb(struct aio_kiocb
*iocb
)
1413 struct kioctx
*ctx
= iocb
->ki_ctx
;
1414 unsigned long flags
;
1416 spin_lock_irqsave(&ctx
->ctx_lock
, flags
);
1417 list_del(&iocb
->ki_list
);
1418 spin_unlock_irqrestore(&ctx
->ctx_lock
, flags
);
1421 static void aio_complete_rw(struct kiocb
*kiocb
, long res
, long res2
)
1423 struct aio_kiocb
*iocb
= container_of(kiocb
, struct aio_kiocb
, rw
);
1425 if (!list_empty_careful(&iocb
->ki_list
))
1426 aio_remove_iocb(iocb
);
1428 if (kiocb
->ki_flags
& IOCB_WRITE
) {
1429 struct inode
*inode
= file_inode(kiocb
->ki_filp
);
1432 * Tell lockdep we inherited freeze protection from submission
1435 if (S_ISREG(inode
->i_mode
))
1436 __sb_writers_acquired(inode
->i_sb
, SB_FREEZE_WRITE
);
1437 file_end_write(kiocb
->ki_filp
);
1440 iocb
->ki_res
.res
= res
;
1441 iocb
->ki_res
.res2
= res2
;
1445 static int aio_prep_rw(struct kiocb
*req
, const struct iocb
*iocb
)
1449 req
->ki_complete
= aio_complete_rw
;
1450 req
->private = NULL
;
1451 req
->ki_pos
= iocb
->aio_offset
;
1452 req
->ki_flags
= iocb_flags(req
->ki_filp
);
1453 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
)
1454 req
->ki_flags
|= IOCB_EVENTFD
;
1455 req
->ki_hint
= ki_hint_validate(file_write_hint(req
->ki_filp
));
1456 if (iocb
->aio_flags
& IOCB_FLAG_IOPRIO
) {
1458 * If the IOCB_FLAG_IOPRIO flag of aio_flags is set, then
1459 * aio_reqprio is interpreted as an I/O scheduling
1460 * class and priority.
1462 ret
= ioprio_check_cap(iocb
->aio_reqprio
);
1464 pr_debug("aio ioprio check cap error: %d\n", ret
);
1468 req
->ki_ioprio
= iocb
->aio_reqprio
;
1470 req
->ki_ioprio
= get_current_ioprio();
1472 ret
= kiocb_set_rw_flags(req
, iocb
->aio_rw_flags
);
1476 req
->ki_flags
&= ~IOCB_HIPRI
; /* no one is going to poll for this I/O */
1480 static ssize_t
aio_setup_rw(int rw
, const struct iocb
*iocb
,
1481 struct iovec
**iovec
, bool vectored
, bool compat
,
1482 struct iov_iter
*iter
)
1484 void __user
*buf
= (void __user
*)(uintptr_t)iocb
->aio_buf
;
1485 size_t len
= iocb
->aio_nbytes
;
1488 ssize_t ret
= import_single_range(rw
, buf
, len
, *iovec
, iter
);
1492 #ifdef CONFIG_COMPAT
1494 return compat_import_iovec(rw
, buf
, len
, UIO_FASTIOV
, iovec
,
1497 return import_iovec(rw
, buf
, len
, UIO_FASTIOV
, iovec
, iter
);
1500 static inline void aio_rw_done(struct kiocb
*req
, ssize_t ret
)
1506 case -ERESTARTNOINTR
:
1507 case -ERESTARTNOHAND
:
1508 case -ERESTART_RESTARTBLOCK
:
1510 * There's no easy way to restart the syscall since other AIO's
1511 * may be already running. Just fail this IO with EINTR.
1516 req
->ki_complete(req
, ret
, 0);
1520 static int aio_read(struct kiocb
*req
, const struct iocb
*iocb
,
1521 bool vectored
, bool compat
)
1523 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1524 struct iov_iter iter
;
1528 ret
= aio_prep_rw(req
, iocb
);
1531 file
= req
->ki_filp
;
1532 if (unlikely(!(file
->f_mode
& FMODE_READ
)))
1535 if (unlikely(!file
->f_op
->read_iter
))
1538 ret
= aio_setup_rw(READ
, iocb
, &iovec
, vectored
, compat
, &iter
);
1541 ret
= rw_verify_area(READ
, file
, &req
->ki_pos
, iov_iter_count(&iter
));
1543 aio_rw_done(req
, call_read_iter(file
, req
, &iter
));
1548 static int aio_write(struct kiocb
*req
, const struct iocb
*iocb
,
1549 bool vectored
, bool compat
)
1551 struct iovec inline_vecs
[UIO_FASTIOV
], *iovec
= inline_vecs
;
1552 struct iov_iter iter
;
1556 ret
= aio_prep_rw(req
, iocb
);
1559 file
= req
->ki_filp
;
1561 if (unlikely(!(file
->f_mode
& FMODE_WRITE
)))
1563 if (unlikely(!file
->f_op
->write_iter
))
1566 ret
= aio_setup_rw(WRITE
, iocb
, &iovec
, vectored
, compat
, &iter
);
1569 ret
= rw_verify_area(WRITE
, file
, &req
->ki_pos
, iov_iter_count(&iter
));
1572 * Open-code file_start_write here to grab freeze protection,
1573 * which will be released by another thread in
1574 * aio_complete_rw(). Fool lockdep by telling it the lock got
1575 * released so that it doesn't complain about the held lock when
1576 * we return to userspace.
1578 if (S_ISREG(file_inode(file
)->i_mode
)) {
1579 __sb_start_write(file_inode(file
)->i_sb
, SB_FREEZE_WRITE
, true);
1580 __sb_writers_release(file_inode(file
)->i_sb
, SB_FREEZE_WRITE
);
1582 req
->ki_flags
|= IOCB_WRITE
;
1583 aio_rw_done(req
, call_write_iter(file
, req
, &iter
));
1589 static void aio_fsync_work(struct work_struct
*work
)
1591 struct aio_kiocb
*iocb
= container_of(work
, struct aio_kiocb
, fsync
.work
);
1593 iocb
->ki_res
.res
= vfs_fsync(iocb
->fsync
.file
, iocb
->fsync
.datasync
);
1597 static int aio_fsync(struct fsync_iocb
*req
, const struct iocb
*iocb
,
1600 if (unlikely(iocb
->aio_buf
|| iocb
->aio_offset
|| iocb
->aio_nbytes
||
1601 iocb
->aio_rw_flags
))
1604 if (unlikely(!req
->file
->f_op
->fsync
))
1607 req
->datasync
= datasync
;
1608 INIT_WORK(&req
->work
, aio_fsync_work
);
1609 schedule_work(&req
->work
);
1613 static void aio_poll_complete_work(struct work_struct
*work
)
1615 struct poll_iocb
*req
= container_of(work
, struct poll_iocb
, work
);
1616 struct aio_kiocb
*iocb
= container_of(req
, struct aio_kiocb
, poll
);
1617 struct poll_table_struct pt
= { ._key
= req
->events
};
1618 struct kioctx
*ctx
= iocb
->ki_ctx
;
1621 if (!READ_ONCE(req
->cancelled
))
1622 mask
= vfs_poll(req
->file
, &pt
) & req
->events
;
1625 * Note that ->ki_cancel callers also delete iocb from active_reqs after
1626 * calling ->ki_cancel. We need the ctx_lock roundtrip here to
1627 * synchronize with them. In the cancellation case the list_del_init
1628 * itself is not actually needed, but harmless so we keep it in to
1629 * avoid further branches in the fast path.
1631 spin_lock_irq(&ctx
->ctx_lock
);
1632 if (!mask
&& !READ_ONCE(req
->cancelled
)) {
1633 add_wait_queue(req
->head
, &req
->wait
);
1634 spin_unlock_irq(&ctx
->ctx_lock
);
1637 list_del_init(&iocb
->ki_list
);
1638 iocb
->ki_res
.res
= mangle_poll(mask
);
1640 spin_unlock_irq(&ctx
->ctx_lock
);
1645 /* assumes we are called with irqs disabled */
1646 static int aio_poll_cancel(struct kiocb
*iocb
)
1648 struct aio_kiocb
*aiocb
= container_of(iocb
, struct aio_kiocb
, rw
);
1649 struct poll_iocb
*req
= &aiocb
->poll
;
1651 spin_lock(&req
->head
->lock
);
1652 WRITE_ONCE(req
->cancelled
, true);
1653 if (!list_empty(&req
->wait
.entry
)) {
1654 list_del_init(&req
->wait
.entry
);
1655 schedule_work(&aiocb
->poll
.work
);
1657 spin_unlock(&req
->head
->lock
);
1662 static int aio_poll_wake(struct wait_queue_entry
*wait
, unsigned mode
, int sync
,
1665 struct poll_iocb
*req
= container_of(wait
, struct poll_iocb
, wait
);
1666 struct aio_kiocb
*iocb
= container_of(req
, struct aio_kiocb
, poll
);
1667 __poll_t mask
= key_to_poll(key
);
1668 unsigned long flags
;
1670 /* for instances that support it check for an event match first: */
1671 if (mask
&& !(mask
& req
->events
))
1674 list_del_init(&req
->wait
.entry
);
1676 if (mask
&& spin_trylock_irqsave(&iocb
->ki_ctx
->ctx_lock
, flags
)) {
1678 * Try to complete the iocb inline if we can. Use
1679 * irqsave/irqrestore because not all filesystems (e.g. fuse)
1680 * call this function with IRQs disabled and because IRQs
1681 * have to be disabled before ctx_lock is obtained.
1683 list_del(&iocb
->ki_list
);
1684 iocb
->ki_res
.res
= mangle_poll(mask
);
1686 spin_unlock_irqrestore(&iocb
->ki_ctx
->ctx_lock
, flags
);
1689 schedule_work(&req
->work
);
1694 struct aio_poll_table
{
1695 struct poll_table_struct pt
;
1696 struct aio_kiocb
*iocb
;
1701 aio_poll_queue_proc(struct file
*file
, struct wait_queue_head
*head
,
1702 struct poll_table_struct
*p
)
1704 struct aio_poll_table
*pt
= container_of(p
, struct aio_poll_table
, pt
);
1706 /* multiple wait queues per file are not supported */
1707 if (unlikely(pt
->iocb
->poll
.head
)) {
1708 pt
->error
= -EINVAL
;
1713 pt
->iocb
->poll
.head
= head
;
1714 add_wait_queue(head
, &pt
->iocb
->poll
.wait
);
1717 static int aio_poll(struct aio_kiocb
*aiocb
, const struct iocb
*iocb
)
1719 struct kioctx
*ctx
= aiocb
->ki_ctx
;
1720 struct poll_iocb
*req
= &aiocb
->poll
;
1721 struct aio_poll_table apt
;
1722 bool cancel
= false;
1725 /* reject any unknown events outside the normal event mask. */
1726 if ((u16
)iocb
->aio_buf
!= iocb
->aio_buf
)
1728 /* reject fields that are not defined for poll */
1729 if (iocb
->aio_offset
|| iocb
->aio_nbytes
|| iocb
->aio_rw_flags
)
1732 INIT_WORK(&req
->work
, aio_poll_complete_work
);
1733 req
->events
= demangle_poll(iocb
->aio_buf
) | EPOLLERR
| EPOLLHUP
;
1737 req
->cancelled
= false;
1739 apt
.pt
._qproc
= aio_poll_queue_proc
;
1740 apt
.pt
._key
= req
->events
;
1742 apt
.error
= -EINVAL
; /* same as no support for IOCB_CMD_POLL */
1744 /* initialized the list so that we can do list_empty checks */
1745 INIT_LIST_HEAD(&req
->wait
.entry
);
1746 init_waitqueue_func_entry(&req
->wait
, aio_poll_wake
);
1748 mask
= vfs_poll(req
->file
, &apt
.pt
) & req
->events
;
1749 spin_lock_irq(&ctx
->ctx_lock
);
1750 if (likely(req
->head
)) {
1751 spin_lock(&req
->head
->lock
);
1752 if (unlikely(list_empty(&req
->wait
.entry
))) {
1758 if (mask
|| apt
.error
) {
1759 list_del_init(&req
->wait
.entry
);
1760 } else if (cancel
) {
1761 WRITE_ONCE(req
->cancelled
, true);
1762 } else if (!req
->done
) { /* actually waiting for an event */
1763 list_add_tail(&aiocb
->ki_list
, &ctx
->active_reqs
);
1764 aiocb
->ki_cancel
= aio_poll_cancel
;
1766 spin_unlock(&req
->head
->lock
);
1768 if (mask
) { /* no async, we'd stolen it */
1769 aiocb
->ki_res
.res
= mangle_poll(mask
);
1772 spin_unlock_irq(&ctx
->ctx_lock
);
1778 static int __io_submit_one(struct kioctx
*ctx
, const struct iocb
*iocb
,
1779 struct iocb __user
*user_iocb
, struct aio_kiocb
*req
,
1782 req
->ki_filp
= fget(iocb
->aio_fildes
);
1783 if (unlikely(!req
->ki_filp
))
1786 if (iocb
->aio_flags
& IOCB_FLAG_RESFD
) {
1787 struct eventfd_ctx
*eventfd
;
1789 * If the IOCB_FLAG_RESFD flag of aio_flags is set, get an
1790 * instance of the file* now. The file descriptor must be
1791 * an eventfd() fd, and will be signaled for each completed
1792 * event using the eventfd_signal() function.
1794 eventfd
= eventfd_ctx_fdget(iocb
->aio_resfd
);
1795 if (IS_ERR(eventfd
))
1796 return PTR_ERR(eventfd
);
1798 req
->ki_eventfd
= eventfd
;
1801 if (unlikely(put_user(KIOCB_KEY
, &user_iocb
->aio_key
))) {
1802 pr_debug("EFAULT: aio_key\n");
1806 req
->ki_res
.obj
= (u64
)(unsigned long)user_iocb
;
1807 req
->ki_res
.data
= iocb
->aio_data
;
1808 req
->ki_res
.res
= 0;
1809 req
->ki_res
.res2
= 0;
1811 switch (iocb
->aio_lio_opcode
) {
1812 case IOCB_CMD_PREAD
:
1813 return aio_read(&req
->rw
, iocb
, false, compat
);
1814 case IOCB_CMD_PWRITE
:
1815 return aio_write(&req
->rw
, iocb
, false, compat
);
1816 case IOCB_CMD_PREADV
:
1817 return aio_read(&req
->rw
, iocb
, true, compat
);
1818 case IOCB_CMD_PWRITEV
:
1819 return aio_write(&req
->rw
, iocb
, true, compat
);
1820 case IOCB_CMD_FSYNC
:
1821 return aio_fsync(&req
->fsync
, iocb
, false);
1822 case IOCB_CMD_FDSYNC
:
1823 return aio_fsync(&req
->fsync
, iocb
, true);
1825 return aio_poll(req
, iocb
);
1827 pr_debug("invalid aio operation %d\n", iocb
->aio_lio_opcode
);
1832 static int io_submit_one(struct kioctx
*ctx
, struct iocb __user
*user_iocb
,
1835 struct aio_kiocb
*req
;
1839 if (unlikely(copy_from_user(&iocb
, user_iocb
, sizeof(iocb
))))
1842 /* enforce forwards compatibility on users */
1843 if (unlikely(iocb
.aio_reserved2
)) {
1844 pr_debug("EINVAL: reserve field set\n");
1848 /* prevent overflows */
1850 (iocb
.aio_buf
!= (unsigned long)iocb
.aio_buf
) ||
1851 (iocb
.aio_nbytes
!= (size_t)iocb
.aio_nbytes
) ||
1852 ((ssize_t
)iocb
.aio_nbytes
< 0)
1854 pr_debug("EINVAL: overflow check\n");
1858 req
= aio_get_req(ctx
);
1862 err
= __io_submit_one(ctx
, &iocb
, user_iocb
, req
, compat
);
1864 /* Done with the synchronous reference */
1868 * If err is 0, we'd either done aio_complete() ourselves or have
1869 * arranged for that to be done asynchronously. Anything non-zero
1870 * means that we need to destroy req ourselves.
1872 if (unlikely(err
)) {
1874 put_reqs_available(ctx
, 1);
1880 * Queue the nr iocbs pointed to by iocbpp for processing. Returns
1881 * the number of iocbs queued. May return -EINVAL if the aio_context
1882 * specified by ctx_id is invalid, if nr is < 0, if the iocb at
1883 * *iocbpp[0] is not properly initialized, if the operation specified
1884 * is invalid for the file descriptor in the iocb. May fail with
1885 * -EFAULT if any of the data structures point to invalid data. May
1886 * fail with -EBADF if the file descriptor specified in the first
1887 * iocb is invalid. May fail with -EAGAIN if insufficient resources
1888 * are available to queue any iocbs. Will return 0 if nr is 0. Will
1889 * fail with -ENOSYS if not implemented.
1891 SYSCALL_DEFINE3(io_submit
, aio_context_t
, ctx_id
, long, nr
,
1892 struct iocb __user
* __user
*, iocbpp
)
1897 struct blk_plug plug
;
1899 if (unlikely(nr
< 0))
1902 ctx
= lookup_ioctx(ctx_id
);
1903 if (unlikely(!ctx
)) {
1904 pr_debug("EINVAL: invalid context id\n");
1908 if (nr
> ctx
->nr_events
)
1909 nr
= ctx
->nr_events
;
1911 if (nr
> AIO_PLUG_THRESHOLD
)
1912 blk_start_plug(&plug
);
1913 for (i
= 0; i
< nr
; i
++) {
1914 struct iocb __user
*user_iocb
;
1916 if (unlikely(get_user(user_iocb
, iocbpp
+ i
))) {
1921 ret
= io_submit_one(ctx
, user_iocb
, false);
1925 if (nr
> AIO_PLUG_THRESHOLD
)
1926 blk_finish_plug(&plug
);
1928 percpu_ref_put(&ctx
->users
);
1932 #ifdef CONFIG_COMPAT
1933 COMPAT_SYSCALL_DEFINE3(io_submit
, compat_aio_context_t
, ctx_id
,
1934 int, nr
, compat_uptr_t __user
*, iocbpp
)
1939 struct blk_plug plug
;
1941 if (unlikely(nr
< 0))
1944 ctx
= lookup_ioctx(ctx_id
);
1945 if (unlikely(!ctx
)) {
1946 pr_debug("EINVAL: invalid context id\n");
1950 if (nr
> ctx
->nr_events
)
1951 nr
= ctx
->nr_events
;
1953 if (nr
> AIO_PLUG_THRESHOLD
)
1954 blk_start_plug(&plug
);
1955 for (i
= 0; i
< nr
; i
++) {
1956 compat_uptr_t user_iocb
;
1958 if (unlikely(get_user(user_iocb
, iocbpp
+ i
))) {
1963 ret
= io_submit_one(ctx
, compat_ptr(user_iocb
), true);
1967 if (nr
> AIO_PLUG_THRESHOLD
)
1968 blk_finish_plug(&plug
);
1970 percpu_ref_put(&ctx
->users
);
1976 * Attempts to cancel an iocb previously passed to io_submit. If
1977 * the operation is successfully cancelled, the resulting event is
1978 * copied into the memory pointed to by result without being placed
1979 * into the completion queue and 0 is returned. May fail with
1980 * -EFAULT if any of the data structures pointed to are invalid.
1981 * May fail with -EINVAL if aio_context specified by ctx_id is
1982 * invalid. May fail with -EAGAIN if the iocb specified was not
1983 * cancelled. Will fail with -ENOSYS if not implemented.
1985 SYSCALL_DEFINE3(io_cancel
, aio_context_t
, ctx_id
, struct iocb __user
*, iocb
,
1986 struct io_event __user
*, result
)
1989 struct aio_kiocb
*kiocb
;
1992 u64 obj
= (u64
)(unsigned long)iocb
;
1994 if (unlikely(get_user(key
, &iocb
->aio_key
)))
1996 if (unlikely(key
!= KIOCB_KEY
))
1999 ctx
= lookup_ioctx(ctx_id
);
2003 spin_lock_irq(&ctx
->ctx_lock
);
2004 /* TODO: use a hash or array, this sucks. */
2005 list_for_each_entry(kiocb
, &ctx
->active_reqs
, ki_list
) {
2006 if (kiocb
->ki_res
.obj
== obj
) {
2007 ret
= kiocb
->ki_cancel(&kiocb
->rw
);
2008 list_del_init(&kiocb
->ki_list
);
2012 spin_unlock_irq(&ctx
->ctx_lock
);
2016 * The result argument is no longer used - the io_event is
2017 * always delivered via the ring buffer. -EINPROGRESS indicates
2018 * cancellation is progress:
2023 percpu_ref_put(&ctx
->users
);
2028 static long do_io_getevents(aio_context_t ctx_id
,
2031 struct io_event __user
*events
,
2032 struct timespec64
*ts
)
2034 ktime_t until
= ts
? timespec64_to_ktime(*ts
) : KTIME_MAX
;
2035 struct kioctx
*ioctx
= lookup_ioctx(ctx_id
);
2038 if (likely(ioctx
)) {
2039 if (likely(min_nr
<= nr
&& min_nr
>= 0))
2040 ret
= read_events(ioctx
, min_nr
, nr
, events
, until
);
2041 percpu_ref_put(&ioctx
->users
);
2048 * Attempts to read at least min_nr events and up to nr events from
2049 * the completion queue for the aio_context specified by ctx_id. If
2050 * it succeeds, the number of read events is returned. May fail with
2051 * -EINVAL if ctx_id is invalid, if min_nr is out of range, if nr is
2052 * out of range, if timeout is out of range. May fail with -EFAULT
2053 * if any of the memory specified is invalid. May return 0 or
2054 * < min_nr if the timeout specified by timeout has elapsed
2055 * before sufficient events are available, where timeout == NULL
2056 * specifies an infinite timeout. Note that the timeout pointed to by
2057 * timeout is relative. Will fail with -ENOSYS if not implemented.
2061 SYSCALL_DEFINE5(io_getevents
, aio_context_t
, ctx_id
,
2064 struct io_event __user
*, events
,
2065 struct __kernel_timespec __user
*, timeout
)
2067 struct timespec64 ts
;
2070 if (timeout
&& unlikely(get_timespec64(&ts
, timeout
)))
2073 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
2074 if (!ret
&& signal_pending(current
))
2081 struct __aio_sigset
{
2082 const sigset_t __user
*sigmask
;
2086 SYSCALL_DEFINE6(io_pgetevents
,
2087 aio_context_t
, ctx_id
,
2090 struct io_event __user
*, events
,
2091 struct __kernel_timespec __user
*, timeout
,
2092 const struct __aio_sigset __user
*, usig
)
2094 struct __aio_sigset ksig
= { NULL
, };
2095 struct timespec64 ts
;
2099 if (timeout
&& unlikely(get_timespec64(&ts
, timeout
)))
2102 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2105 ret
= set_user_sigmask(ksig
.sigmask
, ksig
.sigsetsize
);
2109 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
2111 interrupted
= signal_pending(current
);
2112 restore_saved_sigmask_unless(interrupted
);
2113 if (interrupted
&& !ret
)
2114 ret
= -ERESTARTNOHAND
;
2119 #if defined(CONFIG_COMPAT_32BIT_TIME) && !defined(CONFIG_64BIT)
2121 SYSCALL_DEFINE6(io_pgetevents_time32
,
2122 aio_context_t
, ctx_id
,
2125 struct io_event __user
*, events
,
2126 struct old_timespec32 __user
*, timeout
,
2127 const struct __aio_sigset __user
*, usig
)
2129 struct __aio_sigset ksig
= { NULL
, };
2130 struct timespec64 ts
;
2134 if (timeout
&& unlikely(get_old_timespec32(&ts
, timeout
)))
2137 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2141 ret
= set_user_sigmask(ksig
.sigmask
, ksig
.sigsetsize
);
2145 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &ts
: NULL
);
2147 interrupted
= signal_pending(current
);
2148 restore_saved_sigmask_unless(interrupted
);
2149 if (interrupted
&& !ret
)
2150 ret
= -ERESTARTNOHAND
;
2157 #if defined(CONFIG_COMPAT_32BIT_TIME)
2159 SYSCALL_DEFINE5(io_getevents_time32
, __u32
, ctx_id
,
2162 struct io_event __user
*, events
,
2163 struct old_timespec32 __user
*, timeout
)
2165 struct timespec64 t
;
2168 if (timeout
&& get_old_timespec32(&t
, timeout
))
2171 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
2172 if (!ret
&& signal_pending(current
))
2179 #ifdef CONFIG_COMPAT
2181 struct __compat_aio_sigset
{
2182 compat_uptr_t sigmask
;
2183 compat_size_t sigsetsize
;
2186 #if defined(CONFIG_COMPAT_32BIT_TIME)
2188 COMPAT_SYSCALL_DEFINE6(io_pgetevents
,
2189 compat_aio_context_t
, ctx_id
,
2190 compat_long_t
, min_nr
,
2192 struct io_event __user
*, events
,
2193 struct old_timespec32 __user
*, timeout
,
2194 const struct __compat_aio_sigset __user
*, usig
)
2196 struct __compat_aio_sigset ksig
= { 0, };
2197 struct timespec64 t
;
2201 if (timeout
&& get_old_timespec32(&t
, timeout
))
2204 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2207 ret
= set_compat_user_sigmask(compat_ptr(ksig
.sigmask
), ksig
.sigsetsize
);
2211 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
2213 interrupted
= signal_pending(current
);
2214 restore_saved_sigmask_unless(interrupted
);
2215 if (interrupted
&& !ret
)
2216 ret
= -ERESTARTNOHAND
;
2223 COMPAT_SYSCALL_DEFINE6(io_pgetevents_time64
,
2224 compat_aio_context_t
, ctx_id
,
2225 compat_long_t
, min_nr
,
2227 struct io_event __user
*, events
,
2228 struct __kernel_timespec __user
*, timeout
,
2229 const struct __compat_aio_sigset __user
*, usig
)
2231 struct __compat_aio_sigset ksig
= { 0, };
2232 struct timespec64 t
;
2236 if (timeout
&& get_timespec64(&t
, timeout
))
2239 if (usig
&& copy_from_user(&ksig
, usig
, sizeof(ksig
)))
2242 ret
= set_compat_user_sigmask(compat_ptr(ksig
.sigmask
), ksig
.sigsetsize
);
2246 ret
= do_io_getevents(ctx_id
, min_nr
, nr
, events
, timeout
? &t
: NULL
);
2248 interrupted
= signal_pending(current
);
2249 restore_saved_sigmask_unless(interrupted
);
2250 if (interrupted
&& !ret
)
2251 ret
= -ERESTARTNOHAND
;