1 // SPDX-License-Identifier: GPL-2.0
3 * linux/fs/ext4/inode.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
44 #include "ext4_jbd2.h"
49 #include <trace/events/ext4.h>
51 #define MPAGE_DA_EXTENT_TAIL 0x01
53 static __u32
ext4_inode_csum(struct inode
*inode
, struct ext4_inode
*raw
,
54 struct ext4_inode_info
*ei
)
56 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
59 int offset
= offsetof(struct ext4_inode
, i_checksum_lo
);
60 unsigned int csum_size
= sizeof(dummy_csum
);
62 csum
= ext4_chksum(sbi
, ei
->i_csum_seed
, (__u8
*)raw
, offset
);
63 csum
= ext4_chksum(sbi
, csum
, (__u8
*)&dummy_csum
, csum_size
);
65 csum
= ext4_chksum(sbi
, csum
, (__u8
*)raw
+ offset
,
66 EXT4_GOOD_OLD_INODE_SIZE
- offset
);
68 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
69 offset
= offsetof(struct ext4_inode
, i_checksum_hi
);
70 csum
= ext4_chksum(sbi
, csum
, (__u8
*)raw
+
71 EXT4_GOOD_OLD_INODE_SIZE
,
72 offset
- EXT4_GOOD_OLD_INODE_SIZE
);
73 if (EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
)) {
74 csum
= ext4_chksum(sbi
, csum
, (__u8
*)&dummy_csum
,
78 csum
= ext4_chksum(sbi
, csum
, (__u8
*)raw
+ offset
,
79 EXT4_INODE_SIZE(inode
->i_sb
) - offset
);
85 static int ext4_inode_csum_verify(struct inode
*inode
, struct ext4_inode
*raw
,
86 struct ext4_inode_info
*ei
)
88 __u32 provided
, calculated
;
90 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
91 cpu_to_le32(EXT4_OS_LINUX
) ||
92 !ext4_has_metadata_csum(inode
->i_sb
))
95 provided
= le16_to_cpu(raw
->i_checksum_lo
);
96 calculated
= ext4_inode_csum(inode
, raw
, ei
);
97 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
98 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
99 provided
|= ((__u32
)le16_to_cpu(raw
->i_checksum_hi
)) << 16;
101 calculated
&= 0xFFFF;
103 return provided
== calculated
;
106 static void ext4_inode_csum_set(struct inode
*inode
, struct ext4_inode
*raw
,
107 struct ext4_inode_info
*ei
)
111 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
112 cpu_to_le32(EXT4_OS_LINUX
) ||
113 !ext4_has_metadata_csum(inode
->i_sb
))
116 csum
= ext4_inode_csum(inode
, raw
, ei
);
117 raw
->i_checksum_lo
= cpu_to_le16(csum
& 0xFFFF);
118 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
119 EXT4_FITS_IN_INODE(raw
, ei
, i_checksum_hi
))
120 raw
->i_checksum_hi
= cpu_to_le16(csum
>> 16);
123 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
126 trace_ext4_begin_ordered_truncate(inode
, new_size
);
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
133 if (!EXT4_I(inode
)->jinode
)
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode
),
136 EXT4_I(inode
)->jinode
,
140 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
141 unsigned int length
);
142 static int __ext4_journalled_writepage(struct page
*page
, unsigned int len
);
143 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
);
144 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
148 * Test whether an inode is a fast symlink.
149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
151 int ext4_inode_is_fast_symlink(struct inode
*inode
)
153 if (!(EXT4_I(inode
)->i_flags
& EXT4_EA_INODE_FL
)) {
154 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
155 EXT4_CLUSTER_SIZE(inode
->i_sb
) >> 9 : 0;
157 if (ext4_has_inline_data(inode
))
160 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
162 return S_ISLNK(inode
->i_mode
) && inode
->i_size
&&
163 (inode
->i_size
< EXT4_N_BLOCKS
* 4);
167 * Called at the last iput() if i_nlink is zero.
169 void ext4_evict_inode(struct inode
*inode
)
174 * Credits for final inode cleanup and freeing:
175 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
176 * (xattr block freeing), bitmap, group descriptor (inode freeing)
178 int extra_credits
= 6;
179 struct ext4_xattr_inode_array
*ea_inode_array
= NULL
;
181 trace_ext4_evict_inode(inode
);
183 if (inode
->i_nlink
) {
185 * When journalling data dirty buffers are tracked only in the
186 * journal. So although mm thinks everything is clean and
187 * ready for reaping the inode might still have some pages to
188 * write in the running transaction or waiting to be
189 * checkpointed. Thus calling jbd2_journal_invalidatepage()
190 * (via truncate_inode_pages()) to discard these buffers can
191 * cause data loss. Also even if we did not discard these
192 * buffers, we would have no way to find them after the inode
193 * is reaped and thus user could see stale data if he tries to
194 * read them before the transaction is checkpointed. So be
195 * careful and force everything to disk here... We use
196 * ei->i_datasync_tid to store the newest transaction
197 * containing inode's data.
199 * Note that directories do not have this problem because they
200 * don't use page cache.
202 if (inode
->i_ino
!= EXT4_JOURNAL_INO
&&
203 ext4_should_journal_data(inode
) &&
204 (S_ISLNK(inode
->i_mode
) || S_ISREG(inode
->i_mode
)) &&
205 inode
->i_data
.nrpages
) {
206 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
207 tid_t commit_tid
= EXT4_I(inode
)->i_datasync_tid
;
209 jbd2_complete_transaction(journal
, commit_tid
);
210 filemap_write_and_wait(&inode
->i_data
);
212 truncate_inode_pages_final(&inode
->i_data
);
217 if (is_bad_inode(inode
))
219 dquot_initialize(inode
);
221 if (ext4_should_order_data(inode
))
222 ext4_begin_ordered_truncate(inode
, 0);
223 truncate_inode_pages_final(&inode
->i_data
);
226 * Protect us against freezing - iput() caller didn't have to have any
227 * protection against it
229 sb_start_intwrite(inode
->i_sb
);
231 if (!IS_NOQUOTA(inode
))
232 extra_credits
+= EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
);
235 * Block bitmap, group descriptor, and inode are accounted in both
236 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
238 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
,
239 ext4_blocks_for_truncate(inode
) + extra_credits
- 3);
240 if (IS_ERR(handle
)) {
241 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
247 ext4_orphan_del(NULL
, inode
);
248 sb_end_intwrite(inode
->i_sb
);
253 ext4_handle_sync(handle
);
256 * Set inode->i_size to 0 before calling ext4_truncate(). We need
257 * special handling of symlinks here because i_size is used to
258 * determine whether ext4_inode_info->i_data contains symlink data or
259 * block mappings. Setting i_size to 0 will remove its fast symlink
260 * status. Erase i_data so that it becomes a valid empty block map.
262 if (ext4_inode_is_fast_symlink(inode
))
263 memset(EXT4_I(inode
)->i_data
, 0, sizeof(EXT4_I(inode
)->i_data
));
265 err
= ext4_mark_inode_dirty(handle
, inode
);
267 ext4_warning(inode
->i_sb
,
268 "couldn't mark inode dirty (err %d)", err
);
271 if (inode
->i_blocks
) {
272 err
= ext4_truncate(inode
);
274 ext4_set_errno(inode
->i_sb
, -err
);
275 ext4_error(inode
->i_sb
,
276 "couldn't truncate inode %lu (err %d)",
282 /* Remove xattr references. */
283 err
= ext4_xattr_delete_inode(handle
, inode
, &ea_inode_array
,
286 ext4_warning(inode
->i_sb
, "xattr delete (err %d)", err
);
288 ext4_journal_stop(handle
);
289 ext4_orphan_del(NULL
, inode
);
290 sb_end_intwrite(inode
->i_sb
);
291 ext4_xattr_inode_array_free(ea_inode_array
);
296 * Kill off the orphan record which ext4_truncate created.
297 * AKPM: I think this can be inside the above `if'.
298 * Note that ext4_orphan_del() has to be able to cope with the
299 * deletion of a non-existent orphan - this is because we don't
300 * know if ext4_truncate() actually created an orphan record.
301 * (Well, we could do this if we need to, but heck - it works)
303 ext4_orphan_del(handle
, inode
);
304 EXT4_I(inode
)->i_dtime
= (__u32
)ktime_get_real_seconds();
307 * One subtle ordering requirement: if anything has gone wrong
308 * (transaction abort, IO errors, whatever), then we can still
309 * do these next steps (the fs will already have been marked as
310 * having errors), but we can't free the inode if the mark_dirty
313 if (ext4_mark_inode_dirty(handle
, inode
))
314 /* If that failed, just do the required in-core inode clear. */
315 ext4_clear_inode(inode
);
317 ext4_free_inode(handle
, inode
);
318 ext4_journal_stop(handle
);
319 sb_end_intwrite(inode
->i_sb
);
320 ext4_xattr_inode_array_free(ea_inode_array
);
323 ext4_clear_inode(inode
); /* We must guarantee clearing of inode... */
327 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
329 return &EXT4_I(inode
)->i_reserved_quota
;
334 * Called with i_data_sem down, which is important since we can call
335 * ext4_discard_preallocations() from here.
337 void ext4_da_update_reserve_space(struct inode
*inode
,
338 int used
, int quota_claim
)
340 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
341 struct ext4_inode_info
*ei
= EXT4_I(inode
);
343 spin_lock(&ei
->i_block_reservation_lock
);
344 trace_ext4_da_update_reserve_space(inode
, used
, quota_claim
);
345 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
346 ext4_warning(inode
->i_sb
, "%s: ino %lu, used %d "
347 "with only %d reserved data blocks",
348 __func__
, inode
->i_ino
, used
,
349 ei
->i_reserved_data_blocks
);
351 used
= ei
->i_reserved_data_blocks
;
354 /* Update per-inode reservations */
355 ei
->i_reserved_data_blocks
-= used
;
356 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, used
);
358 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
360 /* Update quota subsystem for data blocks */
362 dquot_claim_block(inode
, EXT4_C2B(sbi
, used
));
365 * We did fallocate with an offset that is already delayed
366 * allocated. So on delayed allocated writeback we should
367 * not re-claim the quota for fallocated blocks.
369 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, used
));
373 * If we have done all the pending block allocations and if
374 * there aren't any writers on the inode, we can discard the
375 * inode's preallocations.
377 if ((ei
->i_reserved_data_blocks
== 0) &&
378 !inode_is_open_for_write(inode
))
379 ext4_discard_preallocations(inode
);
382 static int __check_block_validity(struct inode
*inode
, const char *func
,
384 struct ext4_map_blocks
*map
)
386 if (ext4_has_feature_journal(inode
->i_sb
) &&
388 le32_to_cpu(EXT4_SB(inode
->i_sb
)->s_es
->s_journal_inum
)))
390 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), map
->m_pblk
,
392 ext4_error_inode(inode
, func
, line
, map
->m_pblk
,
393 "lblock %lu mapped to illegal pblock %llu "
394 "(length %d)", (unsigned long) map
->m_lblk
,
395 map
->m_pblk
, map
->m_len
);
396 return -EFSCORRUPTED
;
401 int ext4_issue_zeroout(struct inode
*inode
, ext4_lblk_t lblk
, ext4_fsblk_t pblk
,
406 if (IS_ENCRYPTED(inode
))
407 return fscrypt_zeroout_range(inode
, lblk
, pblk
, len
);
409 ret
= sb_issue_zeroout(inode
->i_sb
, pblk
, len
, GFP_NOFS
);
416 #define check_block_validity(inode, map) \
417 __check_block_validity((inode), __func__, __LINE__, (map))
419 #ifdef ES_AGGRESSIVE_TEST
420 static void ext4_map_blocks_es_recheck(handle_t
*handle
,
422 struct ext4_map_blocks
*es_map
,
423 struct ext4_map_blocks
*map
,
430 * There is a race window that the result is not the same.
431 * e.g. xfstests #223 when dioread_nolock enables. The reason
432 * is that we lookup a block mapping in extent status tree with
433 * out taking i_data_sem. So at the time the unwritten extent
434 * could be converted.
436 down_read(&EXT4_I(inode
)->i_data_sem
);
437 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
438 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
439 EXT4_GET_BLOCKS_KEEP_SIZE
);
441 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
442 EXT4_GET_BLOCKS_KEEP_SIZE
);
444 up_read((&EXT4_I(inode
)->i_data_sem
));
447 * We don't check m_len because extent will be collpased in status
448 * tree. So the m_len might not equal.
450 if (es_map
->m_lblk
!= map
->m_lblk
||
451 es_map
->m_flags
!= map
->m_flags
||
452 es_map
->m_pblk
!= map
->m_pblk
) {
453 printk("ES cache assertion failed for inode: %lu "
454 "es_cached ex [%d/%d/%llu/%x] != "
455 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
456 inode
->i_ino
, es_map
->m_lblk
, es_map
->m_len
,
457 es_map
->m_pblk
, es_map
->m_flags
, map
->m_lblk
,
458 map
->m_len
, map
->m_pblk
, map
->m_flags
,
462 #endif /* ES_AGGRESSIVE_TEST */
465 * The ext4_map_blocks() function tries to look up the requested blocks,
466 * and returns if the blocks are already mapped.
468 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
469 * and store the allocated blocks in the result buffer head and mark it
472 * If file type is extents based, it will call ext4_ext_map_blocks(),
473 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
476 * On success, it returns the number of blocks being mapped or allocated. if
477 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
478 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
480 * It returns 0 if plain look up failed (blocks have not been allocated), in
481 * that case, @map is returned as unmapped but we still do fill map->m_len to
482 * indicate the length of a hole starting at map->m_lblk.
484 * It returns the error in case of allocation failure.
486 int ext4_map_blocks(handle_t
*handle
, struct inode
*inode
,
487 struct ext4_map_blocks
*map
, int flags
)
489 struct extent_status es
;
492 #ifdef ES_AGGRESSIVE_TEST
493 struct ext4_map_blocks orig_map
;
495 memcpy(&orig_map
, map
, sizeof(*map
));
499 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
500 "logical block %lu\n", inode
->i_ino
, flags
, map
->m_len
,
501 (unsigned long) map
->m_lblk
);
504 * ext4_map_blocks returns an int, and m_len is an unsigned int
506 if (unlikely(map
->m_len
> INT_MAX
))
507 map
->m_len
= INT_MAX
;
509 /* We can handle the block number less than EXT_MAX_BLOCKS */
510 if (unlikely(map
->m_lblk
>= EXT_MAX_BLOCKS
))
511 return -EFSCORRUPTED
;
513 /* Lookup extent status tree firstly */
514 if (ext4_es_lookup_extent(inode
, map
->m_lblk
, NULL
, &es
)) {
515 if (ext4_es_is_written(&es
) || ext4_es_is_unwritten(&es
)) {
516 map
->m_pblk
= ext4_es_pblock(&es
) +
517 map
->m_lblk
- es
.es_lblk
;
518 map
->m_flags
|= ext4_es_is_written(&es
) ?
519 EXT4_MAP_MAPPED
: EXT4_MAP_UNWRITTEN
;
520 retval
= es
.es_len
- (map
->m_lblk
- es
.es_lblk
);
521 if (retval
> map
->m_len
)
524 } else if (ext4_es_is_delayed(&es
) || ext4_es_is_hole(&es
)) {
526 retval
= es
.es_len
- (map
->m_lblk
- es
.es_lblk
);
527 if (retval
> map
->m_len
)
534 #ifdef ES_AGGRESSIVE_TEST
535 ext4_map_blocks_es_recheck(handle
, inode
, map
,
542 * Try to see if we can get the block without requesting a new
545 down_read(&EXT4_I(inode
)->i_data_sem
);
546 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
547 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
&
548 EXT4_GET_BLOCKS_KEEP_SIZE
);
550 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
&
551 EXT4_GET_BLOCKS_KEEP_SIZE
);
556 if (unlikely(retval
!= map
->m_len
)) {
557 ext4_warning(inode
->i_sb
,
558 "ES len assertion failed for inode "
559 "%lu: retval %d != map->m_len %d",
560 inode
->i_ino
, retval
, map
->m_len
);
564 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
565 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
566 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
567 !(status
& EXTENT_STATUS_WRITTEN
) &&
568 ext4_es_scan_range(inode
, &ext4_es_is_delayed
, map
->m_lblk
,
569 map
->m_lblk
+ map
->m_len
- 1))
570 status
|= EXTENT_STATUS_DELAYED
;
571 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
,
572 map
->m_len
, map
->m_pblk
, status
);
576 up_read((&EXT4_I(inode
)->i_data_sem
));
579 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
580 ret
= check_block_validity(inode
, map
);
585 /* If it is only a block(s) look up */
586 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
590 * Returns if the blocks have already allocated
592 * Note that if blocks have been preallocated
593 * ext4_ext_get_block() returns the create = 0
594 * with buffer head unmapped.
596 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
)
598 * If we need to convert extent to unwritten
599 * we continue and do the actual work in
600 * ext4_ext_map_blocks()
602 if (!(flags
& EXT4_GET_BLOCKS_CONVERT_UNWRITTEN
))
606 * Here we clear m_flags because after allocating an new extent,
607 * it will be set again.
609 map
->m_flags
&= ~EXT4_MAP_FLAGS
;
612 * New blocks allocate and/or writing to unwritten extent
613 * will possibly result in updating i_data, so we take
614 * the write lock of i_data_sem, and call get_block()
615 * with create == 1 flag.
617 down_write(&EXT4_I(inode
)->i_data_sem
);
620 * We need to check for EXT4 here because migrate
621 * could have changed the inode type in between
623 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)) {
624 retval
= ext4_ext_map_blocks(handle
, inode
, map
, flags
);
626 retval
= ext4_ind_map_blocks(handle
, inode
, map
, flags
);
628 if (retval
> 0 && map
->m_flags
& EXT4_MAP_NEW
) {
630 * We allocated new blocks which will result in
631 * i_data's format changing. Force the migrate
632 * to fail by clearing migrate flags
634 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
638 * Update reserved blocks/metadata blocks after successful
639 * block allocation which had been deferred till now. We don't
640 * support fallocate for non extent files. So we can update
641 * reserve space here.
644 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
645 ext4_da_update_reserve_space(inode
, retval
, 1);
651 if (unlikely(retval
!= map
->m_len
)) {
652 ext4_warning(inode
->i_sb
,
653 "ES len assertion failed for inode "
654 "%lu: retval %d != map->m_len %d",
655 inode
->i_ino
, retval
, map
->m_len
);
660 * We have to zeroout blocks before inserting them into extent
661 * status tree. Otherwise someone could look them up there and
662 * use them before they are really zeroed. We also have to
663 * unmap metadata before zeroing as otherwise writeback can
664 * overwrite zeros with stale data from block device.
666 if (flags
& EXT4_GET_BLOCKS_ZERO
&&
667 map
->m_flags
& EXT4_MAP_MAPPED
&&
668 map
->m_flags
& EXT4_MAP_NEW
) {
669 ret
= ext4_issue_zeroout(inode
, map
->m_lblk
,
670 map
->m_pblk
, map
->m_len
);
678 * If the extent has been zeroed out, we don't need to update
679 * extent status tree.
681 if ((flags
& EXT4_GET_BLOCKS_PRE_IO
) &&
682 ext4_es_lookup_extent(inode
, map
->m_lblk
, NULL
, &es
)) {
683 if (ext4_es_is_written(&es
))
686 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
687 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
688 if (!(flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
) &&
689 !(status
& EXTENT_STATUS_WRITTEN
) &&
690 ext4_es_scan_range(inode
, &ext4_es_is_delayed
, map
->m_lblk
,
691 map
->m_lblk
+ map
->m_len
- 1))
692 status
|= EXTENT_STATUS_DELAYED
;
693 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
694 map
->m_pblk
, status
);
702 up_write((&EXT4_I(inode
)->i_data_sem
));
703 if (retval
> 0 && map
->m_flags
& EXT4_MAP_MAPPED
) {
704 ret
= check_block_validity(inode
, map
);
709 * Inodes with freshly allocated blocks where contents will be
710 * visible after transaction commit must be on transaction's
713 if (map
->m_flags
& EXT4_MAP_NEW
&&
714 !(map
->m_flags
& EXT4_MAP_UNWRITTEN
) &&
715 !(flags
& EXT4_GET_BLOCKS_ZERO
) &&
716 !ext4_is_quota_file(inode
) &&
717 ext4_should_order_data(inode
)) {
719 (loff_t
)map
->m_lblk
<< inode
->i_blkbits
;
720 loff_t length
= (loff_t
)map
->m_len
<< inode
->i_blkbits
;
722 if (flags
& EXT4_GET_BLOCKS_IO_SUBMIT
)
723 ret
= ext4_jbd2_inode_add_wait(handle
, inode
,
726 ret
= ext4_jbd2_inode_add_write(handle
, inode
,
736 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
737 * we have to be careful as someone else may be manipulating b_state as well.
739 static void ext4_update_bh_state(struct buffer_head
*bh
, unsigned long flags
)
741 unsigned long old_state
;
742 unsigned long new_state
;
744 flags
&= EXT4_MAP_FLAGS
;
746 /* Dummy buffer_head? Set non-atomically. */
748 bh
->b_state
= (bh
->b_state
& ~EXT4_MAP_FLAGS
) | flags
;
752 * Someone else may be modifying b_state. Be careful! This is ugly but
753 * once we get rid of using bh as a container for mapping information
754 * to pass to / from get_block functions, this can go away.
757 old_state
= READ_ONCE(bh
->b_state
);
758 new_state
= (old_state
& ~EXT4_MAP_FLAGS
) | flags
;
760 cmpxchg(&bh
->b_state
, old_state
, new_state
) != old_state
));
763 static int _ext4_get_block(struct inode
*inode
, sector_t iblock
,
764 struct buffer_head
*bh
, int flags
)
766 struct ext4_map_blocks map
;
769 if (ext4_has_inline_data(inode
))
773 map
.m_len
= bh
->b_size
>> inode
->i_blkbits
;
775 ret
= ext4_map_blocks(ext4_journal_current_handle(), inode
, &map
,
778 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
779 ext4_update_bh_state(bh
, map
.m_flags
);
780 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
782 } else if (ret
== 0) {
783 /* hole case, need to fill in bh->b_size */
784 bh
->b_size
= inode
->i_sb
->s_blocksize
* map
.m_len
;
789 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
790 struct buffer_head
*bh
, int create
)
792 return _ext4_get_block(inode
, iblock
, bh
,
793 create
? EXT4_GET_BLOCKS_CREATE
: 0);
797 * Get block function used when preparing for buffered write if we require
798 * creating an unwritten extent if blocks haven't been allocated. The extent
799 * will be converted to written after the IO is complete.
801 int ext4_get_block_unwritten(struct inode
*inode
, sector_t iblock
,
802 struct buffer_head
*bh_result
, int create
)
804 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
805 inode
->i_ino
, create
);
806 return _ext4_get_block(inode
, iblock
, bh_result
,
807 EXT4_GET_BLOCKS_IO_CREATE_EXT
);
810 /* Maximum number of blocks we map for direct IO at once. */
811 #define DIO_MAX_BLOCKS 4096
814 * `handle' can be NULL if create is zero
816 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
817 ext4_lblk_t block
, int map_flags
)
819 struct ext4_map_blocks map
;
820 struct buffer_head
*bh
;
821 int create
= map_flags
& EXT4_GET_BLOCKS_CREATE
;
824 J_ASSERT(handle
!= NULL
|| create
== 0);
828 err
= ext4_map_blocks(handle
, inode
, &map
, map_flags
);
831 return create
? ERR_PTR(-ENOSPC
) : NULL
;
835 bh
= sb_getblk(inode
->i_sb
, map
.m_pblk
);
837 return ERR_PTR(-ENOMEM
);
838 if (map
.m_flags
& EXT4_MAP_NEW
) {
839 J_ASSERT(create
!= 0);
840 J_ASSERT(handle
!= NULL
);
843 * Now that we do not always journal data, we should
844 * keep in mind whether this should always journal the
845 * new buffer as metadata. For now, regular file
846 * writes use ext4_get_block instead, so it's not a
850 BUFFER_TRACE(bh
, "call get_create_access");
851 err
= ext4_journal_get_create_access(handle
, bh
);
856 if (!buffer_uptodate(bh
)) {
857 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
858 set_buffer_uptodate(bh
);
861 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
862 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
866 BUFFER_TRACE(bh
, "not a new buffer");
873 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
874 ext4_lblk_t block
, int map_flags
)
876 struct buffer_head
*bh
;
878 bh
= ext4_getblk(handle
, inode
, block
, map_flags
);
881 if (!bh
|| ext4_buffer_uptodate(bh
))
883 ll_rw_block(REQ_OP_READ
, REQ_META
| REQ_PRIO
, 1, &bh
);
885 if (buffer_uptodate(bh
))
888 return ERR_PTR(-EIO
);
891 /* Read a contiguous batch of blocks. */
892 int ext4_bread_batch(struct inode
*inode
, ext4_lblk_t block
, int bh_count
,
893 bool wait
, struct buffer_head
**bhs
)
897 for (i
= 0; i
< bh_count
; i
++) {
898 bhs
[i
] = ext4_getblk(NULL
, inode
, block
+ i
, 0 /* map_flags */);
899 if (IS_ERR(bhs
[i
])) {
900 err
= PTR_ERR(bhs
[i
]);
906 for (i
= 0; i
< bh_count
; i
++)
907 /* Note that NULL bhs[i] is valid because of holes. */
908 if (bhs
[i
] && !ext4_buffer_uptodate(bhs
[i
]))
909 ll_rw_block(REQ_OP_READ
, REQ_META
| REQ_PRIO
, 1,
915 for (i
= 0; i
< bh_count
; i
++)
917 wait_on_buffer(bhs
[i
]);
919 for (i
= 0; i
< bh_count
; i
++) {
920 if (bhs
[i
] && !buffer_uptodate(bhs
[i
])) {
928 for (i
= 0; i
< bh_count
; i
++) {
935 int ext4_walk_page_buffers(handle_t
*handle
,
936 struct buffer_head
*head
,
940 int (*fn
)(handle_t
*handle
,
941 struct buffer_head
*bh
))
943 struct buffer_head
*bh
;
944 unsigned block_start
, block_end
;
945 unsigned blocksize
= head
->b_size
;
947 struct buffer_head
*next
;
949 for (bh
= head
, block_start
= 0;
950 ret
== 0 && (bh
!= head
|| !block_start
);
951 block_start
= block_end
, bh
= next
) {
952 next
= bh
->b_this_page
;
953 block_end
= block_start
+ blocksize
;
954 if (block_end
<= from
|| block_start
>= to
) {
955 if (partial
&& !buffer_uptodate(bh
))
959 err
= (*fn
)(handle
, bh
);
967 * To preserve ordering, it is essential that the hole instantiation and
968 * the data write be encapsulated in a single transaction. We cannot
969 * close off a transaction and start a new one between the ext4_get_block()
970 * and the commit_write(). So doing the jbd2_journal_start at the start of
971 * prepare_write() is the right place.
973 * Also, this function can nest inside ext4_writepage(). In that case, we
974 * *know* that ext4_writepage() has generated enough buffer credits to do the
975 * whole page. So we won't block on the journal in that case, which is good,
976 * because the caller may be PF_MEMALLOC.
978 * By accident, ext4 can be reentered when a transaction is open via
979 * quota file writes. If we were to commit the transaction while thus
980 * reentered, there can be a deadlock - we would be holding a quota
981 * lock, and the commit would never complete if another thread had a
982 * transaction open and was blocking on the quota lock - a ranking
985 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
986 * will _not_ run commit under these circumstances because handle->h_ref
987 * is elevated. We'll still have enough credits for the tiny quotafile
990 int do_journal_get_write_access(handle_t
*handle
,
991 struct buffer_head
*bh
)
993 int dirty
= buffer_dirty(bh
);
996 if (!buffer_mapped(bh
) || buffer_freed(bh
))
999 * __block_write_begin() could have dirtied some buffers. Clean
1000 * the dirty bit as jbd2_journal_get_write_access() could complain
1001 * otherwise about fs integrity issues. Setting of the dirty bit
1002 * by __block_write_begin() isn't a real problem here as we clear
1003 * the bit before releasing a page lock and thus writeback cannot
1004 * ever write the buffer.
1007 clear_buffer_dirty(bh
);
1008 BUFFER_TRACE(bh
, "get write access");
1009 ret
= ext4_journal_get_write_access(handle
, bh
);
1011 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1015 #ifdef CONFIG_FS_ENCRYPTION
1016 static int ext4_block_write_begin(struct page
*page
, loff_t pos
, unsigned len
,
1017 get_block_t
*get_block
)
1019 unsigned from
= pos
& (PAGE_SIZE
- 1);
1020 unsigned to
= from
+ len
;
1021 struct inode
*inode
= page
->mapping
->host
;
1022 unsigned block_start
, block_end
;
1025 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
1027 struct buffer_head
*bh
, *head
, *wait
[2];
1031 BUG_ON(!PageLocked(page
));
1032 BUG_ON(from
> PAGE_SIZE
);
1033 BUG_ON(to
> PAGE_SIZE
);
1036 if (!page_has_buffers(page
))
1037 create_empty_buffers(page
, blocksize
, 0);
1038 head
= page_buffers(page
);
1039 bbits
= ilog2(blocksize
);
1040 block
= (sector_t
)page
->index
<< (PAGE_SHIFT
- bbits
);
1042 for (bh
= head
, block_start
= 0; bh
!= head
|| !block_start
;
1043 block
++, block_start
= block_end
, bh
= bh
->b_this_page
) {
1044 block_end
= block_start
+ blocksize
;
1045 if (block_end
<= from
|| block_start
>= to
) {
1046 if (PageUptodate(page
)) {
1047 if (!buffer_uptodate(bh
))
1048 set_buffer_uptodate(bh
);
1053 clear_buffer_new(bh
);
1054 if (!buffer_mapped(bh
)) {
1055 WARN_ON(bh
->b_size
!= blocksize
);
1056 err
= get_block(inode
, block
, bh
, 1);
1059 if (buffer_new(bh
)) {
1060 if (PageUptodate(page
)) {
1061 clear_buffer_new(bh
);
1062 set_buffer_uptodate(bh
);
1063 mark_buffer_dirty(bh
);
1066 if (block_end
> to
|| block_start
< from
)
1067 zero_user_segments(page
, to
, block_end
,
1072 if (PageUptodate(page
)) {
1073 if (!buffer_uptodate(bh
))
1074 set_buffer_uptodate(bh
);
1077 if (!buffer_uptodate(bh
) && !buffer_delay(bh
) &&
1078 !buffer_unwritten(bh
) &&
1079 (block_start
< from
|| block_end
> to
)) {
1080 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
1081 wait
[nr_wait
++] = bh
;
1085 * If we issued read requests, let them complete.
1087 for (i
= 0; i
< nr_wait
; i
++) {
1088 wait_on_buffer(wait
[i
]);
1089 if (!buffer_uptodate(wait
[i
]))
1092 if (unlikely(err
)) {
1093 page_zero_new_buffers(page
, from
, to
);
1094 } else if (IS_ENCRYPTED(inode
) && S_ISREG(inode
->i_mode
)) {
1095 for (i
= 0; i
< nr_wait
; i
++) {
1098 err2
= fscrypt_decrypt_pagecache_blocks(page
, blocksize
,
1099 bh_offset(wait
[i
]));
1101 clear_buffer_uptodate(wait
[i
]);
1111 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1112 loff_t pos
, unsigned len
, unsigned flags
,
1113 struct page
**pagep
, void **fsdata
)
1115 struct inode
*inode
= mapping
->host
;
1116 int ret
, needed_blocks
;
1123 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
1126 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1128 * Reserve one block more for addition to orphan list in case
1129 * we allocate blocks but write fails for some reason
1131 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1132 index
= pos
>> PAGE_SHIFT
;
1133 from
= pos
& (PAGE_SIZE
- 1);
1136 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
1137 ret
= ext4_try_to_write_inline_data(mapping
, inode
, pos
, len
,
1146 * grab_cache_page_write_begin() can take a long time if the
1147 * system is thrashing due to memory pressure, or if the page
1148 * is being written back. So grab it first before we start
1149 * the transaction handle. This also allows us to allocate
1150 * the page (if needed) without using GFP_NOFS.
1153 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1159 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
, needed_blocks
);
1160 if (IS_ERR(handle
)) {
1162 return PTR_ERR(handle
);
1166 if (page
->mapping
!= mapping
) {
1167 /* The page got truncated from under us */
1170 ext4_journal_stop(handle
);
1173 /* In case writeback began while the page was unlocked */
1174 wait_for_stable_page(page
);
1176 #ifdef CONFIG_FS_ENCRYPTION
1177 if (ext4_should_dioread_nolock(inode
))
1178 ret
= ext4_block_write_begin(page
, pos
, len
,
1179 ext4_get_block_unwritten
);
1181 ret
= ext4_block_write_begin(page
, pos
, len
,
1184 if (ext4_should_dioread_nolock(inode
))
1185 ret
= __block_write_begin(page
, pos
, len
,
1186 ext4_get_block_unwritten
);
1188 ret
= __block_write_begin(page
, pos
, len
, ext4_get_block
);
1190 if (!ret
&& ext4_should_journal_data(inode
)) {
1191 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
),
1193 do_journal_get_write_access
);
1197 bool extended
= (pos
+ len
> inode
->i_size
) &&
1198 !ext4_verity_in_progress(inode
);
1202 * __block_write_begin may have instantiated a few blocks
1203 * outside i_size. Trim these off again. Don't need
1204 * i_size_read because we hold i_mutex.
1206 * Add inode to orphan list in case we crash before
1209 if (extended
&& ext4_can_truncate(inode
))
1210 ext4_orphan_add(handle
, inode
);
1212 ext4_journal_stop(handle
);
1214 ext4_truncate_failed_write(inode
);
1216 * If truncate failed early the inode might
1217 * still be on the orphan list; we need to
1218 * make sure the inode is removed from the
1219 * orphan list in that case.
1222 ext4_orphan_del(NULL
, inode
);
1225 if (ret
== -ENOSPC
&&
1226 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1235 /* For write_end() in data=journal mode */
1236 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1239 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1241 set_buffer_uptodate(bh
);
1242 ret
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1243 clear_buffer_meta(bh
);
1244 clear_buffer_prio(bh
);
1249 * We need to pick up the new inode size which generic_commit_write gave us
1250 * `file' can be NULL - eg, when called from page_symlink().
1252 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1253 * buffers are managed internally.
1255 static int ext4_write_end(struct file
*file
,
1256 struct address_space
*mapping
,
1257 loff_t pos
, unsigned len
, unsigned copied
,
1258 struct page
*page
, void *fsdata
)
1260 handle_t
*handle
= ext4_journal_current_handle();
1261 struct inode
*inode
= mapping
->host
;
1262 loff_t old_size
= inode
->i_size
;
1264 int i_size_changed
= 0;
1265 int inline_data
= ext4_has_inline_data(inode
);
1266 bool verity
= ext4_verity_in_progress(inode
);
1268 trace_ext4_write_end(inode
, pos
, len
, copied
);
1270 ret
= ext4_write_inline_data_end(inode
, pos
, len
,
1279 copied
= block_write_end(file
, mapping
, pos
,
1280 len
, copied
, page
, fsdata
);
1282 * it's important to update i_size while still holding page lock:
1283 * page writeout could otherwise come in and zero beyond i_size.
1285 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1286 * blocks are being written past EOF, so skip the i_size update.
1289 i_size_changed
= ext4_update_inode_size(inode
, pos
+ copied
);
1293 if (old_size
< pos
&& !verity
)
1294 pagecache_isize_extended(inode
, old_size
, pos
);
1296 * Don't mark the inode dirty under page lock. First, it unnecessarily
1297 * makes the holding time of page lock longer. Second, it forces lock
1298 * ordering of page lock and transaction start for journaling
1301 if (i_size_changed
|| inline_data
)
1302 ext4_mark_inode_dirty(handle
, inode
);
1304 if (pos
+ len
> inode
->i_size
&& !verity
&& ext4_can_truncate(inode
))
1305 /* if we have allocated more blocks and copied
1306 * less. We will have blocks allocated outside
1307 * inode->i_size. So truncate them
1309 ext4_orphan_add(handle
, inode
);
1311 ret2
= ext4_journal_stop(handle
);
1315 if (pos
+ len
> inode
->i_size
&& !verity
) {
1316 ext4_truncate_failed_write(inode
);
1318 * If truncate failed early the inode might still be
1319 * on the orphan list; we need to make sure the inode
1320 * is removed from the orphan list in that case.
1323 ext4_orphan_del(NULL
, inode
);
1326 return ret
? ret
: copied
;
1330 * This is a private version of page_zero_new_buffers() which doesn't
1331 * set the buffer to be dirty, since in data=journalled mode we need
1332 * to call ext4_handle_dirty_metadata() instead.
1334 static void ext4_journalled_zero_new_buffers(handle_t
*handle
,
1336 unsigned from
, unsigned to
)
1338 unsigned int block_start
= 0, block_end
;
1339 struct buffer_head
*head
, *bh
;
1341 bh
= head
= page_buffers(page
);
1343 block_end
= block_start
+ bh
->b_size
;
1344 if (buffer_new(bh
)) {
1345 if (block_end
> from
&& block_start
< to
) {
1346 if (!PageUptodate(page
)) {
1347 unsigned start
, size
;
1349 start
= max(from
, block_start
);
1350 size
= min(to
, block_end
) - start
;
1352 zero_user(page
, start
, size
);
1353 write_end_fn(handle
, bh
);
1355 clear_buffer_new(bh
);
1358 block_start
= block_end
;
1359 bh
= bh
->b_this_page
;
1360 } while (bh
!= head
);
1363 static int ext4_journalled_write_end(struct file
*file
,
1364 struct address_space
*mapping
,
1365 loff_t pos
, unsigned len
, unsigned copied
,
1366 struct page
*page
, void *fsdata
)
1368 handle_t
*handle
= ext4_journal_current_handle();
1369 struct inode
*inode
= mapping
->host
;
1370 loff_t old_size
= inode
->i_size
;
1374 int size_changed
= 0;
1375 int inline_data
= ext4_has_inline_data(inode
);
1376 bool verity
= ext4_verity_in_progress(inode
);
1378 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1379 from
= pos
& (PAGE_SIZE
- 1);
1382 BUG_ON(!ext4_handle_valid(handle
));
1385 ret
= ext4_write_inline_data_end(inode
, pos
, len
,
1393 } else if (unlikely(copied
< len
) && !PageUptodate(page
)) {
1395 ext4_journalled_zero_new_buffers(handle
, page
, from
, to
);
1397 if (unlikely(copied
< len
))
1398 ext4_journalled_zero_new_buffers(handle
, page
,
1400 ret
= ext4_walk_page_buffers(handle
, page_buffers(page
), from
,
1401 from
+ copied
, &partial
,
1404 SetPageUptodate(page
);
1407 size_changed
= ext4_update_inode_size(inode
, pos
+ copied
);
1408 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1409 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1413 if (old_size
< pos
&& !verity
)
1414 pagecache_isize_extended(inode
, old_size
, pos
);
1416 if (size_changed
|| inline_data
) {
1417 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1422 if (pos
+ len
> inode
->i_size
&& !verity
&& ext4_can_truncate(inode
))
1423 /* if we have allocated more blocks and copied
1424 * less. We will have blocks allocated outside
1425 * inode->i_size. So truncate them
1427 ext4_orphan_add(handle
, inode
);
1430 ret2
= ext4_journal_stop(handle
);
1433 if (pos
+ len
> inode
->i_size
&& !verity
) {
1434 ext4_truncate_failed_write(inode
);
1436 * If truncate failed early the inode might still be
1437 * on the orphan list; we need to make sure the inode
1438 * is removed from the orphan list in that case.
1441 ext4_orphan_del(NULL
, inode
);
1444 return ret
? ret
: copied
;
1448 * Reserve space for a single cluster
1450 static int ext4_da_reserve_space(struct inode
*inode
)
1452 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1453 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1457 * We will charge metadata quota at writeout time; this saves
1458 * us from metadata over-estimation, though we may go over by
1459 * a small amount in the end. Here we just reserve for data.
1461 ret
= dquot_reserve_block(inode
, EXT4_C2B(sbi
, 1));
1465 spin_lock(&ei
->i_block_reservation_lock
);
1466 if (ext4_claim_free_clusters(sbi
, 1, 0)) {
1467 spin_unlock(&ei
->i_block_reservation_lock
);
1468 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, 1));
1471 ei
->i_reserved_data_blocks
++;
1472 trace_ext4_da_reserve_space(inode
);
1473 spin_unlock(&ei
->i_block_reservation_lock
);
1475 return 0; /* success */
1478 void ext4_da_release_space(struct inode
*inode
, int to_free
)
1480 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1481 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1484 return; /* Nothing to release, exit */
1486 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1488 trace_ext4_da_release_space(inode
, to_free
);
1489 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1491 * if there aren't enough reserved blocks, then the
1492 * counter is messed up somewhere. Since this
1493 * function is called from invalidate page, it's
1494 * harmless to return without any action.
1496 ext4_warning(inode
->i_sb
, "ext4_da_release_space: "
1497 "ino %lu, to_free %d with only %d reserved "
1498 "data blocks", inode
->i_ino
, to_free
,
1499 ei
->i_reserved_data_blocks
);
1501 to_free
= ei
->i_reserved_data_blocks
;
1503 ei
->i_reserved_data_blocks
-= to_free
;
1505 /* update fs dirty data blocks counter */
1506 percpu_counter_sub(&sbi
->s_dirtyclusters_counter
, to_free
);
1508 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1510 dquot_release_reservation_block(inode
, EXT4_C2B(sbi
, to_free
));
1514 * Delayed allocation stuff
1517 struct mpage_da_data
{
1518 struct inode
*inode
;
1519 struct writeback_control
*wbc
;
1521 pgoff_t first_page
; /* The first page to write */
1522 pgoff_t next_page
; /* Current page to examine */
1523 pgoff_t last_page
; /* Last page to examine */
1525 * Extent to map - this can be after first_page because that can be
1526 * fully mapped. We somewhat abuse m_flags to store whether the extent
1527 * is delalloc or unwritten.
1529 struct ext4_map_blocks map
;
1530 struct ext4_io_submit io_submit
; /* IO submission data */
1531 unsigned int do_map
:1;
1534 static void mpage_release_unused_pages(struct mpage_da_data
*mpd
,
1539 struct pagevec pvec
;
1540 struct inode
*inode
= mpd
->inode
;
1541 struct address_space
*mapping
= inode
->i_mapping
;
1543 /* This is necessary when next_page == 0. */
1544 if (mpd
->first_page
>= mpd
->next_page
)
1547 index
= mpd
->first_page
;
1548 end
= mpd
->next_page
- 1;
1550 ext4_lblk_t start
, last
;
1551 start
= index
<< (PAGE_SHIFT
- inode
->i_blkbits
);
1552 last
= end
<< (PAGE_SHIFT
- inode
->i_blkbits
);
1553 ext4_es_remove_extent(inode
, start
, last
- start
+ 1);
1556 pagevec_init(&pvec
);
1557 while (index
<= end
) {
1558 nr_pages
= pagevec_lookup_range(&pvec
, mapping
, &index
, end
);
1561 for (i
= 0; i
< nr_pages
; i
++) {
1562 struct page
*page
= pvec
.pages
[i
];
1564 BUG_ON(!PageLocked(page
));
1565 BUG_ON(PageWriteback(page
));
1567 if (page_mapped(page
))
1568 clear_page_dirty_for_io(page
);
1569 block_invalidatepage(page
, 0, PAGE_SIZE
);
1570 ClearPageUptodate(page
);
1574 pagevec_release(&pvec
);
1578 static void ext4_print_free_blocks(struct inode
*inode
)
1580 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1581 struct super_block
*sb
= inode
->i_sb
;
1582 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1584 ext4_msg(sb
, KERN_CRIT
, "Total free blocks count %lld",
1585 EXT4_C2B(EXT4_SB(inode
->i_sb
),
1586 ext4_count_free_clusters(sb
)));
1587 ext4_msg(sb
, KERN_CRIT
, "Free/Dirty block details");
1588 ext4_msg(sb
, KERN_CRIT
, "free_blocks=%lld",
1589 (long long) EXT4_C2B(EXT4_SB(sb
),
1590 percpu_counter_sum(&sbi
->s_freeclusters_counter
)));
1591 ext4_msg(sb
, KERN_CRIT
, "dirty_blocks=%lld",
1592 (long long) EXT4_C2B(EXT4_SB(sb
),
1593 percpu_counter_sum(&sbi
->s_dirtyclusters_counter
)));
1594 ext4_msg(sb
, KERN_CRIT
, "Block reservation details");
1595 ext4_msg(sb
, KERN_CRIT
, "i_reserved_data_blocks=%u",
1596 ei
->i_reserved_data_blocks
);
1600 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
1602 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
1606 * ext4_insert_delayed_block - adds a delayed block to the extents status
1607 * tree, incrementing the reserved cluster/block
1608 * count or making a pending reservation
1611 * @inode - file containing the newly added block
1612 * @lblk - logical block to be added
1614 * Returns 0 on success, negative error code on failure.
1616 static int ext4_insert_delayed_block(struct inode
*inode
, ext4_lblk_t lblk
)
1618 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1620 bool allocated
= false;
1623 * If the cluster containing lblk is shared with a delayed,
1624 * written, or unwritten extent in a bigalloc file system, it's
1625 * already been accounted for and does not need to be reserved.
1626 * A pending reservation must be made for the cluster if it's
1627 * shared with a written or unwritten extent and doesn't already
1628 * have one. Written and unwritten extents can be purged from the
1629 * extents status tree if the system is under memory pressure, so
1630 * it's necessary to examine the extent tree if a search of the
1631 * extents status tree doesn't get a match.
1633 if (sbi
->s_cluster_ratio
== 1) {
1634 ret
= ext4_da_reserve_space(inode
);
1635 if (ret
!= 0) /* ENOSPC */
1637 } else { /* bigalloc */
1638 if (!ext4_es_scan_clu(inode
, &ext4_es_is_delonly
, lblk
)) {
1639 if (!ext4_es_scan_clu(inode
,
1640 &ext4_es_is_mapped
, lblk
)) {
1641 ret
= ext4_clu_mapped(inode
,
1642 EXT4_B2C(sbi
, lblk
));
1646 ret
= ext4_da_reserve_space(inode
);
1647 if (ret
!= 0) /* ENOSPC */
1658 ret
= ext4_es_insert_delayed_block(inode
, lblk
, allocated
);
1665 * This function is grabs code from the very beginning of
1666 * ext4_map_blocks, but assumes that the caller is from delayed write
1667 * time. This function looks up the requested blocks and sets the
1668 * buffer delay bit under the protection of i_data_sem.
1670 static int ext4_da_map_blocks(struct inode
*inode
, sector_t iblock
,
1671 struct ext4_map_blocks
*map
,
1672 struct buffer_head
*bh
)
1674 struct extent_status es
;
1676 sector_t invalid_block
= ~((sector_t
) 0xffff);
1677 #ifdef ES_AGGRESSIVE_TEST
1678 struct ext4_map_blocks orig_map
;
1680 memcpy(&orig_map
, map
, sizeof(*map
));
1683 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
1687 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1688 "logical block %lu\n", inode
->i_ino
, map
->m_len
,
1689 (unsigned long) map
->m_lblk
);
1691 /* Lookup extent status tree firstly */
1692 if (ext4_es_lookup_extent(inode
, iblock
, NULL
, &es
)) {
1693 if (ext4_es_is_hole(&es
)) {
1695 down_read(&EXT4_I(inode
)->i_data_sem
);
1700 * Delayed extent could be allocated by fallocate.
1701 * So we need to check it.
1703 if (ext4_es_is_delayed(&es
) && !ext4_es_is_unwritten(&es
)) {
1704 map_bh(bh
, inode
->i_sb
, invalid_block
);
1706 set_buffer_delay(bh
);
1710 map
->m_pblk
= ext4_es_pblock(&es
) + iblock
- es
.es_lblk
;
1711 retval
= es
.es_len
- (iblock
- es
.es_lblk
);
1712 if (retval
> map
->m_len
)
1713 retval
= map
->m_len
;
1714 map
->m_len
= retval
;
1715 if (ext4_es_is_written(&es
))
1716 map
->m_flags
|= EXT4_MAP_MAPPED
;
1717 else if (ext4_es_is_unwritten(&es
))
1718 map
->m_flags
|= EXT4_MAP_UNWRITTEN
;
1722 #ifdef ES_AGGRESSIVE_TEST
1723 ext4_map_blocks_es_recheck(NULL
, inode
, map
, &orig_map
, 0);
1729 * Try to see if we can get the block without requesting a new
1730 * file system block.
1732 down_read(&EXT4_I(inode
)->i_data_sem
);
1733 if (ext4_has_inline_data(inode
))
1735 else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
1736 retval
= ext4_ext_map_blocks(NULL
, inode
, map
, 0);
1738 retval
= ext4_ind_map_blocks(NULL
, inode
, map
, 0);
1745 * XXX: __block_prepare_write() unmaps passed block,
1749 ret
= ext4_insert_delayed_block(inode
, map
->m_lblk
);
1755 map_bh(bh
, inode
->i_sb
, invalid_block
);
1757 set_buffer_delay(bh
);
1758 } else if (retval
> 0) {
1760 unsigned int status
;
1762 if (unlikely(retval
!= map
->m_len
)) {
1763 ext4_warning(inode
->i_sb
,
1764 "ES len assertion failed for inode "
1765 "%lu: retval %d != map->m_len %d",
1766 inode
->i_ino
, retval
, map
->m_len
);
1770 status
= map
->m_flags
& EXT4_MAP_UNWRITTEN
?
1771 EXTENT_STATUS_UNWRITTEN
: EXTENT_STATUS_WRITTEN
;
1772 ret
= ext4_es_insert_extent(inode
, map
->m_lblk
, map
->m_len
,
1773 map
->m_pblk
, status
);
1779 up_read((&EXT4_I(inode
)->i_data_sem
));
1785 * This is a special get_block_t callback which is used by
1786 * ext4_da_write_begin(). It will either return mapped block or
1787 * reserve space for a single block.
1789 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1790 * We also have b_blocknr = -1 and b_bdev initialized properly
1792 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1793 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1794 * initialized properly.
1796 int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
1797 struct buffer_head
*bh
, int create
)
1799 struct ext4_map_blocks map
;
1802 BUG_ON(create
== 0);
1803 BUG_ON(bh
->b_size
!= inode
->i_sb
->s_blocksize
);
1805 map
.m_lblk
= iblock
;
1809 * first, we need to know whether the block is allocated already
1810 * preallocated blocks are unmapped but should treated
1811 * the same as allocated blocks.
1813 ret
= ext4_da_map_blocks(inode
, iblock
, &map
, bh
);
1817 map_bh(bh
, inode
->i_sb
, map
.m_pblk
);
1818 ext4_update_bh_state(bh
, map
.m_flags
);
1820 if (buffer_unwritten(bh
)) {
1821 /* A delayed write to unwritten bh should be marked
1822 * new and mapped. Mapped ensures that we don't do
1823 * get_block multiple times when we write to the same
1824 * offset and new ensures that we do proper zero out
1825 * for partial write.
1828 set_buffer_mapped(bh
);
1833 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
1839 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
1845 static int __ext4_journalled_writepage(struct page
*page
,
1848 struct address_space
*mapping
= page
->mapping
;
1849 struct inode
*inode
= mapping
->host
;
1850 struct buffer_head
*page_bufs
= NULL
;
1851 handle_t
*handle
= NULL
;
1852 int ret
= 0, err
= 0;
1853 int inline_data
= ext4_has_inline_data(inode
);
1854 struct buffer_head
*inode_bh
= NULL
;
1856 ClearPageChecked(page
);
1859 BUG_ON(page
->index
!= 0);
1860 BUG_ON(len
> ext4_get_max_inline_size(inode
));
1861 inode_bh
= ext4_journalled_write_inline_data(inode
, len
, page
);
1862 if (inode_bh
== NULL
)
1865 page_bufs
= page_buffers(page
);
1870 ext4_walk_page_buffers(handle
, page_bufs
, 0, len
,
1874 * We need to release the page lock before we start the
1875 * journal, so grab a reference so the page won't disappear
1876 * out from under us.
1881 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
1882 ext4_writepage_trans_blocks(inode
));
1883 if (IS_ERR(handle
)) {
1884 ret
= PTR_ERR(handle
);
1886 goto out_no_pagelock
;
1888 BUG_ON(!ext4_handle_valid(handle
));
1892 if (page
->mapping
!= mapping
) {
1893 /* The page got truncated from under us */
1894 ext4_journal_stop(handle
);
1900 ret
= ext4_mark_inode_dirty(handle
, inode
);
1902 ret
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1903 do_journal_get_write_access
);
1905 err
= ext4_walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
1910 EXT4_I(inode
)->i_datasync_tid
= handle
->h_transaction
->t_tid
;
1911 err
= ext4_journal_stop(handle
);
1915 if (!ext4_has_inline_data(inode
))
1916 ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
,
1918 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1927 * Note that we don't need to start a transaction unless we're journaling data
1928 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1929 * need to file the inode to the transaction's list in ordered mode because if
1930 * we are writing back data added by write(), the inode is already there and if
1931 * we are writing back data modified via mmap(), no one guarantees in which
1932 * transaction the data will hit the disk. In case we are journaling data, we
1933 * cannot start transaction directly because transaction start ranks above page
1934 * lock so we have to do some magic.
1936 * This function can get called via...
1937 * - ext4_writepages after taking page lock (have journal handle)
1938 * - journal_submit_inode_data_buffers (no journal handle)
1939 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1940 * - grab_page_cache when doing write_begin (have journal handle)
1942 * We don't do any block allocation in this function. If we have page with
1943 * multiple blocks we need to write those buffer_heads that are mapped. This
1944 * is important for mmaped based write. So if we do with blocksize 1K
1945 * truncate(f, 1024);
1946 * a = mmap(f, 0, 4096);
1948 * truncate(f, 4096);
1949 * we have in the page first buffer_head mapped via page_mkwrite call back
1950 * but other buffer_heads would be unmapped but dirty (dirty done via the
1951 * do_wp_page). So writepage should write the first block. If we modify
1952 * the mmap area beyond 1024 we will again get a page_fault and the
1953 * page_mkwrite callback will do the block allocation and mark the
1954 * buffer_heads mapped.
1956 * We redirty the page if we have any buffer_heads that is either delay or
1957 * unwritten in the page.
1959 * We can get recursively called as show below.
1961 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1964 * But since we don't do any block allocation we should not deadlock.
1965 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1967 static int ext4_writepage(struct page
*page
,
1968 struct writeback_control
*wbc
)
1973 struct buffer_head
*page_bufs
= NULL
;
1974 struct inode
*inode
= page
->mapping
->host
;
1975 struct ext4_io_submit io_submit
;
1976 bool keep_towrite
= false;
1978 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
)))) {
1979 ext4_invalidatepage(page
, 0, PAGE_SIZE
);
1984 trace_ext4_writepage(page
);
1985 size
= i_size_read(inode
);
1986 if (page
->index
== size
>> PAGE_SHIFT
&&
1987 !ext4_verity_in_progress(inode
))
1988 len
= size
& ~PAGE_MASK
;
1992 page_bufs
= page_buffers(page
);
1994 * We cannot do block allocation or other extent handling in this
1995 * function. If there are buffers needing that, we have to redirty
1996 * the page. But we may reach here when we do a journal commit via
1997 * journal_submit_inode_data_buffers() and in that case we must write
1998 * allocated buffers to achieve data=ordered mode guarantees.
2000 * Also, if there is only one buffer per page (the fs block
2001 * size == the page size), if one buffer needs block
2002 * allocation or needs to modify the extent tree to clear the
2003 * unwritten flag, we know that the page can't be written at
2004 * all, so we might as well refuse the write immediately.
2005 * Unfortunately if the block size != page size, we can't as
2006 * easily detect this case using ext4_walk_page_buffers(), but
2007 * for the extremely common case, this is an optimization that
2008 * skips a useless round trip through ext4_bio_write_page().
2010 if (ext4_walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2011 ext4_bh_delay_or_unwritten
)) {
2012 redirty_page_for_writepage(wbc
, page
);
2013 if ((current
->flags
& PF_MEMALLOC
) ||
2014 (inode
->i_sb
->s_blocksize
== PAGE_SIZE
)) {
2016 * For memory cleaning there's no point in writing only
2017 * some buffers. So just bail out. Warn if we came here
2018 * from direct reclaim.
2020 WARN_ON_ONCE((current
->flags
& (PF_MEMALLOC
|PF_KSWAPD
))
2025 keep_towrite
= true;
2028 if (PageChecked(page
) && ext4_should_journal_data(inode
))
2030 * It's mmapped pagecache. Add buffers and journal it. There
2031 * doesn't seem much point in redirtying the page here.
2033 return __ext4_journalled_writepage(page
, len
);
2035 ext4_io_submit_init(&io_submit
, wbc
);
2036 io_submit
.io_end
= ext4_init_io_end(inode
, GFP_NOFS
);
2037 if (!io_submit
.io_end
) {
2038 redirty_page_for_writepage(wbc
, page
);
2042 ret
= ext4_bio_write_page(&io_submit
, page
, len
, wbc
, keep_towrite
);
2043 ext4_io_submit(&io_submit
);
2044 /* Drop io_end reference we got from init */
2045 ext4_put_io_end_defer(io_submit
.io_end
);
2049 static int mpage_submit_page(struct mpage_da_data
*mpd
, struct page
*page
)
2055 BUG_ON(page
->index
!= mpd
->first_page
);
2056 clear_page_dirty_for_io(page
);
2058 * We have to be very careful here! Nothing protects writeback path
2059 * against i_size changes and the page can be writeably mapped into
2060 * page tables. So an application can be growing i_size and writing
2061 * data through mmap while writeback runs. clear_page_dirty_for_io()
2062 * write-protects our page in page tables and the page cannot get
2063 * written to again until we release page lock. So only after
2064 * clear_page_dirty_for_io() we are safe to sample i_size for
2065 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2066 * on the barrier provided by TestClearPageDirty in
2067 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2068 * after page tables are updated.
2070 size
= i_size_read(mpd
->inode
);
2071 if (page
->index
== size
>> PAGE_SHIFT
&&
2072 !ext4_verity_in_progress(mpd
->inode
))
2073 len
= size
& ~PAGE_MASK
;
2076 err
= ext4_bio_write_page(&mpd
->io_submit
, page
, len
, mpd
->wbc
, false);
2078 mpd
->wbc
->nr_to_write
--;
2084 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2087 * mballoc gives us at most this number of blocks...
2088 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2089 * The rest of mballoc seems to handle chunks up to full group size.
2091 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2094 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2096 * @mpd - extent of blocks
2097 * @lblk - logical number of the block in the file
2098 * @bh - buffer head we want to add to the extent
2100 * The function is used to collect contig. blocks in the same state. If the
2101 * buffer doesn't require mapping for writeback and we haven't started the
2102 * extent of buffers to map yet, the function returns 'true' immediately - the
2103 * caller can write the buffer right away. Otherwise the function returns true
2104 * if the block has been added to the extent, false if the block couldn't be
2107 static bool mpage_add_bh_to_extent(struct mpage_da_data
*mpd
, ext4_lblk_t lblk
,
2108 struct buffer_head
*bh
)
2110 struct ext4_map_blocks
*map
= &mpd
->map
;
2112 /* Buffer that doesn't need mapping for writeback? */
2113 if (!buffer_dirty(bh
) || !buffer_mapped(bh
) ||
2114 (!buffer_delay(bh
) && !buffer_unwritten(bh
))) {
2115 /* So far no extent to map => we write the buffer right away */
2116 if (map
->m_len
== 0)
2121 /* First block in the extent? */
2122 if (map
->m_len
== 0) {
2123 /* We cannot map unless handle is started... */
2128 map
->m_flags
= bh
->b_state
& BH_FLAGS
;
2132 /* Don't go larger than mballoc is willing to allocate */
2133 if (map
->m_len
>= MAX_WRITEPAGES_EXTENT_LEN
)
2136 /* Can we merge the block to our big extent? */
2137 if (lblk
== map
->m_lblk
+ map
->m_len
&&
2138 (bh
->b_state
& BH_FLAGS
) == map
->m_flags
) {
2146 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2148 * @mpd - extent of blocks for mapping
2149 * @head - the first buffer in the page
2150 * @bh - buffer we should start processing from
2151 * @lblk - logical number of the block in the file corresponding to @bh
2153 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2154 * the page for IO if all buffers in this page were mapped and there's no
2155 * accumulated extent of buffers to map or add buffers in the page to the
2156 * extent of buffers to map. The function returns 1 if the caller can continue
2157 * by processing the next page, 0 if it should stop adding buffers to the
2158 * extent to map because we cannot extend it anymore. It can also return value
2159 * < 0 in case of error during IO submission.
2161 static int mpage_process_page_bufs(struct mpage_da_data
*mpd
,
2162 struct buffer_head
*head
,
2163 struct buffer_head
*bh
,
2166 struct inode
*inode
= mpd
->inode
;
2168 ext4_lblk_t blocks
= (i_size_read(inode
) + i_blocksize(inode
) - 1)
2169 >> inode
->i_blkbits
;
2171 if (ext4_verity_in_progress(inode
))
2172 blocks
= EXT_MAX_BLOCKS
;
2175 BUG_ON(buffer_locked(bh
));
2177 if (lblk
>= blocks
|| !mpage_add_bh_to_extent(mpd
, lblk
, bh
)) {
2178 /* Found extent to map? */
2181 /* Buffer needs mapping and handle is not started? */
2184 /* Everything mapped so far and we hit EOF */
2187 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
2188 /* So far everything mapped? Submit the page for IO. */
2189 if (mpd
->map
.m_len
== 0) {
2190 err
= mpage_submit_page(mpd
, head
->b_page
);
2194 return lblk
< blocks
;
2198 * mpage_process_page - update page buffers corresponding to changed extent and
2199 * may submit fully mapped page for IO
2201 * @mpd - description of extent to map, on return next extent to map
2202 * @m_lblk - logical block mapping.
2203 * @m_pblk - corresponding physical mapping.
2204 * @map_bh - determines on return whether this page requires any further
2206 * Scan given page buffers corresponding to changed extent and update buffer
2207 * state according to new extent state.
2208 * We map delalloc buffers to their physical location, clear unwritten bits.
2209 * If the given page is not fully mapped, we update @map to the next extent in
2210 * the given page that needs mapping & return @map_bh as true.
2212 static int mpage_process_page(struct mpage_da_data
*mpd
, struct page
*page
,
2213 ext4_lblk_t
*m_lblk
, ext4_fsblk_t
*m_pblk
,
2216 struct buffer_head
*head
, *bh
;
2217 ext4_io_end_t
*io_end
= mpd
->io_submit
.io_end
;
2218 ext4_lblk_t lblk
= *m_lblk
;
2219 ext4_fsblk_t pblock
= *m_pblk
;
2221 int blkbits
= mpd
->inode
->i_blkbits
;
2222 ssize_t io_end_size
= 0;
2223 struct ext4_io_end_vec
*io_end_vec
= ext4_last_io_end_vec(io_end
);
2225 bh
= head
= page_buffers(page
);
2227 if (lblk
< mpd
->map
.m_lblk
)
2229 if (lblk
>= mpd
->map
.m_lblk
+ mpd
->map
.m_len
) {
2231 * Buffer after end of mapped extent.
2232 * Find next buffer in the page to map.
2235 mpd
->map
.m_flags
= 0;
2236 io_end_vec
->size
+= io_end_size
;
2239 err
= mpage_process_page_bufs(mpd
, head
, bh
, lblk
);
2242 if (!err
&& mpd
->map
.m_len
&& mpd
->map
.m_lblk
> lblk
) {
2243 io_end_vec
= ext4_alloc_io_end_vec(io_end
);
2244 if (IS_ERR(io_end_vec
)) {
2245 err
= PTR_ERR(io_end_vec
);
2248 io_end_vec
->offset
= mpd
->map
.m_lblk
<< blkbits
;
2253 if (buffer_delay(bh
)) {
2254 clear_buffer_delay(bh
);
2255 bh
->b_blocknr
= pblock
++;
2257 clear_buffer_unwritten(bh
);
2258 io_end_size
+= (1 << blkbits
);
2259 } while (lblk
++, (bh
= bh
->b_this_page
) != head
);
2261 io_end_vec
->size
+= io_end_size
;
2271 * mpage_map_buffers - update buffers corresponding to changed extent and
2272 * submit fully mapped pages for IO
2274 * @mpd - description of extent to map, on return next extent to map
2276 * Scan buffers corresponding to changed extent (we expect corresponding pages
2277 * to be already locked) and update buffer state according to new extent state.
2278 * We map delalloc buffers to their physical location, clear unwritten bits,
2279 * and mark buffers as uninit when we perform writes to unwritten extents
2280 * and do extent conversion after IO is finished. If the last page is not fully
2281 * mapped, we update @map to the next extent in the last page that needs
2282 * mapping. Otherwise we submit the page for IO.
2284 static int mpage_map_and_submit_buffers(struct mpage_da_data
*mpd
)
2286 struct pagevec pvec
;
2288 struct inode
*inode
= mpd
->inode
;
2289 int bpp_bits
= PAGE_SHIFT
- inode
->i_blkbits
;
2292 ext4_fsblk_t pblock
;
2294 bool map_bh
= false;
2296 start
= mpd
->map
.m_lblk
>> bpp_bits
;
2297 end
= (mpd
->map
.m_lblk
+ mpd
->map
.m_len
- 1) >> bpp_bits
;
2298 lblk
= start
<< bpp_bits
;
2299 pblock
= mpd
->map
.m_pblk
;
2301 pagevec_init(&pvec
);
2302 while (start
<= end
) {
2303 nr_pages
= pagevec_lookup_range(&pvec
, inode
->i_mapping
,
2307 for (i
= 0; i
< nr_pages
; i
++) {
2308 struct page
*page
= pvec
.pages
[i
];
2310 err
= mpage_process_page(mpd
, page
, &lblk
, &pblock
,
2313 * If map_bh is true, means page may require further bh
2314 * mapping, or maybe the page was submitted for IO.
2315 * So we return to call further extent mapping.
2317 if (err
< 0 || map_bh
== true)
2319 /* Page fully mapped - let IO run! */
2320 err
= mpage_submit_page(mpd
, page
);
2324 pagevec_release(&pvec
);
2326 /* Extent fully mapped and matches with page boundary. We are done. */
2328 mpd
->map
.m_flags
= 0;
2331 pagevec_release(&pvec
);
2335 static int mpage_map_one_extent(handle_t
*handle
, struct mpage_da_data
*mpd
)
2337 struct inode
*inode
= mpd
->inode
;
2338 struct ext4_map_blocks
*map
= &mpd
->map
;
2339 int get_blocks_flags
;
2340 int err
, dioread_nolock
;
2342 trace_ext4_da_write_pages_extent(inode
, map
);
2344 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2345 * to convert an unwritten extent to be initialized (in the case
2346 * where we have written into one or more preallocated blocks). It is
2347 * possible that we're going to need more metadata blocks than
2348 * previously reserved. However we must not fail because we're in
2349 * writeback and there is nothing we can do about it so it might result
2350 * in data loss. So use reserved blocks to allocate metadata if
2353 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2354 * the blocks in question are delalloc blocks. This indicates
2355 * that the blocks and quotas has already been checked when
2356 * the data was copied into the page cache.
2358 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
|
2359 EXT4_GET_BLOCKS_METADATA_NOFAIL
|
2360 EXT4_GET_BLOCKS_IO_SUBMIT
;
2361 dioread_nolock
= ext4_should_dioread_nolock(inode
);
2363 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
2364 if (map
->m_flags
& (1 << BH_Delay
))
2365 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
2367 err
= ext4_map_blocks(handle
, inode
, map
, get_blocks_flags
);
2370 if (dioread_nolock
&& (map
->m_flags
& EXT4_MAP_UNWRITTEN
)) {
2371 if (!mpd
->io_submit
.io_end
->handle
&&
2372 ext4_handle_valid(handle
)) {
2373 mpd
->io_submit
.io_end
->handle
= handle
->h_rsv_handle
;
2374 handle
->h_rsv_handle
= NULL
;
2376 ext4_set_io_unwritten_flag(inode
, mpd
->io_submit
.io_end
);
2379 BUG_ON(map
->m_len
== 0);
2384 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2385 * mpd->len and submit pages underlying it for IO
2387 * @handle - handle for journal operations
2388 * @mpd - extent to map
2389 * @give_up_on_write - we set this to true iff there is a fatal error and there
2390 * is no hope of writing the data. The caller should discard
2391 * dirty pages to avoid infinite loops.
2393 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2394 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2395 * them to initialized or split the described range from larger unwritten
2396 * extent. Note that we need not map all the described range since allocation
2397 * can return less blocks or the range is covered by more unwritten extents. We
2398 * cannot map more because we are limited by reserved transaction credits. On
2399 * the other hand we always make sure that the last touched page is fully
2400 * mapped so that it can be written out (and thus forward progress is
2401 * guaranteed). After mapping we submit all mapped pages for IO.
2403 static int mpage_map_and_submit_extent(handle_t
*handle
,
2404 struct mpage_da_data
*mpd
,
2405 bool *give_up_on_write
)
2407 struct inode
*inode
= mpd
->inode
;
2408 struct ext4_map_blocks
*map
= &mpd
->map
;
2412 ext4_io_end_t
*io_end
= mpd
->io_submit
.io_end
;
2413 struct ext4_io_end_vec
*io_end_vec
;
2415 io_end_vec
= ext4_alloc_io_end_vec(io_end
);
2416 if (IS_ERR(io_end_vec
))
2417 return PTR_ERR(io_end_vec
);
2418 io_end_vec
->offset
= ((loff_t
)map
->m_lblk
) << inode
->i_blkbits
;
2420 err
= mpage_map_one_extent(handle
, mpd
);
2422 struct super_block
*sb
= inode
->i_sb
;
2424 if (ext4_forced_shutdown(EXT4_SB(sb
)) ||
2425 EXT4_SB(sb
)->s_mount_flags
& EXT4_MF_FS_ABORTED
)
2426 goto invalidate_dirty_pages
;
2428 * Let the uper layers retry transient errors.
2429 * In the case of ENOSPC, if ext4_count_free_blocks()
2430 * is non-zero, a commit should free up blocks.
2432 if ((err
== -ENOMEM
) ||
2433 (err
== -ENOSPC
&& ext4_count_free_clusters(sb
))) {
2435 goto update_disksize
;
2438 ext4_msg(sb
, KERN_CRIT
,
2439 "Delayed block allocation failed for "
2440 "inode %lu at logical offset %llu with"
2441 " max blocks %u with error %d",
2443 (unsigned long long)map
->m_lblk
,
2444 (unsigned)map
->m_len
, -err
);
2445 ext4_msg(sb
, KERN_CRIT
,
2446 "This should not happen!! Data will "
2449 ext4_print_free_blocks(inode
);
2450 invalidate_dirty_pages
:
2451 *give_up_on_write
= true;
2456 * Update buffer state, submit mapped pages, and get us new
2459 err
= mpage_map_and_submit_buffers(mpd
);
2461 goto update_disksize
;
2462 } while (map
->m_len
);
2466 * Update on-disk size after IO is submitted. Races with
2467 * truncate are avoided by checking i_size under i_data_sem.
2469 disksize
= ((loff_t
)mpd
->first_page
) << PAGE_SHIFT
;
2470 if (disksize
> EXT4_I(inode
)->i_disksize
) {
2474 down_write(&EXT4_I(inode
)->i_data_sem
);
2475 i_size
= i_size_read(inode
);
2476 if (disksize
> i_size
)
2478 if (disksize
> EXT4_I(inode
)->i_disksize
)
2479 EXT4_I(inode
)->i_disksize
= disksize
;
2480 up_write(&EXT4_I(inode
)->i_data_sem
);
2481 err2
= ext4_mark_inode_dirty(handle
, inode
);
2483 ext4_set_errno(inode
->i_sb
, -err2
);
2484 ext4_error(inode
->i_sb
,
2485 "Failed to mark inode %lu dirty",
2495 * Calculate the total number of credits to reserve for one writepages
2496 * iteration. This is called from ext4_writepages(). We map an extent of
2497 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2498 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2499 * bpp - 1 blocks in bpp different extents.
2501 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2503 int bpp
= ext4_journal_blocks_per_page(inode
);
2505 return ext4_meta_trans_blocks(inode
,
2506 MAX_WRITEPAGES_EXTENT_LEN
+ bpp
- 1, bpp
);
2510 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2511 * and underlying extent to map
2513 * @mpd - where to look for pages
2515 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2516 * IO immediately. When we find a page which isn't mapped we start accumulating
2517 * extent of buffers underlying these pages that needs mapping (formed by
2518 * either delayed or unwritten buffers). We also lock the pages containing
2519 * these buffers. The extent found is returned in @mpd structure (starting at
2520 * mpd->lblk with length mpd->len blocks).
2522 * Note that this function can attach bios to one io_end structure which are
2523 * neither logically nor physically contiguous. Although it may seem as an
2524 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2525 * case as we need to track IO to all buffers underlying a page in one io_end.
2527 static int mpage_prepare_extent_to_map(struct mpage_da_data
*mpd
)
2529 struct address_space
*mapping
= mpd
->inode
->i_mapping
;
2530 struct pagevec pvec
;
2531 unsigned int nr_pages
;
2532 long left
= mpd
->wbc
->nr_to_write
;
2533 pgoff_t index
= mpd
->first_page
;
2534 pgoff_t end
= mpd
->last_page
;
2537 int blkbits
= mpd
->inode
->i_blkbits
;
2539 struct buffer_head
*head
;
2541 if (mpd
->wbc
->sync_mode
== WB_SYNC_ALL
|| mpd
->wbc
->tagged_writepages
)
2542 tag
= PAGECACHE_TAG_TOWRITE
;
2544 tag
= PAGECACHE_TAG_DIRTY
;
2546 pagevec_init(&pvec
);
2548 mpd
->next_page
= index
;
2549 while (index
<= end
) {
2550 nr_pages
= pagevec_lookup_range_tag(&pvec
, mapping
, &index
, end
,
2555 for (i
= 0; i
< nr_pages
; i
++) {
2556 struct page
*page
= pvec
.pages
[i
];
2559 * Accumulated enough dirty pages? This doesn't apply
2560 * to WB_SYNC_ALL mode. For integrity sync we have to
2561 * keep going because someone may be concurrently
2562 * dirtying pages, and we might have synced a lot of
2563 * newly appeared dirty pages, but have not synced all
2564 * of the old dirty pages.
2566 if (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
&& left
<= 0)
2569 /* If we can't merge this page, we are done. */
2570 if (mpd
->map
.m_len
> 0 && mpd
->next_page
!= page
->index
)
2575 * If the page is no longer dirty, or its mapping no
2576 * longer corresponds to inode we are writing (which
2577 * means it has been truncated or invalidated), or the
2578 * page is already under writeback and we are not doing
2579 * a data integrity writeback, skip the page
2581 if (!PageDirty(page
) ||
2582 (PageWriteback(page
) &&
2583 (mpd
->wbc
->sync_mode
== WB_SYNC_NONE
)) ||
2584 unlikely(page
->mapping
!= mapping
)) {
2589 wait_on_page_writeback(page
);
2590 BUG_ON(PageWriteback(page
));
2592 if (mpd
->map
.m_len
== 0)
2593 mpd
->first_page
= page
->index
;
2594 mpd
->next_page
= page
->index
+ 1;
2595 /* Add all dirty buffers to mpd */
2596 lblk
= ((ext4_lblk_t
)page
->index
) <<
2597 (PAGE_SHIFT
- blkbits
);
2598 head
= page_buffers(page
);
2599 err
= mpage_process_page_bufs(mpd
, head
, head
, lblk
);
2605 pagevec_release(&pvec
);
2610 pagevec_release(&pvec
);
2614 static int ext4_writepages(struct address_space
*mapping
,
2615 struct writeback_control
*wbc
)
2617 pgoff_t writeback_index
= 0;
2618 long nr_to_write
= wbc
->nr_to_write
;
2619 int range_whole
= 0;
2621 handle_t
*handle
= NULL
;
2622 struct mpage_da_data mpd
;
2623 struct inode
*inode
= mapping
->host
;
2624 int needed_blocks
, rsv_blocks
= 0, ret
= 0;
2625 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2627 struct blk_plug plug
;
2628 bool give_up_on_write
= false;
2630 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
2633 percpu_down_read(&sbi
->s_journal_flag_rwsem
);
2634 trace_ext4_writepages(inode
, wbc
);
2637 * No pages to write? This is mainly a kludge to avoid starting
2638 * a transaction for special inodes like journal inode on last iput()
2639 * because that could violate lock ordering on umount
2641 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2642 goto out_writepages
;
2644 if (ext4_should_journal_data(inode
)) {
2645 ret
= generic_writepages(mapping
, wbc
);
2646 goto out_writepages
;
2650 * If the filesystem has aborted, it is read-only, so return
2651 * right away instead of dumping stack traces later on that
2652 * will obscure the real source of the problem. We test
2653 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2654 * the latter could be true if the filesystem is mounted
2655 * read-only, and in that case, ext4_writepages should
2656 * *never* be called, so if that ever happens, we would want
2659 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping
->host
->i_sb
)) ||
2660 sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
)) {
2662 goto out_writepages
;
2666 * If we have inline data and arrive here, it means that
2667 * we will soon create the block for the 1st page, so
2668 * we'd better clear the inline data here.
2670 if (ext4_has_inline_data(inode
)) {
2671 /* Just inode will be modified... */
2672 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
2673 if (IS_ERR(handle
)) {
2674 ret
= PTR_ERR(handle
);
2675 goto out_writepages
;
2677 BUG_ON(ext4_test_inode_state(inode
,
2678 EXT4_STATE_MAY_INLINE_DATA
));
2679 ext4_destroy_inline_data(handle
, inode
);
2680 ext4_journal_stop(handle
);
2683 if (ext4_should_dioread_nolock(inode
)) {
2685 * We may need to convert up to one extent per block in
2686 * the page and we may dirty the inode.
2688 rsv_blocks
= 1 + ext4_chunk_trans_blocks(inode
,
2689 PAGE_SIZE
>> inode
->i_blkbits
);
2692 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2695 if (wbc
->range_cyclic
) {
2696 writeback_index
= mapping
->writeback_index
;
2697 if (writeback_index
)
2699 mpd
.first_page
= writeback_index
;
2702 mpd
.first_page
= wbc
->range_start
>> PAGE_SHIFT
;
2703 mpd
.last_page
= wbc
->range_end
>> PAGE_SHIFT
;
2708 ext4_io_submit_init(&mpd
.io_submit
, wbc
);
2710 if (wbc
->sync_mode
== WB_SYNC_ALL
|| wbc
->tagged_writepages
)
2711 tag_pages_for_writeback(mapping
, mpd
.first_page
, mpd
.last_page
);
2713 blk_start_plug(&plug
);
2716 * First writeback pages that don't need mapping - we can avoid
2717 * starting a transaction unnecessarily and also avoid being blocked
2718 * in the block layer on device congestion while having transaction
2722 mpd
.io_submit
.io_end
= ext4_init_io_end(inode
, GFP_KERNEL
);
2723 if (!mpd
.io_submit
.io_end
) {
2727 ret
= mpage_prepare_extent_to_map(&mpd
);
2728 /* Unlock pages we didn't use */
2729 mpage_release_unused_pages(&mpd
, false);
2730 /* Submit prepared bio */
2731 ext4_io_submit(&mpd
.io_submit
);
2732 ext4_put_io_end_defer(mpd
.io_submit
.io_end
);
2733 mpd
.io_submit
.io_end
= NULL
;
2737 while (!done
&& mpd
.first_page
<= mpd
.last_page
) {
2738 /* For each extent of pages we use new io_end */
2739 mpd
.io_submit
.io_end
= ext4_init_io_end(inode
, GFP_KERNEL
);
2740 if (!mpd
.io_submit
.io_end
) {
2746 * We have two constraints: We find one extent to map and we
2747 * must always write out whole page (makes a difference when
2748 * blocksize < pagesize) so that we don't block on IO when we
2749 * try to write out the rest of the page. Journalled mode is
2750 * not supported by delalloc.
2752 BUG_ON(ext4_should_journal_data(inode
));
2753 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2755 /* start a new transaction */
2756 handle
= ext4_journal_start_with_reserve(inode
,
2757 EXT4_HT_WRITE_PAGE
, needed_blocks
, rsv_blocks
);
2758 if (IS_ERR(handle
)) {
2759 ret
= PTR_ERR(handle
);
2760 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2761 "%ld pages, ino %lu; err %d", __func__
,
2762 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2763 /* Release allocated io_end */
2764 ext4_put_io_end(mpd
.io_submit
.io_end
);
2765 mpd
.io_submit
.io_end
= NULL
;
2770 trace_ext4_da_write_pages(inode
, mpd
.first_page
, mpd
.wbc
);
2771 ret
= mpage_prepare_extent_to_map(&mpd
);
2774 ret
= mpage_map_and_submit_extent(handle
, &mpd
,
2778 * We scanned the whole range (or exhausted
2779 * nr_to_write), submitted what was mapped and
2780 * didn't find anything needing mapping. We are
2787 * Caution: If the handle is synchronous,
2788 * ext4_journal_stop() can wait for transaction commit
2789 * to finish which may depend on writeback of pages to
2790 * complete or on page lock to be released. In that
2791 * case, we have to wait until after after we have
2792 * submitted all the IO, released page locks we hold,
2793 * and dropped io_end reference (for extent conversion
2794 * to be able to complete) before stopping the handle.
2796 if (!ext4_handle_valid(handle
) || handle
->h_sync
== 0) {
2797 ext4_journal_stop(handle
);
2801 /* Unlock pages we didn't use */
2802 mpage_release_unused_pages(&mpd
, give_up_on_write
);
2803 /* Submit prepared bio */
2804 ext4_io_submit(&mpd
.io_submit
);
2807 * Drop our io_end reference we got from init. We have
2808 * to be careful and use deferred io_end finishing if
2809 * we are still holding the transaction as we can
2810 * release the last reference to io_end which may end
2811 * up doing unwritten extent conversion.
2814 ext4_put_io_end_defer(mpd
.io_submit
.io_end
);
2815 ext4_journal_stop(handle
);
2817 ext4_put_io_end(mpd
.io_submit
.io_end
);
2818 mpd
.io_submit
.io_end
= NULL
;
2820 if (ret
== -ENOSPC
&& sbi
->s_journal
) {
2822 * Commit the transaction which would
2823 * free blocks released in the transaction
2826 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2830 /* Fatal error - ENOMEM, EIO... */
2835 blk_finish_plug(&plug
);
2836 if (!ret
&& !cycled
&& wbc
->nr_to_write
> 0) {
2838 mpd
.last_page
= writeback_index
- 1;
2844 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
2846 * Set the writeback_index so that range_cyclic
2847 * mode will write it back later
2849 mapping
->writeback_index
= mpd
.first_page
;
2852 trace_ext4_writepages_result(inode
, wbc
, ret
,
2853 nr_to_write
- wbc
->nr_to_write
);
2854 percpu_up_read(&sbi
->s_journal_flag_rwsem
);
2858 static int ext4_dax_writepages(struct address_space
*mapping
,
2859 struct writeback_control
*wbc
)
2862 long nr_to_write
= wbc
->nr_to_write
;
2863 struct inode
*inode
= mapping
->host
;
2864 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2866 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
2869 percpu_down_read(&sbi
->s_journal_flag_rwsem
);
2870 trace_ext4_writepages(inode
, wbc
);
2872 ret
= dax_writeback_mapping_range(mapping
, inode
->i_sb
->s_bdev
, wbc
);
2873 trace_ext4_writepages_result(inode
, wbc
, ret
,
2874 nr_to_write
- wbc
->nr_to_write
);
2875 percpu_up_read(&sbi
->s_journal_flag_rwsem
);
2879 static int ext4_nonda_switch(struct super_block
*sb
)
2881 s64 free_clusters
, dirty_clusters
;
2882 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
2885 * switch to non delalloc mode if we are running low
2886 * on free block. The free block accounting via percpu
2887 * counters can get slightly wrong with percpu_counter_batch getting
2888 * accumulated on each CPU without updating global counters
2889 * Delalloc need an accurate free block accounting. So switch
2890 * to non delalloc when we are near to error range.
2893 percpu_counter_read_positive(&sbi
->s_freeclusters_counter
);
2895 percpu_counter_read_positive(&sbi
->s_dirtyclusters_counter
);
2897 * Start pushing delalloc when 1/2 of free blocks are dirty.
2899 if (dirty_clusters
&& (free_clusters
< 2 * dirty_clusters
))
2900 try_to_writeback_inodes_sb(sb
, WB_REASON_FS_FREE_SPACE
);
2902 if (2 * free_clusters
< 3 * dirty_clusters
||
2903 free_clusters
< (dirty_clusters
+ EXT4_FREECLUSTERS_WATERMARK
)) {
2905 * free block count is less than 150% of dirty blocks
2906 * or free blocks is less than watermark
2913 /* We always reserve for an inode update; the superblock could be there too */
2914 static int ext4_da_write_credits(struct inode
*inode
, loff_t pos
, unsigned len
)
2916 if (likely(ext4_has_feature_large_file(inode
->i_sb
)))
2919 if (pos
+ len
<= 0x7fffffffULL
)
2922 /* We might need to update the superblock to set LARGE_FILE */
2926 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
2927 loff_t pos
, unsigned len
, unsigned flags
,
2928 struct page
**pagep
, void **fsdata
)
2930 int ret
, retries
= 0;
2933 struct inode
*inode
= mapping
->host
;
2936 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
2939 index
= pos
>> PAGE_SHIFT
;
2941 if (ext4_nonda_switch(inode
->i_sb
) || S_ISLNK(inode
->i_mode
) ||
2942 ext4_verity_in_progress(inode
)) {
2943 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
2944 return ext4_write_begin(file
, mapping
, pos
,
2945 len
, flags
, pagep
, fsdata
);
2947 *fsdata
= (void *)0;
2948 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
2950 if (ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
)) {
2951 ret
= ext4_da_write_inline_data_begin(mapping
, inode
,
2961 * grab_cache_page_write_begin() can take a long time if the
2962 * system is thrashing due to memory pressure, or if the page
2963 * is being written back. So grab it first before we start
2964 * the transaction handle. This also allows us to allocate
2965 * the page (if needed) without using GFP_NOFS.
2968 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
2974 * With delayed allocation, we don't log the i_disksize update
2975 * if there is delayed block allocation. But we still need
2976 * to journalling the i_disksize update if writes to the end
2977 * of file which has an already mapped buffer.
2980 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
2981 ext4_da_write_credits(inode
, pos
, len
));
2982 if (IS_ERR(handle
)) {
2984 return PTR_ERR(handle
);
2988 if (page
->mapping
!= mapping
) {
2989 /* The page got truncated from under us */
2992 ext4_journal_stop(handle
);
2995 /* In case writeback began while the page was unlocked */
2996 wait_for_stable_page(page
);
2998 #ifdef CONFIG_FS_ENCRYPTION
2999 ret
= ext4_block_write_begin(page
, pos
, len
,
3000 ext4_da_get_block_prep
);
3002 ret
= __block_write_begin(page
, pos
, len
, ext4_da_get_block_prep
);
3006 ext4_journal_stop(handle
);
3008 * block_write_begin may have instantiated a few blocks
3009 * outside i_size. Trim these off again. Don't need
3010 * i_size_read because we hold i_mutex.
3012 if (pos
+ len
> inode
->i_size
)
3013 ext4_truncate_failed_write(inode
);
3015 if (ret
== -ENOSPC
&&
3016 ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3028 * Check if we should update i_disksize
3029 * when write to the end of file but not require block allocation
3031 static int ext4_da_should_update_i_disksize(struct page
*page
,
3032 unsigned long offset
)
3034 struct buffer_head
*bh
;
3035 struct inode
*inode
= page
->mapping
->host
;
3039 bh
= page_buffers(page
);
3040 idx
= offset
>> inode
->i_blkbits
;
3042 for (i
= 0; i
< idx
; i
++)
3043 bh
= bh
->b_this_page
;
3045 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
3050 static int ext4_da_write_end(struct file
*file
,
3051 struct address_space
*mapping
,
3052 loff_t pos
, unsigned len
, unsigned copied
,
3053 struct page
*page
, void *fsdata
)
3055 struct inode
*inode
= mapping
->host
;
3057 handle_t
*handle
= ext4_journal_current_handle();
3059 unsigned long start
, end
;
3060 int write_mode
= (int)(unsigned long)fsdata
;
3062 if (write_mode
== FALL_BACK_TO_NONDELALLOC
)
3063 return ext4_write_end(file
, mapping
, pos
,
3064 len
, copied
, page
, fsdata
);
3066 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
3067 start
= pos
& (PAGE_SIZE
- 1);
3068 end
= start
+ copied
- 1;
3071 * generic_write_end() will run mark_inode_dirty() if i_size
3072 * changes. So let's piggyback the i_disksize mark_inode_dirty
3075 new_i_size
= pos
+ copied
;
3076 if (copied
&& new_i_size
> EXT4_I(inode
)->i_disksize
) {
3077 if (ext4_has_inline_data(inode
) ||
3078 ext4_da_should_update_i_disksize(page
, end
)) {
3079 ext4_update_i_disksize(inode
, new_i_size
);
3080 /* We need to mark inode dirty even if
3081 * new_i_size is less that inode->i_size
3082 * bu greater than i_disksize.(hint delalloc)
3084 ext4_mark_inode_dirty(handle
, inode
);
3088 if (write_mode
!= CONVERT_INLINE_DATA
&&
3089 ext4_test_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
) &&
3090 ext4_has_inline_data(inode
))
3091 ret2
= ext4_da_write_inline_data_end(inode
, pos
, len
, copied
,
3094 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
3100 ret2
= ext4_journal_stop(handle
);
3104 return ret
? ret
: copied
;
3108 * Force all delayed allocation blocks to be allocated for a given inode.
3110 int ext4_alloc_da_blocks(struct inode
*inode
)
3112 trace_ext4_alloc_da_blocks(inode
);
3114 if (!EXT4_I(inode
)->i_reserved_data_blocks
)
3118 * We do something simple for now. The filemap_flush() will
3119 * also start triggering a write of the data blocks, which is
3120 * not strictly speaking necessary (and for users of
3121 * laptop_mode, not even desirable). However, to do otherwise
3122 * would require replicating code paths in:
3124 * ext4_writepages() ->
3125 * write_cache_pages() ---> (via passed in callback function)
3126 * __mpage_da_writepage() -->
3127 * mpage_add_bh_to_extent()
3128 * mpage_da_map_blocks()
3130 * The problem is that write_cache_pages(), located in
3131 * mm/page-writeback.c, marks pages clean in preparation for
3132 * doing I/O, which is not desirable if we're not planning on
3135 * We could call write_cache_pages(), and then redirty all of
3136 * the pages by calling redirty_page_for_writepage() but that
3137 * would be ugly in the extreme. So instead we would need to
3138 * replicate parts of the code in the above functions,
3139 * simplifying them because we wouldn't actually intend to
3140 * write out the pages, but rather only collect contiguous
3141 * logical block extents, call the multi-block allocator, and
3142 * then update the buffer heads with the block allocations.
3144 * For now, though, we'll cheat by calling filemap_flush(),
3145 * which will map the blocks, and start the I/O, but not
3146 * actually wait for the I/O to complete.
3148 return filemap_flush(inode
->i_mapping
);
3152 * bmap() is special. It gets used by applications such as lilo and by
3153 * the swapper to find the on-disk block of a specific piece of data.
3155 * Naturally, this is dangerous if the block concerned is still in the
3156 * journal. If somebody makes a swapfile on an ext4 data-journaling
3157 * filesystem and enables swap, then they may get a nasty shock when the
3158 * data getting swapped to that swapfile suddenly gets overwritten by
3159 * the original zero's written out previously to the journal and
3160 * awaiting writeback in the kernel's buffer cache.
3162 * So, if we see any bmap calls here on a modified, data-journaled file,
3163 * take extra steps to flush any blocks which might be in the cache.
3165 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
3167 struct inode
*inode
= mapping
->host
;
3172 * We can get here for an inline file via the FIBMAP ioctl
3174 if (ext4_has_inline_data(inode
))
3177 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
3178 test_opt(inode
->i_sb
, DELALLOC
)) {
3180 * With delalloc we want to sync the file
3181 * so that we can make sure we allocate
3184 filemap_write_and_wait(mapping
);
3187 if (EXT4_JOURNAL(inode
) &&
3188 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
3190 * This is a REALLY heavyweight approach, but the use of
3191 * bmap on dirty files is expected to be extremely rare:
3192 * only if we run lilo or swapon on a freshly made file
3193 * do we expect this to happen.
3195 * (bmap requires CAP_SYS_RAWIO so this does not
3196 * represent an unprivileged user DOS attack --- we'd be
3197 * in trouble if mortal users could trigger this path at
3200 * NB. EXT4_STATE_JDATA is not set on files other than
3201 * regular files. If somebody wants to bmap a directory
3202 * or symlink and gets confused because the buffer
3203 * hasn't yet been flushed to disk, they deserve
3204 * everything they get.
3207 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
3208 journal
= EXT4_JOURNAL(inode
);
3209 jbd2_journal_lock_updates(journal
);
3210 err
= jbd2_journal_flush(journal
);
3211 jbd2_journal_unlock_updates(journal
);
3217 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3220 static int ext4_readpage(struct file
*file
, struct page
*page
)
3223 struct inode
*inode
= page
->mapping
->host
;
3225 trace_ext4_readpage(page
);
3227 if (ext4_has_inline_data(inode
))
3228 ret
= ext4_readpage_inline(inode
, page
);
3231 return ext4_mpage_readpages(page
->mapping
, NULL
, page
, 1,
3238 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3239 struct list_head
*pages
, unsigned nr_pages
)
3241 struct inode
*inode
= mapping
->host
;
3243 /* If the file has inline data, no need to do readpages. */
3244 if (ext4_has_inline_data(inode
))
3247 return ext4_mpage_readpages(mapping
, pages
, NULL
, nr_pages
, true);
3250 static void ext4_invalidatepage(struct page
*page
, unsigned int offset
,
3251 unsigned int length
)
3253 trace_ext4_invalidatepage(page
, offset
, length
);
3255 /* No journalling happens on data buffers when this function is used */
3256 WARN_ON(page_has_buffers(page
) && buffer_jbd(page_buffers(page
)));
3258 block_invalidatepage(page
, offset
, length
);
3261 static int __ext4_journalled_invalidatepage(struct page
*page
,
3262 unsigned int offset
,
3263 unsigned int length
)
3265 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3267 trace_ext4_journalled_invalidatepage(page
, offset
, length
);
3270 * If it's a full truncate we just forget about the pending dirtying
3272 if (offset
== 0 && length
== PAGE_SIZE
)
3273 ClearPageChecked(page
);
3275 return jbd2_journal_invalidatepage(journal
, page
, offset
, length
);
3278 /* Wrapper for aops... */
3279 static void ext4_journalled_invalidatepage(struct page
*page
,
3280 unsigned int offset
,
3281 unsigned int length
)
3283 WARN_ON(__ext4_journalled_invalidatepage(page
, offset
, length
) < 0);
3286 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3288 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3290 trace_ext4_releasepage(page
);
3292 /* Page has dirty journalled data -> cannot release */
3293 if (PageChecked(page
))
3296 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3298 return try_to_free_buffers(page
);
3301 static bool ext4_inode_datasync_dirty(struct inode
*inode
)
3303 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
3306 return !jbd2_transaction_committed(journal
,
3307 EXT4_I(inode
)->i_datasync_tid
);
3308 /* Any metadata buffers to write? */
3309 if (!list_empty(&inode
->i_mapping
->private_list
))
3311 return inode
->i_state
& I_DIRTY_DATASYNC
;
3314 static void ext4_set_iomap(struct inode
*inode
, struct iomap
*iomap
,
3315 struct ext4_map_blocks
*map
, loff_t offset
,
3318 u8 blkbits
= inode
->i_blkbits
;
3321 * Writes that span EOF might trigger an I/O size update on completion,
3322 * so consider them to be dirty for the purpose of O_DSYNC, even if
3323 * there is no other metadata changes being made or are pending.
3326 if (ext4_inode_datasync_dirty(inode
) ||
3327 offset
+ length
> i_size_read(inode
))
3328 iomap
->flags
|= IOMAP_F_DIRTY
;
3330 if (map
->m_flags
& EXT4_MAP_NEW
)
3331 iomap
->flags
|= IOMAP_F_NEW
;
3333 iomap
->bdev
= inode
->i_sb
->s_bdev
;
3334 iomap
->dax_dev
= EXT4_SB(inode
->i_sb
)->s_daxdev
;
3335 iomap
->offset
= (u64
) map
->m_lblk
<< blkbits
;
3336 iomap
->length
= (u64
) map
->m_len
<< blkbits
;
3339 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3340 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3341 * set. In order for any allocated unwritten extents to be converted
3342 * into written extents correctly within the ->end_io() handler, we
3343 * need to ensure that the iomap->type is set appropriately. Hence, the
3344 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3347 if (map
->m_flags
& EXT4_MAP_UNWRITTEN
) {
3348 iomap
->type
= IOMAP_UNWRITTEN
;
3349 iomap
->addr
= (u64
) map
->m_pblk
<< blkbits
;
3350 } else if (map
->m_flags
& EXT4_MAP_MAPPED
) {
3351 iomap
->type
= IOMAP_MAPPED
;
3352 iomap
->addr
= (u64
) map
->m_pblk
<< blkbits
;
3354 iomap
->type
= IOMAP_HOLE
;
3355 iomap
->addr
= IOMAP_NULL_ADDR
;
3359 static int ext4_iomap_alloc(struct inode
*inode
, struct ext4_map_blocks
*map
,
3363 u8 blkbits
= inode
->i_blkbits
;
3364 int ret
, dio_credits
, m_flags
= 0, retries
= 0;
3367 * Trim the mapping request to the maximum value that we can map at
3368 * once for direct I/O.
3370 if (map
->m_len
> DIO_MAX_BLOCKS
)
3371 map
->m_len
= DIO_MAX_BLOCKS
;
3372 dio_credits
= ext4_chunk_trans_blocks(inode
, map
->m_len
);
3376 * Either we allocate blocks and then don't get an unwritten extent, so
3377 * in that case we have reserved enough credits. Or, the blocks are
3378 * already allocated and unwritten. In that case, the extent conversion
3379 * fits into the credits as well.
3381 handle
= ext4_journal_start(inode
, EXT4_HT_MAP_BLOCKS
, dio_credits
);
3383 return PTR_ERR(handle
);
3386 * DAX and direct I/O are the only two operations that are currently
3387 * supported with IOMAP_WRITE.
3389 WARN_ON(!IS_DAX(inode
) && !(flags
& IOMAP_DIRECT
));
3391 m_flags
= EXT4_GET_BLOCKS_CREATE_ZERO
;
3393 * We use i_size instead of i_disksize here because delalloc writeback
3394 * can complete at any point during the I/O and subsequently push the
3395 * i_disksize out to i_size. This could be beyond where direct I/O is
3396 * happening and thus expose allocated blocks to direct I/O reads.
3398 else if ((map
->m_lblk
* (1 << blkbits
)) >= i_size_read(inode
))
3399 m_flags
= EXT4_GET_BLOCKS_CREATE
;
3400 else if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
3401 m_flags
= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
3403 ret
= ext4_map_blocks(handle
, inode
, map
, m_flags
);
3406 * We cannot fill holes in indirect tree based inodes as that could
3407 * expose stale data in the case of a crash. Use the magic error code
3408 * to fallback to buffered I/O.
3410 if (!m_flags
&& !ret
)
3413 ext4_journal_stop(handle
);
3414 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3421 static int ext4_iomap_begin(struct inode
*inode
, loff_t offset
, loff_t length
,
3422 unsigned flags
, struct iomap
*iomap
, struct iomap
*srcmap
)
3425 struct ext4_map_blocks map
;
3426 u8 blkbits
= inode
->i_blkbits
;
3428 if ((offset
>> blkbits
) > EXT4_MAX_LOGICAL_BLOCK
)
3431 if (WARN_ON_ONCE(ext4_has_inline_data(inode
)))
3435 * Calculate the first and last logical blocks respectively.
3437 map
.m_lblk
= offset
>> blkbits
;
3438 map
.m_len
= min_t(loff_t
, (offset
+ length
- 1) >> blkbits
,
3439 EXT4_MAX_LOGICAL_BLOCK
) - map
.m_lblk
+ 1;
3441 if (flags
& IOMAP_WRITE
)
3442 ret
= ext4_iomap_alloc(inode
, &map
, flags
);
3444 ret
= ext4_map_blocks(NULL
, inode
, &map
, 0);
3449 ext4_set_iomap(inode
, iomap
, &map
, offset
, length
);
3454 static int ext4_iomap_overwrite_begin(struct inode
*inode
, loff_t offset
,
3455 loff_t length
, unsigned flags
, struct iomap
*iomap
,
3456 struct iomap
*srcmap
)
3461 * Even for writes we don't need to allocate blocks, so just pretend
3462 * we are reading to save overhead of starting a transaction.
3464 flags
&= ~IOMAP_WRITE
;
3465 ret
= ext4_iomap_begin(inode
, offset
, length
, flags
, iomap
, srcmap
);
3466 WARN_ON_ONCE(iomap
->type
!= IOMAP_MAPPED
);
3470 static int ext4_iomap_end(struct inode
*inode
, loff_t offset
, loff_t length
,
3471 ssize_t written
, unsigned flags
, struct iomap
*iomap
)
3474 * Check to see whether an error occurred while writing out the data to
3475 * the allocated blocks. If so, return the magic error code so that we
3476 * fallback to buffered I/O and attempt to complete the remainder of
3477 * the I/O. Any blocks that may have been allocated in preparation for
3478 * the direct I/O will be reused during buffered I/O.
3480 if (flags
& (IOMAP_WRITE
| IOMAP_DIRECT
) && written
== 0)
3486 const struct iomap_ops ext4_iomap_ops
= {
3487 .iomap_begin
= ext4_iomap_begin
,
3488 .iomap_end
= ext4_iomap_end
,
3491 const struct iomap_ops ext4_iomap_overwrite_ops
= {
3492 .iomap_begin
= ext4_iomap_overwrite_begin
,
3493 .iomap_end
= ext4_iomap_end
,
3496 static bool ext4_iomap_is_delalloc(struct inode
*inode
,
3497 struct ext4_map_blocks
*map
)
3499 struct extent_status es
;
3500 ext4_lblk_t offset
= 0, end
= map
->m_lblk
+ map
->m_len
- 1;
3502 ext4_es_find_extent_range(inode
, &ext4_es_is_delayed
,
3503 map
->m_lblk
, end
, &es
);
3505 if (!es
.es_len
|| es
.es_lblk
> end
)
3508 if (es
.es_lblk
> map
->m_lblk
) {
3509 map
->m_len
= es
.es_lblk
- map
->m_lblk
;
3513 offset
= map
->m_lblk
- es
.es_lblk
;
3514 map
->m_len
= es
.es_len
- offset
;
3519 static int ext4_iomap_begin_report(struct inode
*inode
, loff_t offset
,
3520 loff_t length
, unsigned int flags
,
3521 struct iomap
*iomap
, struct iomap
*srcmap
)
3524 bool delalloc
= false;
3525 struct ext4_map_blocks map
;
3526 u8 blkbits
= inode
->i_blkbits
;
3528 if ((offset
>> blkbits
) > EXT4_MAX_LOGICAL_BLOCK
)
3531 if (ext4_has_inline_data(inode
)) {
3532 ret
= ext4_inline_data_iomap(inode
, iomap
);
3533 if (ret
!= -EAGAIN
) {
3534 if (ret
== 0 && offset
>= iomap
->length
)
3541 * Calculate the first and last logical block respectively.
3543 map
.m_lblk
= offset
>> blkbits
;
3544 map
.m_len
= min_t(loff_t
, (offset
+ length
- 1) >> blkbits
,
3545 EXT4_MAX_LOGICAL_BLOCK
) - map
.m_lblk
+ 1;
3547 ret
= ext4_map_blocks(NULL
, inode
, &map
, 0);
3551 delalloc
= ext4_iomap_is_delalloc(inode
, &map
);
3553 ext4_set_iomap(inode
, iomap
, &map
, offset
, length
);
3554 if (delalloc
&& iomap
->type
== IOMAP_HOLE
)
3555 iomap
->type
= IOMAP_DELALLOC
;
3560 const struct iomap_ops ext4_iomap_report_ops
= {
3561 .iomap_begin
= ext4_iomap_begin_report
,
3565 * Pages can be marked dirty completely asynchronously from ext4's journalling
3566 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3567 * much here because ->set_page_dirty is called under VFS locks. The page is
3568 * not necessarily locked.
3570 * We cannot just dirty the page and leave attached buffers clean, because the
3571 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3572 * or jbddirty because all the journalling code will explode.
3574 * So what we do is to mark the page "pending dirty" and next time writepage
3575 * is called, propagate that into the buffers appropriately.
3577 static int ext4_journalled_set_page_dirty(struct page
*page
)
3579 SetPageChecked(page
);
3580 return __set_page_dirty_nobuffers(page
);
3583 static int ext4_set_page_dirty(struct page
*page
)
3585 WARN_ON_ONCE(!PageLocked(page
) && !PageDirty(page
));
3586 WARN_ON_ONCE(!page_has_buffers(page
));
3587 return __set_page_dirty_buffers(page
);
3590 static const struct address_space_operations ext4_aops
= {
3591 .readpage
= ext4_readpage
,
3592 .readpages
= ext4_readpages
,
3593 .writepage
= ext4_writepage
,
3594 .writepages
= ext4_writepages
,
3595 .write_begin
= ext4_write_begin
,
3596 .write_end
= ext4_write_end
,
3597 .set_page_dirty
= ext4_set_page_dirty
,
3599 .invalidatepage
= ext4_invalidatepage
,
3600 .releasepage
= ext4_releasepage
,
3601 .direct_IO
= noop_direct_IO
,
3602 .migratepage
= buffer_migrate_page
,
3603 .is_partially_uptodate
= block_is_partially_uptodate
,
3604 .error_remove_page
= generic_error_remove_page
,
3607 static const struct address_space_operations ext4_journalled_aops
= {
3608 .readpage
= ext4_readpage
,
3609 .readpages
= ext4_readpages
,
3610 .writepage
= ext4_writepage
,
3611 .writepages
= ext4_writepages
,
3612 .write_begin
= ext4_write_begin
,
3613 .write_end
= ext4_journalled_write_end
,
3614 .set_page_dirty
= ext4_journalled_set_page_dirty
,
3616 .invalidatepage
= ext4_journalled_invalidatepage
,
3617 .releasepage
= ext4_releasepage
,
3618 .direct_IO
= noop_direct_IO
,
3619 .is_partially_uptodate
= block_is_partially_uptodate
,
3620 .error_remove_page
= generic_error_remove_page
,
3623 static const struct address_space_operations ext4_da_aops
= {
3624 .readpage
= ext4_readpage
,
3625 .readpages
= ext4_readpages
,
3626 .writepage
= ext4_writepage
,
3627 .writepages
= ext4_writepages
,
3628 .write_begin
= ext4_da_write_begin
,
3629 .write_end
= ext4_da_write_end
,
3630 .set_page_dirty
= ext4_set_page_dirty
,
3632 .invalidatepage
= ext4_invalidatepage
,
3633 .releasepage
= ext4_releasepage
,
3634 .direct_IO
= noop_direct_IO
,
3635 .migratepage
= buffer_migrate_page
,
3636 .is_partially_uptodate
= block_is_partially_uptodate
,
3637 .error_remove_page
= generic_error_remove_page
,
3640 static const struct address_space_operations ext4_dax_aops
= {
3641 .writepages
= ext4_dax_writepages
,
3642 .direct_IO
= noop_direct_IO
,
3643 .set_page_dirty
= noop_set_page_dirty
,
3645 .invalidatepage
= noop_invalidatepage
,
3648 void ext4_set_aops(struct inode
*inode
)
3650 switch (ext4_inode_journal_mode(inode
)) {
3651 case EXT4_INODE_ORDERED_DATA_MODE
:
3652 case EXT4_INODE_WRITEBACK_DATA_MODE
:
3654 case EXT4_INODE_JOURNAL_DATA_MODE
:
3655 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
3661 inode
->i_mapping
->a_ops
= &ext4_dax_aops
;
3662 else if (test_opt(inode
->i_sb
, DELALLOC
))
3663 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
3665 inode
->i_mapping
->a_ops
= &ext4_aops
;
3668 static int __ext4_block_zero_page_range(handle_t
*handle
,
3669 struct address_space
*mapping
, loff_t from
, loff_t length
)
3671 ext4_fsblk_t index
= from
>> PAGE_SHIFT
;
3672 unsigned offset
= from
& (PAGE_SIZE
-1);
3673 unsigned blocksize
, pos
;
3675 struct inode
*inode
= mapping
->host
;
3676 struct buffer_head
*bh
;
3680 page
= find_or_create_page(mapping
, from
>> PAGE_SHIFT
,
3681 mapping_gfp_constraint(mapping
, ~__GFP_FS
));
3685 blocksize
= inode
->i_sb
->s_blocksize
;
3687 iblock
= index
<< (PAGE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
3689 if (!page_has_buffers(page
))
3690 create_empty_buffers(page
, blocksize
, 0);
3692 /* Find the buffer that contains "offset" */
3693 bh
= page_buffers(page
);
3695 while (offset
>= pos
) {
3696 bh
= bh
->b_this_page
;
3700 if (buffer_freed(bh
)) {
3701 BUFFER_TRACE(bh
, "freed: skip");
3704 if (!buffer_mapped(bh
)) {
3705 BUFFER_TRACE(bh
, "unmapped");
3706 ext4_get_block(inode
, iblock
, bh
, 0);
3707 /* unmapped? It's a hole - nothing to do */
3708 if (!buffer_mapped(bh
)) {
3709 BUFFER_TRACE(bh
, "still unmapped");
3714 /* Ok, it's mapped. Make sure it's up-to-date */
3715 if (PageUptodate(page
))
3716 set_buffer_uptodate(bh
);
3718 if (!buffer_uptodate(bh
)) {
3720 ll_rw_block(REQ_OP_READ
, 0, 1, &bh
);
3722 /* Uhhuh. Read error. Complain and punt. */
3723 if (!buffer_uptodate(bh
))
3725 if (S_ISREG(inode
->i_mode
) && IS_ENCRYPTED(inode
)) {
3726 /* We expect the key to be set. */
3727 BUG_ON(!fscrypt_has_encryption_key(inode
));
3728 WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
3729 page
, blocksize
, bh_offset(bh
)));
3732 if (ext4_should_journal_data(inode
)) {
3733 BUFFER_TRACE(bh
, "get write access");
3734 err
= ext4_journal_get_write_access(handle
, bh
);
3738 zero_user(page
, offset
, length
);
3739 BUFFER_TRACE(bh
, "zeroed end of block");
3741 if (ext4_should_journal_data(inode
)) {
3742 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
3745 mark_buffer_dirty(bh
);
3746 if (ext4_should_order_data(inode
))
3747 err
= ext4_jbd2_inode_add_write(handle
, inode
, from
,
3758 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3759 * starting from file offset 'from'. The range to be zero'd must
3760 * be contained with in one block. If the specified range exceeds
3761 * the end of the block it will be shortened to end of the block
3762 * that cooresponds to 'from'
3764 static int ext4_block_zero_page_range(handle_t
*handle
,
3765 struct address_space
*mapping
, loff_t from
, loff_t length
)
3767 struct inode
*inode
= mapping
->host
;
3768 unsigned offset
= from
& (PAGE_SIZE
-1);
3769 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
3770 unsigned max
= blocksize
- (offset
& (blocksize
- 1));
3773 * correct length if it does not fall between
3774 * 'from' and the end of the block
3776 if (length
> max
|| length
< 0)
3779 if (IS_DAX(inode
)) {
3780 return iomap_zero_range(inode
, from
, length
, NULL
,
3783 return __ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3787 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3788 * up to the end of the block which corresponds to `from'.
3789 * This required during truncate. We need to physically zero the tail end
3790 * of that block so it doesn't yield old data if the file is later grown.
3792 static int ext4_block_truncate_page(handle_t
*handle
,
3793 struct address_space
*mapping
, loff_t from
)
3795 unsigned offset
= from
& (PAGE_SIZE
-1);
3798 struct inode
*inode
= mapping
->host
;
3800 /* If we are processing an encrypted inode during orphan list handling */
3801 if (IS_ENCRYPTED(inode
) && !fscrypt_has_encryption_key(inode
))
3804 blocksize
= inode
->i_sb
->s_blocksize
;
3805 length
= blocksize
- (offset
& (blocksize
- 1));
3807 return ext4_block_zero_page_range(handle
, mapping
, from
, length
);
3810 int ext4_zero_partial_blocks(handle_t
*handle
, struct inode
*inode
,
3811 loff_t lstart
, loff_t length
)
3813 struct super_block
*sb
= inode
->i_sb
;
3814 struct address_space
*mapping
= inode
->i_mapping
;
3815 unsigned partial_start
, partial_end
;
3816 ext4_fsblk_t start
, end
;
3817 loff_t byte_end
= (lstart
+ length
- 1);
3820 partial_start
= lstart
& (sb
->s_blocksize
- 1);
3821 partial_end
= byte_end
& (sb
->s_blocksize
- 1);
3823 start
= lstart
>> sb
->s_blocksize_bits
;
3824 end
= byte_end
>> sb
->s_blocksize_bits
;
3826 /* Handle partial zero within the single block */
3828 (partial_start
|| (partial_end
!= sb
->s_blocksize
- 1))) {
3829 err
= ext4_block_zero_page_range(handle
, mapping
,
3833 /* Handle partial zero out on the start of the range */
3834 if (partial_start
) {
3835 err
= ext4_block_zero_page_range(handle
, mapping
,
3836 lstart
, sb
->s_blocksize
);
3840 /* Handle partial zero out on the end of the range */
3841 if (partial_end
!= sb
->s_blocksize
- 1)
3842 err
= ext4_block_zero_page_range(handle
, mapping
,
3843 byte_end
- partial_end
,
3848 int ext4_can_truncate(struct inode
*inode
)
3850 if (S_ISREG(inode
->i_mode
))
3852 if (S_ISDIR(inode
->i_mode
))
3854 if (S_ISLNK(inode
->i_mode
))
3855 return !ext4_inode_is_fast_symlink(inode
);
3860 * We have to make sure i_disksize gets properly updated before we truncate
3861 * page cache due to hole punching or zero range. Otherwise i_disksize update
3862 * can get lost as it may have been postponed to submission of writeback but
3863 * that will never happen after we truncate page cache.
3865 int ext4_update_disksize_before_punch(struct inode
*inode
, loff_t offset
,
3869 loff_t size
= i_size_read(inode
);
3871 WARN_ON(!inode_is_locked(inode
));
3872 if (offset
> size
|| offset
+ len
< size
)
3875 if (EXT4_I(inode
)->i_disksize
>= size
)
3878 handle
= ext4_journal_start(inode
, EXT4_HT_MISC
, 1);
3880 return PTR_ERR(handle
);
3881 ext4_update_i_disksize(inode
, size
);
3882 ext4_mark_inode_dirty(handle
, inode
);
3883 ext4_journal_stop(handle
);
3888 static void ext4_wait_dax_page(struct ext4_inode_info
*ei
)
3890 up_write(&ei
->i_mmap_sem
);
3892 down_write(&ei
->i_mmap_sem
);
3895 int ext4_break_layouts(struct inode
*inode
)
3897 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3901 if (WARN_ON_ONCE(!rwsem_is_locked(&ei
->i_mmap_sem
)))
3905 page
= dax_layout_busy_page(inode
->i_mapping
);
3909 error
= ___wait_var_event(&page
->_refcount
,
3910 atomic_read(&page
->_refcount
) == 1,
3911 TASK_INTERRUPTIBLE
, 0, 0,
3912 ext4_wait_dax_page(ei
));
3913 } while (error
== 0);
3919 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3920 * associated with the given offset and length
3922 * @inode: File inode
3923 * @offset: The offset where the hole will begin
3924 * @len: The length of the hole
3926 * Returns: 0 on success or negative on failure
3929 int ext4_punch_hole(struct inode
*inode
, loff_t offset
, loff_t length
)
3931 struct super_block
*sb
= inode
->i_sb
;
3932 ext4_lblk_t first_block
, stop_block
;
3933 struct address_space
*mapping
= inode
->i_mapping
;
3934 loff_t first_block_offset
, last_block_offset
;
3936 unsigned int credits
;
3939 if (!S_ISREG(inode
->i_mode
))
3942 trace_ext4_punch_hole(inode
, offset
, length
, 0);
3944 ext4_clear_inode_state(inode
, EXT4_STATE_MAY_INLINE_DATA
);
3945 if (ext4_has_inline_data(inode
)) {
3946 down_write(&EXT4_I(inode
)->i_mmap_sem
);
3947 ret
= ext4_convert_inline_data(inode
);
3948 up_write(&EXT4_I(inode
)->i_mmap_sem
);
3954 * Write out all dirty pages to avoid race conditions
3955 * Then release them.
3957 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
3958 ret
= filemap_write_and_wait_range(mapping
, offset
,
3959 offset
+ length
- 1);
3966 /* No need to punch hole beyond i_size */
3967 if (offset
>= inode
->i_size
)
3971 * If the hole extends beyond i_size, set the hole
3972 * to end after the page that contains i_size
3974 if (offset
+ length
> inode
->i_size
) {
3975 length
= inode
->i_size
+
3976 PAGE_SIZE
- (inode
->i_size
& (PAGE_SIZE
- 1)) -
3980 if (offset
& (sb
->s_blocksize
- 1) ||
3981 (offset
+ length
) & (sb
->s_blocksize
- 1)) {
3983 * Attach jinode to inode for jbd2 if we do any zeroing of
3986 ret
= ext4_inode_attach_jinode(inode
);
3992 /* Wait all existing dio workers, newcomers will block on i_mutex */
3993 inode_dio_wait(inode
);
3996 * Prevent page faults from reinstantiating pages we have released from
3999 down_write(&EXT4_I(inode
)->i_mmap_sem
);
4001 ret
= ext4_break_layouts(inode
);
4005 first_block_offset
= round_up(offset
, sb
->s_blocksize
);
4006 last_block_offset
= round_down((offset
+ length
), sb
->s_blocksize
) - 1;
4008 /* Now release the pages and zero block aligned part of pages*/
4009 if (last_block_offset
> first_block_offset
) {
4010 ret
= ext4_update_disksize_before_punch(inode
, offset
, length
);
4013 truncate_pagecache_range(inode
, first_block_offset
,
4017 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
4018 credits
= ext4_writepage_trans_blocks(inode
);
4020 credits
= ext4_blocks_for_truncate(inode
);
4021 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
4022 if (IS_ERR(handle
)) {
4023 ret
= PTR_ERR(handle
);
4024 ext4_std_error(sb
, ret
);
4028 ret
= ext4_zero_partial_blocks(handle
, inode
, offset
,
4033 first_block
= (offset
+ sb
->s_blocksize
- 1) >>
4034 EXT4_BLOCK_SIZE_BITS(sb
);
4035 stop_block
= (offset
+ length
) >> EXT4_BLOCK_SIZE_BITS(sb
);
4037 /* If there are blocks to remove, do it */
4038 if (stop_block
> first_block
) {
4040 down_write(&EXT4_I(inode
)->i_data_sem
);
4041 ext4_discard_preallocations(inode
);
4043 ret
= ext4_es_remove_extent(inode
, first_block
,
4044 stop_block
- first_block
);
4046 up_write(&EXT4_I(inode
)->i_data_sem
);
4050 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
4051 ret
= ext4_ext_remove_space(inode
, first_block
,
4054 ret
= ext4_ind_remove_space(handle
, inode
, first_block
,
4057 up_write(&EXT4_I(inode
)->i_data_sem
);
4060 ext4_handle_sync(handle
);
4062 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
4063 ext4_mark_inode_dirty(handle
, inode
);
4065 ext4_update_inode_fsync_trans(handle
, inode
, 1);
4067 ext4_journal_stop(handle
);
4069 up_write(&EXT4_I(inode
)->i_mmap_sem
);
4071 inode_unlock(inode
);
4075 int ext4_inode_attach_jinode(struct inode
*inode
)
4077 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4078 struct jbd2_inode
*jinode
;
4080 if (ei
->jinode
|| !EXT4_SB(inode
->i_sb
)->s_journal
)
4083 jinode
= jbd2_alloc_inode(GFP_KERNEL
);
4084 spin_lock(&inode
->i_lock
);
4087 spin_unlock(&inode
->i_lock
);
4090 ei
->jinode
= jinode
;
4091 jbd2_journal_init_jbd_inode(ei
->jinode
, inode
);
4094 spin_unlock(&inode
->i_lock
);
4095 if (unlikely(jinode
!= NULL
))
4096 jbd2_free_inode(jinode
);
4103 * We block out ext4_get_block() block instantiations across the entire
4104 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4105 * simultaneously on behalf of the same inode.
4107 * As we work through the truncate and commit bits of it to the journal there
4108 * is one core, guiding principle: the file's tree must always be consistent on
4109 * disk. We must be able to restart the truncate after a crash.
4111 * The file's tree may be transiently inconsistent in memory (although it
4112 * probably isn't), but whenever we close off and commit a journal transaction,
4113 * the contents of (the filesystem + the journal) must be consistent and
4114 * restartable. It's pretty simple, really: bottom up, right to left (although
4115 * left-to-right works OK too).
4117 * Note that at recovery time, journal replay occurs *before* the restart of
4118 * truncate against the orphan inode list.
4120 * The committed inode has the new, desired i_size (which is the same as
4121 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4122 * that this inode's truncate did not complete and it will again call
4123 * ext4_truncate() to have another go. So there will be instantiated blocks
4124 * to the right of the truncation point in a crashed ext4 filesystem. But
4125 * that's fine - as long as they are linked from the inode, the post-crash
4126 * ext4_truncate() run will find them and release them.
4128 int ext4_truncate(struct inode
*inode
)
4130 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4131 unsigned int credits
;
4134 struct address_space
*mapping
= inode
->i_mapping
;
4137 * There is a possibility that we're either freeing the inode
4138 * or it's a completely new inode. In those cases we might not
4139 * have i_mutex locked because it's not necessary.
4141 if (!(inode
->i_state
& (I_NEW
|I_FREEING
)))
4142 WARN_ON(!inode_is_locked(inode
));
4143 trace_ext4_truncate_enter(inode
);
4145 if (!ext4_can_truncate(inode
))
4148 ext4_clear_inode_flag(inode
, EXT4_INODE_EOFBLOCKS
);
4150 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
4151 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
4153 if (ext4_has_inline_data(inode
)) {
4156 err
= ext4_inline_data_truncate(inode
, &has_inline
);
4163 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4164 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1)) {
4165 if (ext4_inode_attach_jinode(inode
) < 0)
4169 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
4170 credits
= ext4_writepage_trans_blocks(inode
);
4172 credits
= ext4_blocks_for_truncate(inode
);
4174 handle
= ext4_journal_start(inode
, EXT4_HT_TRUNCATE
, credits
);
4176 return PTR_ERR(handle
);
4178 if (inode
->i_size
& (inode
->i_sb
->s_blocksize
- 1))
4179 ext4_block_truncate_page(handle
, mapping
, inode
->i_size
);
4182 * We add the inode to the orphan list, so that if this
4183 * truncate spans multiple transactions, and we crash, we will
4184 * resume the truncate when the filesystem recovers. It also
4185 * marks the inode dirty, to catch the new size.
4187 * Implication: the file must always be in a sane, consistent
4188 * truncatable state while each transaction commits.
4190 err
= ext4_orphan_add(handle
, inode
);
4194 down_write(&EXT4_I(inode
)->i_data_sem
);
4196 ext4_discard_preallocations(inode
);
4198 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
4199 err
= ext4_ext_truncate(handle
, inode
);
4201 ext4_ind_truncate(handle
, inode
);
4203 up_write(&ei
->i_data_sem
);
4208 ext4_handle_sync(handle
);
4212 * If this was a simple ftruncate() and the file will remain alive,
4213 * then we need to clear up the orphan record which we created above.
4214 * However, if this was a real unlink then we were called by
4215 * ext4_evict_inode(), and we allow that function to clean up the
4216 * orphan info for us.
4219 ext4_orphan_del(handle
, inode
);
4221 inode
->i_mtime
= inode
->i_ctime
= current_time(inode
);
4222 ext4_mark_inode_dirty(handle
, inode
);
4223 ext4_journal_stop(handle
);
4225 trace_ext4_truncate_exit(inode
);
4230 * ext4_get_inode_loc returns with an extra refcount against the inode's
4231 * underlying buffer_head on success. If 'in_mem' is true, we have all
4232 * data in memory that is needed to recreate the on-disk version of this
4235 static int __ext4_get_inode_loc(struct inode
*inode
,
4236 struct ext4_iloc
*iloc
, int in_mem
)
4238 struct ext4_group_desc
*gdp
;
4239 struct buffer_head
*bh
;
4240 struct super_block
*sb
= inode
->i_sb
;
4242 struct blk_plug plug
;
4243 int inodes_per_block
, inode_offset
;
4246 if (inode
->i_ino
< EXT4_ROOT_INO
||
4247 inode
->i_ino
> le32_to_cpu(EXT4_SB(sb
)->s_es
->s_inodes_count
))
4248 return -EFSCORRUPTED
;
4250 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4251 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4256 * Figure out the offset within the block group inode table
4258 inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
4259 inode_offset
= ((inode
->i_ino
- 1) %
4260 EXT4_INODES_PER_GROUP(sb
));
4261 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4262 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4264 bh
= sb_getblk(sb
, block
);
4267 if (ext4_simulate_fail(sb
, EXT4_SIM_INODE_EIO
))
4269 if (!buffer_uptodate(bh
)) {
4273 * If the buffer has the write error flag, we have failed
4274 * to write out another inode in the same block. In this
4275 * case, we don't have to read the block because we may
4276 * read the old inode data successfully.
4278 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4279 set_buffer_uptodate(bh
);
4281 if (buffer_uptodate(bh
)) {
4282 /* someone brought it uptodate while we waited */
4288 * If we have all information of the inode in memory and this
4289 * is the only valid inode in the block, we need not read the
4293 struct buffer_head
*bitmap_bh
;
4296 start
= inode_offset
& ~(inodes_per_block
- 1);
4298 /* Is the inode bitmap in cache? */
4299 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4300 if (unlikely(!bitmap_bh
))
4304 * If the inode bitmap isn't in cache then the
4305 * optimisation may end up performing two reads instead
4306 * of one, so skip it.
4308 if (!buffer_uptodate(bitmap_bh
)) {
4312 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4313 if (i
== inode_offset
)
4315 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4319 if (i
== start
+ inodes_per_block
) {
4320 /* all other inodes are free, so skip I/O */
4321 memset(bh
->b_data
, 0, bh
->b_size
);
4322 set_buffer_uptodate(bh
);
4330 * If we need to do any I/O, try to pre-readahead extra
4331 * blocks from the inode table.
4333 blk_start_plug(&plug
);
4334 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4335 ext4_fsblk_t b
, end
, table
;
4337 __u32 ra_blks
= EXT4_SB(sb
)->s_inode_readahead_blks
;
4339 table
= ext4_inode_table(sb
, gdp
);
4340 /* s_inode_readahead_blks is always a power of 2 */
4341 b
= block
& ~((ext4_fsblk_t
) ra_blks
- 1);
4345 num
= EXT4_INODES_PER_GROUP(sb
);
4346 if (ext4_has_group_desc_csum(sb
))
4347 num
-= ext4_itable_unused_count(sb
, gdp
);
4348 table
+= num
/ inodes_per_block
;
4352 sb_breadahead(sb
, b
++);
4356 * There are other valid inodes in the buffer, this inode
4357 * has in-inode xattrs, or we don't have this inode in memory.
4358 * Read the block from disk.
4360 trace_ext4_load_inode(inode
);
4362 bh
->b_end_io
= end_buffer_read_sync
;
4363 submit_bh(REQ_OP_READ
, REQ_META
| REQ_PRIO
, bh
);
4364 blk_finish_plug(&plug
);
4366 if (!buffer_uptodate(bh
)) {
4368 ext4_set_errno(inode
->i_sb
, EIO
);
4369 EXT4_ERROR_INODE_BLOCK(inode
, block
,
4370 "unable to read itable block");
4380 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4382 /* We have all inode data except xattrs in memory here. */
4383 return __ext4_get_inode_loc(inode
, iloc
,
4384 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
4387 static bool ext4_should_use_dax(struct inode
*inode
)
4389 if (!test_opt(inode
->i_sb
, DAX
))
4391 if (!S_ISREG(inode
->i_mode
))
4393 if (ext4_should_journal_data(inode
))
4395 if (ext4_has_inline_data(inode
))
4397 if (ext4_test_inode_flag(inode
, EXT4_INODE_ENCRYPT
))
4399 if (ext4_test_inode_flag(inode
, EXT4_INODE_VERITY
))
4404 void ext4_set_inode_flags(struct inode
*inode
)
4406 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4407 unsigned int new_fl
= 0;
4409 if (flags
& EXT4_SYNC_FL
)
4411 if (flags
& EXT4_APPEND_FL
)
4413 if (flags
& EXT4_IMMUTABLE_FL
)
4414 new_fl
|= S_IMMUTABLE
;
4415 if (flags
& EXT4_NOATIME_FL
)
4416 new_fl
|= S_NOATIME
;
4417 if (flags
& EXT4_DIRSYNC_FL
)
4418 new_fl
|= S_DIRSYNC
;
4419 if (ext4_should_use_dax(inode
))
4421 if (flags
& EXT4_ENCRYPT_FL
)
4422 new_fl
|= S_ENCRYPTED
;
4423 if (flags
& EXT4_CASEFOLD_FL
)
4424 new_fl
|= S_CASEFOLD
;
4425 if (flags
& EXT4_VERITY_FL
)
4427 inode_set_flags(inode
, new_fl
,
4428 S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
|S_DAX
|
4429 S_ENCRYPTED
|S_CASEFOLD
|S_VERITY
);
4432 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4433 struct ext4_inode_info
*ei
)
4436 struct inode
*inode
= &(ei
->vfs_inode
);
4437 struct super_block
*sb
= inode
->i_sb
;
4439 if (ext4_has_feature_huge_file(sb
)) {
4440 /* we are using combined 48 bit field */
4441 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4442 le32_to_cpu(raw_inode
->i_blocks_lo
);
4443 if (ext4_test_inode_flag(inode
, EXT4_INODE_HUGE_FILE
)) {
4444 /* i_blocks represent file system block size */
4445 return i_blocks
<< (inode
->i_blkbits
- 9);
4450 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4454 static inline int ext4_iget_extra_inode(struct inode
*inode
,
4455 struct ext4_inode
*raw_inode
,
4456 struct ext4_inode_info
*ei
)
4458 __le32
*magic
= (void *)raw_inode
+
4459 EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
;
4461 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
+ sizeof(__le32
) <=
4462 EXT4_INODE_SIZE(inode
->i_sb
) &&
4463 *magic
== cpu_to_le32(EXT4_XATTR_MAGIC
)) {
4464 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
4465 return ext4_find_inline_data_nolock(inode
);
4467 EXT4_I(inode
)->i_inline_off
= 0;
4471 int ext4_get_projid(struct inode
*inode
, kprojid_t
*projid
)
4473 if (!ext4_has_feature_project(inode
->i_sb
))
4475 *projid
= EXT4_I(inode
)->i_projid
;
4480 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4481 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4484 static inline void ext4_inode_set_iversion_queried(struct inode
*inode
, u64 val
)
4486 if (unlikely(EXT4_I(inode
)->i_flags
& EXT4_EA_INODE_FL
))
4487 inode_set_iversion_raw(inode
, val
);
4489 inode_set_iversion_queried(inode
, val
);
4491 static inline u64
ext4_inode_peek_iversion(const struct inode
*inode
)
4493 if (unlikely(EXT4_I(inode
)->i_flags
& EXT4_EA_INODE_FL
))
4494 return inode_peek_iversion_raw(inode
);
4496 return inode_peek_iversion(inode
);
4499 struct inode
*__ext4_iget(struct super_block
*sb
, unsigned long ino
,
4500 ext4_iget_flags flags
, const char *function
,
4503 struct ext4_iloc iloc
;
4504 struct ext4_inode
*raw_inode
;
4505 struct ext4_inode_info
*ei
;
4506 struct inode
*inode
;
4507 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4515 if ((!(flags
& EXT4_IGET_SPECIAL
) &&
4516 (ino
< EXT4_FIRST_INO(sb
) && ino
!= EXT4_ROOT_INO
)) ||
4517 (ino
< EXT4_ROOT_INO
) ||
4518 (ino
> le32_to_cpu(EXT4_SB(sb
)->s_es
->s_inodes_count
))) {
4519 if (flags
& EXT4_IGET_HANDLE
)
4520 return ERR_PTR(-ESTALE
);
4521 __ext4_error(sb
, function
, line
,
4522 "inode #%lu: comm %s: iget: illegal inode #",
4523 ino
, current
->comm
);
4524 return ERR_PTR(-EFSCORRUPTED
);
4527 inode
= iget_locked(sb
, ino
);
4529 return ERR_PTR(-ENOMEM
);
4530 if (!(inode
->i_state
& I_NEW
))
4536 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4539 raw_inode
= ext4_raw_inode(&iloc
);
4541 if ((ino
== EXT4_ROOT_INO
) && (raw_inode
->i_links_count
== 0)) {
4542 ext4_error_inode(inode
, function
, line
, 0,
4543 "iget: root inode unallocated");
4544 ret
= -EFSCORRUPTED
;
4548 if ((flags
& EXT4_IGET_HANDLE
) &&
4549 (raw_inode
->i_links_count
== 0) && (raw_inode
->i_mode
== 0)) {
4554 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4555 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
4556 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
4557 EXT4_INODE_SIZE(inode
->i_sb
) ||
4558 (ei
->i_extra_isize
& 3)) {
4559 ext4_error_inode(inode
, function
, line
, 0,
4560 "iget: bad extra_isize %u "
4563 EXT4_INODE_SIZE(inode
->i_sb
));
4564 ret
= -EFSCORRUPTED
;
4568 ei
->i_extra_isize
= 0;
4570 /* Precompute checksum seed for inode metadata */
4571 if (ext4_has_metadata_csum(sb
)) {
4572 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
4574 __le32 inum
= cpu_to_le32(inode
->i_ino
);
4575 __le32 gen
= raw_inode
->i_generation
;
4576 csum
= ext4_chksum(sbi
, sbi
->s_csum_seed
, (__u8
*)&inum
,
4578 ei
->i_csum_seed
= ext4_chksum(sbi
, csum
, (__u8
*)&gen
,
4582 if (!ext4_inode_csum_verify(inode
, raw_inode
, ei
) ||
4583 ext4_simulate_fail(sb
, EXT4_SIM_INODE_CRC
)) {
4584 ext4_set_errno(inode
->i_sb
, EFSBADCRC
);
4585 ext4_error_inode(inode
, function
, line
, 0,
4586 "iget: checksum invalid");
4591 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4592 i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4593 i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4594 if (ext4_has_feature_project(sb
) &&
4595 EXT4_INODE_SIZE(sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
4596 EXT4_FITS_IN_INODE(raw_inode
, ei
, i_projid
))
4597 i_projid
= (projid_t
)le32_to_cpu(raw_inode
->i_projid
);
4599 i_projid
= EXT4_DEF_PROJID
;
4601 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4602 i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4603 i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4605 i_uid_write(inode
, i_uid
);
4606 i_gid_write(inode
, i_gid
);
4607 ei
->i_projid
= make_kprojid(&init_user_ns
, i_projid
);
4608 set_nlink(inode
, le16_to_cpu(raw_inode
->i_links_count
));
4610 ext4_clear_state_flags(ei
); /* Only relevant on 32-bit archs */
4611 ei
->i_inline_off
= 0;
4612 ei
->i_dir_start_lookup
= 0;
4613 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4614 /* We now have enough fields to check if the inode was active or not.
4615 * This is needed because nfsd might try to access dead inodes
4616 * the test is that same one that e2fsck uses
4617 * NeilBrown 1999oct15
4619 if (inode
->i_nlink
== 0) {
4620 if ((inode
->i_mode
== 0 ||
4621 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) &&
4622 ino
!= EXT4_BOOT_LOADER_INO
) {
4623 /* this inode is deleted */
4627 /* The only unlinked inodes we let through here have
4628 * valid i_mode and are being read by the orphan
4629 * recovery code: that's fine, we're about to complete
4630 * the process of deleting those.
4631 * OR it is the EXT4_BOOT_LOADER_INO which is
4632 * not initialized on a new filesystem. */
4634 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
4635 ext4_set_inode_flags(inode
);
4636 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
4637 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
4638 if (ext4_has_feature_64bit(sb
))
4640 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
4641 inode
->i_size
= ext4_isize(sb
, raw_inode
);
4642 if ((size
= i_size_read(inode
)) < 0) {
4643 ext4_error_inode(inode
, function
, line
, 0,
4644 "iget: bad i_size value: %lld", size
);
4645 ret
= -EFSCORRUPTED
;
4648 ei
->i_disksize
= inode
->i_size
;
4650 ei
->i_reserved_quota
= 0;
4652 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
4653 ei
->i_block_group
= iloc
.block_group
;
4654 ei
->i_last_alloc_group
= ~0;
4656 * NOTE! The in-memory inode i_data array is in little-endian order
4657 * even on big-endian machines: we do NOT byteswap the block numbers!
4659 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4660 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
4661 INIT_LIST_HEAD(&ei
->i_orphan
);
4664 * Set transaction id's of transactions that have to be committed
4665 * to finish f[data]sync. We set them to currently running transaction
4666 * as we cannot be sure that the inode or some of its metadata isn't
4667 * part of the transaction - the inode could have been reclaimed and
4668 * now it is reread from disk.
4671 transaction_t
*transaction
;
4674 read_lock(&journal
->j_state_lock
);
4675 if (journal
->j_running_transaction
)
4676 transaction
= journal
->j_running_transaction
;
4678 transaction
= journal
->j_committing_transaction
;
4680 tid
= transaction
->t_tid
;
4682 tid
= journal
->j_commit_sequence
;
4683 read_unlock(&journal
->j_state_lock
);
4684 ei
->i_sync_tid
= tid
;
4685 ei
->i_datasync_tid
= tid
;
4688 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4689 if (ei
->i_extra_isize
== 0) {
4690 /* The extra space is currently unused. Use it. */
4691 BUILD_BUG_ON(sizeof(struct ext4_inode
) & 3);
4692 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
4693 EXT4_GOOD_OLD_INODE_SIZE
;
4695 ret
= ext4_iget_extra_inode(inode
, raw_inode
, ei
);
4701 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
4702 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
4703 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
4704 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
4706 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
4707 u64 ivers
= le32_to_cpu(raw_inode
->i_disk_version
);
4709 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
4710 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
4712 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
4714 ext4_inode_set_iversion_queried(inode
, ivers
);
4718 if (ei
->i_file_acl
&&
4719 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
4720 ext4_error_inode(inode
, function
, line
, 0,
4721 "iget: bad extended attribute block %llu",
4723 ret
= -EFSCORRUPTED
;
4725 } else if (!ext4_has_inline_data(inode
)) {
4726 /* validate the block references in the inode */
4727 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
4728 (S_ISLNK(inode
->i_mode
) &&
4729 !ext4_inode_is_fast_symlink(inode
))) {
4730 if (ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))
4731 ret
= ext4_ext_check_inode(inode
);
4733 ret
= ext4_ind_check_inode(inode
);
4739 if (S_ISREG(inode
->i_mode
)) {
4740 inode
->i_op
= &ext4_file_inode_operations
;
4741 inode
->i_fop
= &ext4_file_operations
;
4742 ext4_set_aops(inode
);
4743 } else if (S_ISDIR(inode
->i_mode
)) {
4744 inode
->i_op
= &ext4_dir_inode_operations
;
4745 inode
->i_fop
= &ext4_dir_operations
;
4746 } else if (S_ISLNK(inode
->i_mode
)) {
4747 /* VFS does not allow setting these so must be corruption */
4748 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
)) {
4749 ext4_error_inode(inode
, function
, line
, 0,
4750 "iget: immutable or append flags "
4751 "not allowed on symlinks");
4752 ret
= -EFSCORRUPTED
;
4755 if (IS_ENCRYPTED(inode
)) {
4756 inode
->i_op
= &ext4_encrypted_symlink_inode_operations
;
4757 ext4_set_aops(inode
);
4758 } else if (ext4_inode_is_fast_symlink(inode
)) {
4759 inode
->i_link
= (char *)ei
->i_data
;
4760 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
4761 nd_terminate_link(ei
->i_data
, inode
->i_size
,
4762 sizeof(ei
->i_data
) - 1);
4764 inode
->i_op
= &ext4_symlink_inode_operations
;
4765 ext4_set_aops(inode
);
4767 inode_nohighmem(inode
);
4768 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
4769 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
4770 inode
->i_op
= &ext4_special_inode_operations
;
4771 if (raw_inode
->i_block
[0])
4772 init_special_inode(inode
, inode
->i_mode
,
4773 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
4775 init_special_inode(inode
, inode
->i_mode
,
4776 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
4777 } else if (ino
== EXT4_BOOT_LOADER_INO
) {
4778 make_bad_inode(inode
);
4780 ret
= -EFSCORRUPTED
;
4781 ext4_error_inode(inode
, function
, line
, 0,
4782 "iget: bogus i_mode (%o)", inode
->i_mode
);
4785 if (IS_CASEFOLDED(inode
) && !ext4_has_feature_casefold(inode
->i_sb
))
4786 ext4_error_inode(inode
, function
, line
, 0,
4787 "casefold flag without casefold feature");
4790 unlock_new_inode(inode
);
4796 return ERR_PTR(ret
);
4799 static int ext4_inode_blocks_set(handle_t
*handle
,
4800 struct ext4_inode
*raw_inode
,
4801 struct ext4_inode_info
*ei
)
4803 struct inode
*inode
= &(ei
->vfs_inode
);
4804 u64 i_blocks
= inode
->i_blocks
;
4805 struct super_block
*sb
= inode
->i_sb
;
4807 if (i_blocks
<= ~0U) {
4809 * i_blocks can be represented in a 32 bit variable
4810 * as multiple of 512 bytes
4812 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4813 raw_inode
->i_blocks_high
= 0;
4814 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4817 if (!ext4_has_feature_huge_file(sb
))
4820 if (i_blocks
<= 0xffffffffffffULL
) {
4822 * i_blocks can be represented in a 48 bit variable
4823 * as multiple of 512 bytes
4825 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4826 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4827 ext4_clear_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4829 ext4_set_inode_flag(inode
, EXT4_INODE_HUGE_FILE
);
4830 /* i_block is stored in file system block size */
4831 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
4832 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
4833 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
4838 struct other_inode
{
4839 unsigned long orig_ino
;
4840 struct ext4_inode
*raw_inode
;
4843 static int other_inode_match(struct inode
* inode
, unsigned long ino
,
4846 struct other_inode
*oi
= (struct other_inode
*) data
;
4848 if ((inode
->i_ino
!= ino
) ||
4849 (inode
->i_state
& (I_FREEING
| I_WILL_FREE
| I_NEW
|
4851 ((inode
->i_state
& I_DIRTY_TIME
) == 0))
4853 spin_lock(&inode
->i_lock
);
4854 if (((inode
->i_state
& (I_FREEING
| I_WILL_FREE
| I_NEW
|
4855 I_DIRTY_INODE
)) == 0) &&
4856 (inode
->i_state
& I_DIRTY_TIME
)) {
4857 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4859 inode
->i_state
&= ~(I_DIRTY_TIME
| I_DIRTY_TIME_EXPIRED
);
4860 spin_unlock(&inode
->i_lock
);
4862 spin_lock(&ei
->i_raw_lock
);
4863 EXT4_INODE_SET_XTIME(i_ctime
, inode
, oi
->raw_inode
);
4864 EXT4_INODE_SET_XTIME(i_mtime
, inode
, oi
->raw_inode
);
4865 EXT4_INODE_SET_XTIME(i_atime
, inode
, oi
->raw_inode
);
4866 ext4_inode_csum_set(inode
, oi
->raw_inode
, ei
);
4867 spin_unlock(&ei
->i_raw_lock
);
4868 trace_ext4_other_inode_update_time(inode
, oi
->orig_ino
);
4871 spin_unlock(&inode
->i_lock
);
4876 * Opportunistically update the other time fields for other inodes in
4877 * the same inode table block.
4879 static void ext4_update_other_inodes_time(struct super_block
*sb
,
4880 unsigned long orig_ino
, char *buf
)
4882 struct other_inode oi
;
4884 int i
, inodes_per_block
= EXT4_SB(sb
)->s_inodes_per_block
;
4885 int inode_size
= EXT4_INODE_SIZE(sb
);
4887 oi
.orig_ino
= orig_ino
;
4889 * Calculate the first inode in the inode table block. Inode
4890 * numbers are one-based. That is, the first inode in a block
4891 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4893 ino
= ((orig_ino
- 1) & ~(inodes_per_block
- 1)) + 1;
4894 for (i
= 0; i
< inodes_per_block
; i
++, ino
++, buf
+= inode_size
) {
4895 if (ino
== orig_ino
)
4897 oi
.raw_inode
= (struct ext4_inode
*) buf
;
4898 (void) find_inode_nowait(sb
, ino
, other_inode_match
, &oi
);
4903 * Post the struct inode info into an on-disk inode location in the
4904 * buffer-cache. This gobbles the caller's reference to the
4905 * buffer_head in the inode location struct.
4907 * The caller must have write access to iloc->bh.
4909 static int ext4_do_update_inode(handle_t
*handle
,
4910 struct inode
*inode
,
4911 struct ext4_iloc
*iloc
)
4913 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
4914 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4915 struct buffer_head
*bh
= iloc
->bh
;
4916 struct super_block
*sb
= inode
->i_sb
;
4917 int err
= 0, rc
, block
;
4918 int need_datasync
= 0, set_large_file
= 0;
4923 spin_lock(&ei
->i_raw_lock
);
4925 /* For fields not tracked in the in-memory inode,
4926 * initialise them to zero for new inodes. */
4927 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
4928 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
4930 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
4931 i_uid
= i_uid_read(inode
);
4932 i_gid
= i_gid_read(inode
);
4933 i_projid
= from_kprojid(&init_user_ns
, ei
->i_projid
);
4934 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4935 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(i_uid
));
4936 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(i_gid
));
4938 * Fix up interoperability with old kernels. Otherwise, old inodes get
4939 * re-used with the upper 16 bits of the uid/gid intact
4941 if (ei
->i_dtime
&& list_empty(&ei
->i_orphan
)) {
4942 raw_inode
->i_uid_high
= 0;
4943 raw_inode
->i_gid_high
= 0;
4945 raw_inode
->i_uid_high
=
4946 cpu_to_le16(high_16_bits(i_uid
));
4947 raw_inode
->i_gid_high
=
4948 cpu_to_le16(high_16_bits(i_gid
));
4951 raw_inode
->i_uid_low
= cpu_to_le16(fs_high2lowuid(i_uid
));
4952 raw_inode
->i_gid_low
= cpu_to_le16(fs_high2lowgid(i_gid
));
4953 raw_inode
->i_uid_high
= 0;
4954 raw_inode
->i_gid_high
= 0;
4956 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
4958 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
4959 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
4960 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
4961 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
4963 err
= ext4_inode_blocks_set(handle
, raw_inode
, ei
);
4965 spin_unlock(&ei
->i_raw_lock
);
4968 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
4969 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
& 0xFFFFFFFF);
4970 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
)))
4971 raw_inode
->i_file_acl_high
=
4972 cpu_to_le16(ei
->i_file_acl
>> 32);
4973 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
4974 if (ei
->i_disksize
!= ext4_isize(inode
->i_sb
, raw_inode
)) {
4975 ext4_isize_set(raw_inode
, ei
->i_disksize
);
4978 if (ei
->i_disksize
> 0x7fffffffULL
) {
4979 if (!ext4_has_feature_large_file(sb
) ||
4980 EXT4_SB(sb
)->s_es
->s_rev_level
==
4981 cpu_to_le32(EXT4_GOOD_OLD_REV
))
4984 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
4985 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
4986 if (old_valid_dev(inode
->i_rdev
)) {
4987 raw_inode
->i_block
[0] =
4988 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
4989 raw_inode
->i_block
[1] = 0;
4991 raw_inode
->i_block
[0] = 0;
4992 raw_inode
->i_block
[1] =
4993 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
4994 raw_inode
->i_block
[2] = 0;
4996 } else if (!ext4_has_inline_data(inode
)) {
4997 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
4998 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
5001 if (likely(!test_opt2(inode
->i_sb
, HURD_COMPAT
))) {
5002 u64 ivers
= ext4_inode_peek_iversion(inode
);
5004 raw_inode
->i_disk_version
= cpu_to_le32(ivers
);
5005 if (ei
->i_extra_isize
) {
5006 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
5007 raw_inode
->i_version_hi
=
5008 cpu_to_le32(ivers
>> 32);
5009 raw_inode
->i_extra_isize
=
5010 cpu_to_le16(ei
->i_extra_isize
);
5014 BUG_ON(!ext4_has_feature_project(inode
->i_sb
) &&
5015 i_projid
!= EXT4_DEF_PROJID
);
5017 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
&&
5018 EXT4_FITS_IN_INODE(raw_inode
, ei
, i_projid
))
5019 raw_inode
->i_projid
= cpu_to_le32(i_projid
);
5021 ext4_inode_csum_set(inode
, raw_inode
, ei
);
5022 spin_unlock(&ei
->i_raw_lock
);
5023 if (inode
->i_sb
->s_flags
& SB_LAZYTIME
)
5024 ext4_update_other_inodes_time(inode
->i_sb
, inode
->i_ino
,
5027 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
5028 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
5031 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
5032 if (set_large_file
) {
5033 BUFFER_TRACE(EXT4_SB(sb
)->s_sbh
, "get write access");
5034 err
= ext4_journal_get_write_access(handle
, EXT4_SB(sb
)->s_sbh
);
5037 ext4_set_feature_large_file(sb
);
5038 ext4_handle_sync(handle
);
5039 err
= ext4_handle_dirty_super(handle
, sb
);
5041 ext4_update_inode_fsync_trans(handle
, inode
, need_datasync
);
5044 ext4_std_error(inode
->i_sb
, err
);
5049 * ext4_write_inode()
5051 * We are called from a few places:
5053 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5054 * Here, there will be no transaction running. We wait for any running
5055 * transaction to commit.
5057 * - Within flush work (sys_sync(), kupdate and such).
5058 * We wait on commit, if told to.
5060 * - Within iput_final() -> write_inode_now()
5061 * We wait on commit, if told to.
5063 * In all cases it is actually safe for us to return without doing anything,
5064 * because the inode has been copied into a raw inode buffer in
5065 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5068 * Note that we are absolutely dependent upon all inode dirtiers doing the
5069 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5070 * which we are interested.
5072 * It would be a bug for them to not do this. The code:
5074 * mark_inode_dirty(inode)
5076 * inode->i_size = expr;
5078 * is in error because write_inode() could occur while `stuff()' is running,
5079 * and the new i_size will be lost. Plus the inode will no longer be on the
5080 * superblock's dirty inode list.
5082 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
5086 if (WARN_ON_ONCE(current
->flags
& PF_MEMALLOC
) ||
5087 sb_rdonly(inode
->i_sb
))
5090 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
5093 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
5094 if (ext4_journal_current_handle()) {
5095 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5101 * No need to force transaction in WB_SYNC_NONE mode. Also
5102 * ext4_sync_fs() will force the commit after everything is
5105 if (wbc
->sync_mode
!= WB_SYNC_ALL
|| wbc
->for_sync
)
5108 err
= jbd2_complete_transaction(EXT4_SB(inode
->i_sb
)->s_journal
,
5109 EXT4_I(inode
)->i_sync_tid
);
5111 struct ext4_iloc iloc
;
5113 err
= __ext4_get_inode_loc(inode
, &iloc
, 0);
5117 * sync(2) will flush the whole buffer cache. No need to do
5118 * it here separately for each inode.
5120 if (wbc
->sync_mode
== WB_SYNC_ALL
&& !wbc
->for_sync
)
5121 sync_dirty_buffer(iloc
.bh
);
5122 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
5123 ext4_set_errno(inode
->i_sb
, EIO
);
5124 EXT4_ERROR_INODE_BLOCK(inode
, iloc
.bh
->b_blocknr
,
5125 "IO error syncing inode");
5134 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5135 * buffers that are attached to a page stradding i_size and are undergoing
5136 * commit. In that case we have to wait for commit to finish and try again.
5138 static void ext4_wait_for_tail_page_commit(struct inode
*inode
)
5142 journal_t
*journal
= EXT4_SB(inode
->i_sb
)->s_journal
;
5143 tid_t commit_tid
= 0;
5146 offset
= inode
->i_size
& (PAGE_SIZE
- 1);
5148 * If the page is fully truncated, we don't need to wait for any commit
5149 * (and we even should not as __ext4_journalled_invalidatepage() may
5150 * strip all buffers from the page but keep the page dirty which can then
5151 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5152 * buffers). Also we don't need to wait for any commit if all buffers in
5153 * the page remain valid. This is most beneficial for the common case of
5154 * blocksize == PAGESIZE.
5156 if (!offset
|| offset
> (PAGE_SIZE
- i_blocksize(inode
)))
5159 page
= find_lock_page(inode
->i_mapping
,
5160 inode
->i_size
>> PAGE_SHIFT
);
5163 ret
= __ext4_journalled_invalidatepage(page
, offset
,
5164 PAGE_SIZE
- offset
);
5170 read_lock(&journal
->j_state_lock
);
5171 if (journal
->j_committing_transaction
)
5172 commit_tid
= journal
->j_committing_transaction
->t_tid
;
5173 read_unlock(&journal
->j_state_lock
);
5175 jbd2_log_wait_commit(journal
, commit_tid
);
5182 * Called from notify_change.
5184 * We want to trap VFS attempts to truncate the file as soon as
5185 * possible. In particular, we want to make sure that when the VFS
5186 * shrinks i_size, we put the inode on the orphan list and modify
5187 * i_disksize immediately, so that during the subsequent flushing of
5188 * dirty pages and freeing of disk blocks, we can guarantee that any
5189 * commit will leave the blocks being flushed in an unused state on
5190 * disk. (On recovery, the inode will get truncated and the blocks will
5191 * be freed, so we have a strong guarantee that no future commit will
5192 * leave these blocks visible to the user.)
5194 * Another thing we have to assure is that if we are in ordered mode
5195 * and inode is still attached to the committing transaction, we must
5196 * we start writeout of all the dirty pages which are being truncated.
5197 * This way we are sure that all the data written in the previous
5198 * transaction are already on disk (truncate waits for pages under
5201 * Called with inode->i_mutex down.
5203 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5205 struct inode
*inode
= d_inode(dentry
);
5208 const unsigned int ia_valid
= attr
->ia_valid
;
5210 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
5213 if (unlikely(IS_IMMUTABLE(inode
)))
5216 if (unlikely(IS_APPEND(inode
) &&
5217 (ia_valid
& (ATTR_MODE
| ATTR_UID
|
5218 ATTR_GID
| ATTR_TIMES_SET
))))
5221 error
= setattr_prepare(dentry
, attr
);
5225 error
= fscrypt_prepare_setattr(dentry
, attr
);
5229 error
= fsverity_prepare_setattr(dentry
, attr
);
5233 if (is_quota_modification(inode
, attr
)) {
5234 error
= dquot_initialize(inode
);
5238 if ((ia_valid
& ATTR_UID
&& !uid_eq(attr
->ia_uid
, inode
->i_uid
)) ||
5239 (ia_valid
& ATTR_GID
&& !gid_eq(attr
->ia_gid
, inode
->i_gid
))) {
5242 /* (user+group)*(old+new) structure, inode write (sb,
5243 * inode block, ? - but truncate inode update has it) */
5244 handle
= ext4_journal_start(inode
, EXT4_HT_QUOTA
,
5245 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
) +
5246 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
)) + 3);
5247 if (IS_ERR(handle
)) {
5248 error
= PTR_ERR(handle
);
5252 /* dquot_transfer() calls back ext4_get_inode_usage() which
5253 * counts xattr inode references.
5255 down_read(&EXT4_I(inode
)->xattr_sem
);
5256 error
= dquot_transfer(inode
, attr
);
5257 up_read(&EXT4_I(inode
)->xattr_sem
);
5260 ext4_journal_stop(handle
);
5263 /* Update corresponding info in inode so that everything is in
5264 * one transaction */
5265 if (attr
->ia_valid
& ATTR_UID
)
5266 inode
->i_uid
= attr
->ia_uid
;
5267 if (attr
->ia_valid
& ATTR_GID
)
5268 inode
->i_gid
= attr
->ia_gid
;
5269 error
= ext4_mark_inode_dirty(handle
, inode
);
5270 ext4_journal_stop(handle
);
5273 if (attr
->ia_valid
& ATTR_SIZE
) {
5275 loff_t oldsize
= inode
->i_size
;
5276 int shrink
= (attr
->ia_size
< inode
->i_size
);
5278 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
))) {
5279 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5281 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
)
5284 if (!S_ISREG(inode
->i_mode
))
5287 if (IS_I_VERSION(inode
) && attr
->ia_size
!= inode
->i_size
)
5288 inode_inc_iversion(inode
);
5291 if (ext4_should_order_data(inode
)) {
5292 error
= ext4_begin_ordered_truncate(inode
,
5298 * Blocks are going to be removed from the inode. Wait
5299 * for dio in flight.
5301 inode_dio_wait(inode
);
5304 down_write(&EXT4_I(inode
)->i_mmap_sem
);
5306 rc
= ext4_break_layouts(inode
);
5308 up_write(&EXT4_I(inode
)->i_mmap_sem
);
5312 if (attr
->ia_size
!= inode
->i_size
) {
5313 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 3);
5314 if (IS_ERR(handle
)) {
5315 error
= PTR_ERR(handle
);
5318 if (ext4_handle_valid(handle
) && shrink
) {
5319 error
= ext4_orphan_add(handle
, inode
);
5323 * Update c/mtime on truncate up, ext4_truncate() will
5324 * update c/mtime in shrink case below
5327 inode
->i_mtime
= current_time(inode
);
5328 inode
->i_ctime
= inode
->i_mtime
;
5330 down_write(&EXT4_I(inode
)->i_data_sem
);
5331 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
5332 rc
= ext4_mark_inode_dirty(handle
, inode
);
5336 * We have to update i_size under i_data_sem together
5337 * with i_disksize to avoid races with writeback code
5338 * running ext4_wb_update_i_disksize().
5341 i_size_write(inode
, attr
->ia_size
);
5342 up_write(&EXT4_I(inode
)->i_data_sem
);
5343 ext4_journal_stop(handle
);
5347 pagecache_isize_extended(inode
, oldsize
,
5349 } else if (ext4_should_journal_data(inode
)) {
5350 ext4_wait_for_tail_page_commit(inode
);
5355 * Truncate pagecache after we've waited for commit
5356 * in data=journal mode to make pages freeable.
5358 truncate_pagecache(inode
, inode
->i_size
);
5360 * Call ext4_truncate() even if i_size didn't change to
5361 * truncate possible preallocated blocks.
5363 if (attr
->ia_size
<= oldsize
) {
5364 rc
= ext4_truncate(inode
);
5369 up_write(&EXT4_I(inode
)->i_mmap_sem
);
5373 setattr_copy(inode
, attr
);
5374 mark_inode_dirty(inode
);
5378 * If the call to ext4_truncate failed to get a transaction handle at
5379 * all, we need to clean up the in-core orphan list manually.
5381 if (orphan
&& inode
->i_nlink
)
5382 ext4_orphan_del(NULL
, inode
);
5384 if (!error
&& (ia_valid
& ATTR_MODE
))
5385 rc
= posix_acl_chmod(inode
, inode
->i_mode
);
5388 ext4_std_error(inode
->i_sb
, error
);
5394 int ext4_getattr(const struct path
*path
, struct kstat
*stat
,
5395 u32 request_mask
, unsigned int query_flags
)
5397 struct inode
*inode
= d_inode(path
->dentry
);
5398 struct ext4_inode
*raw_inode
;
5399 struct ext4_inode_info
*ei
= EXT4_I(inode
);
5402 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_crtime
)) {
5403 stat
->result_mask
|= STATX_BTIME
;
5404 stat
->btime
.tv_sec
= ei
->i_crtime
.tv_sec
;
5405 stat
->btime
.tv_nsec
= ei
->i_crtime
.tv_nsec
;
5408 flags
= ei
->i_flags
& EXT4_FL_USER_VISIBLE
;
5409 if (flags
& EXT4_APPEND_FL
)
5410 stat
->attributes
|= STATX_ATTR_APPEND
;
5411 if (flags
& EXT4_COMPR_FL
)
5412 stat
->attributes
|= STATX_ATTR_COMPRESSED
;
5413 if (flags
& EXT4_ENCRYPT_FL
)
5414 stat
->attributes
|= STATX_ATTR_ENCRYPTED
;
5415 if (flags
& EXT4_IMMUTABLE_FL
)
5416 stat
->attributes
|= STATX_ATTR_IMMUTABLE
;
5417 if (flags
& EXT4_NODUMP_FL
)
5418 stat
->attributes
|= STATX_ATTR_NODUMP
;
5419 if (flags
& EXT4_VERITY_FL
)
5420 stat
->attributes
|= STATX_ATTR_VERITY
;
5422 stat
->attributes_mask
|= (STATX_ATTR_APPEND
|
5423 STATX_ATTR_COMPRESSED
|
5424 STATX_ATTR_ENCRYPTED
|
5425 STATX_ATTR_IMMUTABLE
|
5429 generic_fillattr(inode
, stat
);
5433 int ext4_file_getattr(const struct path
*path
, struct kstat
*stat
,
5434 u32 request_mask
, unsigned int query_flags
)
5436 struct inode
*inode
= d_inode(path
->dentry
);
5437 u64 delalloc_blocks
;
5439 ext4_getattr(path
, stat
, request_mask
, query_flags
);
5442 * If there is inline data in the inode, the inode will normally not
5443 * have data blocks allocated (it may have an external xattr block).
5444 * Report at least one sector for such files, so tools like tar, rsync,
5445 * others don't incorrectly think the file is completely sparse.
5447 if (unlikely(ext4_has_inline_data(inode
)))
5448 stat
->blocks
+= (stat
->size
+ 511) >> 9;
5451 * We can't update i_blocks if the block allocation is delayed
5452 * otherwise in the case of system crash before the real block
5453 * allocation is done, we will have i_blocks inconsistent with
5454 * on-disk file blocks.
5455 * We always keep i_blocks updated together with real
5456 * allocation. But to not confuse with user, stat
5457 * will return the blocks that include the delayed allocation
5458 * blocks for this file.
5460 delalloc_blocks
= EXT4_C2B(EXT4_SB(inode
->i_sb
),
5461 EXT4_I(inode
)->i_reserved_data_blocks
);
5462 stat
->blocks
+= delalloc_blocks
<< (inode
->i_sb
->s_blocksize_bits
- 9);
5466 static int ext4_index_trans_blocks(struct inode
*inode
, int lblocks
,
5469 if (!(ext4_test_inode_flag(inode
, EXT4_INODE_EXTENTS
)))
5470 return ext4_ind_trans_blocks(inode
, lblocks
);
5471 return ext4_ext_index_trans_blocks(inode
, pextents
);
5475 * Account for index blocks, block groups bitmaps and block group
5476 * descriptor blocks if modify datablocks and index blocks
5477 * worse case, the indexs blocks spread over different block groups
5479 * If datablocks are discontiguous, they are possible to spread over
5480 * different block groups too. If they are contiguous, with flexbg,
5481 * they could still across block group boundary.
5483 * Also account for superblock, inode, quota and xattr blocks
5485 static int ext4_meta_trans_blocks(struct inode
*inode
, int lblocks
,
5488 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
5494 * How many index blocks need to touch to map @lblocks logical blocks
5495 * to @pextents physical extents?
5497 idxblocks
= ext4_index_trans_blocks(inode
, lblocks
, pextents
);
5502 * Now let's see how many group bitmaps and group descriptors need
5505 groups
= idxblocks
+ pextents
;
5507 if (groups
> ngroups
)
5509 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
5510 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
5512 /* bitmaps and block group descriptor blocks */
5513 ret
+= groups
+ gdpblocks
;
5515 /* Blocks for super block, inode, quota and xattr blocks */
5516 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
5522 * Calculate the total number of credits to reserve to fit
5523 * the modification of a single pages into a single transaction,
5524 * which may include multiple chunks of block allocations.
5526 * This could be called via ext4_write_begin()
5528 * We need to consider the worse case, when
5529 * one new block per extent.
5531 int ext4_writepage_trans_blocks(struct inode
*inode
)
5533 int bpp
= ext4_journal_blocks_per_page(inode
);
5536 ret
= ext4_meta_trans_blocks(inode
, bpp
, bpp
);
5538 /* Account for data blocks for journalled mode */
5539 if (ext4_should_journal_data(inode
))
5545 * Calculate the journal credits for a chunk of data modification.
5547 * This is called from DIO, fallocate or whoever calling
5548 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5550 * journal buffers for data blocks are not included here, as DIO
5551 * and fallocate do no need to journal data buffers.
5553 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
5555 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
5559 * The caller must have previously called ext4_reserve_inode_write().
5560 * Give this, we know that the caller already has write access to iloc->bh.
5562 int ext4_mark_iloc_dirty(handle_t
*handle
,
5563 struct inode
*inode
, struct ext4_iloc
*iloc
)
5567 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
)))) {
5571 if (IS_I_VERSION(inode
))
5572 inode_inc_iversion(inode
);
5574 /* the do_update_inode consumes one bh->b_count */
5577 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5578 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5584 * On success, We end up with an outstanding reference count against
5585 * iloc->bh. This _must_ be cleaned up later.
5589 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5590 struct ext4_iloc
*iloc
)
5594 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode
->i_sb
))))
5597 err
= ext4_get_inode_loc(inode
, iloc
);
5599 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5600 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5606 ext4_std_error(inode
->i_sb
, err
);
5610 static int __ext4_expand_extra_isize(struct inode
*inode
,
5611 unsigned int new_extra_isize
,
5612 struct ext4_iloc
*iloc
,
5613 handle_t
*handle
, int *no_expand
)
5615 struct ext4_inode
*raw_inode
;
5616 struct ext4_xattr_ibody_header
*header
;
5617 unsigned int inode_size
= EXT4_INODE_SIZE(inode
->i_sb
);
5618 struct ext4_inode_info
*ei
= EXT4_I(inode
);
5621 /* this was checked at iget time, but double check for good measure */
5622 if ((EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
> inode_size
) ||
5623 (ei
->i_extra_isize
& 3)) {
5624 EXT4_ERROR_INODE(inode
, "bad extra_isize %u (inode size %u)",
5626 EXT4_INODE_SIZE(inode
->i_sb
));
5627 return -EFSCORRUPTED
;
5629 if ((new_extra_isize
< ei
->i_extra_isize
) ||
5630 (new_extra_isize
< 4) ||
5631 (new_extra_isize
> inode_size
- EXT4_GOOD_OLD_INODE_SIZE
))
5632 return -EINVAL
; /* Should never happen */
5634 raw_inode
= ext4_raw_inode(iloc
);
5636 header
= IHDR(inode
, raw_inode
);
5638 /* No extended attributes present */
5639 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
5640 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5641 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
+
5642 EXT4_I(inode
)->i_extra_isize
, 0,
5643 new_extra_isize
- EXT4_I(inode
)->i_extra_isize
);
5644 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5648 /* try to expand with EAs present */
5649 error
= ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5653 * Inode size expansion failed; don't try again
5662 * Expand an inode by new_extra_isize bytes.
5663 * Returns 0 on success or negative error number on failure.
5665 static int ext4_try_to_expand_extra_isize(struct inode
*inode
,
5666 unsigned int new_extra_isize
,
5667 struct ext4_iloc iloc
,
5673 if (ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
))
5677 * In nojournal mode, we can immediately attempt to expand
5678 * the inode. When journaled, we first need to obtain extra
5679 * buffer credits since we may write into the EA block
5680 * with this same handle. If journal_extend fails, then it will
5681 * only result in a minor loss of functionality for that inode.
5682 * If this is felt to be critical, then e2fsck should be run to
5683 * force a large enough s_min_extra_isize.
5685 if (ext4_journal_extend(handle
,
5686 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
), 0) != 0)
5689 if (ext4_write_trylock_xattr(inode
, &no_expand
) == 0)
5692 error
= __ext4_expand_extra_isize(inode
, new_extra_isize
, &iloc
,
5693 handle
, &no_expand
);
5694 ext4_write_unlock_xattr(inode
, &no_expand
);
5699 int ext4_expand_extra_isize(struct inode
*inode
,
5700 unsigned int new_extra_isize
,
5701 struct ext4_iloc
*iloc
)
5707 if (ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
5712 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
,
5713 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
));
5714 if (IS_ERR(handle
)) {
5715 error
= PTR_ERR(handle
);
5720 ext4_write_lock_xattr(inode
, &no_expand
);
5722 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5723 error
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5729 error
= __ext4_expand_extra_isize(inode
, new_extra_isize
, iloc
,
5730 handle
, &no_expand
);
5732 rc
= ext4_mark_iloc_dirty(handle
, inode
, iloc
);
5737 ext4_write_unlock_xattr(inode
, &no_expand
);
5738 ext4_journal_stop(handle
);
5743 * What we do here is to mark the in-core inode as clean with respect to inode
5744 * dirtiness (it may still be data-dirty).
5745 * This means that the in-core inode may be reaped by prune_icache
5746 * without having to perform any I/O. This is a very good thing,
5747 * because *any* task may call prune_icache - even ones which
5748 * have a transaction open against a different journal.
5750 * Is this cheating? Not really. Sure, we haven't written the
5751 * inode out, but prune_icache isn't a user-visible syncing function.
5752 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5753 * we start and wait on commits.
5755 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5757 struct ext4_iloc iloc
;
5758 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5762 trace_ext4_mark_inode_dirty(inode
, _RET_IP_
);
5763 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5767 if (EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
)
5768 ext4_try_to_expand_extra_isize(inode
, sbi
->s_want_extra_isize
,
5771 return ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5775 * ext4_dirty_inode() is called from __mark_inode_dirty()
5777 * We're really interested in the case where a file is being extended.
5778 * i_size has been changed by generic_commit_write() and we thus need
5779 * to include the updated inode in the current transaction.
5781 * Also, dquot_alloc_block() will always dirty the inode when blocks
5782 * are allocated to the file.
5784 * If the inode is marked synchronous, we don't honour that here - doing
5785 * so would cause a commit on atime updates, which we don't bother doing.
5786 * We handle synchronous inodes at the highest possible level.
5788 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5789 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5790 * to copy into the on-disk inode structure are the timestamp files.
5792 void ext4_dirty_inode(struct inode
*inode
, int flags
)
5796 if (flags
== I_DIRTY_TIME
)
5798 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 2);
5802 ext4_mark_inode_dirty(handle
, inode
);
5804 ext4_journal_stop(handle
);
5809 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5814 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5817 * We have to be very careful here: changing a data block's
5818 * journaling status dynamically is dangerous. If we write a
5819 * data block to the journal, change the status and then delete
5820 * that block, we risk forgetting to revoke the old log record
5821 * from the journal and so a subsequent replay can corrupt data.
5822 * So, first we make sure that the journal is empty and that
5823 * nobody is changing anything.
5826 journal
= EXT4_JOURNAL(inode
);
5829 if (is_journal_aborted(journal
))
5832 /* Wait for all existing dio workers */
5833 inode_dio_wait(inode
);
5836 * Before flushing the journal and switching inode's aops, we have
5837 * to flush all dirty data the inode has. There can be outstanding
5838 * delayed allocations, there can be unwritten extents created by
5839 * fallocate or buffered writes in dioread_nolock mode covered by
5840 * dirty data which can be converted only after flushing the dirty
5841 * data (and journalled aops don't know how to handle these cases).
5844 down_write(&EXT4_I(inode
)->i_mmap_sem
);
5845 err
= filemap_write_and_wait(inode
->i_mapping
);
5847 up_write(&EXT4_I(inode
)->i_mmap_sem
);
5852 percpu_down_write(&sbi
->s_journal_flag_rwsem
);
5853 jbd2_journal_lock_updates(journal
);
5856 * OK, there are no updates running now, and all cached data is
5857 * synced to disk. We are now in a completely consistent state
5858 * which doesn't have anything in the journal, and we know that
5859 * no filesystem updates are running, so it is safe to modify
5860 * the inode's in-core data-journaling state flag now.
5864 ext4_set_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5866 err
= jbd2_journal_flush(journal
);
5868 jbd2_journal_unlock_updates(journal
);
5869 percpu_up_write(&sbi
->s_journal_flag_rwsem
);
5872 ext4_clear_inode_flag(inode
, EXT4_INODE_JOURNAL_DATA
);
5874 ext4_set_aops(inode
);
5876 jbd2_journal_unlock_updates(journal
);
5877 percpu_up_write(&sbi
->s_journal_flag_rwsem
);
5880 up_write(&EXT4_I(inode
)->i_mmap_sem
);
5882 /* Finally we can mark the inode as dirty. */
5884 handle
= ext4_journal_start(inode
, EXT4_HT_INODE
, 1);
5886 return PTR_ERR(handle
);
5888 err
= ext4_mark_inode_dirty(handle
, inode
);
5889 ext4_handle_sync(handle
);
5890 ext4_journal_stop(handle
);
5891 ext4_std_error(inode
->i_sb
, err
);
5896 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5898 return !buffer_mapped(bh
);
5901 vm_fault_t
ext4_page_mkwrite(struct vm_fault
*vmf
)
5903 struct vm_area_struct
*vma
= vmf
->vma
;
5904 struct page
*page
= vmf
->page
;
5909 struct file
*file
= vma
->vm_file
;
5910 struct inode
*inode
= file_inode(file
);
5911 struct address_space
*mapping
= inode
->i_mapping
;
5913 get_block_t
*get_block
;
5916 if (unlikely(IS_IMMUTABLE(inode
)))
5917 return VM_FAULT_SIGBUS
;
5919 sb_start_pagefault(inode
->i_sb
);
5920 file_update_time(vma
->vm_file
);
5922 down_read(&EXT4_I(inode
)->i_mmap_sem
);
5924 err
= ext4_convert_inline_data(inode
);
5928 /* Delalloc case is easy... */
5929 if (test_opt(inode
->i_sb
, DELALLOC
) &&
5930 !ext4_should_journal_data(inode
) &&
5931 !ext4_nonda_switch(inode
->i_sb
)) {
5933 err
= block_page_mkwrite(vma
, vmf
,
5934 ext4_da_get_block_prep
);
5935 } while (err
== -ENOSPC
&&
5936 ext4_should_retry_alloc(inode
->i_sb
, &retries
));
5941 size
= i_size_read(inode
);
5942 /* Page got truncated from under us? */
5943 if (page
->mapping
!= mapping
|| page_offset(page
) > size
) {
5945 ret
= VM_FAULT_NOPAGE
;
5949 if (page
->index
== size
>> PAGE_SHIFT
)
5950 len
= size
& ~PAGE_MASK
;
5954 * Return if we have all the buffers mapped. This avoids the need to do
5955 * journal_start/journal_stop which can block and take a long time
5957 if (page_has_buffers(page
)) {
5958 if (!ext4_walk_page_buffers(NULL
, page_buffers(page
),
5960 ext4_bh_unmapped
)) {
5961 /* Wait so that we don't change page under IO */
5962 wait_for_stable_page(page
);
5963 ret
= VM_FAULT_LOCKED
;
5968 /* OK, we need to fill the hole... */
5969 if (ext4_should_dioread_nolock(inode
))
5970 get_block
= ext4_get_block_unwritten
;
5972 get_block
= ext4_get_block
;
5974 handle
= ext4_journal_start(inode
, EXT4_HT_WRITE_PAGE
,
5975 ext4_writepage_trans_blocks(inode
));
5976 if (IS_ERR(handle
)) {
5977 ret
= VM_FAULT_SIGBUS
;
5980 err
= block_page_mkwrite(vma
, vmf
, get_block
);
5981 if (!err
&& ext4_should_journal_data(inode
)) {
5982 if (ext4_walk_page_buffers(handle
, page_buffers(page
), 0,
5983 PAGE_SIZE
, NULL
, do_journal_get_write_access
)) {
5985 ret
= VM_FAULT_SIGBUS
;
5986 ext4_journal_stop(handle
);
5989 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
5991 ext4_journal_stop(handle
);
5992 if (err
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
5995 ret
= block_page_mkwrite_return(err
);
5997 up_read(&EXT4_I(inode
)->i_mmap_sem
);
5998 sb_end_pagefault(inode
->i_sb
);
6002 vm_fault_t
ext4_filemap_fault(struct vm_fault
*vmf
)
6004 struct inode
*inode
= file_inode(vmf
->vma
->vm_file
);
6007 down_read(&EXT4_I(inode
)->i_mmap_sem
);
6008 ret
= filemap_fault(vmf
);
6009 up_read(&EXT4_I(inode
)->i_mmap_sem
);