ext4: Optimize ext4 DIO overwrites
[linux/fpc-iii.git] / fs / block_dev.c
blob69bf2fb6f7cda08264aba5549c2301d36fdfd74d
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * linux/fs/block_dev.c
5 * Copyright (C) 1991, 1992 Linus Torvalds
6 * Copyright (C) 2001 Andrea Arcangeli <andrea@suse.de> SuSE
7 */
9 #include <linux/init.h>
10 #include <linux/mm.h>
11 #include <linux/fcntl.h>
12 #include <linux/slab.h>
13 #include <linux/kmod.h>
14 #include <linux/major.h>
15 #include <linux/device_cgroup.h>
16 #include <linux/highmem.h>
17 #include <linux/blkdev.h>
18 #include <linux/backing-dev.h>
19 #include <linux/module.h>
20 #include <linux/blkpg.h>
21 #include <linux/magic.h>
22 #include <linux/dax.h>
23 #include <linux/buffer_head.h>
24 #include <linux/swap.h>
25 #include <linux/pagevec.h>
26 #include <linux/writeback.h>
27 #include <linux/mpage.h>
28 #include <linux/mount.h>
29 #include <linux/pseudo_fs.h>
30 #include <linux/uio.h>
31 #include <linux/namei.h>
32 #include <linux/log2.h>
33 #include <linux/cleancache.h>
34 #include <linux/task_io_accounting_ops.h>
35 #include <linux/falloc.h>
36 #include <linux/uaccess.h>
37 #include "internal.h"
39 struct bdev_inode {
40 struct block_device bdev;
41 struct inode vfs_inode;
44 static const struct address_space_operations def_blk_aops;
46 static inline struct bdev_inode *BDEV_I(struct inode *inode)
48 return container_of(inode, struct bdev_inode, vfs_inode);
51 struct block_device *I_BDEV(struct inode *inode)
53 return &BDEV_I(inode)->bdev;
55 EXPORT_SYMBOL(I_BDEV);
57 static void bdev_write_inode(struct block_device *bdev)
59 struct inode *inode = bdev->bd_inode;
60 int ret;
62 spin_lock(&inode->i_lock);
63 while (inode->i_state & I_DIRTY) {
64 spin_unlock(&inode->i_lock);
65 ret = write_inode_now(inode, true);
66 if (ret) {
67 char name[BDEVNAME_SIZE];
68 pr_warn_ratelimited("VFS: Dirty inode writeback failed "
69 "for block device %s (err=%d).\n",
70 bdevname(bdev, name), ret);
72 spin_lock(&inode->i_lock);
74 spin_unlock(&inode->i_lock);
77 /* Kill _all_ buffers and pagecache , dirty or not.. */
78 void kill_bdev(struct block_device *bdev)
80 struct address_space *mapping = bdev->bd_inode->i_mapping;
82 if (mapping->nrpages == 0 && mapping->nrexceptional == 0)
83 return;
85 invalidate_bh_lrus();
86 truncate_inode_pages(mapping, 0);
88 EXPORT_SYMBOL(kill_bdev);
90 /* Invalidate clean unused buffers and pagecache. */
91 void invalidate_bdev(struct block_device *bdev)
93 struct address_space *mapping = bdev->bd_inode->i_mapping;
95 if (mapping->nrpages) {
96 invalidate_bh_lrus();
97 lru_add_drain_all(); /* make sure all lru add caches are flushed */
98 invalidate_mapping_pages(mapping, 0, -1);
100 /* 99% of the time, we don't need to flush the cleancache on the bdev.
101 * But, for the strange corners, lets be cautious
103 cleancache_invalidate_inode(mapping);
105 EXPORT_SYMBOL(invalidate_bdev);
107 static void set_init_blocksize(struct block_device *bdev)
109 unsigned bsize = bdev_logical_block_size(bdev);
110 loff_t size = i_size_read(bdev->bd_inode);
112 while (bsize < PAGE_SIZE) {
113 if (size & bsize)
114 break;
115 bsize <<= 1;
117 bdev->bd_block_size = bsize;
118 bdev->bd_inode->i_blkbits = blksize_bits(bsize);
121 int set_blocksize(struct block_device *bdev, int size)
123 /* Size must be a power of two, and between 512 and PAGE_SIZE */
124 if (size > PAGE_SIZE || size < 512 || !is_power_of_2(size))
125 return -EINVAL;
127 /* Size cannot be smaller than the size supported by the device */
128 if (size < bdev_logical_block_size(bdev))
129 return -EINVAL;
131 /* Don't change the size if it is same as current */
132 if (bdev->bd_block_size != size) {
133 sync_blockdev(bdev);
134 bdev->bd_block_size = size;
135 bdev->bd_inode->i_blkbits = blksize_bits(size);
136 kill_bdev(bdev);
138 return 0;
141 EXPORT_SYMBOL(set_blocksize);
143 int sb_set_blocksize(struct super_block *sb, int size)
145 if (set_blocksize(sb->s_bdev, size))
146 return 0;
147 /* If we get here, we know size is power of two
148 * and it's value is between 512 and PAGE_SIZE */
149 sb->s_blocksize = size;
150 sb->s_blocksize_bits = blksize_bits(size);
151 return sb->s_blocksize;
154 EXPORT_SYMBOL(sb_set_blocksize);
156 int sb_min_blocksize(struct super_block *sb, int size)
158 int minsize = bdev_logical_block_size(sb->s_bdev);
159 if (size < minsize)
160 size = minsize;
161 return sb_set_blocksize(sb, size);
164 EXPORT_SYMBOL(sb_min_blocksize);
166 static int
167 blkdev_get_block(struct inode *inode, sector_t iblock,
168 struct buffer_head *bh, int create)
170 bh->b_bdev = I_BDEV(inode);
171 bh->b_blocknr = iblock;
172 set_buffer_mapped(bh);
173 return 0;
176 static struct inode *bdev_file_inode(struct file *file)
178 return file->f_mapping->host;
181 static unsigned int dio_bio_write_op(struct kiocb *iocb)
183 unsigned int op = REQ_OP_WRITE | REQ_SYNC | REQ_IDLE;
185 /* avoid the need for a I/O completion work item */
186 if (iocb->ki_flags & IOCB_DSYNC)
187 op |= REQ_FUA;
188 return op;
191 #define DIO_INLINE_BIO_VECS 4
193 static void blkdev_bio_end_io_simple(struct bio *bio)
195 struct task_struct *waiter = bio->bi_private;
197 WRITE_ONCE(bio->bi_private, NULL);
198 blk_wake_io_task(waiter);
201 static ssize_t
202 __blkdev_direct_IO_simple(struct kiocb *iocb, struct iov_iter *iter,
203 int nr_pages)
205 struct file *file = iocb->ki_filp;
206 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
207 struct bio_vec inline_vecs[DIO_INLINE_BIO_VECS], *vecs;
208 loff_t pos = iocb->ki_pos;
209 bool should_dirty = false;
210 struct bio bio;
211 ssize_t ret;
212 blk_qc_t qc;
214 if ((pos | iov_iter_alignment(iter)) &
215 (bdev_logical_block_size(bdev) - 1))
216 return -EINVAL;
218 if (nr_pages <= DIO_INLINE_BIO_VECS)
219 vecs = inline_vecs;
220 else {
221 vecs = kmalloc_array(nr_pages, sizeof(struct bio_vec),
222 GFP_KERNEL);
223 if (!vecs)
224 return -ENOMEM;
227 bio_init(&bio, vecs, nr_pages);
228 bio_set_dev(&bio, bdev);
229 bio.bi_iter.bi_sector = pos >> 9;
230 bio.bi_write_hint = iocb->ki_hint;
231 bio.bi_private = current;
232 bio.bi_end_io = blkdev_bio_end_io_simple;
233 bio.bi_ioprio = iocb->ki_ioprio;
235 ret = bio_iov_iter_get_pages(&bio, iter);
236 if (unlikely(ret))
237 goto out;
238 ret = bio.bi_iter.bi_size;
240 if (iov_iter_rw(iter) == READ) {
241 bio.bi_opf = REQ_OP_READ;
242 if (iter_is_iovec(iter))
243 should_dirty = true;
244 } else {
245 bio.bi_opf = dio_bio_write_op(iocb);
246 task_io_account_write(ret);
248 if (iocb->ki_flags & IOCB_HIPRI)
249 bio_set_polled(&bio, iocb);
251 qc = submit_bio(&bio);
252 for (;;) {
253 set_current_state(TASK_UNINTERRUPTIBLE);
254 if (!READ_ONCE(bio.bi_private))
255 break;
256 if (!(iocb->ki_flags & IOCB_HIPRI) ||
257 !blk_poll(bdev_get_queue(bdev), qc, true))
258 io_schedule();
260 __set_current_state(TASK_RUNNING);
262 bio_release_pages(&bio, should_dirty);
263 if (unlikely(bio.bi_status))
264 ret = blk_status_to_errno(bio.bi_status);
266 out:
267 if (vecs != inline_vecs)
268 kfree(vecs);
270 bio_uninit(&bio);
272 return ret;
275 struct blkdev_dio {
276 union {
277 struct kiocb *iocb;
278 struct task_struct *waiter;
280 size_t size;
281 atomic_t ref;
282 bool multi_bio : 1;
283 bool should_dirty : 1;
284 bool is_sync : 1;
285 struct bio bio;
288 static struct bio_set blkdev_dio_pool;
290 static int blkdev_iopoll(struct kiocb *kiocb, bool wait)
292 struct block_device *bdev = I_BDEV(kiocb->ki_filp->f_mapping->host);
293 struct request_queue *q = bdev_get_queue(bdev);
295 return blk_poll(q, READ_ONCE(kiocb->ki_cookie), wait);
298 static void blkdev_bio_end_io(struct bio *bio)
300 struct blkdev_dio *dio = bio->bi_private;
301 bool should_dirty = dio->should_dirty;
303 if (bio->bi_status && !dio->bio.bi_status)
304 dio->bio.bi_status = bio->bi_status;
306 if (!dio->multi_bio || atomic_dec_and_test(&dio->ref)) {
307 if (!dio->is_sync) {
308 struct kiocb *iocb = dio->iocb;
309 ssize_t ret;
311 if (likely(!dio->bio.bi_status)) {
312 ret = dio->size;
313 iocb->ki_pos += ret;
314 } else {
315 ret = blk_status_to_errno(dio->bio.bi_status);
318 dio->iocb->ki_complete(iocb, ret, 0);
319 if (dio->multi_bio)
320 bio_put(&dio->bio);
321 } else {
322 struct task_struct *waiter = dio->waiter;
324 WRITE_ONCE(dio->waiter, NULL);
325 blk_wake_io_task(waiter);
329 if (should_dirty) {
330 bio_check_pages_dirty(bio);
331 } else {
332 bio_release_pages(bio, false);
333 bio_put(bio);
337 static ssize_t
338 __blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter, int nr_pages)
340 struct file *file = iocb->ki_filp;
341 struct inode *inode = bdev_file_inode(file);
342 struct block_device *bdev = I_BDEV(inode);
343 struct blk_plug plug;
344 struct blkdev_dio *dio;
345 struct bio *bio;
346 bool is_poll = (iocb->ki_flags & IOCB_HIPRI) != 0;
347 bool is_read = (iov_iter_rw(iter) == READ), is_sync;
348 loff_t pos = iocb->ki_pos;
349 blk_qc_t qc = BLK_QC_T_NONE;
350 int ret = 0;
352 if ((pos | iov_iter_alignment(iter)) &
353 (bdev_logical_block_size(bdev) - 1))
354 return -EINVAL;
356 bio = bio_alloc_bioset(GFP_KERNEL, nr_pages, &blkdev_dio_pool);
358 dio = container_of(bio, struct blkdev_dio, bio);
359 dio->is_sync = is_sync = is_sync_kiocb(iocb);
360 if (dio->is_sync) {
361 dio->waiter = current;
362 bio_get(bio);
363 } else {
364 dio->iocb = iocb;
367 dio->size = 0;
368 dio->multi_bio = false;
369 dio->should_dirty = is_read && iter_is_iovec(iter);
372 * Don't plug for HIPRI/polled IO, as those should go straight
373 * to issue
375 if (!is_poll)
376 blk_start_plug(&plug);
378 for (;;) {
379 bio_set_dev(bio, bdev);
380 bio->bi_iter.bi_sector = pos >> 9;
381 bio->bi_write_hint = iocb->ki_hint;
382 bio->bi_private = dio;
383 bio->bi_end_io = blkdev_bio_end_io;
384 bio->bi_ioprio = iocb->ki_ioprio;
386 ret = bio_iov_iter_get_pages(bio, iter);
387 if (unlikely(ret)) {
388 bio->bi_status = BLK_STS_IOERR;
389 bio_endio(bio);
390 break;
393 if (is_read) {
394 bio->bi_opf = REQ_OP_READ;
395 if (dio->should_dirty)
396 bio_set_pages_dirty(bio);
397 } else {
398 bio->bi_opf = dio_bio_write_op(iocb);
399 task_io_account_write(bio->bi_iter.bi_size);
402 dio->size += bio->bi_iter.bi_size;
403 pos += bio->bi_iter.bi_size;
405 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES);
406 if (!nr_pages) {
407 bool polled = false;
409 if (iocb->ki_flags & IOCB_HIPRI) {
410 bio_set_polled(bio, iocb);
411 polled = true;
414 qc = submit_bio(bio);
416 if (polled)
417 WRITE_ONCE(iocb->ki_cookie, qc);
418 break;
421 if (!dio->multi_bio) {
423 * AIO needs an extra reference to ensure the dio
424 * structure which is embedded into the first bio
425 * stays around.
427 if (!is_sync)
428 bio_get(bio);
429 dio->multi_bio = true;
430 atomic_set(&dio->ref, 2);
431 } else {
432 atomic_inc(&dio->ref);
435 submit_bio(bio);
436 bio = bio_alloc(GFP_KERNEL, nr_pages);
439 if (!is_poll)
440 blk_finish_plug(&plug);
442 if (!is_sync)
443 return -EIOCBQUEUED;
445 for (;;) {
446 set_current_state(TASK_UNINTERRUPTIBLE);
447 if (!READ_ONCE(dio->waiter))
448 break;
450 if (!(iocb->ki_flags & IOCB_HIPRI) ||
451 !blk_poll(bdev_get_queue(bdev), qc, true))
452 io_schedule();
454 __set_current_state(TASK_RUNNING);
456 if (!ret)
457 ret = blk_status_to_errno(dio->bio.bi_status);
458 if (likely(!ret))
459 ret = dio->size;
461 bio_put(&dio->bio);
462 return ret;
465 static ssize_t
466 blkdev_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
468 int nr_pages;
470 nr_pages = iov_iter_npages(iter, BIO_MAX_PAGES + 1);
471 if (!nr_pages)
472 return 0;
473 if (is_sync_kiocb(iocb) && nr_pages <= BIO_MAX_PAGES)
474 return __blkdev_direct_IO_simple(iocb, iter, nr_pages);
476 return __blkdev_direct_IO(iocb, iter, min(nr_pages, BIO_MAX_PAGES));
479 static __init int blkdev_init(void)
481 return bioset_init(&blkdev_dio_pool, 4, offsetof(struct blkdev_dio, bio), BIOSET_NEED_BVECS);
483 module_init(blkdev_init);
485 int __sync_blockdev(struct block_device *bdev, int wait)
487 if (!bdev)
488 return 0;
489 if (!wait)
490 return filemap_flush(bdev->bd_inode->i_mapping);
491 return filemap_write_and_wait(bdev->bd_inode->i_mapping);
495 * Write out and wait upon all the dirty data associated with a block
496 * device via its mapping. Does not take the superblock lock.
498 int sync_blockdev(struct block_device *bdev)
500 return __sync_blockdev(bdev, 1);
502 EXPORT_SYMBOL(sync_blockdev);
505 * Write out and wait upon all dirty data associated with this
506 * device. Filesystem data as well as the underlying block
507 * device. Takes the superblock lock.
509 int fsync_bdev(struct block_device *bdev)
511 struct super_block *sb = get_super(bdev);
512 if (sb) {
513 int res = sync_filesystem(sb);
514 drop_super(sb);
515 return res;
517 return sync_blockdev(bdev);
519 EXPORT_SYMBOL(fsync_bdev);
522 * freeze_bdev -- lock a filesystem and force it into a consistent state
523 * @bdev: blockdevice to lock
525 * If a superblock is found on this device, we take the s_umount semaphore
526 * on it to make sure nobody unmounts until the snapshot creation is done.
527 * The reference counter (bd_fsfreeze_count) guarantees that only the last
528 * unfreeze process can unfreeze the frozen filesystem actually when multiple
529 * freeze requests arrive simultaneously. It counts up in freeze_bdev() and
530 * count down in thaw_bdev(). When it becomes 0, thaw_bdev() will unfreeze
531 * actually.
533 struct super_block *freeze_bdev(struct block_device *bdev)
535 struct super_block *sb;
536 int error = 0;
538 mutex_lock(&bdev->bd_fsfreeze_mutex);
539 if (++bdev->bd_fsfreeze_count > 1) {
541 * We don't even need to grab a reference - the first call
542 * to freeze_bdev grab an active reference and only the last
543 * thaw_bdev drops it.
545 sb = get_super(bdev);
546 if (sb)
547 drop_super(sb);
548 mutex_unlock(&bdev->bd_fsfreeze_mutex);
549 return sb;
552 sb = get_active_super(bdev);
553 if (!sb)
554 goto out;
555 if (sb->s_op->freeze_super)
556 error = sb->s_op->freeze_super(sb);
557 else
558 error = freeze_super(sb);
559 if (error) {
560 deactivate_super(sb);
561 bdev->bd_fsfreeze_count--;
562 mutex_unlock(&bdev->bd_fsfreeze_mutex);
563 return ERR_PTR(error);
565 deactivate_super(sb);
566 out:
567 sync_blockdev(bdev);
568 mutex_unlock(&bdev->bd_fsfreeze_mutex);
569 return sb; /* thaw_bdev releases s->s_umount */
571 EXPORT_SYMBOL(freeze_bdev);
574 * thaw_bdev -- unlock filesystem
575 * @bdev: blockdevice to unlock
576 * @sb: associated superblock
578 * Unlocks the filesystem and marks it writeable again after freeze_bdev().
580 int thaw_bdev(struct block_device *bdev, struct super_block *sb)
582 int error = -EINVAL;
584 mutex_lock(&bdev->bd_fsfreeze_mutex);
585 if (!bdev->bd_fsfreeze_count)
586 goto out;
588 error = 0;
589 if (--bdev->bd_fsfreeze_count > 0)
590 goto out;
592 if (!sb)
593 goto out;
595 if (sb->s_op->thaw_super)
596 error = sb->s_op->thaw_super(sb);
597 else
598 error = thaw_super(sb);
599 if (error)
600 bdev->bd_fsfreeze_count++;
601 out:
602 mutex_unlock(&bdev->bd_fsfreeze_mutex);
603 return error;
605 EXPORT_SYMBOL(thaw_bdev);
607 static int blkdev_writepage(struct page *page, struct writeback_control *wbc)
609 return block_write_full_page(page, blkdev_get_block, wbc);
612 static int blkdev_readpage(struct file * file, struct page * page)
614 return block_read_full_page(page, blkdev_get_block);
617 static int blkdev_readpages(struct file *file, struct address_space *mapping,
618 struct list_head *pages, unsigned nr_pages)
620 return mpage_readpages(mapping, pages, nr_pages, blkdev_get_block);
623 static int blkdev_write_begin(struct file *file, struct address_space *mapping,
624 loff_t pos, unsigned len, unsigned flags,
625 struct page **pagep, void **fsdata)
627 return block_write_begin(mapping, pos, len, flags, pagep,
628 blkdev_get_block);
631 static int blkdev_write_end(struct file *file, struct address_space *mapping,
632 loff_t pos, unsigned len, unsigned copied,
633 struct page *page, void *fsdata)
635 int ret;
636 ret = block_write_end(file, mapping, pos, len, copied, page, fsdata);
638 unlock_page(page);
639 put_page(page);
641 return ret;
645 * private llseek:
646 * for a block special file file_inode(file)->i_size is zero
647 * so we compute the size by hand (just as in block_read/write above)
649 static loff_t block_llseek(struct file *file, loff_t offset, int whence)
651 struct inode *bd_inode = bdev_file_inode(file);
652 loff_t retval;
654 inode_lock(bd_inode);
655 retval = fixed_size_llseek(file, offset, whence, i_size_read(bd_inode));
656 inode_unlock(bd_inode);
657 return retval;
660 int blkdev_fsync(struct file *filp, loff_t start, loff_t end, int datasync)
662 struct inode *bd_inode = bdev_file_inode(filp);
663 struct block_device *bdev = I_BDEV(bd_inode);
664 int error;
666 error = file_write_and_wait_range(filp, start, end);
667 if (error)
668 return error;
671 * There is no need to serialise calls to blkdev_issue_flush with
672 * i_mutex and doing so causes performance issues with concurrent
673 * O_SYNC writers to a block device.
675 error = blkdev_issue_flush(bdev, GFP_KERNEL, NULL);
676 if (error == -EOPNOTSUPP)
677 error = 0;
679 return error;
681 EXPORT_SYMBOL(blkdev_fsync);
684 * bdev_read_page() - Start reading a page from a block device
685 * @bdev: The device to read the page from
686 * @sector: The offset on the device to read the page to (need not be aligned)
687 * @page: The page to read
689 * On entry, the page should be locked. It will be unlocked when the page
690 * has been read. If the block driver implements rw_page synchronously,
691 * that will be true on exit from this function, but it need not be.
693 * Errors returned by this function are usually "soft", eg out of memory, or
694 * queue full; callers should try a different route to read this page rather
695 * than propagate an error back up the stack.
697 * Return: negative errno if an error occurs, 0 if submission was successful.
699 int bdev_read_page(struct block_device *bdev, sector_t sector,
700 struct page *page)
702 const struct block_device_operations *ops = bdev->bd_disk->fops;
703 int result = -EOPNOTSUPP;
705 if (!ops->rw_page || bdev_get_integrity(bdev))
706 return result;
708 result = blk_queue_enter(bdev->bd_queue, 0);
709 if (result)
710 return result;
711 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
712 REQ_OP_READ);
713 blk_queue_exit(bdev->bd_queue);
714 return result;
716 EXPORT_SYMBOL_GPL(bdev_read_page);
719 * bdev_write_page() - Start writing a page to a block device
720 * @bdev: The device to write the page to
721 * @sector: The offset on the device to write the page to (need not be aligned)
722 * @page: The page to write
723 * @wbc: The writeback_control for the write
725 * On entry, the page should be locked and not currently under writeback.
726 * On exit, if the write started successfully, the page will be unlocked and
727 * under writeback. If the write failed already (eg the driver failed to
728 * queue the page to the device), the page will still be locked. If the
729 * caller is a ->writepage implementation, it will need to unlock the page.
731 * Errors returned by this function are usually "soft", eg out of memory, or
732 * queue full; callers should try a different route to write this page rather
733 * than propagate an error back up the stack.
735 * Return: negative errno if an error occurs, 0 if submission was successful.
737 int bdev_write_page(struct block_device *bdev, sector_t sector,
738 struct page *page, struct writeback_control *wbc)
740 int result;
741 const struct block_device_operations *ops = bdev->bd_disk->fops;
743 if (!ops->rw_page || bdev_get_integrity(bdev))
744 return -EOPNOTSUPP;
745 result = blk_queue_enter(bdev->bd_queue, 0);
746 if (result)
747 return result;
749 set_page_writeback(page);
750 result = ops->rw_page(bdev, sector + get_start_sect(bdev), page,
751 REQ_OP_WRITE);
752 if (result) {
753 end_page_writeback(page);
754 } else {
755 clean_page_buffers(page);
756 unlock_page(page);
758 blk_queue_exit(bdev->bd_queue);
759 return result;
761 EXPORT_SYMBOL_GPL(bdev_write_page);
764 * pseudo-fs
767 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(bdev_lock);
768 static struct kmem_cache * bdev_cachep __read_mostly;
770 static struct inode *bdev_alloc_inode(struct super_block *sb)
772 struct bdev_inode *ei = kmem_cache_alloc(bdev_cachep, GFP_KERNEL);
773 if (!ei)
774 return NULL;
775 return &ei->vfs_inode;
778 static void bdev_free_inode(struct inode *inode)
780 kmem_cache_free(bdev_cachep, BDEV_I(inode));
783 static void init_once(void *foo)
785 struct bdev_inode *ei = (struct bdev_inode *) foo;
786 struct block_device *bdev = &ei->bdev;
788 memset(bdev, 0, sizeof(*bdev));
789 mutex_init(&bdev->bd_mutex);
790 INIT_LIST_HEAD(&bdev->bd_list);
791 #ifdef CONFIG_SYSFS
792 INIT_LIST_HEAD(&bdev->bd_holder_disks);
793 #endif
794 bdev->bd_bdi = &noop_backing_dev_info;
795 inode_init_once(&ei->vfs_inode);
796 /* Initialize mutex for freeze. */
797 mutex_init(&bdev->bd_fsfreeze_mutex);
800 static void bdev_evict_inode(struct inode *inode)
802 struct block_device *bdev = &BDEV_I(inode)->bdev;
803 truncate_inode_pages_final(&inode->i_data);
804 invalidate_inode_buffers(inode); /* is it needed here? */
805 clear_inode(inode);
806 spin_lock(&bdev_lock);
807 list_del_init(&bdev->bd_list);
808 spin_unlock(&bdev_lock);
809 /* Detach inode from wb early as bdi_put() may free bdi->wb */
810 inode_detach_wb(inode);
811 if (bdev->bd_bdi != &noop_backing_dev_info) {
812 bdi_put(bdev->bd_bdi);
813 bdev->bd_bdi = &noop_backing_dev_info;
817 static const struct super_operations bdev_sops = {
818 .statfs = simple_statfs,
819 .alloc_inode = bdev_alloc_inode,
820 .free_inode = bdev_free_inode,
821 .drop_inode = generic_delete_inode,
822 .evict_inode = bdev_evict_inode,
825 static int bd_init_fs_context(struct fs_context *fc)
827 struct pseudo_fs_context *ctx = init_pseudo(fc, BDEVFS_MAGIC);
828 if (!ctx)
829 return -ENOMEM;
830 fc->s_iflags |= SB_I_CGROUPWB;
831 ctx->ops = &bdev_sops;
832 return 0;
835 static struct file_system_type bd_type = {
836 .name = "bdev",
837 .init_fs_context = bd_init_fs_context,
838 .kill_sb = kill_anon_super,
841 struct super_block *blockdev_superblock __read_mostly;
842 EXPORT_SYMBOL_GPL(blockdev_superblock);
844 void __init bdev_cache_init(void)
846 int err;
847 static struct vfsmount *bd_mnt;
849 bdev_cachep = kmem_cache_create("bdev_cache", sizeof(struct bdev_inode),
850 0, (SLAB_HWCACHE_ALIGN|SLAB_RECLAIM_ACCOUNT|
851 SLAB_MEM_SPREAD|SLAB_ACCOUNT|SLAB_PANIC),
852 init_once);
853 err = register_filesystem(&bd_type);
854 if (err)
855 panic("Cannot register bdev pseudo-fs");
856 bd_mnt = kern_mount(&bd_type);
857 if (IS_ERR(bd_mnt))
858 panic("Cannot create bdev pseudo-fs");
859 blockdev_superblock = bd_mnt->mnt_sb; /* For writeback */
863 * Most likely _very_ bad one - but then it's hardly critical for small
864 * /dev and can be fixed when somebody will need really large one.
865 * Keep in mind that it will be fed through icache hash function too.
867 static inline unsigned long hash(dev_t dev)
869 return MAJOR(dev)+MINOR(dev);
872 static int bdev_test(struct inode *inode, void *data)
874 return BDEV_I(inode)->bdev.bd_dev == *(dev_t *)data;
877 static int bdev_set(struct inode *inode, void *data)
879 BDEV_I(inode)->bdev.bd_dev = *(dev_t *)data;
880 return 0;
883 static LIST_HEAD(all_bdevs);
886 * If there is a bdev inode for this device, unhash it so that it gets evicted
887 * as soon as last inode reference is dropped.
889 void bdev_unhash_inode(dev_t dev)
891 struct inode *inode;
893 inode = ilookup5(blockdev_superblock, hash(dev), bdev_test, &dev);
894 if (inode) {
895 remove_inode_hash(inode);
896 iput(inode);
900 struct block_device *bdget(dev_t dev)
902 struct block_device *bdev;
903 struct inode *inode;
905 inode = iget5_locked(blockdev_superblock, hash(dev),
906 bdev_test, bdev_set, &dev);
908 if (!inode)
909 return NULL;
911 bdev = &BDEV_I(inode)->bdev;
913 if (inode->i_state & I_NEW) {
914 bdev->bd_contains = NULL;
915 bdev->bd_super = NULL;
916 bdev->bd_inode = inode;
917 bdev->bd_block_size = i_blocksize(inode);
918 bdev->bd_part_count = 0;
919 bdev->bd_invalidated = 0;
920 inode->i_mode = S_IFBLK;
921 inode->i_rdev = dev;
922 inode->i_bdev = bdev;
923 inode->i_data.a_ops = &def_blk_aops;
924 mapping_set_gfp_mask(&inode->i_data, GFP_USER);
925 spin_lock(&bdev_lock);
926 list_add(&bdev->bd_list, &all_bdevs);
927 spin_unlock(&bdev_lock);
928 unlock_new_inode(inode);
930 return bdev;
933 EXPORT_SYMBOL(bdget);
936 * bdgrab -- Grab a reference to an already referenced block device
937 * @bdev: Block device to grab a reference to.
939 struct block_device *bdgrab(struct block_device *bdev)
941 ihold(bdev->bd_inode);
942 return bdev;
944 EXPORT_SYMBOL(bdgrab);
946 long nr_blockdev_pages(void)
948 struct block_device *bdev;
949 long ret = 0;
950 spin_lock(&bdev_lock);
951 list_for_each_entry(bdev, &all_bdevs, bd_list) {
952 ret += bdev->bd_inode->i_mapping->nrpages;
954 spin_unlock(&bdev_lock);
955 return ret;
958 void bdput(struct block_device *bdev)
960 iput(bdev->bd_inode);
963 EXPORT_SYMBOL(bdput);
965 static struct block_device *bd_acquire(struct inode *inode)
967 struct block_device *bdev;
969 spin_lock(&bdev_lock);
970 bdev = inode->i_bdev;
971 if (bdev && !inode_unhashed(bdev->bd_inode)) {
972 bdgrab(bdev);
973 spin_unlock(&bdev_lock);
974 return bdev;
976 spin_unlock(&bdev_lock);
979 * i_bdev references block device inode that was already shut down
980 * (corresponding device got removed). Remove the reference and look
981 * up block device inode again just in case new device got
982 * reestablished under the same device number.
984 if (bdev)
985 bd_forget(inode);
987 bdev = bdget(inode->i_rdev);
988 if (bdev) {
989 spin_lock(&bdev_lock);
990 if (!inode->i_bdev) {
992 * We take an additional reference to bd_inode,
993 * and it's released in clear_inode() of inode.
994 * So, we can access it via ->i_mapping always
995 * without igrab().
997 bdgrab(bdev);
998 inode->i_bdev = bdev;
999 inode->i_mapping = bdev->bd_inode->i_mapping;
1001 spin_unlock(&bdev_lock);
1003 return bdev;
1006 /* Call when you free inode */
1008 void bd_forget(struct inode *inode)
1010 struct block_device *bdev = NULL;
1012 spin_lock(&bdev_lock);
1013 if (!sb_is_blkdev_sb(inode->i_sb))
1014 bdev = inode->i_bdev;
1015 inode->i_bdev = NULL;
1016 inode->i_mapping = &inode->i_data;
1017 spin_unlock(&bdev_lock);
1019 if (bdev)
1020 bdput(bdev);
1024 * bd_may_claim - test whether a block device can be claimed
1025 * @bdev: block device of interest
1026 * @whole: whole block device containing @bdev, may equal @bdev
1027 * @holder: holder trying to claim @bdev
1029 * Test whether @bdev can be claimed by @holder.
1031 * CONTEXT:
1032 * spin_lock(&bdev_lock).
1034 * RETURNS:
1035 * %true if @bdev can be claimed, %false otherwise.
1037 static bool bd_may_claim(struct block_device *bdev, struct block_device *whole,
1038 void *holder)
1040 if (bdev->bd_holder == holder)
1041 return true; /* already a holder */
1042 else if (bdev->bd_holder != NULL)
1043 return false; /* held by someone else */
1044 else if (whole == bdev)
1045 return true; /* is a whole device which isn't held */
1047 else if (whole->bd_holder == bd_may_claim)
1048 return true; /* is a partition of a device that is being partitioned */
1049 else if (whole->bd_holder != NULL)
1050 return false; /* is a partition of a held device */
1051 else
1052 return true; /* is a partition of an un-held device */
1056 * bd_prepare_to_claim - prepare to claim a block device
1057 * @bdev: block device of interest
1058 * @whole: the whole device containing @bdev, may equal @bdev
1059 * @holder: holder trying to claim @bdev
1061 * Prepare to claim @bdev. This function fails if @bdev is already
1062 * claimed by another holder and waits if another claiming is in
1063 * progress. This function doesn't actually claim. On successful
1064 * return, the caller has ownership of bd_claiming and bd_holder[s].
1066 * CONTEXT:
1067 * spin_lock(&bdev_lock). Might release bdev_lock, sleep and regrab
1068 * it multiple times.
1070 * RETURNS:
1071 * 0 if @bdev can be claimed, -EBUSY otherwise.
1073 static int bd_prepare_to_claim(struct block_device *bdev,
1074 struct block_device *whole, void *holder)
1076 retry:
1077 /* if someone else claimed, fail */
1078 if (!bd_may_claim(bdev, whole, holder))
1079 return -EBUSY;
1081 /* if claiming is already in progress, wait for it to finish */
1082 if (whole->bd_claiming) {
1083 wait_queue_head_t *wq = bit_waitqueue(&whole->bd_claiming, 0);
1084 DEFINE_WAIT(wait);
1086 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
1087 spin_unlock(&bdev_lock);
1088 schedule();
1089 finish_wait(wq, &wait);
1090 spin_lock(&bdev_lock);
1091 goto retry;
1094 /* yay, all mine */
1095 return 0;
1098 static struct gendisk *bdev_get_gendisk(struct block_device *bdev, int *partno)
1100 struct gendisk *disk = get_gendisk(bdev->bd_dev, partno);
1102 if (!disk)
1103 return NULL;
1105 * Now that we hold gendisk reference we make sure bdev we looked up is
1106 * not stale. If it is, it means device got removed and created before
1107 * we looked up gendisk and we fail open in such case. Associating
1108 * unhashed bdev with newly created gendisk could lead to two bdevs
1109 * (and thus two independent caches) being associated with one device
1110 * which is bad.
1112 if (inode_unhashed(bdev->bd_inode)) {
1113 put_disk_and_module(disk);
1114 return NULL;
1116 return disk;
1120 * bd_start_claiming - start claiming a block device
1121 * @bdev: block device of interest
1122 * @holder: holder trying to claim @bdev
1124 * @bdev is about to be opened exclusively. Check @bdev can be opened
1125 * exclusively and mark that an exclusive open is in progress. Each
1126 * successful call to this function must be matched with a call to
1127 * either bd_finish_claiming() or bd_abort_claiming() (which do not
1128 * fail).
1130 * This function is used to gain exclusive access to the block device
1131 * without actually causing other exclusive open attempts to fail. It
1132 * should be used when the open sequence itself requires exclusive
1133 * access but may subsequently fail.
1135 * CONTEXT:
1136 * Might sleep.
1138 * RETURNS:
1139 * Pointer to the block device containing @bdev on success, ERR_PTR()
1140 * value on failure.
1142 struct block_device *bd_start_claiming(struct block_device *bdev, void *holder)
1144 struct gendisk *disk;
1145 struct block_device *whole;
1146 int partno, err;
1148 might_sleep();
1151 * @bdev might not have been initialized properly yet, look up
1152 * and grab the outer block device the hard way.
1154 disk = bdev_get_gendisk(bdev, &partno);
1155 if (!disk)
1156 return ERR_PTR(-ENXIO);
1159 * Normally, @bdev should equal what's returned from bdget_disk()
1160 * if partno is 0; however, some drivers (floppy) use multiple
1161 * bdev's for the same physical device and @bdev may be one of the
1162 * aliases. Keep @bdev if partno is 0. This means claimer
1163 * tracking is broken for those devices but it has always been that
1164 * way.
1166 if (partno)
1167 whole = bdget_disk(disk, 0);
1168 else
1169 whole = bdgrab(bdev);
1171 put_disk_and_module(disk);
1172 if (!whole)
1173 return ERR_PTR(-ENOMEM);
1175 /* prepare to claim, if successful, mark claiming in progress */
1176 spin_lock(&bdev_lock);
1178 err = bd_prepare_to_claim(bdev, whole, holder);
1179 if (err == 0) {
1180 whole->bd_claiming = holder;
1181 spin_unlock(&bdev_lock);
1182 return whole;
1183 } else {
1184 spin_unlock(&bdev_lock);
1185 bdput(whole);
1186 return ERR_PTR(err);
1189 EXPORT_SYMBOL(bd_start_claiming);
1191 static void bd_clear_claiming(struct block_device *whole, void *holder)
1193 lockdep_assert_held(&bdev_lock);
1194 /* tell others that we're done */
1195 BUG_ON(whole->bd_claiming != holder);
1196 whole->bd_claiming = NULL;
1197 wake_up_bit(&whole->bd_claiming, 0);
1201 * bd_finish_claiming - finish claiming of a block device
1202 * @bdev: block device of interest
1203 * @whole: whole block device (returned from bd_start_claiming())
1204 * @holder: holder that has claimed @bdev
1206 * Finish exclusive open of a block device. Mark the device as exlusively
1207 * open by the holder and wake up all waiters for exclusive open to finish.
1209 void bd_finish_claiming(struct block_device *bdev, struct block_device *whole,
1210 void *holder)
1212 spin_lock(&bdev_lock);
1213 BUG_ON(!bd_may_claim(bdev, whole, holder));
1215 * Note that for a whole device bd_holders will be incremented twice,
1216 * and bd_holder will be set to bd_may_claim before being set to holder
1218 whole->bd_holders++;
1219 whole->bd_holder = bd_may_claim;
1220 bdev->bd_holders++;
1221 bdev->bd_holder = holder;
1222 bd_clear_claiming(whole, holder);
1223 spin_unlock(&bdev_lock);
1225 EXPORT_SYMBOL(bd_finish_claiming);
1228 * bd_abort_claiming - abort claiming of a block device
1229 * @bdev: block device of interest
1230 * @whole: whole block device (returned from bd_start_claiming())
1231 * @holder: holder that has claimed @bdev
1233 * Abort claiming of a block device when the exclusive open failed. This can be
1234 * also used when exclusive open is not actually desired and we just needed
1235 * to block other exclusive openers for a while.
1237 void bd_abort_claiming(struct block_device *bdev, struct block_device *whole,
1238 void *holder)
1240 spin_lock(&bdev_lock);
1241 bd_clear_claiming(whole, holder);
1242 spin_unlock(&bdev_lock);
1244 EXPORT_SYMBOL(bd_abort_claiming);
1246 #ifdef CONFIG_SYSFS
1247 struct bd_holder_disk {
1248 struct list_head list;
1249 struct gendisk *disk;
1250 int refcnt;
1253 static struct bd_holder_disk *bd_find_holder_disk(struct block_device *bdev,
1254 struct gendisk *disk)
1256 struct bd_holder_disk *holder;
1258 list_for_each_entry(holder, &bdev->bd_holder_disks, list)
1259 if (holder->disk == disk)
1260 return holder;
1261 return NULL;
1264 static int add_symlink(struct kobject *from, struct kobject *to)
1266 return sysfs_create_link(from, to, kobject_name(to));
1269 static void del_symlink(struct kobject *from, struct kobject *to)
1271 sysfs_remove_link(from, kobject_name(to));
1275 * bd_link_disk_holder - create symlinks between holding disk and slave bdev
1276 * @bdev: the claimed slave bdev
1277 * @disk: the holding disk
1279 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1281 * This functions creates the following sysfs symlinks.
1283 * - from "slaves" directory of the holder @disk to the claimed @bdev
1284 * - from "holders" directory of the @bdev to the holder @disk
1286 * For example, if /dev/dm-0 maps to /dev/sda and disk for dm-0 is
1287 * passed to bd_link_disk_holder(), then:
1289 * /sys/block/dm-0/slaves/sda --> /sys/block/sda
1290 * /sys/block/sda/holders/dm-0 --> /sys/block/dm-0
1292 * The caller must have claimed @bdev before calling this function and
1293 * ensure that both @bdev and @disk are valid during the creation and
1294 * lifetime of these symlinks.
1296 * CONTEXT:
1297 * Might sleep.
1299 * RETURNS:
1300 * 0 on success, -errno on failure.
1302 int bd_link_disk_holder(struct block_device *bdev, struct gendisk *disk)
1304 struct bd_holder_disk *holder;
1305 int ret = 0;
1307 mutex_lock(&bdev->bd_mutex);
1309 WARN_ON_ONCE(!bdev->bd_holder);
1311 /* FIXME: remove the following once add_disk() handles errors */
1312 if (WARN_ON(!disk->slave_dir || !bdev->bd_part->holder_dir))
1313 goto out_unlock;
1315 holder = bd_find_holder_disk(bdev, disk);
1316 if (holder) {
1317 holder->refcnt++;
1318 goto out_unlock;
1321 holder = kzalloc(sizeof(*holder), GFP_KERNEL);
1322 if (!holder) {
1323 ret = -ENOMEM;
1324 goto out_unlock;
1327 INIT_LIST_HEAD(&holder->list);
1328 holder->disk = disk;
1329 holder->refcnt = 1;
1331 ret = add_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1332 if (ret)
1333 goto out_free;
1335 ret = add_symlink(bdev->bd_part->holder_dir, &disk_to_dev(disk)->kobj);
1336 if (ret)
1337 goto out_del;
1339 * bdev could be deleted beneath us which would implicitly destroy
1340 * the holder directory. Hold on to it.
1342 kobject_get(bdev->bd_part->holder_dir);
1344 list_add(&holder->list, &bdev->bd_holder_disks);
1345 goto out_unlock;
1347 out_del:
1348 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1349 out_free:
1350 kfree(holder);
1351 out_unlock:
1352 mutex_unlock(&bdev->bd_mutex);
1353 return ret;
1355 EXPORT_SYMBOL_GPL(bd_link_disk_holder);
1358 * bd_unlink_disk_holder - destroy symlinks created by bd_link_disk_holder()
1359 * @bdev: the calimed slave bdev
1360 * @disk: the holding disk
1362 * DON'T USE THIS UNLESS YOU'RE ALREADY USING IT.
1364 * CONTEXT:
1365 * Might sleep.
1367 void bd_unlink_disk_holder(struct block_device *bdev, struct gendisk *disk)
1369 struct bd_holder_disk *holder;
1371 mutex_lock(&bdev->bd_mutex);
1373 holder = bd_find_holder_disk(bdev, disk);
1375 if (!WARN_ON_ONCE(holder == NULL) && !--holder->refcnt) {
1376 del_symlink(disk->slave_dir, &part_to_dev(bdev->bd_part)->kobj);
1377 del_symlink(bdev->bd_part->holder_dir,
1378 &disk_to_dev(disk)->kobj);
1379 kobject_put(bdev->bd_part->holder_dir);
1380 list_del_init(&holder->list);
1381 kfree(holder);
1384 mutex_unlock(&bdev->bd_mutex);
1386 EXPORT_SYMBOL_GPL(bd_unlink_disk_holder);
1387 #endif
1390 * flush_disk - invalidates all buffer-cache entries on a disk
1392 * @bdev: struct block device to be flushed
1393 * @kill_dirty: flag to guide handling of dirty inodes
1395 * Invalidates all buffer-cache entries on a disk. It should be called
1396 * when a disk has been changed -- either by a media change or online
1397 * resize.
1399 static void flush_disk(struct block_device *bdev, bool kill_dirty)
1401 if (__invalidate_device(bdev, kill_dirty)) {
1402 printk(KERN_WARNING "VFS: busy inodes on changed media or "
1403 "resized disk %s\n",
1404 bdev->bd_disk ? bdev->bd_disk->disk_name : "");
1406 bdev->bd_invalidated = 1;
1410 * check_disk_size_change - checks for disk size change and adjusts bdev size.
1411 * @disk: struct gendisk to check
1412 * @bdev: struct bdev to adjust.
1413 * @verbose: if %true log a message about a size change if there is any
1415 * This routine checks to see if the bdev size does not match the disk size
1416 * and adjusts it if it differs. When shrinking the bdev size, its all caches
1417 * are freed.
1419 static void check_disk_size_change(struct gendisk *disk,
1420 struct block_device *bdev, bool verbose)
1422 loff_t disk_size, bdev_size;
1424 disk_size = (loff_t)get_capacity(disk) << 9;
1425 bdev_size = i_size_read(bdev->bd_inode);
1426 if (disk_size != bdev_size) {
1427 if (verbose) {
1428 printk(KERN_INFO
1429 "%s: detected capacity change from %lld to %lld\n",
1430 disk->disk_name, bdev_size, disk_size);
1432 i_size_write(bdev->bd_inode, disk_size);
1433 if (bdev_size > disk_size)
1434 flush_disk(bdev, false);
1436 bdev->bd_invalidated = 0;
1440 * revalidate_disk - wrapper for lower-level driver's revalidate_disk call-back
1441 * @disk: struct gendisk to be revalidated
1443 * This routine is a wrapper for lower-level driver's revalidate_disk
1444 * call-backs. It is used to do common pre and post operations needed
1445 * for all revalidate_disk operations.
1447 int revalidate_disk(struct gendisk *disk)
1449 int ret = 0;
1451 if (disk->fops->revalidate_disk)
1452 ret = disk->fops->revalidate_disk(disk);
1455 * Hidden disks don't have associated bdev so there's no point in
1456 * revalidating it.
1458 if (!(disk->flags & GENHD_FL_HIDDEN)) {
1459 struct block_device *bdev = bdget_disk(disk, 0);
1461 if (!bdev)
1462 return ret;
1464 mutex_lock(&bdev->bd_mutex);
1465 check_disk_size_change(disk, bdev, ret == 0);
1466 mutex_unlock(&bdev->bd_mutex);
1467 bdput(bdev);
1469 return ret;
1471 EXPORT_SYMBOL(revalidate_disk);
1474 * This routine checks whether a removable media has been changed,
1475 * and invalidates all buffer-cache-entries in that case. This
1476 * is a relatively slow routine, so we have to try to minimize using
1477 * it. Thus it is called only upon a 'mount' or 'open'. This
1478 * is the best way of combining speed and utility, I think.
1479 * People changing diskettes in the middle of an operation deserve
1480 * to lose :-)
1482 int check_disk_change(struct block_device *bdev)
1484 struct gendisk *disk = bdev->bd_disk;
1485 const struct block_device_operations *bdops = disk->fops;
1486 unsigned int events;
1488 events = disk_clear_events(disk, DISK_EVENT_MEDIA_CHANGE |
1489 DISK_EVENT_EJECT_REQUEST);
1490 if (!(events & DISK_EVENT_MEDIA_CHANGE))
1491 return 0;
1493 flush_disk(bdev, true);
1494 if (bdops->revalidate_disk)
1495 bdops->revalidate_disk(bdev->bd_disk);
1496 return 1;
1499 EXPORT_SYMBOL(check_disk_change);
1501 void bd_set_size(struct block_device *bdev, loff_t size)
1503 inode_lock(bdev->bd_inode);
1504 i_size_write(bdev->bd_inode, size);
1505 inode_unlock(bdev->bd_inode);
1507 EXPORT_SYMBOL(bd_set_size);
1509 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part);
1511 int bdev_disk_changed(struct block_device *bdev, bool invalidate)
1513 struct gendisk *disk = bdev->bd_disk;
1514 int ret;
1516 lockdep_assert_held(&bdev->bd_mutex);
1518 rescan:
1519 ret = blk_drop_partitions(disk, bdev);
1520 if (ret)
1521 return ret;
1523 if (invalidate)
1524 set_capacity(disk, 0);
1525 else if (disk->fops->revalidate_disk)
1526 disk->fops->revalidate_disk(disk);
1528 check_disk_size_change(disk, bdev, !invalidate);
1530 if (get_capacity(disk)) {
1531 ret = blk_add_partitions(disk, bdev);
1532 if (ret == -EAGAIN)
1533 goto rescan;
1534 } else if (invalidate) {
1536 * Tell userspace that the media / partition table may have
1537 * changed.
1539 kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
1542 return ret;
1545 * Only exported for for loop and dasd for historic reasons. Don't use in new
1546 * code!
1548 EXPORT_SYMBOL_GPL(bdev_disk_changed);
1551 * bd_mutex locking:
1553 * mutex_lock(part->bd_mutex)
1554 * mutex_lock_nested(whole->bd_mutex, 1)
1557 static int __blkdev_get(struct block_device *bdev, fmode_t mode, int for_part)
1559 struct gendisk *disk;
1560 int ret;
1561 int partno;
1562 int perm = 0;
1563 bool first_open = false;
1565 if (mode & FMODE_READ)
1566 perm |= MAY_READ;
1567 if (mode & FMODE_WRITE)
1568 perm |= MAY_WRITE;
1570 * hooks: /n/, see "layering violations".
1572 if (!for_part) {
1573 ret = devcgroup_inode_permission(bdev->bd_inode, perm);
1574 if (ret != 0) {
1575 bdput(bdev);
1576 return ret;
1580 restart:
1582 ret = -ENXIO;
1583 disk = bdev_get_gendisk(bdev, &partno);
1584 if (!disk)
1585 goto out;
1587 disk_block_events(disk);
1588 mutex_lock_nested(&bdev->bd_mutex, for_part);
1589 if (!bdev->bd_openers) {
1590 first_open = true;
1591 bdev->bd_disk = disk;
1592 bdev->bd_queue = disk->queue;
1593 bdev->bd_contains = bdev;
1594 bdev->bd_partno = partno;
1596 if (!partno) {
1597 ret = -ENXIO;
1598 bdev->bd_part = disk_get_part(disk, partno);
1599 if (!bdev->bd_part)
1600 goto out_clear;
1602 ret = 0;
1603 if (disk->fops->open) {
1604 ret = disk->fops->open(bdev, mode);
1605 if (ret == -ERESTARTSYS) {
1606 /* Lost a race with 'disk' being
1607 * deleted, try again.
1608 * See md.c
1610 disk_put_part(bdev->bd_part);
1611 bdev->bd_part = NULL;
1612 bdev->bd_disk = NULL;
1613 bdev->bd_queue = NULL;
1614 mutex_unlock(&bdev->bd_mutex);
1615 disk_unblock_events(disk);
1616 put_disk_and_module(disk);
1617 goto restart;
1621 if (!ret) {
1622 bd_set_size(bdev,(loff_t)get_capacity(disk)<<9);
1623 set_init_blocksize(bdev);
1627 * If the device is invalidated, rescan partition
1628 * if open succeeded or failed with -ENOMEDIUM.
1629 * The latter is necessary to prevent ghost
1630 * partitions on a removed medium.
1632 if (bdev->bd_invalidated &&
1633 (!ret || ret == -ENOMEDIUM))
1634 bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1636 if (ret)
1637 goto out_clear;
1638 } else {
1639 struct block_device *whole;
1640 whole = bdget_disk(disk, 0);
1641 ret = -ENOMEM;
1642 if (!whole)
1643 goto out_clear;
1644 BUG_ON(for_part);
1645 ret = __blkdev_get(whole, mode, 1);
1646 if (ret)
1647 goto out_clear;
1648 bdev->bd_contains = whole;
1649 bdev->bd_part = disk_get_part(disk, partno);
1650 if (!(disk->flags & GENHD_FL_UP) ||
1651 !bdev->bd_part || !bdev->bd_part->nr_sects) {
1652 ret = -ENXIO;
1653 goto out_clear;
1655 bd_set_size(bdev, (loff_t)bdev->bd_part->nr_sects << 9);
1656 set_init_blocksize(bdev);
1659 if (bdev->bd_bdi == &noop_backing_dev_info)
1660 bdev->bd_bdi = bdi_get(disk->queue->backing_dev_info);
1661 } else {
1662 if (bdev->bd_contains == bdev) {
1663 ret = 0;
1664 if (bdev->bd_disk->fops->open)
1665 ret = bdev->bd_disk->fops->open(bdev, mode);
1666 /* the same as first opener case, read comment there */
1667 if (bdev->bd_invalidated &&
1668 (!ret || ret == -ENOMEDIUM))
1669 bdev_disk_changed(bdev, ret == -ENOMEDIUM);
1670 if (ret)
1671 goto out_unlock_bdev;
1674 bdev->bd_openers++;
1675 if (for_part)
1676 bdev->bd_part_count++;
1677 mutex_unlock(&bdev->bd_mutex);
1678 disk_unblock_events(disk);
1679 /* only one opener holds refs to the module and disk */
1680 if (!first_open)
1681 put_disk_and_module(disk);
1682 return 0;
1684 out_clear:
1685 disk_put_part(bdev->bd_part);
1686 bdev->bd_disk = NULL;
1687 bdev->bd_part = NULL;
1688 bdev->bd_queue = NULL;
1689 if (bdev != bdev->bd_contains)
1690 __blkdev_put(bdev->bd_contains, mode, 1);
1691 bdev->bd_contains = NULL;
1692 out_unlock_bdev:
1693 mutex_unlock(&bdev->bd_mutex);
1694 disk_unblock_events(disk);
1695 put_disk_and_module(disk);
1696 out:
1697 bdput(bdev);
1699 return ret;
1703 * blkdev_get - open a block device
1704 * @bdev: block_device to open
1705 * @mode: FMODE_* mask
1706 * @holder: exclusive holder identifier
1708 * Open @bdev with @mode. If @mode includes %FMODE_EXCL, @bdev is
1709 * open with exclusive access. Specifying %FMODE_EXCL with %NULL
1710 * @holder is invalid. Exclusive opens may nest for the same @holder.
1712 * On success, the reference count of @bdev is unchanged. On failure,
1713 * @bdev is put.
1715 * CONTEXT:
1716 * Might sleep.
1718 * RETURNS:
1719 * 0 on success, -errno on failure.
1721 int blkdev_get(struct block_device *bdev, fmode_t mode, void *holder)
1723 struct block_device *whole = NULL;
1724 int res;
1726 WARN_ON_ONCE((mode & FMODE_EXCL) && !holder);
1728 if ((mode & FMODE_EXCL) && holder) {
1729 whole = bd_start_claiming(bdev, holder);
1730 if (IS_ERR(whole)) {
1731 bdput(bdev);
1732 return PTR_ERR(whole);
1736 res = __blkdev_get(bdev, mode, 0);
1738 if (whole) {
1739 struct gendisk *disk = whole->bd_disk;
1741 /* finish claiming */
1742 mutex_lock(&bdev->bd_mutex);
1743 if (!res)
1744 bd_finish_claiming(bdev, whole, holder);
1745 else
1746 bd_abort_claiming(bdev, whole, holder);
1748 * Block event polling for write claims if requested. Any
1749 * write holder makes the write_holder state stick until
1750 * all are released. This is good enough and tracking
1751 * individual writeable reference is too fragile given the
1752 * way @mode is used in blkdev_get/put().
1754 if (!res && (mode & FMODE_WRITE) && !bdev->bd_write_holder &&
1755 (disk->flags & GENHD_FL_BLOCK_EVENTS_ON_EXCL_WRITE)) {
1756 bdev->bd_write_holder = true;
1757 disk_block_events(disk);
1760 mutex_unlock(&bdev->bd_mutex);
1761 bdput(whole);
1764 return res;
1766 EXPORT_SYMBOL(blkdev_get);
1769 * blkdev_get_by_path - open a block device by name
1770 * @path: path to the block device to open
1771 * @mode: FMODE_* mask
1772 * @holder: exclusive holder identifier
1774 * Open the blockdevice described by the device file at @path. @mode
1775 * and @holder are identical to blkdev_get().
1777 * On success, the returned block_device has reference count of one.
1779 * CONTEXT:
1780 * Might sleep.
1782 * RETURNS:
1783 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1785 struct block_device *blkdev_get_by_path(const char *path, fmode_t mode,
1786 void *holder)
1788 struct block_device *bdev;
1789 int err;
1791 bdev = lookup_bdev(path);
1792 if (IS_ERR(bdev))
1793 return bdev;
1795 err = blkdev_get(bdev, mode, holder);
1796 if (err)
1797 return ERR_PTR(err);
1799 if ((mode & FMODE_WRITE) && bdev_read_only(bdev)) {
1800 blkdev_put(bdev, mode);
1801 return ERR_PTR(-EACCES);
1804 return bdev;
1806 EXPORT_SYMBOL(blkdev_get_by_path);
1809 * blkdev_get_by_dev - open a block device by device number
1810 * @dev: device number of block device to open
1811 * @mode: FMODE_* mask
1812 * @holder: exclusive holder identifier
1814 * Open the blockdevice described by device number @dev. @mode and
1815 * @holder are identical to blkdev_get().
1817 * Use it ONLY if you really do not have anything better - i.e. when
1818 * you are behind a truly sucky interface and all you are given is a
1819 * device number. _Never_ to be used for internal purposes. If you
1820 * ever need it - reconsider your API.
1822 * On success, the returned block_device has reference count of one.
1824 * CONTEXT:
1825 * Might sleep.
1827 * RETURNS:
1828 * Pointer to block_device on success, ERR_PTR(-errno) on failure.
1830 struct block_device *blkdev_get_by_dev(dev_t dev, fmode_t mode, void *holder)
1832 struct block_device *bdev;
1833 int err;
1835 bdev = bdget(dev);
1836 if (!bdev)
1837 return ERR_PTR(-ENOMEM);
1839 err = blkdev_get(bdev, mode, holder);
1840 if (err)
1841 return ERR_PTR(err);
1843 return bdev;
1845 EXPORT_SYMBOL(blkdev_get_by_dev);
1847 static int blkdev_open(struct inode * inode, struct file * filp)
1849 struct block_device *bdev;
1852 * Preserve backwards compatibility and allow large file access
1853 * even if userspace doesn't ask for it explicitly. Some mkfs
1854 * binary needs it. We might want to drop this workaround
1855 * during an unstable branch.
1857 filp->f_flags |= O_LARGEFILE;
1859 filp->f_mode |= FMODE_NOWAIT;
1861 if (filp->f_flags & O_NDELAY)
1862 filp->f_mode |= FMODE_NDELAY;
1863 if (filp->f_flags & O_EXCL)
1864 filp->f_mode |= FMODE_EXCL;
1865 if ((filp->f_flags & O_ACCMODE) == 3)
1866 filp->f_mode |= FMODE_WRITE_IOCTL;
1868 bdev = bd_acquire(inode);
1869 if (bdev == NULL)
1870 return -ENOMEM;
1872 filp->f_mapping = bdev->bd_inode->i_mapping;
1873 filp->f_wb_err = filemap_sample_wb_err(filp->f_mapping);
1875 return blkdev_get(bdev, filp->f_mode, filp);
1878 static void __blkdev_put(struct block_device *bdev, fmode_t mode, int for_part)
1880 struct gendisk *disk = bdev->bd_disk;
1881 struct block_device *victim = NULL;
1883 mutex_lock_nested(&bdev->bd_mutex, for_part);
1884 if (for_part)
1885 bdev->bd_part_count--;
1887 if (!--bdev->bd_openers) {
1888 WARN_ON_ONCE(bdev->bd_holders);
1889 sync_blockdev(bdev);
1890 kill_bdev(bdev);
1892 bdev_write_inode(bdev);
1894 if (bdev->bd_contains == bdev) {
1895 if (disk->fops->release)
1896 disk->fops->release(disk, mode);
1898 if (!bdev->bd_openers) {
1899 disk_put_part(bdev->bd_part);
1900 bdev->bd_part = NULL;
1901 bdev->bd_disk = NULL;
1902 if (bdev != bdev->bd_contains)
1903 victim = bdev->bd_contains;
1904 bdev->bd_contains = NULL;
1906 put_disk_and_module(disk);
1908 mutex_unlock(&bdev->bd_mutex);
1909 bdput(bdev);
1910 if (victim)
1911 __blkdev_put(victim, mode, 1);
1914 void blkdev_put(struct block_device *bdev, fmode_t mode)
1916 mutex_lock(&bdev->bd_mutex);
1918 if (mode & FMODE_EXCL) {
1919 bool bdev_free;
1922 * Release a claim on the device. The holder fields
1923 * are protected with bdev_lock. bd_mutex is to
1924 * synchronize disk_holder unlinking.
1926 spin_lock(&bdev_lock);
1928 WARN_ON_ONCE(--bdev->bd_holders < 0);
1929 WARN_ON_ONCE(--bdev->bd_contains->bd_holders < 0);
1931 /* bd_contains might point to self, check in a separate step */
1932 if ((bdev_free = !bdev->bd_holders))
1933 bdev->bd_holder = NULL;
1934 if (!bdev->bd_contains->bd_holders)
1935 bdev->bd_contains->bd_holder = NULL;
1937 spin_unlock(&bdev_lock);
1940 * If this was the last claim, remove holder link and
1941 * unblock evpoll if it was a write holder.
1943 if (bdev_free && bdev->bd_write_holder) {
1944 disk_unblock_events(bdev->bd_disk);
1945 bdev->bd_write_holder = false;
1950 * Trigger event checking and tell drivers to flush MEDIA_CHANGE
1951 * event. This is to ensure detection of media removal commanded
1952 * from userland - e.g. eject(1).
1954 disk_flush_events(bdev->bd_disk, DISK_EVENT_MEDIA_CHANGE);
1956 mutex_unlock(&bdev->bd_mutex);
1958 __blkdev_put(bdev, mode, 0);
1960 EXPORT_SYMBOL(blkdev_put);
1962 static int blkdev_close(struct inode * inode, struct file * filp)
1964 struct block_device *bdev = I_BDEV(bdev_file_inode(filp));
1965 blkdev_put(bdev, filp->f_mode);
1966 return 0;
1969 static long block_ioctl(struct file *file, unsigned cmd, unsigned long arg)
1971 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
1972 fmode_t mode = file->f_mode;
1975 * O_NDELAY can be altered using fcntl(.., F_SETFL, ..), so we have
1976 * to updated it before every ioctl.
1978 if (file->f_flags & O_NDELAY)
1979 mode |= FMODE_NDELAY;
1980 else
1981 mode &= ~FMODE_NDELAY;
1983 return blkdev_ioctl(bdev, mode, cmd, arg);
1987 * Write data to the block device. Only intended for the block device itself
1988 * and the raw driver which basically is a fake block device.
1990 * Does not take i_mutex for the write and thus is not for general purpose
1991 * use.
1993 ssize_t blkdev_write_iter(struct kiocb *iocb, struct iov_iter *from)
1995 struct file *file = iocb->ki_filp;
1996 struct inode *bd_inode = bdev_file_inode(file);
1997 loff_t size = i_size_read(bd_inode);
1998 struct blk_plug plug;
1999 ssize_t ret;
2001 if (bdev_read_only(I_BDEV(bd_inode)))
2002 return -EPERM;
2004 if (IS_SWAPFILE(bd_inode))
2005 return -ETXTBSY;
2007 if (!iov_iter_count(from))
2008 return 0;
2010 if (iocb->ki_pos >= size)
2011 return -ENOSPC;
2013 if ((iocb->ki_flags & (IOCB_NOWAIT | IOCB_DIRECT)) == IOCB_NOWAIT)
2014 return -EOPNOTSUPP;
2016 iov_iter_truncate(from, size - iocb->ki_pos);
2018 blk_start_plug(&plug);
2019 ret = __generic_file_write_iter(iocb, from);
2020 if (ret > 0)
2021 ret = generic_write_sync(iocb, ret);
2022 blk_finish_plug(&plug);
2023 return ret;
2025 EXPORT_SYMBOL_GPL(blkdev_write_iter);
2027 ssize_t blkdev_read_iter(struct kiocb *iocb, struct iov_iter *to)
2029 struct file *file = iocb->ki_filp;
2030 struct inode *bd_inode = bdev_file_inode(file);
2031 loff_t size = i_size_read(bd_inode);
2032 loff_t pos = iocb->ki_pos;
2034 if (pos >= size)
2035 return 0;
2037 size -= pos;
2038 iov_iter_truncate(to, size);
2039 return generic_file_read_iter(iocb, to);
2041 EXPORT_SYMBOL_GPL(blkdev_read_iter);
2044 * Try to release a page associated with block device when the system
2045 * is under memory pressure.
2047 static int blkdev_releasepage(struct page *page, gfp_t wait)
2049 struct super_block *super = BDEV_I(page->mapping->host)->bdev.bd_super;
2051 if (super && super->s_op->bdev_try_to_free_page)
2052 return super->s_op->bdev_try_to_free_page(super, page, wait);
2054 return try_to_free_buffers(page);
2057 static int blkdev_writepages(struct address_space *mapping,
2058 struct writeback_control *wbc)
2060 return generic_writepages(mapping, wbc);
2063 static const struct address_space_operations def_blk_aops = {
2064 .readpage = blkdev_readpage,
2065 .readpages = blkdev_readpages,
2066 .writepage = blkdev_writepage,
2067 .write_begin = blkdev_write_begin,
2068 .write_end = blkdev_write_end,
2069 .writepages = blkdev_writepages,
2070 .releasepage = blkdev_releasepage,
2071 .direct_IO = blkdev_direct_IO,
2072 .migratepage = buffer_migrate_page_norefs,
2073 .is_dirty_writeback = buffer_check_dirty_writeback,
2076 #define BLKDEV_FALLOC_FL_SUPPORTED \
2077 (FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE | \
2078 FALLOC_FL_ZERO_RANGE | FALLOC_FL_NO_HIDE_STALE)
2080 static long blkdev_fallocate(struct file *file, int mode, loff_t start,
2081 loff_t len)
2083 struct block_device *bdev = I_BDEV(bdev_file_inode(file));
2084 struct address_space *mapping;
2085 loff_t end = start + len - 1;
2086 loff_t isize;
2087 int error;
2089 /* Fail if we don't recognize the flags. */
2090 if (mode & ~BLKDEV_FALLOC_FL_SUPPORTED)
2091 return -EOPNOTSUPP;
2093 /* Don't go off the end of the device. */
2094 isize = i_size_read(bdev->bd_inode);
2095 if (start >= isize)
2096 return -EINVAL;
2097 if (end >= isize) {
2098 if (mode & FALLOC_FL_KEEP_SIZE) {
2099 len = isize - start;
2100 end = start + len - 1;
2101 } else
2102 return -EINVAL;
2106 * Don't allow IO that isn't aligned to logical block size.
2108 if ((start | len) & (bdev_logical_block_size(bdev) - 1))
2109 return -EINVAL;
2111 /* Invalidate the page cache, including dirty pages. */
2112 mapping = bdev->bd_inode->i_mapping;
2113 truncate_inode_pages_range(mapping, start, end);
2115 switch (mode) {
2116 case FALLOC_FL_ZERO_RANGE:
2117 case FALLOC_FL_ZERO_RANGE | FALLOC_FL_KEEP_SIZE:
2118 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2119 GFP_KERNEL, BLKDEV_ZERO_NOUNMAP);
2120 break;
2121 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE:
2122 error = blkdev_issue_zeroout(bdev, start >> 9, len >> 9,
2123 GFP_KERNEL, BLKDEV_ZERO_NOFALLBACK);
2124 break;
2125 case FALLOC_FL_PUNCH_HOLE | FALLOC_FL_KEEP_SIZE | FALLOC_FL_NO_HIDE_STALE:
2126 error = blkdev_issue_discard(bdev, start >> 9, len >> 9,
2127 GFP_KERNEL, 0);
2128 break;
2129 default:
2130 return -EOPNOTSUPP;
2132 if (error)
2133 return error;
2136 * Invalidate again; if someone wandered in and dirtied a page,
2137 * the caller will be given -EBUSY. The third argument is
2138 * inclusive, so the rounding here is safe.
2140 return invalidate_inode_pages2_range(mapping,
2141 start >> PAGE_SHIFT,
2142 end >> PAGE_SHIFT);
2145 const struct file_operations def_blk_fops = {
2146 .open = blkdev_open,
2147 .release = blkdev_close,
2148 .llseek = block_llseek,
2149 .read_iter = blkdev_read_iter,
2150 .write_iter = blkdev_write_iter,
2151 .iopoll = blkdev_iopoll,
2152 .mmap = generic_file_mmap,
2153 .fsync = blkdev_fsync,
2154 .unlocked_ioctl = block_ioctl,
2155 #ifdef CONFIG_COMPAT
2156 .compat_ioctl = compat_blkdev_ioctl,
2157 #endif
2158 .splice_read = generic_file_splice_read,
2159 .splice_write = iter_file_splice_write,
2160 .fallocate = blkdev_fallocate,
2163 int ioctl_by_bdev(struct block_device *bdev, unsigned cmd, unsigned long arg)
2165 int res;
2166 mm_segment_t old_fs = get_fs();
2167 set_fs(KERNEL_DS);
2168 res = blkdev_ioctl(bdev, 0, cmd, arg);
2169 set_fs(old_fs);
2170 return res;
2173 EXPORT_SYMBOL(ioctl_by_bdev);
2176 * lookup_bdev - lookup a struct block_device by name
2177 * @pathname: special file representing the block device
2179 * Get a reference to the blockdevice at @pathname in the current
2180 * namespace if possible and return it. Return ERR_PTR(error)
2181 * otherwise.
2183 struct block_device *lookup_bdev(const char *pathname)
2185 struct block_device *bdev;
2186 struct inode *inode;
2187 struct path path;
2188 int error;
2190 if (!pathname || !*pathname)
2191 return ERR_PTR(-EINVAL);
2193 error = kern_path(pathname, LOOKUP_FOLLOW, &path);
2194 if (error)
2195 return ERR_PTR(error);
2197 inode = d_backing_inode(path.dentry);
2198 error = -ENOTBLK;
2199 if (!S_ISBLK(inode->i_mode))
2200 goto fail;
2201 error = -EACCES;
2202 if (!may_open_dev(&path))
2203 goto fail;
2204 error = -ENOMEM;
2205 bdev = bd_acquire(inode);
2206 if (!bdev)
2207 goto fail;
2208 out:
2209 path_put(&path);
2210 return bdev;
2211 fail:
2212 bdev = ERR_PTR(error);
2213 goto out;
2215 EXPORT_SYMBOL(lookup_bdev);
2217 int __invalidate_device(struct block_device *bdev, bool kill_dirty)
2219 struct super_block *sb = get_super(bdev);
2220 int res = 0;
2222 if (sb) {
2224 * no need to lock the super, get_super holds the
2225 * read mutex so the filesystem cannot go away
2226 * under us (->put_super runs with the write lock
2227 * hold).
2229 shrink_dcache_sb(sb);
2230 res = invalidate_inodes(sb, kill_dirty);
2231 drop_super(sb);
2233 invalidate_bdev(bdev);
2234 return res;
2236 EXPORT_SYMBOL(__invalidate_device);
2238 void iterate_bdevs(void (*func)(struct block_device *, void *), void *arg)
2240 struct inode *inode, *old_inode = NULL;
2242 spin_lock(&blockdev_superblock->s_inode_list_lock);
2243 list_for_each_entry(inode, &blockdev_superblock->s_inodes, i_sb_list) {
2244 struct address_space *mapping = inode->i_mapping;
2245 struct block_device *bdev;
2247 spin_lock(&inode->i_lock);
2248 if (inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW) ||
2249 mapping->nrpages == 0) {
2250 spin_unlock(&inode->i_lock);
2251 continue;
2253 __iget(inode);
2254 spin_unlock(&inode->i_lock);
2255 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2257 * We hold a reference to 'inode' so it couldn't have been
2258 * removed from s_inodes list while we dropped the
2259 * s_inode_list_lock We cannot iput the inode now as we can
2260 * be holding the last reference and we cannot iput it under
2261 * s_inode_list_lock. So we keep the reference and iput it
2262 * later.
2264 iput(old_inode);
2265 old_inode = inode;
2266 bdev = I_BDEV(inode);
2268 mutex_lock(&bdev->bd_mutex);
2269 if (bdev->bd_openers)
2270 func(bdev, arg);
2271 mutex_unlock(&bdev->bd_mutex);
2273 spin_lock(&blockdev_superblock->s_inode_list_lock);
2275 spin_unlock(&blockdev_superblock->s_inode_list_lock);
2276 iput(old_inode);