ext4: Optimize ext4 DIO overwrites
[linux/fpc-iii.git] / fs / ext4 / inode.c
blobd035acab5b2a80cb010c097856ad2de5dbf224e5
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * linux/fs/ext4/inode.c
5 * Copyright (C) 1992, 1993, 1994, 1995
6 * Remy Card (card@masi.ibp.fr)
7 * Laboratoire MASI - Institut Blaise Pascal
8 * Universite Pierre et Marie Curie (Paris VI)
10 * from
12 * linux/fs/minix/inode.c
14 * Copyright (C) 1991, 1992 Linus Torvalds
16 * 64-bit file support on 64-bit platforms by Jakub Jelinek
17 * (jj@sunsite.ms.mff.cuni.cz)
19 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
22 #include <linux/fs.h>
23 #include <linux/time.h>
24 #include <linux/highuid.h>
25 #include <linux/pagemap.h>
26 #include <linux/dax.h>
27 #include <linux/quotaops.h>
28 #include <linux/string.h>
29 #include <linux/buffer_head.h>
30 #include <linux/writeback.h>
31 #include <linux/pagevec.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/uio.h>
35 #include <linux/bio.h>
36 #include <linux/workqueue.h>
37 #include <linux/kernel.h>
38 #include <linux/printk.h>
39 #include <linux/slab.h>
40 #include <linux/bitops.h>
41 #include <linux/iomap.h>
42 #include <linux/iversion.h>
44 #include "ext4_jbd2.h"
45 #include "xattr.h"
46 #include "acl.h"
47 #include "truncate.h"
49 #include <trace/events/ext4.h>
51 #define MPAGE_DA_EXTENT_TAIL 0x01
53 static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
54 struct ext4_inode_info *ei)
56 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
57 __u32 csum;
58 __u16 dummy_csum = 0;
59 int offset = offsetof(struct ext4_inode, i_checksum_lo);
60 unsigned int csum_size = sizeof(dummy_csum);
62 csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
63 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
64 offset += csum_size;
65 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
66 EXT4_GOOD_OLD_INODE_SIZE - offset);
68 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
69 offset = offsetof(struct ext4_inode, i_checksum_hi);
70 csum = ext4_chksum(sbi, csum, (__u8 *)raw +
71 EXT4_GOOD_OLD_INODE_SIZE,
72 offset - EXT4_GOOD_OLD_INODE_SIZE);
73 if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
74 csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
75 csum_size);
76 offset += csum_size;
78 csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
79 EXT4_INODE_SIZE(inode->i_sb) - offset);
82 return csum;
85 static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
86 struct ext4_inode_info *ei)
88 __u32 provided, calculated;
90 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
91 cpu_to_le32(EXT4_OS_LINUX) ||
92 !ext4_has_metadata_csum(inode->i_sb))
93 return 1;
95 provided = le16_to_cpu(raw->i_checksum_lo);
96 calculated = ext4_inode_csum(inode, raw, ei);
97 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
98 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
99 provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
100 else
101 calculated &= 0xFFFF;
103 return provided == calculated;
106 static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
107 struct ext4_inode_info *ei)
109 __u32 csum;
111 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
112 cpu_to_le32(EXT4_OS_LINUX) ||
113 !ext4_has_metadata_csum(inode->i_sb))
114 return;
116 csum = ext4_inode_csum(inode, raw, ei);
117 raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
118 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
119 EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
120 raw->i_checksum_hi = cpu_to_le16(csum >> 16);
123 static inline int ext4_begin_ordered_truncate(struct inode *inode,
124 loff_t new_size)
126 trace_ext4_begin_ordered_truncate(inode, new_size);
128 * If jinode is zero, then we never opened the file for
129 * writing, so there's no need to call
130 * jbd2_journal_begin_ordered_truncate() since there's no
131 * outstanding writes we need to flush.
133 if (!EXT4_I(inode)->jinode)
134 return 0;
135 return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
136 EXT4_I(inode)->jinode,
137 new_size);
140 static void ext4_invalidatepage(struct page *page, unsigned int offset,
141 unsigned int length);
142 static int __ext4_journalled_writepage(struct page *page, unsigned int len);
143 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
144 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
145 int pextents);
148 * Test whether an inode is a fast symlink.
149 * A fast symlink has its symlink data stored in ext4_inode_info->i_data.
151 int ext4_inode_is_fast_symlink(struct inode *inode)
153 if (!(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL)) {
154 int ea_blocks = EXT4_I(inode)->i_file_acl ?
155 EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
157 if (ext4_has_inline_data(inode))
158 return 0;
160 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
162 return S_ISLNK(inode->i_mode) && inode->i_size &&
163 (inode->i_size < EXT4_N_BLOCKS * 4);
167 * Called at the last iput() if i_nlink is zero.
169 void ext4_evict_inode(struct inode *inode)
171 handle_t *handle;
172 int err;
174 * Credits for final inode cleanup and freeing:
175 * sb + inode (ext4_orphan_del()), block bitmap, group descriptor
176 * (xattr block freeing), bitmap, group descriptor (inode freeing)
178 int extra_credits = 6;
179 struct ext4_xattr_inode_array *ea_inode_array = NULL;
181 trace_ext4_evict_inode(inode);
183 if (inode->i_nlink) {
185 * When journalling data dirty buffers are tracked only in the
186 * journal. So although mm thinks everything is clean and
187 * ready for reaping the inode might still have some pages to
188 * write in the running transaction or waiting to be
189 * checkpointed. Thus calling jbd2_journal_invalidatepage()
190 * (via truncate_inode_pages()) to discard these buffers can
191 * cause data loss. Also even if we did not discard these
192 * buffers, we would have no way to find them after the inode
193 * is reaped and thus user could see stale data if he tries to
194 * read them before the transaction is checkpointed. So be
195 * careful and force everything to disk here... We use
196 * ei->i_datasync_tid to store the newest transaction
197 * containing inode's data.
199 * Note that directories do not have this problem because they
200 * don't use page cache.
202 if (inode->i_ino != EXT4_JOURNAL_INO &&
203 ext4_should_journal_data(inode) &&
204 (S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode)) &&
205 inode->i_data.nrpages) {
206 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
207 tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
209 jbd2_complete_transaction(journal, commit_tid);
210 filemap_write_and_wait(&inode->i_data);
212 truncate_inode_pages_final(&inode->i_data);
214 goto no_delete;
217 if (is_bad_inode(inode))
218 goto no_delete;
219 dquot_initialize(inode);
221 if (ext4_should_order_data(inode))
222 ext4_begin_ordered_truncate(inode, 0);
223 truncate_inode_pages_final(&inode->i_data);
226 * Protect us against freezing - iput() caller didn't have to have any
227 * protection against it
229 sb_start_intwrite(inode->i_sb);
231 if (!IS_NOQUOTA(inode))
232 extra_credits += EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb);
235 * Block bitmap, group descriptor, and inode are accounted in both
236 * ext4_blocks_for_truncate() and extra_credits. So subtract 3.
238 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
239 ext4_blocks_for_truncate(inode) + extra_credits - 3);
240 if (IS_ERR(handle)) {
241 ext4_std_error(inode->i_sb, PTR_ERR(handle));
243 * If we're going to skip the normal cleanup, we still need to
244 * make sure that the in-core orphan linked list is properly
245 * cleaned up.
247 ext4_orphan_del(NULL, inode);
248 sb_end_intwrite(inode->i_sb);
249 goto no_delete;
252 if (IS_SYNC(inode))
253 ext4_handle_sync(handle);
256 * Set inode->i_size to 0 before calling ext4_truncate(). We need
257 * special handling of symlinks here because i_size is used to
258 * determine whether ext4_inode_info->i_data contains symlink data or
259 * block mappings. Setting i_size to 0 will remove its fast symlink
260 * status. Erase i_data so that it becomes a valid empty block map.
262 if (ext4_inode_is_fast_symlink(inode))
263 memset(EXT4_I(inode)->i_data, 0, sizeof(EXT4_I(inode)->i_data));
264 inode->i_size = 0;
265 err = ext4_mark_inode_dirty(handle, inode);
266 if (err) {
267 ext4_warning(inode->i_sb,
268 "couldn't mark inode dirty (err %d)", err);
269 goto stop_handle;
271 if (inode->i_blocks) {
272 err = ext4_truncate(inode);
273 if (err) {
274 ext4_set_errno(inode->i_sb, -err);
275 ext4_error(inode->i_sb,
276 "couldn't truncate inode %lu (err %d)",
277 inode->i_ino, err);
278 goto stop_handle;
282 /* Remove xattr references. */
283 err = ext4_xattr_delete_inode(handle, inode, &ea_inode_array,
284 extra_credits);
285 if (err) {
286 ext4_warning(inode->i_sb, "xattr delete (err %d)", err);
287 stop_handle:
288 ext4_journal_stop(handle);
289 ext4_orphan_del(NULL, inode);
290 sb_end_intwrite(inode->i_sb);
291 ext4_xattr_inode_array_free(ea_inode_array);
292 goto no_delete;
296 * Kill off the orphan record which ext4_truncate created.
297 * AKPM: I think this can be inside the above `if'.
298 * Note that ext4_orphan_del() has to be able to cope with the
299 * deletion of a non-existent orphan - this is because we don't
300 * know if ext4_truncate() actually created an orphan record.
301 * (Well, we could do this if we need to, but heck - it works)
303 ext4_orphan_del(handle, inode);
304 EXT4_I(inode)->i_dtime = (__u32)ktime_get_real_seconds();
307 * One subtle ordering requirement: if anything has gone wrong
308 * (transaction abort, IO errors, whatever), then we can still
309 * do these next steps (the fs will already have been marked as
310 * having errors), but we can't free the inode if the mark_dirty
311 * fails.
313 if (ext4_mark_inode_dirty(handle, inode))
314 /* If that failed, just do the required in-core inode clear. */
315 ext4_clear_inode(inode);
316 else
317 ext4_free_inode(handle, inode);
318 ext4_journal_stop(handle);
319 sb_end_intwrite(inode->i_sb);
320 ext4_xattr_inode_array_free(ea_inode_array);
321 return;
322 no_delete:
323 ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
326 #ifdef CONFIG_QUOTA
327 qsize_t *ext4_get_reserved_space(struct inode *inode)
329 return &EXT4_I(inode)->i_reserved_quota;
331 #endif
334 * Called with i_data_sem down, which is important since we can call
335 * ext4_discard_preallocations() from here.
337 void ext4_da_update_reserve_space(struct inode *inode,
338 int used, int quota_claim)
340 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
341 struct ext4_inode_info *ei = EXT4_I(inode);
343 spin_lock(&ei->i_block_reservation_lock);
344 trace_ext4_da_update_reserve_space(inode, used, quota_claim);
345 if (unlikely(used > ei->i_reserved_data_blocks)) {
346 ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
347 "with only %d reserved data blocks",
348 __func__, inode->i_ino, used,
349 ei->i_reserved_data_blocks);
350 WARN_ON(1);
351 used = ei->i_reserved_data_blocks;
354 /* Update per-inode reservations */
355 ei->i_reserved_data_blocks -= used;
356 percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
358 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
360 /* Update quota subsystem for data blocks */
361 if (quota_claim)
362 dquot_claim_block(inode, EXT4_C2B(sbi, used));
363 else {
365 * We did fallocate with an offset that is already delayed
366 * allocated. So on delayed allocated writeback we should
367 * not re-claim the quota for fallocated blocks.
369 dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
373 * If we have done all the pending block allocations and if
374 * there aren't any writers on the inode, we can discard the
375 * inode's preallocations.
377 if ((ei->i_reserved_data_blocks == 0) &&
378 !inode_is_open_for_write(inode))
379 ext4_discard_preallocations(inode);
382 static int __check_block_validity(struct inode *inode, const char *func,
383 unsigned int line,
384 struct ext4_map_blocks *map)
386 if (ext4_has_feature_journal(inode->i_sb) &&
387 (inode->i_ino ==
388 le32_to_cpu(EXT4_SB(inode->i_sb)->s_es->s_journal_inum)))
389 return 0;
390 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
391 map->m_len)) {
392 ext4_error_inode(inode, func, line, map->m_pblk,
393 "lblock %lu mapped to illegal pblock %llu "
394 "(length %d)", (unsigned long) map->m_lblk,
395 map->m_pblk, map->m_len);
396 return -EFSCORRUPTED;
398 return 0;
401 int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
402 ext4_lblk_t len)
404 int ret;
406 if (IS_ENCRYPTED(inode))
407 return fscrypt_zeroout_range(inode, lblk, pblk, len);
409 ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
410 if (ret > 0)
411 ret = 0;
413 return ret;
416 #define check_block_validity(inode, map) \
417 __check_block_validity((inode), __func__, __LINE__, (map))
419 #ifdef ES_AGGRESSIVE_TEST
420 static void ext4_map_blocks_es_recheck(handle_t *handle,
421 struct inode *inode,
422 struct ext4_map_blocks *es_map,
423 struct ext4_map_blocks *map,
424 int flags)
426 int retval;
428 map->m_flags = 0;
430 * There is a race window that the result is not the same.
431 * e.g. xfstests #223 when dioread_nolock enables. The reason
432 * is that we lookup a block mapping in extent status tree with
433 * out taking i_data_sem. So at the time the unwritten extent
434 * could be converted.
436 down_read(&EXT4_I(inode)->i_data_sem);
437 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
438 retval = ext4_ext_map_blocks(handle, inode, map, flags &
439 EXT4_GET_BLOCKS_KEEP_SIZE);
440 } else {
441 retval = ext4_ind_map_blocks(handle, inode, map, flags &
442 EXT4_GET_BLOCKS_KEEP_SIZE);
444 up_read((&EXT4_I(inode)->i_data_sem));
447 * We don't check m_len because extent will be collpased in status
448 * tree. So the m_len might not equal.
450 if (es_map->m_lblk != map->m_lblk ||
451 es_map->m_flags != map->m_flags ||
452 es_map->m_pblk != map->m_pblk) {
453 printk("ES cache assertion failed for inode: %lu "
454 "es_cached ex [%d/%d/%llu/%x] != "
455 "found ex [%d/%d/%llu/%x] retval %d flags %x\n",
456 inode->i_ino, es_map->m_lblk, es_map->m_len,
457 es_map->m_pblk, es_map->m_flags, map->m_lblk,
458 map->m_len, map->m_pblk, map->m_flags,
459 retval, flags);
462 #endif /* ES_AGGRESSIVE_TEST */
465 * The ext4_map_blocks() function tries to look up the requested blocks,
466 * and returns if the blocks are already mapped.
468 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
469 * and store the allocated blocks in the result buffer head and mark it
470 * mapped.
472 * If file type is extents based, it will call ext4_ext_map_blocks(),
473 * Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
474 * based files
476 * On success, it returns the number of blocks being mapped or allocated. if
477 * create==0 and the blocks are pre-allocated and unwritten, the resulting @map
478 * is marked as unwritten. If the create == 1, it will mark @map as mapped.
480 * It returns 0 if plain look up failed (blocks have not been allocated), in
481 * that case, @map is returned as unmapped but we still do fill map->m_len to
482 * indicate the length of a hole starting at map->m_lblk.
484 * It returns the error in case of allocation failure.
486 int ext4_map_blocks(handle_t *handle, struct inode *inode,
487 struct ext4_map_blocks *map, int flags)
489 struct extent_status es;
490 int retval;
491 int ret = 0;
492 #ifdef ES_AGGRESSIVE_TEST
493 struct ext4_map_blocks orig_map;
495 memcpy(&orig_map, map, sizeof(*map));
496 #endif
498 map->m_flags = 0;
499 ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
500 "logical block %lu\n", inode->i_ino, flags, map->m_len,
501 (unsigned long) map->m_lblk);
504 * ext4_map_blocks returns an int, and m_len is an unsigned int
506 if (unlikely(map->m_len > INT_MAX))
507 map->m_len = INT_MAX;
509 /* We can handle the block number less than EXT_MAX_BLOCKS */
510 if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
511 return -EFSCORRUPTED;
513 /* Lookup extent status tree firstly */
514 if (ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
515 if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
516 map->m_pblk = ext4_es_pblock(&es) +
517 map->m_lblk - es.es_lblk;
518 map->m_flags |= ext4_es_is_written(&es) ?
519 EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
520 retval = es.es_len - (map->m_lblk - es.es_lblk);
521 if (retval > map->m_len)
522 retval = map->m_len;
523 map->m_len = retval;
524 } else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
525 map->m_pblk = 0;
526 retval = es.es_len - (map->m_lblk - es.es_lblk);
527 if (retval > map->m_len)
528 retval = map->m_len;
529 map->m_len = retval;
530 retval = 0;
531 } else {
532 BUG();
534 #ifdef ES_AGGRESSIVE_TEST
535 ext4_map_blocks_es_recheck(handle, inode, map,
536 &orig_map, flags);
537 #endif
538 goto found;
542 * Try to see if we can get the block without requesting a new
543 * file system block.
545 down_read(&EXT4_I(inode)->i_data_sem);
546 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
547 retval = ext4_ext_map_blocks(handle, inode, map, flags &
548 EXT4_GET_BLOCKS_KEEP_SIZE);
549 } else {
550 retval = ext4_ind_map_blocks(handle, inode, map, flags &
551 EXT4_GET_BLOCKS_KEEP_SIZE);
553 if (retval > 0) {
554 unsigned int status;
556 if (unlikely(retval != map->m_len)) {
557 ext4_warning(inode->i_sb,
558 "ES len assertion failed for inode "
559 "%lu: retval %d != map->m_len %d",
560 inode->i_ino, retval, map->m_len);
561 WARN_ON(1);
564 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
565 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
566 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
567 !(status & EXTENT_STATUS_WRITTEN) &&
568 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
569 map->m_lblk + map->m_len - 1))
570 status |= EXTENT_STATUS_DELAYED;
571 ret = ext4_es_insert_extent(inode, map->m_lblk,
572 map->m_len, map->m_pblk, status);
573 if (ret < 0)
574 retval = ret;
576 up_read((&EXT4_I(inode)->i_data_sem));
578 found:
579 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
580 ret = check_block_validity(inode, map);
581 if (ret != 0)
582 return ret;
585 /* If it is only a block(s) look up */
586 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
587 return retval;
590 * Returns if the blocks have already allocated
592 * Note that if blocks have been preallocated
593 * ext4_ext_get_block() returns the create = 0
594 * with buffer head unmapped.
596 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
598 * If we need to convert extent to unwritten
599 * we continue and do the actual work in
600 * ext4_ext_map_blocks()
602 if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
603 return retval;
606 * Here we clear m_flags because after allocating an new extent,
607 * it will be set again.
609 map->m_flags &= ~EXT4_MAP_FLAGS;
612 * New blocks allocate and/or writing to unwritten extent
613 * will possibly result in updating i_data, so we take
614 * the write lock of i_data_sem, and call get_block()
615 * with create == 1 flag.
617 down_write(&EXT4_I(inode)->i_data_sem);
620 * We need to check for EXT4 here because migrate
621 * could have changed the inode type in between
623 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
624 retval = ext4_ext_map_blocks(handle, inode, map, flags);
625 } else {
626 retval = ext4_ind_map_blocks(handle, inode, map, flags);
628 if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
630 * We allocated new blocks which will result in
631 * i_data's format changing. Force the migrate
632 * to fail by clearing migrate flags
634 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
638 * Update reserved blocks/metadata blocks after successful
639 * block allocation which had been deferred till now. We don't
640 * support fallocate for non extent files. So we can update
641 * reserve space here.
643 if ((retval > 0) &&
644 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
645 ext4_da_update_reserve_space(inode, retval, 1);
648 if (retval > 0) {
649 unsigned int status;
651 if (unlikely(retval != map->m_len)) {
652 ext4_warning(inode->i_sb,
653 "ES len assertion failed for inode "
654 "%lu: retval %d != map->m_len %d",
655 inode->i_ino, retval, map->m_len);
656 WARN_ON(1);
660 * We have to zeroout blocks before inserting them into extent
661 * status tree. Otherwise someone could look them up there and
662 * use them before they are really zeroed. We also have to
663 * unmap metadata before zeroing as otherwise writeback can
664 * overwrite zeros with stale data from block device.
666 if (flags & EXT4_GET_BLOCKS_ZERO &&
667 map->m_flags & EXT4_MAP_MAPPED &&
668 map->m_flags & EXT4_MAP_NEW) {
669 ret = ext4_issue_zeroout(inode, map->m_lblk,
670 map->m_pblk, map->m_len);
671 if (ret) {
672 retval = ret;
673 goto out_sem;
678 * If the extent has been zeroed out, we don't need to update
679 * extent status tree.
681 if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
682 ext4_es_lookup_extent(inode, map->m_lblk, NULL, &es)) {
683 if (ext4_es_is_written(&es))
684 goto out_sem;
686 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
687 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
688 if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
689 !(status & EXTENT_STATUS_WRITTEN) &&
690 ext4_es_scan_range(inode, &ext4_es_is_delayed, map->m_lblk,
691 map->m_lblk + map->m_len - 1))
692 status |= EXTENT_STATUS_DELAYED;
693 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
694 map->m_pblk, status);
695 if (ret < 0) {
696 retval = ret;
697 goto out_sem;
701 out_sem:
702 up_write((&EXT4_I(inode)->i_data_sem));
703 if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
704 ret = check_block_validity(inode, map);
705 if (ret != 0)
706 return ret;
709 * Inodes with freshly allocated blocks where contents will be
710 * visible after transaction commit must be on transaction's
711 * ordered data list.
713 if (map->m_flags & EXT4_MAP_NEW &&
714 !(map->m_flags & EXT4_MAP_UNWRITTEN) &&
715 !(flags & EXT4_GET_BLOCKS_ZERO) &&
716 !ext4_is_quota_file(inode) &&
717 ext4_should_order_data(inode)) {
718 loff_t start_byte =
719 (loff_t)map->m_lblk << inode->i_blkbits;
720 loff_t length = (loff_t)map->m_len << inode->i_blkbits;
722 if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
723 ret = ext4_jbd2_inode_add_wait(handle, inode,
724 start_byte, length);
725 else
726 ret = ext4_jbd2_inode_add_write(handle, inode,
727 start_byte, length);
728 if (ret)
729 return ret;
732 return retval;
736 * Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
737 * we have to be careful as someone else may be manipulating b_state as well.
739 static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
741 unsigned long old_state;
742 unsigned long new_state;
744 flags &= EXT4_MAP_FLAGS;
746 /* Dummy buffer_head? Set non-atomically. */
747 if (!bh->b_page) {
748 bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
749 return;
752 * Someone else may be modifying b_state. Be careful! This is ugly but
753 * once we get rid of using bh as a container for mapping information
754 * to pass to / from get_block functions, this can go away.
756 do {
757 old_state = READ_ONCE(bh->b_state);
758 new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
759 } while (unlikely(
760 cmpxchg(&bh->b_state, old_state, new_state) != old_state));
763 static int _ext4_get_block(struct inode *inode, sector_t iblock,
764 struct buffer_head *bh, int flags)
766 struct ext4_map_blocks map;
767 int ret = 0;
769 if (ext4_has_inline_data(inode))
770 return -ERANGE;
772 map.m_lblk = iblock;
773 map.m_len = bh->b_size >> inode->i_blkbits;
775 ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
776 flags);
777 if (ret > 0) {
778 map_bh(bh, inode->i_sb, map.m_pblk);
779 ext4_update_bh_state(bh, map.m_flags);
780 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
781 ret = 0;
782 } else if (ret == 0) {
783 /* hole case, need to fill in bh->b_size */
784 bh->b_size = inode->i_sb->s_blocksize * map.m_len;
786 return ret;
789 int ext4_get_block(struct inode *inode, sector_t iblock,
790 struct buffer_head *bh, int create)
792 return _ext4_get_block(inode, iblock, bh,
793 create ? EXT4_GET_BLOCKS_CREATE : 0);
797 * Get block function used when preparing for buffered write if we require
798 * creating an unwritten extent if blocks haven't been allocated. The extent
799 * will be converted to written after the IO is complete.
801 int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
802 struct buffer_head *bh_result, int create)
804 ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
805 inode->i_ino, create);
806 return _ext4_get_block(inode, iblock, bh_result,
807 EXT4_GET_BLOCKS_IO_CREATE_EXT);
810 /* Maximum number of blocks we map for direct IO at once. */
811 #define DIO_MAX_BLOCKS 4096
814 * `handle' can be NULL if create is zero
816 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
817 ext4_lblk_t block, int map_flags)
819 struct ext4_map_blocks map;
820 struct buffer_head *bh;
821 int create = map_flags & EXT4_GET_BLOCKS_CREATE;
822 int err;
824 J_ASSERT(handle != NULL || create == 0);
826 map.m_lblk = block;
827 map.m_len = 1;
828 err = ext4_map_blocks(handle, inode, &map, map_flags);
830 if (err == 0)
831 return create ? ERR_PTR(-ENOSPC) : NULL;
832 if (err < 0)
833 return ERR_PTR(err);
835 bh = sb_getblk(inode->i_sb, map.m_pblk);
836 if (unlikely(!bh))
837 return ERR_PTR(-ENOMEM);
838 if (map.m_flags & EXT4_MAP_NEW) {
839 J_ASSERT(create != 0);
840 J_ASSERT(handle != NULL);
843 * Now that we do not always journal data, we should
844 * keep in mind whether this should always journal the
845 * new buffer as metadata. For now, regular file
846 * writes use ext4_get_block instead, so it's not a
847 * problem.
849 lock_buffer(bh);
850 BUFFER_TRACE(bh, "call get_create_access");
851 err = ext4_journal_get_create_access(handle, bh);
852 if (unlikely(err)) {
853 unlock_buffer(bh);
854 goto errout;
856 if (!buffer_uptodate(bh)) {
857 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
858 set_buffer_uptodate(bh);
860 unlock_buffer(bh);
861 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
862 err = ext4_handle_dirty_metadata(handle, inode, bh);
863 if (unlikely(err))
864 goto errout;
865 } else
866 BUFFER_TRACE(bh, "not a new buffer");
867 return bh;
868 errout:
869 brelse(bh);
870 return ERR_PTR(err);
873 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
874 ext4_lblk_t block, int map_flags)
876 struct buffer_head *bh;
878 bh = ext4_getblk(handle, inode, block, map_flags);
879 if (IS_ERR(bh))
880 return bh;
881 if (!bh || ext4_buffer_uptodate(bh))
882 return bh;
883 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
884 wait_on_buffer(bh);
885 if (buffer_uptodate(bh))
886 return bh;
887 put_bh(bh);
888 return ERR_PTR(-EIO);
891 /* Read a contiguous batch of blocks. */
892 int ext4_bread_batch(struct inode *inode, ext4_lblk_t block, int bh_count,
893 bool wait, struct buffer_head **bhs)
895 int i, err;
897 for (i = 0; i < bh_count; i++) {
898 bhs[i] = ext4_getblk(NULL, inode, block + i, 0 /* map_flags */);
899 if (IS_ERR(bhs[i])) {
900 err = PTR_ERR(bhs[i]);
901 bh_count = i;
902 goto out_brelse;
906 for (i = 0; i < bh_count; i++)
907 /* Note that NULL bhs[i] is valid because of holes. */
908 if (bhs[i] && !ext4_buffer_uptodate(bhs[i]))
909 ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1,
910 &bhs[i]);
912 if (!wait)
913 return 0;
915 for (i = 0; i < bh_count; i++)
916 if (bhs[i])
917 wait_on_buffer(bhs[i]);
919 for (i = 0; i < bh_count; i++) {
920 if (bhs[i] && !buffer_uptodate(bhs[i])) {
921 err = -EIO;
922 goto out_brelse;
925 return 0;
927 out_brelse:
928 for (i = 0; i < bh_count; i++) {
929 brelse(bhs[i]);
930 bhs[i] = NULL;
932 return err;
935 int ext4_walk_page_buffers(handle_t *handle,
936 struct buffer_head *head,
937 unsigned from,
938 unsigned to,
939 int *partial,
940 int (*fn)(handle_t *handle,
941 struct buffer_head *bh))
943 struct buffer_head *bh;
944 unsigned block_start, block_end;
945 unsigned blocksize = head->b_size;
946 int err, ret = 0;
947 struct buffer_head *next;
949 for (bh = head, block_start = 0;
950 ret == 0 && (bh != head || !block_start);
951 block_start = block_end, bh = next) {
952 next = bh->b_this_page;
953 block_end = block_start + blocksize;
954 if (block_end <= from || block_start >= to) {
955 if (partial && !buffer_uptodate(bh))
956 *partial = 1;
957 continue;
959 err = (*fn)(handle, bh);
960 if (!ret)
961 ret = err;
963 return ret;
967 * To preserve ordering, it is essential that the hole instantiation and
968 * the data write be encapsulated in a single transaction. We cannot
969 * close off a transaction and start a new one between the ext4_get_block()
970 * and the commit_write(). So doing the jbd2_journal_start at the start of
971 * prepare_write() is the right place.
973 * Also, this function can nest inside ext4_writepage(). In that case, we
974 * *know* that ext4_writepage() has generated enough buffer credits to do the
975 * whole page. So we won't block on the journal in that case, which is good,
976 * because the caller may be PF_MEMALLOC.
978 * By accident, ext4 can be reentered when a transaction is open via
979 * quota file writes. If we were to commit the transaction while thus
980 * reentered, there can be a deadlock - we would be holding a quota
981 * lock, and the commit would never complete if another thread had a
982 * transaction open and was blocking on the quota lock - a ranking
983 * violation.
985 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
986 * will _not_ run commit under these circumstances because handle->h_ref
987 * is elevated. We'll still have enough credits for the tiny quotafile
988 * write.
990 int do_journal_get_write_access(handle_t *handle,
991 struct buffer_head *bh)
993 int dirty = buffer_dirty(bh);
994 int ret;
996 if (!buffer_mapped(bh) || buffer_freed(bh))
997 return 0;
999 * __block_write_begin() could have dirtied some buffers. Clean
1000 * the dirty bit as jbd2_journal_get_write_access() could complain
1001 * otherwise about fs integrity issues. Setting of the dirty bit
1002 * by __block_write_begin() isn't a real problem here as we clear
1003 * the bit before releasing a page lock and thus writeback cannot
1004 * ever write the buffer.
1006 if (dirty)
1007 clear_buffer_dirty(bh);
1008 BUFFER_TRACE(bh, "get write access");
1009 ret = ext4_journal_get_write_access(handle, bh);
1010 if (!ret && dirty)
1011 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1012 return ret;
1015 #ifdef CONFIG_FS_ENCRYPTION
1016 static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
1017 get_block_t *get_block)
1019 unsigned from = pos & (PAGE_SIZE - 1);
1020 unsigned to = from + len;
1021 struct inode *inode = page->mapping->host;
1022 unsigned block_start, block_end;
1023 sector_t block;
1024 int err = 0;
1025 unsigned blocksize = inode->i_sb->s_blocksize;
1026 unsigned bbits;
1027 struct buffer_head *bh, *head, *wait[2];
1028 int nr_wait = 0;
1029 int i;
1031 BUG_ON(!PageLocked(page));
1032 BUG_ON(from > PAGE_SIZE);
1033 BUG_ON(to > PAGE_SIZE);
1034 BUG_ON(from > to);
1036 if (!page_has_buffers(page))
1037 create_empty_buffers(page, blocksize, 0);
1038 head = page_buffers(page);
1039 bbits = ilog2(blocksize);
1040 block = (sector_t)page->index << (PAGE_SHIFT - bbits);
1042 for (bh = head, block_start = 0; bh != head || !block_start;
1043 block++, block_start = block_end, bh = bh->b_this_page) {
1044 block_end = block_start + blocksize;
1045 if (block_end <= from || block_start >= to) {
1046 if (PageUptodate(page)) {
1047 if (!buffer_uptodate(bh))
1048 set_buffer_uptodate(bh);
1050 continue;
1052 if (buffer_new(bh))
1053 clear_buffer_new(bh);
1054 if (!buffer_mapped(bh)) {
1055 WARN_ON(bh->b_size != blocksize);
1056 err = get_block(inode, block, bh, 1);
1057 if (err)
1058 break;
1059 if (buffer_new(bh)) {
1060 if (PageUptodate(page)) {
1061 clear_buffer_new(bh);
1062 set_buffer_uptodate(bh);
1063 mark_buffer_dirty(bh);
1064 continue;
1066 if (block_end > to || block_start < from)
1067 zero_user_segments(page, to, block_end,
1068 block_start, from);
1069 continue;
1072 if (PageUptodate(page)) {
1073 if (!buffer_uptodate(bh))
1074 set_buffer_uptodate(bh);
1075 continue;
1077 if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1078 !buffer_unwritten(bh) &&
1079 (block_start < from || block_end > to)) {
1080 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1081 wait[nr_wait++] = bh;
1085 * If we issued read requests, let them complete.
1087 for (i = 0; i < nr_wait; i++) {
1088 wait_on_buffer(wait[i]);
1089 if (!buffer_uptodate(wait[i]))
1090 err = -EIO;
1092 if (unlikely(err)) {
1093 page_zero_new_buffers(page, from, to);
1094 } else if (IS_ENCRYPTED(inode) && S_ISREG(inode->i_mode)) {
1095 for (i = 0; i < nr_wait; i++) {
1096 int err2;
1098 err2 = fscrypt_decrypt_pagecache_blocks(page, blocksize,
1099 bh_offset(wait[i]));
1100 if (err2) {
1101 clear_buffer_uptodate(wait[i]);
1102 err = err2;
1107 return err;
1109 #endif
1111 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1112 loff_t pos, unsigned len, unsigned flags,
1113 struct page **pagep, void **fsdata)
1115 struct inode *inode = mapping->host;
1116 int ret, needed_blocks;
1117 handle_t *handle;
1118 int retries = 0;
1119 struct page *page;
1120 pgoff_t index;
1121 unsigned from, to;
1123 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
1124 return -EIO;
1126 trace_ext4_write_begin(inode, pos, len, flags);
1128 * Reserve one block more for addition to orphan list in case
1129 * we allocate blocks but write fails for some reason
1131 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1132 index = pos >> PAGE_SHIFT;
1133 from = pos & (PAGE_SIZE - 1);
1134 to = from + len;
1136 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
1137 ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
1138 flags, pagep);
1139 if (ret < 0)
1140 return ret;
1141 if (ret == 1)
1142 return 0;
1146 * grab_cache_page_write_begin() can take a long time if the
1147 * system is thrashing due to memory pressure, or if the page
1148 * is being written back. So grab it first before we start
1149 * the transaction handle. This also allows us to allocate
1150 * the page (if needed) without using GFP_NOFS.
1152 retry_grab:
1153 page = grab_cache_page_write_begin(mapping, index, flags);
1154 if (!page)
1155 return -ENOMEM;
1156 unlock_page(page);
1158 retry_journal:
1159 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
1160 if (IS_ERR(handle)) {
1161 put_page(page);
1162 return PTR_ERR(handle);
1165 lock_page(page);
1166 if (page->mapping != mapping) {
1167 /* The page got truncated from under us */
1168 unlock_page(page);
1169 put_page(page);
1170 ext4_journal_stop(handle);
1171 goto retry_grab;
1173 /* In case writeback began while the page was unlocked */
1174 wait_for_stable_page(page);
1176 #ifdef CONFIG_FS_ENCRYPTION
1177 if (ext4_should_dioread_nolock(inode))
1178 ret = ext4_block_write_begin(page, pos, len,
1179 ext4_get_block_unwritten);
1180 else
1181 ret = ext4_block_write_begin(page, pos, len,
1182 ext4_get_block);
1183 #else
1184 if (ext4_should_dioread_nolock(inode))
1185 ret = __block_write_begin(page, pos, len,
1186 ext4_get_block_unwritten);
1187 else
1188 ret = __block_write_begin(page, pos, len, ext4_get_block);
1189 #endif
1190 if (!ret && ext4_should_journal_data(inode)) {
1191 ret = ext4_walk_page_buffers(handle, page_buffers(page),
1192 from, to, NULL,
1193 do_journal_get_write_access);
1196 if (ret) {
1197 bool extended = (pos + len > inode->i_size) &&
1198 !ext4_verity_in_progress(inode);
1200 unlock_page(page);
1202 * __block_write_begin may have instantiated a few blocks
1203 * outside i_size. Trim these off again. Don't need
1204 * i_size_read because we hold i_mutex.
1206 * Add inode to orphan list in case we crash before
1207 * truncate finishes
1209 if (extended && ext4_can_truncate(inode))
1210 ext4_orphan_add(handle, inode);
1212 ext4_journal_stop(handle);
1213 if (extended) {
1214 ext4_truncate_failed_write(inode);
1216 * If truncate failed early the inode might
1217 * still be on the orphan list; we need to
1218 * make sure the inode is removed from the
1219 * orphan list in that case.
1221 if (inode->i_nlink)
1222 ext4_orphan_del(NULL, inode);
1225 if (ret == -ENOSPC &&
1226 ext4_should_retry_alloc(inode->i_sb, &retries))
1227 goto retry_journal;
1228 put_page(page);
1229 return ret;
1231 *pagep = page;
1232 return ret;
1235 /* For write_end() in data=journal mode */
1236 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1238 int ret;
1239 if (!buffer_mapped(bh) || buffer_freed(bh))
1240 return 0;
1241 set_buffer_uptodate(bh);
1242 ret = ext4_handle_dirty_metadata(handle, NULL, bh);
1243 clear_buffer_meta(bh);
1244 clear_buffer_prio(bh);
1245 return ret;
1249 * We need to pick up the new inode size which generic_commit_write gave us
1250 * `file' can be NULL - eg, when called from page_symlink().
1252 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1253 * buffers are managed internally.
1255 static int ext4_write_end(struct file *file,
1256 struct address_space *mapping,
1257 loff_t pos, unsigned len, unsigned copied,
1258 struct page *page, void *fsdata)
1260 handle_t *handle = ext4_journal_current_handle();
1261 struct inode *inode = mapping->host;
1262 loff_t old_size = inode->i_size;
1263 int ret = 0, ret2;
1264 int i_size_changed = 0;
1265 int inline_data = ext4_has_inline_data(inode);
1266 bool verity = ext4_verity_in_progress(inode);
1268 trace_ext4_write_end(inode, pos, len, copied);
1269 if (inline_data) {
1270 ret = ext4_write_inline_data_end(inode, pos, len,
1271 copied, page);
1272 if (ret < 0) {
1273 unlock_page(page);
1274 put_page(page);
1275 goto errout;
1277 copied = ret;
1278 } else
1279 copied = block_write_end(file, mapping, pos,
1280 len, copied, page, fsdata);
1282 * it's important to update i_size while still holding page lock:
1283 * page writeout could otherwise come in and zero beyond i_size.
1285 * If FS_IOC_ENABLE_VERITY is running on this inode, then Merkle tree
1286 * blocks are being written past EOF, so skip the i_size update.
1288 if (!verity)
1289 i_size_changed = ext4_update_inode_size(inode, pos + copied);
1290 unlock_page(page);
1291 put_page(page);
1293 if (old_size < pos && !verity)
1294 pagecache_isize_extended(inode, old_size, pos);
1296 * Don't mark the inode dirty under page lock. First, it unnecessarily
1297 * makes the holding time of page lock longer. Second, it forces lock
1298 * ordering of page lock and transaction start for journaling
1299 * filesystems.
1301 if (i_size_changed || inline_data)
1302 ext4_mark_inode_dirty(handle, inode);
1304 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1305 /* if we have allocated more blocks and copied
1306 * less. We will have blocks allocated outside
1307 * inode->i_size. So truncate them
1309 ext4_orphan_add(handle, inode);
1310 errout:
1311 ret2 = ext4_journal_stop(handle);
1312 if (!ret)
1313 ret = ret2;
1315 if (pos + len > inode->i_size && !verity) {
1316 ext4_truncate_failed_write(inode);
1318 * If truncate failed early the inode might still be
1319 * on the orphan list; we need to make sure the inode
1320 * is removed from the orphan list in that case.
1322 if (inode->i_nlink)
1323 ext4_orphan_del(NULL, inode);
1326 return ret ? ret : copied;
1330 * This is a private version of page_zero_new_buffers() which doesn't
1331 * set the buffer to be dirty, since in data=journalled mode we need
1332 * to call ext4_handle_dirty_metadata() instead.
1334 static void ext4_journalled_zero_new_buffers(handle_t *handle,
1335 struct page *page,
1336 unsigned from, unsigned to)
1338 unsigned int block_start = 0, block_end;
1339 struct buffer_head *head, *bh;
1341 bh = head = page_buffers(page);
1342 do {
1343 block_end = block_start + bh->b_size;
1344 if (buffer_new(bh)) {
1345 if (block_end > from && block_start < to) {
1346 if (!PageUptodate(page)) {
1347 unsigned start, size;
1349 start = max(from, block_start);
1350 size = min(to, block_end) - start;
1352 zero_user(page, start, size);
1353 write_end_fn(handle, bh);
1355 clear_buffer_new(bh);
1358 block_start = block_end;
1359 bh = bh->b_this_page;
1360 } while (bh != head);
1363 static int ext4_journalled_write_end(struct file *file,
1364 struct address_space *mapping,
1365 loff_t pos, unsigned len, unsigned copied,
1366 struct page *page, void *fsdata)
1368 handle_t *handle = ext4_journal_current_handle();
1369 struct inode *inode = mapping->host;
1370 loff_t old_size = inode->i_size;
1371 int ret = 0, ret2;
1372 int partial = 0;
1373 unsigned from, to;
1374 int size_changed = 0;
1375 int inline_data = ext4_has_inline_data(inode);
1376 bool verity = ext4_verity_in_progress(inode);
1378 trace_ext4_journalled_write_end(inode, pos, len, copied);
1379 from = pos & (PAGE_SIZE - 1);
1380 to = from + len;
1382 BUG_ON(!ext4_handle_valid(handle));
1384 if (inline_data) {
1385 ret = ext4_write_inline_data_end(inode, pos, len,
1386 copied, page);
1387 if (ret < 0) {
1388 unlock_page(page);
1389 put_page(page);
1390 goto errout;
1392 copied = ret;
1393 } else if (unlikely(copied < len) && !PageUptodate(page)) {
1394 copied = 0;
1395 ext4_journalled_zero_new_buffers(handle, page, from, to);
1396 } else {
1397 if (unlikely(copied < len))
1398 ext4_journalled_zero_new_buffers(handle, page,
1399 from + copied, to);
1400 ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
1401 from + copied, &partial,
1402 write_end_fn);
1403 if (!partial)
1404 SetPageUptodate(page);
1406 if (!verity)
1407 size_changed = ext4_update_inode_size(inode, pos + copied);
1408 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1409 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1410 unlock_page(page);
1411 put_page(page);
1413 if (old_size < pos && !verity)
1414 pagecache_isize_extended(inode, old_size, pos);
1416 if (size_changed || inline_data) {
1417 ret2 = ext4_mark_inode_dirty(handle, inode);
1418 if (!ret)
1419 ret = ret2;
1422 if (pos + len > inode->i_size && !verity && ext4_can_truncate(inode))
1423 /* if we have allocated more blocks and copied
1424 * less. We will have blocks allocated outside
1425 * inode->i_size. So truncate them
1427 ext4_orphan_add(handle, inode);
1429 errout:
1430 ret2 = ext4_journal_stop(handle);
1431 if (!ret)
1432 ret = ret2;
1433 if (pos + len > inode->i_size && !verity) {
1434 ext4_truncate_failed_write(inode);
1436 * If truncate failed early the inode might still be
1437 * on the orphan list; we need to make sure the inode
1438 * is removed from the orphan list in that case.
1440 if (inode->i_nlink)
1441 ext4_orphan_del(NULL, inode);
1444 return ret ? ret : copied;
1448 * Reserve space for a single cluster
1450 static int ext4_da_reserve_space(struct inode *inode)
1452 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1453 struct ext4_inode_info *ei = EXT4_I(inode);
1454 int ret;
1457 * We will charge metadata quota at writeout time; this saves
1458 * us from metadata over-estimation, though we may go over by
1459 * a small amount in the end. Here we just reserve for data.
1461 ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
1462 if (ret)
1463 return ret;
1465 spin_lock(&ei->i_block_reservation_lock);
1466 if (ext4_claim_free_clusters(sbi, 1, 0)) {
1467 spin_unlock(&ei->i_block_reservation_lock);
1468 dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
1469 return -ENOSPC;
1471 ei->i_reserved_data_blocks++;
1472 trace_ext4_da_reserve_space(inode);
1473 spin_unlock(&ei->i_block_reservation_lock);
1475 return 0; /* success */
1478 void ext4_da_release_space(struct inode *inode, int to_free)
1480 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1481 struct ext4_inode_info *ei = EXT4_I(inode);
1483 if (!to_free)
1484 return; /* Nothing to release, exit */
1486 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1488 trace_ext4_da_release_space(inode, to_free);
1489 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1491 * if there aren't enough reserved blocks, then the
1492 * counter is messed up somewhere. Since this
1493 * function is called from invalidate page, it's
1494 * harmless to return without any action.
1496 ext4_warning(inode->i_sb, "ext4_da_release_space: "
1497 "ino %lu, to_free %d with only %d reserved "
1498 "data blocks", inode->i_ino, to_free,
1499 ei->i_reserved_data_blocks);
1500 WARN_ON(1);
1501 to_free = ei->i_reserved_data_blocks;
1503 ei->i_reserved_data_blocks -= to_free;
1505 /* update fs dirty data blocks counter */
1506 percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
1508 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1510 dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
1514 * Delayed allocation stuff
1517 struct mpage_da_data {
1518 struct inode *inode;
1519 struct writeback_control *wbc;
1521 pgoff_t first_page; /* The first page to write */
1522 pgoff_t next_page; /* Current page to examine */
1523 pgoff_t last_page; /* Last page to examine */
1525 * Extent to map - this can be after first_page because that can be
1526 * fully mapped. We somewhat abuse m_flags to store whether the extent
1527 * is delalloc or unwritten.
1529 struct ext4_map_blocks map;
1530 struct ext4_io_submit io_submit; /* IO submission data */
1531 unsigned int do_map:1;
1534 static void mpage_release_unused_pages(struct mpage_da_data *mpd,
1535 bool invalidate)
1537 int nr_pages, i;
1538 pgoff_t index, end;
1539 struct pagevec pvec;
1540 struct inode *inode = mpd->inode;
1541 struct address_space *mapping = inode->i_mapping;
1543 /* This is necessary when next_page == 0. */
1544 if (mpd->first_page >= mpd->next_page)
1545 return;
1547 index = mpd->first_page;
1548 end = mpd->next_page - 1;
1549 if (invalidate) {
1550 ext4_lblk_t start, last;
1551 start = index << (PAGE_SHIFT - inode->i_blkbits);
1552 last = end << (PAGE_SHIFT - inode->i_blkbits);
1553 ext4_es_remove_extent(inode, start, last - start + 1);
1556 pagevec_init(&pvec);
1557 while (index <= end) {
1558 nr_pages = pagevec_lookup_range(&pvec, mapping, &index, end);
1559 if (nr_pages == 0)
1560 break;
1561 for (i = 0; i < nr_pages; i++) {
1562 struct page *page = pvec.pages[i];
1564 BUG_ON(!PageLocked(page));
1565 BUG_ON(PageWriteback(page));
1566 if (invalidate) {
1567 if (page_mapped(page))
1568 clear_page_dirty_for_io(page);
1569 block_invalidatepage(page, 0, PAGE_SIZE);
1570 ClearPageUptodate(page);
1572 unlock_page(page);
1574 pagevec_release(&pvec);
1578 static void ext4_print_free_blocks(struct inode *inode)
1580 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1581 struct super_block *sb = inode->i_sb;
1582 struct ext4_inode_info *ei = EXT4_I(inode);
1584 ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
1585 EXT4_C2B(EXT4_SB(inode->i_sb),
1586 ext4_count_free_clusters(sb)));
1587 ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
1588 ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
1589 (long long) EXT4_C2B(EXT4_SB(sb),
1590 percpu_counter_sum(&sbi->s_freeclusters_counter)));
1591 ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
1592 (long long) EXT4_C2B(EXT4_SB(sb),
1593 percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
1594 ext4_msg(sb, KERN_CRIT, "Block reservation details");
1595 ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
1596 ei->i_reserved_data_blocks);
1597 return;
1600 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
1602 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
1606 * ext4_insert_delayed_block - adds a delayed block to the extents status
1607 * tree, incrementing the reserved cluster/block
1608 * count or making a pending reservation
1609 * where needed
1611 * @inode - file containing the newly added block
1612 * @lblk - logical block to be added
1614 * Returns 0 on success, negative error code on failure.
1616 static int ext4_insert_delayed_block(struct inode *inode, ext4_lblk_t lblk)
1618 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1619 int ret;
1620 bool allocated = false;
1623 * If the cluster containing lblk is shared with a delayed,
1624 * written, or unwritten extent in a bigalloc file system, it's
1625 * already been accounted for and does not need to be reserved.
1626 * A pending reservation must be made for the cluster if it's
1627 * shared with a written or unwritten extent and doesn't already
1628 * have one. Written and unwritten extents can be purged from the
1629 * extents status tree if the system is under memory pressure, so
1630 * it's necessary to examine the extent tree if a search of the
1631 * extents status tree doesn't get a match.
1633 if (sbi->s_cluster_ratio == 1) {
1634 ret = ext4_da_reserve_space(inode);
1635 if (ret != 0) /* ENOSPC */
1636 goto errout;
1637 } else { /* bigalloc */
1638 if (!ext4_es_scan_clu(inode, &ext4_es_is_delonly, lblk)) {
1639 if (!ext4_es_scan_clu(inode,
1640 &ext4_es_is_mapped, lblk)) {
1641 ret = ext4_clu_mapped(inode,
1642 EXT4_B2C(sbi, lblk));
1643 if (ret < 0)
1644 goto errout;
1645 if (ret == 0) {
1646 ret = ext4_da_reserve_space(inode);
1647 if (ret != 0) /* ENOSPC */
1648 goto errout;
1649 } else {
1650 allocated = true;
1652 } else {
1653 allocated = true;
1658 ret = ext4_es_insert_delayed_block(inode, lblk, allocated);
1660 errout:
1661 return ret;
1665 * This function is grabs code from the very beginning of
1666 * ext4_map_blocks, but assumes that the caller is from delayed write
1667 * time. This function looks up the requested blocks and sets the
1668 * buffer delay bit under the protection of i_data_sem.
1670 static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
1671 struct ext4_map_blocks *map,
1672 struct buffer_head *bh)
1674 struct extent_status es;
1675 int retval;
1676 sector_t invalid_block = ~((sector_t) 0xffff);
1677 #ifdef ES_AGGRESSIVE_TEST
1678 struct ext4_map_blocks orig_map;
1680 memcpy(&orig_map, map, sizeof(*map));
1681 #endif
1683 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
1684 invalid_block = ~0;
1686 map->m_flags = 0;
1687 ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
1688 "logical block %lu\n", inode->i_ino, map->m_len,
1689 (unsigned long) map->m_lblk);
1691 /* Lookup extent status tree firstly */
1692 if (ext4_es_lookup_extent(inode, iblock, NULL, &es)) {
1693 if (ext4_es_is_hole(&es)) {
1694 retval = 0;
1695 down_read(&EXT4_I(inode)->i_data_sem);
1696 goto add_delayed;
1700 * Delayed extent could be allocated by fallocate.
1701 * So we need to check it.
1703 if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
1704 map_bh(bh, inode->i_sb, invalid_block);
1705 set_buffer_new(bh);
1706 set_buffer_delay(bh);
1707 return 0;
1710 map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
1711 retval = es.es_len - (iblock - es.es_lblk);
1712 if (retval > map->m_len)
1713 retval = map->m_len;
1714 map->m_len = retval;
1715 if (ext4_es_is_written(&es))
1716 map->m_flags |= EXT4_MAP_MAPPED;
1717 else if (ext4_es_is_unwritten(&es))
1718 map->m_flags |= EXT4_MAP_UNWRITTEN;
1719 else
1720 BUG();
1722 #ifdef ES_AGGRESSIVE_TEST
1723 ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
1724 #endif
1725 return retval;
1729 * Try to see if we can get the block without requesting a new
1730 * file system block.
1732 down_read(&EXT4_I(inode)->i_data_sem);
1733 if (ext4_has_inline_data(inode))
1734 retval = 0;
1735 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
1736 retval = ext4_ext_map_blocks(NULL, inode, map, 0);
1737 else
1738 retval = ext4_ind_map_blocks(NULL, inode, map, 0);
1740 add_delayed:
1741 if (retval == 0) {
1742 int ret;
1745 * XXX: __block_prepare_write() unmaps passed block,
1746 * is it OK?
1749 ret = ext4_insert_delayed_block(inode, map->m_lblk);
1750 if (ret != 0) {
1751 retval = ret;
1752 goto out_unlock;
1755 map_bh(bh, inode->i_sb, invalid_block);
1756 set_buffer_new(bh);
1757 set_buffer_delay(bh);
1758 } else if (retval > 0) {
1759 int ret;
1760 unsigned int status;
1762 if (unlikely(retval != map->m_len)) {
1763 ext4_warning(inode->i_sb,
1764 "ES len assertion failed for inode "
1765 "%lu: retval %d != map->m_len %d",
1766 inode->i_ino, retval, map->m_len);
1767 WARN_ON(1);
1770 status = map->m_flags & EXT4_MAP_UNWRITTEN ?
1771 EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
1772 ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
1773 map->m_pblk, status);
1774 if (ret != 0)
1775 retval = ret;
1778 out_unlock:
1779 up_read((&EXT4_I(inode)->i_data_sem));
1781 return retval;
1785 * This is a special get_block_t callback which is used by
1786 * ext4_da_write_begin(). It will either return mapped block or
1787 * reserve space for a single block.
1789 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
1790 * We also have b_blocknr = -1 and b_bdev initialized properly
1792 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
1793 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
1794 * initialized properly.
1796 int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
1797 struct buffer_head *bh, int create)
1799 struct ext4_map_blocks map;
1800 int ret = 0;
1802 BUG_ON(create == 0);
1803 BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
1805 map.m_lblk = iblock;
1806 map.m_len = 1;
1809 * first, we need to know whether the block is allocated already
1810 * preallocated blocks are unmapped but should treated
1811 * the same as allocated blocks.
1813 ret = ext4_da_map_blocks(inode, iblock, &map, bh);
1814 if (ret <= 0)
1815 return ret;
1817 map_bh(bh, inode->i_sb, map.m_pblk);
1818 ext4_update_bh_state(bh, map.m_flags);
1820 if (buffer_unwritten(bh)) {
1821 /* A delayed write to unwritten bh should be marked
1822 * new and mapped. Mapped ensures that we don't do
1823 * get_block multiple times when we write to the same
1824 * offset and new ensures that we do proper zero out
1825 * for partial write.
1827 set_buffer_new(bh);
1828 set_buffer_mapped(bh);
1830 return 0;
1833 static int bget_one(handle_t *handle, struct buffer_head *bh)
1835 get_bh(bh);
1836 return 0;
1839 static int bput_one(handle_t *handle, struct buffer_head *bh)
1841 put_bh(bh);
1842 return 0;
1845 static int __ext4_journalled_writepage(struct page *page,
1846 unsigned int len)
1848 struct address_space *mapping = page->mapping;
1849 struct inode *inode = mapping->host;
1850 struct buffer_head *page_bufs = NULL;
1851 handle_t *handle = NULL;
1852 int ret = 0, err = 0;
1853 int inline_data = ext4_has_inline_data(inode);
1854 struct buffer_head *inode_bh = NULL;
1856 ClearPageChecked(page);
1858 if (inline_data) {
1859 BUG_ON(page->index != 0);
1860 BUG_ON(len > ext4_get_max_inline_size(inode));
1861 inode_bh = ext4_journalled_write_inline_data(inode, len, page);
1862 if (inode_bh == NULL)
1863 goto out;
1864 } else {
1865 page_bufs = page_buffers(page);
1866 if (!page_bufs) {
1867 BUG();
1868 goto out;
1870 ext4_walk_page_buffers(handle, page_bufs, 0, len,
1871 NULL, bget_one);
1874 * We need to release the page lock before we start the
1875 * journal, so grab a reference so the page won't disappear
1876 * out from under us.
1878 get_page(page);
1879 unlock_page(page);
1881 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
1882 ext4_writepage_trans_blocks(inode));
1883 if (IS_ERR(handle)) {
1884 ret = PTR_ERR(handle);
1885 put_page(page);
1886 goto out_no_pagelock;
1888 BUG_ON(!ext4_handle_valid(handle));
1890 lock_page(page);
1891 put_page(page);
1892 if (page->mapping != mapping) {
1893 /* The page got truncated from under us */
1894 ext4_journal_stop(handle);
1895 ret = 0;
1896 goto out;
1899 if (inline_data) {
1900 ret = ext4_mark_inode_dirty(handle, inode);
1901 } else {
1902 ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1903 do_journal_get_write_access);
1905 err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
1906 write_end_fn);
1908 if (ret == 0)
1909 ret = err;
1910 EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
1911 err = ext4_journal_stop(handle);
1912 if (!ret)
1913 ret = err;
1915 if (!ext4_has_inline_data(inode))
1916 ext4_walk_page_buffers(NULL, page_bufs, 0, len,
1917 NULL, bput_one);
1918 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1919 out:
1920 unlock_page(page);
1921 out_no_pagelock:
1922 brelse(inode_bh);
1923 return ret;
1927 * Note that we don't need to start a transaction unless we're journaling data
1928 * because we should have holes filled from ext4_page_mkwrite(). We even don't
1929 * need to file the inode to the transaction's list in ordered mode because if
1930 * we are writing back data added by write(), the inode is already there and if
1931 * we are writing back data modified via mmap(), no one guarantees in which
1932 * transaction the data will hit the disk. In case we are journaling data, we
1933 * cannot start transaction directly because transaction start ranks above page
1934 * lock so we have to do some magic.
1936 * This function can get called via...
1937 * - ext4_writepages after taking page lock (have journal handle)
1938 * - journal_submit_inode_data_buffers (no journal handle)
1939 * - shrink_page_list via the kswapd/direct reclaim (no journal handle)
1940 * - grab_page_cache when doing write_begin (have journal handle)
1942 * We don't do any block allocation in this function. If we have page with
1943 * multiple blocks we need to write those buffer_heads that are mapped. This
1944 * is important for mmaped based write. So if we do with blocksize 1K
1945 * truncate(f, 1024);
1946 * a = mmap(f, 0, 4096);
1947 * a[0] = 'a';
1948 * truncate(f, 4096);
1949 * we have in the page first buffer_head mapped via page_mkwrite call back
1950 * but other buffer_heads would be unmapped but dirty (dirty done via the
1951 * do_wp_page). So writepage should write the first block. If we modify
1952 * the mmap area beyond 1024 we will again get a page_fault and the
1953 * page_mkwrite callback will do the block allocation and mark the
1954 * buffer_heads mapped.
1956 * We redirty the page if we have any buffer_heads that is either delay or
1957 * unwritten in the page.
1959 * We can get recursively called as show below.
1961 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
1962 * ext4_writepage()
1964 * But since we don't do any block allocation we should not deadlock.
1965 * Page also have the dirty flag cleared so we don't get recurive page_lock.
1967 static int ext4_writepage(struct page *page,
1968 struct writeback_control *wbc)
1970 int ret = 0;
1971 loff_t size;
1972 unsigned int len;
1973 struct buffer_head *page_bufs = NULL;
1974 struct inode *inode = page->mapping->host;
1975 struct ext4_io_submit io_submit;
1976 bool keep_towrite = false;
1978 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
1979 ext4_invalidatepage(page, 0, PAGE_SIZE);
1980 unlock_page(page);
1981 return -EIO;
1984 trace_ext4_writepage(page);
1985 size = i_size_read(inode);
1986 if (page->index == size >> PAGE_SHIFT &&
1987 !ext4_verity_in_progress(inode))
1988 len = size & ~PAGE_MASK;
1989 else
1990 len = PAGE_SIZE;
1992 page_bufs = page_buffers(page);
1994 * We cannot do block allocation or other extent handling in this
1995 * function. If there are buffers needing that, we have to redirty
1996 * the page. But we may reach here when we do a journal commit via
1997 * journal_submit_inode_data_buffers() and in that case we must write
1998 * allocated buffers to achieve data=ordered mode guarantees.
2000 * Also, if there is only one buffer per page (the fs block
2001 * size == the page size), if one buffer needs block
2002 * allocation or needs to modify the extent tree to clear the
2003 * unwritten flag, we know that the page can't be written at
2004 * all, so we might as well refuse the write immediately.
2005 * Unfortunately if the block size != page size, we can't as
2006 * easily detect this case using ext4_walk_page_buffers(), but
2007 * for the extremely common case, this is an optimization that
2008 * skips a useless round trip through ext4_bio_write_page().
2010 if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2011 ext4_bh_delay_or_unwritten)) {
2012 redirty_page_for_writepage(wbc, page);
2013 if ((current->flags & PF_MEMALLOC) ||
2014 (inode->i_sb->s_blocksize == PAGE_SIZE)) {
2016 * For memory cleaning there's no point in writing only
2017 * some buffers. So just bail out. Warn if we came here
2018 * from direct reclaim.
2020 WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
2021 == PF_MEMALLOC);
2022 unlock_page(page);
2023 return 0;
2025 keep_towrite = true;
2028 if (PageChecked(page) && ext4_should_journal_data(inode))
2030 * It's mmapped pagecache. Add buffers and journal it. There
2031 * doesn't seem much point in redirtying the page here.
2033 return __ext4_journalled_writepage(page, len);
2035 ext4_io_submit_init(&io_submit, wbc);
2036 io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
2037 if (!io_submit.io_end) {
2038 redirty_page_for_writepage(wbc, page);
2039 unlock_page(page);
2040 return -ENOMEM;
2042 ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
2043 ext4_io_submit(&io_submit);
2044 /* Drop io_end reference we got from init */
2045 ext4_put_io_end_defer(io_submit.io_end);
2046 return ret;
2049 static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
2051 int len;
2052 loff_t size;
2053 int err;
2055 BUG_ON(page->index != mpd->first_page);
2056 clear_page_dirty_for_io(page);
2058 * We have to be very careful here! Nothing protects writeback path
2059 * against i_size changes and the page can be writeably mapped into
2060 * page tables. So an application can be growing i_size and writing
2061 * data through mmap while writeback runs. clear_page_dirty_for_io()
2062 * write-protects our page in page tables and the page cannot get
2063 * written to again until we release page lock. So only after
2064 * clear_page_dirty_for_io() we are safe to sample i_size for
2065 * ext4_bio_write_page() to zero-out tail of the written page. We rely
2066 * on the barrier provided by TestClearPageDirty in
2067 * clear_page_dirty_for_io() to make sure i_size is really sampled only
2068 * after page tables are updated.
2070 size = i_size_read(mpd->inode);
2071 if (page->index == size >> PAGE_SHIFT &&
2072 !ext4_verity_in_progress(mpd->inode))
2073 len = size & ~PAGE_MASK;
2074 else
2075 len = PAGE_SIZE;
2076 err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
2077 if (!err)
2078 mpd->wbc->nr_to_write--;
2079 mpd->first_page++;
2081 return err;
2084 #define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
2087 * mballoc gives us at most this number of blocks...
2088 * XXX: That seems to be only a limitation of ext4_mb_normalize_request().
2089 * The rest of mballoc seems to handle chunks up to full group size.
2091 #define MAX_WRITEPAGES_EXTENT_LEN 2048
2094 * mpage_add_bh_to_extent - try to add bh to extent of blocks to map
2096 * @mpd - extent of blocks
2097 * @lblk - logical number of the block in the file
2098 * @bh - buffer head we want to add to the extent
2100 * The function is used to collect contig. blocks in the same state. If the
2101 * buffer doesn't require mapping for writeback and we haven't started the
2102 * extent of buffers to map yet, the function returns 'true' immediately - the
2103 * caller can write the buffer right away. Otherwise the function returns true
2104 * if the block has been added to the extent, false if the block couldn't be
2105 * added.
2107 static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
2108 struct buffer_head *bh)
2110 struct ext4_map_blocks *map = &mpd->map;
2112 /* Buffer that doesn't need mapping for writeback? */
2113 if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
2114 (!buffer_delay(bh) && !buffer_unwritten(bh))) {
2115 /* So far no extent to map => we write the buffer right away */
2116 if (map->m_len == 0)
2117 return true;
2118 return false;
2121 /* First block in the extent? */
2122 if (map->m_len == 0) {
2123 /* We cannot map unless handle is started... */
2124 if (!mpd->do_map)
2125 return false;
2126 map->m_lblk = lblk;
2127 map->m_len = 1;
2128 map->m_flags = bh->b_state & BH_FLAGS;
2129 return true;
2132 /* Don't go larger than mballoc is willing to allocate */
2133 if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
2134 return false;
2136 /* Can we merge the block to our big extent? */
2137 if (lblk == map->m_lblk + map->m_len &&
2138 (bh->b_state & BH_FLAGS) == map->m_flags) {
2139 map->m_len++;
2140 return true;
2142 return false;
2146 * mpage_process_page_bufs - submit page buffers for IO or add them to extent
2148 * @mpd - extent of blocks for mapping
2149 * @head - the first buffer in the page
2150 * @bh - buffer we should start processing from
2151 * @lblk - logical number of the block in the file corresponding to @bh
2153 * Walk through page buffers from @bh upto @head (exclusive) and either submit
2154 * the page for IO if all buffers in this page were mapped and there's no
2155 * accumulated extent of buffers to map or add buffers in the page to the
2156 * extent of buffers to map. The function returns 1 if the caller can continue
2157 * by processing the next page, 0 if it should stop adding buffers to the
2158 * extent to map because we cannot extend it anymore. It can also return value
2159 * < 0 in case of error during IO submission.
2161 static int mpage_process_page_bufs(struct mpage_da_data *mpd,
2162 struct buffer_head *head,
2163 struct buffer_head *bh,
2164 ext4_lblk_t lblk)
2166 struct inode *inode = mpd->inode;
2167 int err;
2168 ext4_lblk_t blocks = (i_size_read(inode) + i_blocksize(inode) - 1)
2169 >> inode->i_blkbits;
2171 if (ext4_verity_in_progress(inode))
2172 blocks = EXT_MAX_BLOCKS;
2174 do {
2175 BUG_ON(buffer_locked(bh));
2177 if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
2178 /* Found extent to map? */
2179 if (mpd->map.m_len)
2180 return 0;
2181 /* Buffer needs mapping and handle is not started? */
2182 if (!mpd->do_map)
2183 return 0;
2184 /* Everything mapped so far and we hit EOF */
2185 break;
2187 } while (lblk++, (bh = bh->b_this_page) != head);
2188 /* So far everything mapped? Submit the page for IO. */
2189 if (mpd->map.m_len == 0) {
2190 err = mpage_submit_page(mpd, head->b_page);
2191 if (err < 0)
2192 return err;
2194 return lblk < blocks;
2198 * mpage_process_page - update page buffers corresponding to changed extent and
2199 * may submit fully mapped page for IO
2201 * @mpd - description of extent to map, on return next extent to map
2202 * @m_lblk - logical block mapping.
2203 * @m_pblk - corresponding physical mapping.
2204 * @map_bh - determines on return whether this page requires any further
2205 * mapping or not.
2206 * Scan given page buffers corresponding to changed extent and update buffer
2207 * state according to new extent state.
2208 * We map delalloc buffers to their physical location, clear unwritten bits.
2209 * If the given page is not fully mapped, we update @map to the next extent in
2210 * the given page that needs mapping & return @map_bh as true.
2212 static int mpage_process_page(struct mpage_da_data *mpd, struct page *page,
2213 ext4_lblk_t *m_lblk, ext4_fsblk_t *m_pblk,
2214 bool *map_bh)
2216 struct buffer_head *head, *bh;
2217 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2218 ext4_lblk_t lblk = *m_lblk;
2219 ext4_fsblk_t pblock = *m_pblk;
2220 int err = 0;
2221 int blkbits = mpd->inode->i_blkbits;
2222 ssize_t io_end_size = 0;
2223 struct ext4_io_end_vec *io_end_vec = ext4_last_io_end_vec(io_end);
2225 bh = head = page_buffers(page);
2226 do {
2227 if (lblk < mpd->map.m_lblk)
2228 continue;
2229 if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
2231 * Buffer after end of mapped extent.
2232 * Find next buffer in the page to map.
2234 mpd->map.m_len = 0;
2235 mpd->map.m_flags = 0;
2236 io_end_vec->size += io_end_size;
2237 io_end_size = 0;
2239 err = mpage_process_page_bufs(mpd, head, bh, lblk);
2240 if (err > 0)
2241 err = 0;
2242 if (!err && mpd->map.m_len && mpd->map.m_lblk > lblk) {
2243 io_end_vec = ext4_alloc_io_end_vec(io_end);
2244 if (IS_ERR(io_end_vec)) {
2245 err = PTR_ERR(io_end_vec);
2246 goto out;
2248 io_end_vec->offset = mpd->map.m_lblk << blkbits;
2250 *map_bh = true;
2251 goto out;
2253 if (buffer_delay(bh)) {
2254 clear_buffer_delay(bh);
2255 bh->b_blocknr = pblock++;
2257 clear_buffer_unwritten(bh);
2258 io_end_size += (1 << blkbits);
2259 } while (lblk++, (bh = bh->b_this_page) != head);
2261 io_end_vec->size += io_end_size;
2262 io_end_size = 0;
2263 *map_bh = false;
2264 out:
2265 *m_lblk = lblk;
2266 *m_pblk = pblock;
2267 return err;
2271 * mpage_map_buffers - update buffers corresponding to changed extent and
2272 * submit fully mapped pages for IO
2274 * @mpd - description of extent to map, on return next extent to map
2276 * Scan buffers corresponding to changed extent (we expect corresponding pages
2277 * to be already locked) and update buffer state according to new extent state.
2278 * We map delalloc buffers to their physical location, clear unwritten bits,
2279 * and mark buffers as uninit when we perform writes to unwritten extents
2280 * and do extent conversion after IO is finished. If the last page is not fully
2281 * mapped, we update @map to the next extent in the last page that needs
2282 * mapping. Otherwise we submit the page for IO.
2284 static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
2286 struct pagevec pvec;
2287 int nr_pages, i;
2288 struct inode *inode = mpd->inode;
2289 int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
2290 pgoff_t start, end;
2291 ext4_lblk_t lblk;
2292 ext4_fsblk_t pblock;
2293 int err;
2294 bool map_bh = false;
2296 start = mpd->map.m_lblk >> bpp_bits;
2297 end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
2298 lblk = start << bpp_bits;
2299 pblock = mpd->map.m_pblk;
2301 pagevec_init(&pvec);
2302 while (start <= end) {
2303 nr_pages = pagevec_lookup_range(&pvec, inode->i_mapping,
2304 &start, end);
2305 if (nr_pages == 0)
2306 break;
2307 for (i = 0; i < nr_pages; i++) {
2308 struct page *page = pvec.pages[i];
2310 err = mpage_process_page(mpd, page, &lblk, &pblock,
2311 &map_bh);
2313 * If map_bh is true, means page may require further bh
2314 * mapping, or maybe the page was submitted for IO.
2315 * So we return to call further extent mapping.
2317 if (err < 0 || map_bh == true)
2318 goto out;
2319 /* Page fully mapped - let IO run! */
2320 err = mpage_submit_page(mpd, page);
2321 if (err < 0)
2322 goto out;
2324 pagevec_release(&pvec);
2326 /* Extent fully mapped and matches with page boundary. We are done. */
2327 mpd->map.m_len = 0;
2328 mpd->map.m_flags = 0;
2329 return 0;
2330 out:
2331 pagevec_release(&pvec);
2332 return err;
2335 static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
2337 struct inode *inode = mpd->inode;
2338 struct ext4_map_blocks *map = &mpd->map;
2339 int get_blocks_flags;
2340 int err, dioread_nolock;
2342 trace_ext4_da_write_pages_extent(inode, map);
2344 * Call ext4_map_blocks() to allocate any delayed allocation blocks, or
2345 * to convert an unwritten extent to be initialized (in the case
2346 * where we have written into one or more preallocated blocks). It is
2347 * possible that we're going to need more metadata blocks than
2348 * previously reserved. However we must not fail because we're in
2349 * writeback and there is nothing we can do about it so it might result
2350 * in data loss. So use reserved blocks to allocate metadata if
2351 * possible.
2353 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
2354 * the blocks in question are delalloc blocks. This indicates
2355 * that the blocks and quotas has already been checked when
2356 * the data was copied into the page cache.
2358 get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
2359 EXT4_GET_BLOCKS_METADATA_NOFAIL |
2360 EXT4_GET_BLOCKS_IO_SUBMIT;
2361 dioread_nolock = ext4_should_dioread_nolock(inode);
2362 if (dioread_nolock)
2363 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2364 if (map->m_flags & (1 << BH_Delay))
2365 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2367 err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
2368 if (err < 0)
2369 return err;
2370 if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
2371 if (!mpd->io_submit.io_end->handle &&
2372 ext4_handle_valid(handle)) {
2373 mpd->io_submit.io_end->handle = handle->h_rsv_handle;
2374 handle->h_rsv_handle = NULL;
2376 ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
2379 BUG_ON(map->m_len == 0);
2380 return 0;
2384 * mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
2385 * mpd->len and submit pages underlying it for IO
2387 * @handle - handle for journal operations
2388 * @mpd - extent to map
2389 * @give_up_on_write - we set this to true iff there is a fatal error and there
2390 * is no hope of writing the data. The caller should discard
2391 * dirty pages to avoid infinite loops.
2393 * The function maps extent starting at mpd->lblk of length mpd->len. If it is
2394 * delayed, blocks are allocated, if it is unwritten, we may need to convert
2395 * them to initialized or split the described range from larger unwritten
2396 * extent. Note that we need not map all the described range since allocation
2397 * can return less blocks or the range is covered by more unwritten extents. We
2398 * cannot map more because we are limited by reserved transaction credits. On
2399 * the other hand we always make sure that the last touched page is fully
2400 * mapped so that it can be written out (and thus forward progress is
2401 * guaranteed). After mapping we submit all mapped pages for IO.
2403 static int mpage_map_and_submit_extent(handle_t *handle,
2404 struct mpage_da_data *mpd,
2405 bool *give_up_on_write)
2407 struct inode *inode = mpd->inode;
2408 struct ext4_map_blocks *map = &mpd->map;
2409 int err;
2410 loff_t disksize;
2411 int progress = 0;
2412 ext4_io_end_t *io_end = mpd->io_submit.io_end;
2413 struct ext4_io_end_vec *io_end_vec;
2415 io_end_vec = ext4_alloc_io_end_vec(io_end);
2416 if (IS_ERR(io_end_vec))
2417 return PTR_ERR(io_end_vec);
2418 io_end_vec->offset = ((loff_t)map->m_lblk) << inode->i_blkbits;
2419 do {
2420 err = mpage_map_one_extent(handle, mpd);
2421 if (err < 0) {
2422 struct super_block *sb = inode->i_sb;
2424 if (ext4_forced_shutdown(EXT4_SB(sb)) ||
2425 EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
2426 goto invalidate_dirty_pages;
2428 * Let the uper layers retry transient errors.
2429 * In the case of ENOSPC, if ext4_count_free_blocks()
2430 * is non-zero, a commit should free up blocks.
2432 if ((err == -ENOMEM) ||
2433 (err == -ENOSPC && ext4_count_free_clusters(sb))) {
2434 if (progress)
2435 goto update_disksize;
2436 return err;
2438 ext4_msg(sb, KERN_CRIT,
2439 "Delayed block allocation failed for "
2440 "inode %lu at logical offset %llu with"
2441 " max blocks %u with error %d",
2442 inode->i_ino,
2443 (unsigned long long)map->m_lblk,
2444 (unsigned)map->m_len, -err);
2445 ext4_msg(sb, KERN_CRIT,
2446 "This should not happen!! Data will "
2447 "be lost\n");
2448 if (err == -ENOSPC)
2449 ext4_print_free_blocks(inode);
2450 invalidate_dirty_pages:
2451 *give_up_on_write = true;
2452 return err;
2454 progress = 1;
2456 * Update buffer state, submit mapped pages, and get us new
2457 * extent to map
2459 err = mpage_map_and_submit_buffers(mpd);
2460 if (err < 0)
2461 goto update_disksize;
2462 } while (map->m_len);
2464 update_disksize:
2466 * Update on-disk size after IO is submitted. Races with
2467 * truncate are avoided by checking i_size under i_data_sem.
2469 disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
2470 if (disksize > EXT4_I(inode)->i_disksize) {
2471 int err2;
2472 loff_t i_size;
2474 down_write(&EXT4_I(inode)->i_data_sem);
2475 i_size = i_size_read(inode);
2476 if (disksize > i_size)
2477 disksize = i_size;
2478 if (disksize > EXT4_I(inode)->i_disksize)
2479 EXT4_I(inode)->i_disksize = disksize;
2480 up_write(&EXT4_I(inode)->i_data_sem);
2481 err2 = ext4_mark_inode_dirty(handle, inode);
2482 if (err2) {
2483 ext4_set_errno(inode->i_sb, -err2);
2484 ext4_error(inode->i_sb,
2485 "Failed to mark inode %lu dirty",
2486 inode->i_ino);
2488 if (!err)
2489 err = err2;
2491 return err;
2495 * Calculate the total number of credits to reserve for one writepages
2496 * iteration. This is called from ext4_writepages(). We map an extent of
2497 * up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
2498 * the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
2499 * bpp - 1 blocks in bpp different extents.
2501 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2503 int bpp = ext4_journal_blocks_per_page(inode);
2505 return ext4_meta_trans_blocks(inode,
2506 MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
2510 * mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
2511 * and underlying extent to map
2513 * @mpd - where to look for pages
2515 * Walk dirty pages in the mapping. If they are fully mapped, submit them for
2516 * IO immediately. When we find a page which isn't mapped we start accumulating
2517 * extent of buffers underlying these pages that needs mapping (formed by
2518 * either delayed or unwritten buffers). We also lock the pages containing
2519 * these buffers. The extent found is returned in @mpd structure (starting at
2520 * mpd->lblk with length mpd->len blocks).
2522 * Note that this function can attach bios to one io_end structure which are
2523 * neither logically nor physically contiguous. Although it may seem as an
2524 * unnecessary complication, it is actually inevitable in blocksize < pagesize
2525 * case as we need to track IO to all buffers underlying a page in one io_end.
2527 static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
2529 struct address_space *mapping = mpd->inode->i_mapping;
2530 struct pagevec pvec;
2531 unsigned int nr_pages;
2532 long left = mpd->wbc->nr_to_write;
2533 pgoff_t index = mpd->first_page;
2534 pgoff_t end = mpd->last_page;
2535 xa_mark_t tag;
2536 int i, err = 0;
2537 int blkbits = mpd->inode->i_blkbits;
2538 ext4_lblk_t lblk;
2539 struct buffer_head *head;
2541 if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
2542 tag = PAGECACHE_TAG_TOWRITE;
2543 else
2544 tag = PAGECACHE_TAG_DIRTY;
2546 pagevec_init(&pvec);
2547 mpd->map.m_len = 0;
2548 mpd->next_page = index;
2549 while (index <= end) {
2550 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
2551 tag);
2552 if (nr_pages == 0)
2553 goto out;
2555 for (i = 0; i < nr_pages; i++) {
2556 struct page *page = pvec.pages[i];
2559 * Accumulated enough dirty pages? This doesn't apply
2560 * to WB_SYNC_ALL mode. For integrity sync we have to
2561 * keep going because someone may be concurrently
2562 * dirtying pages, and we might have synced a lot of
2563 * newly appeared dirty pages, but have not synced all
2564 * of the old dirty pages.
2566 if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
2567 goto out;
2569 /* If we can't merge this page, we are done. */
2570 if (mpd->map.m_len > 0 && mpd->next_page != page->index)
2571 goto out;
2573 lock_page(page);
2575 * If the page is no longer dirty, or its mapping no
2576 * longer corresponds to inode we are writing (which
2577 * means it has been truncated or invalidated), or the
2578 * page is already under writeback and we are not doing
2579 * a data integrity writeback, skip the page
2581 if (!PageDirty(page) ||
2582 (PageWriteback(page) &&
2583 (mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
2584 unlikely(page->mapping != mapping)) {
2585 unlock_page(page);
2586 continue;
2589 wait_on_page_writeback(page);
2590 BUG_ON(PageWriteback(page));
2592 if (mpd->map.m_len == 0)
2593 mpd->first_page = page->index;
2594 mpd->next_page = page->index + 1;
2595 /* Add all dirty buffers to mpd */
2596 lblk = ((ext4_lblk_t)page->index) <<
2597 (PAGE_SHIFT - blkbits);
2598 head = page_buffers(page);
2599 err = mpage_process_page_bufs(mpd, head, head, lblk);
2600 if (err <= 0)
2601 goto out;
2602 err = 0;
2603 left--;
2605 pagevec_release(&pvec);
2606 cond_resched();
2608 return 0;
2609 out:
2610 pagevec_release(&pvec);
2611 return err;
2614 static int ext4_writepages(struct address_space *mapping,
2615 struct writeback_control *wbc)
2617 pgoff_t writeback_index = 0;
2618 long nr_to_write = wbc->nr_to_write;
2619 int range_whole = 0;
2620 int cycled = 1;
2621 handle_t *handle = NULL;
2622 struct mpage_da_data mpd;
2623 struct inode *inode = mapping->host;
2624 int needed_blocks, rsv_blocks = 0, ret = 0;
2625 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2626 bool done;
2627 struct blk_plug plug;
2628 bool give_up_on_write = false;
2630 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2631 return -EIO;
2633 percpu_down_read(&sbi->s_journal_flag_rwsem);
2634 trace_ext4_writepages(inode, wbc);
2637 * No pages to write? This is mainly a kludge to avoid starting
2638 * a transaction for special inodes like journal inode on last iput()
2639 * because that could violate lock ordering on umount
2641 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2642 goto out_writepages;
2644 if (ext4_should_journal_data(inode)) {
2645 ret = generic_writepages(mapping, wbc);
2646 goto out_writepages;
2650 * If the filesystem has aborted, it is read-only, so return
2651 * right away instead of dumping stack traces later on that
2652 * will obscure the real source of the problem. We test
2653 * EXT4_MF_FS_ABORTED instead of sb->s_flag's SB_RDONLY because
2654 * the latter could be true if the filesystem is mounted
2655 * read-only, and in that case, ext4_writepages should
2656 * *never* be called, so if that ever happens, we would want
2657 * the stack trace.
2659 if (unlikely(ext4_forced_shutdown(EXT4_SB(mapping->host->i_sb)) ||
2660 sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
2661 ret = -EROFS;
2662 goto out_writepages;
2666 * If we have inline data and arrive here, it means that
2667 * we will soon create the block for the 1st page, so
2668 * we'd better clear the inline data here.
2670 if (ext4_has_inline_data(inode)) {
2671 /* Just inode will be modified... */
2672 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
2673 if (IS_ERR(handle)) {
2674 ret = PTR_ERR(handle);
2675 goto out_writepages;
2677 BUG_ON(ext4_test_inode_state(inode,
2678 EXT4_STATE_MAY_INLINE_DATA));
2679 ext4_destroy_inline_data(handle, inode);
2680 ext4_journal_stop(handle);
2683 if (ext4_should_dioread_nolock(inode)) {
2685 * We may need to convert up to one extent per block in
2686 * the page and we may dirty the inode.
2688 rsv_blocks = 1 + ext4_chunk_trans_blocks(inode,
2689 PAGE_SIZE >> inode->i_blkbits);
2692 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2693 range_whole = 1;
2695 if (wbc->range_cyclic) {
2696 writeback_index = mapping->writeback_index;
2697 if (writeback_index)
2698 cycled = 0;
2699 mpd.first_page = writeback_index;
2700 mpd.last_page = -1;
2701 } else {
2702 mpd.first_page = wbc->range_start >> PAGE_SHIFT;
2703 mpd.last_page = wbc->range_end >> PAGE_SHIFT;
2706 mpd.inode = inode;
2707 mpd.wbc = wbc;
2708 ext4_io_submit_init(&mpd.io_submit, wbc);
2709 retry:
2710 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
2711 tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
2712 done = false;
2713 blk_start_plug(&plug);
2716 * First writeback pages that don't need mapping - we can avoid
2717 * starting a transaction unnecessarily and also avoid being blocked
2718 * in the block layer on device congestion while having transaction
2719 * started.
2721 mpd.do_map = 0;
2722 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2723 if (!mpd.io_submit.io_end) {
2724 ret = -ENOMEM;
2725 goto unplug;
2727 ret = mpage_prepare_extent_to_map(&mpd);
2728 /* Unlock pages we didn't use */
2729 mpage_release_unused_pages(&mpd, false);
2730 /* Submit prepared bio */
2731 ext4_io_submit(&mpd.io_submit);
2732 ext4_put_io_end_defer(mpd.io_submit.io_end);
2733 mpd.io_submit.io_end = NULL;
2734 if (ret < 0)
2735 goto unplug;
2737 while (!done && mpd.first_page <= mpd.last_page) {
2738 /* For each extent of pages we use new io_end */
2739 mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
2740 if (!mpd.io_submit.io_end) {
2741 ret = -ENOMEM;
2742 break;
2746 * We have two constraints: We find one extent to map and we
2747 * must always write out whole page (makes a difference when
2748 * blocksize < pagesize) so that we don't block on IO when we
2749 * try to write out the rest of the page. Journalled mode is
2750 * not supported by delalloc.
2752 BUG_ON(ext4_should_journal_data(inode));
2753 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2755 /* start a new transaction */
2756 handle = ext4_journal_start_with_reserve(inode,
2757 EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
2758 if (IS_ERR(handle)) {
2759 ret = PTR_ERR(handle);
2760 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2761 "%ld pages, ino %lu; err %d", __func__,
2762 wbc->nr_to_write, inode->i_ino, ret);
2763 /* Release allocated io_end */
2764 ext4_put_io_end(mpd.io_submit.io_end);
2765 mpd.io_submit.io_end = NULL;
2766 break;
2768 mpd.do_map = 1;
2770 trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
2771 ret = mpage_prepare_extent_to_map(&mpd);
2772 if (!ret) {
2773 if (mpd.map.m_len)
2774 ret = mpage_map_and_submit_extent(handle, &mpd,
2775 &give_up_on_write);
2776 else {
2778 * We scanned the whole range (or exhausted
2779 * nr_to_write), submitted what was mapped and
2780 * didn't find anything needing mapping. We are
2781 * done.
2783 done = true;
2787 * Caution: If the handle is synchronous,
2788 * ext4_journal_stop() can wait for transaction commit
2789 * to finish which may depend on writeback of pages to
2790 * complete or on page lock to be released. In that
2791 * case, we have to wait until after after we have
2792 * submitted all the IO, released page locks we hold,
2793 * and dropped io_end reference (for extent conversion
2794 * to be able to complete) before stopping the handle.
2796 if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
2797 ext4_journal_stop(handle);
2798 handle = NULL;
2799 mpd.do_map = 0;
2801 /* Unlock pages we didn't use */
2802 mpage_release_unused_pages(&mpd, give_up_on_write);
2803 /* Submit prepared bio */
2804 ext4_io_submit(&mpd.io_submit);
2807 * Drop our io_end reference we got from init. We have
2808 * to be careful and use deferred io_end finishing if
2809 * we are still holding the transaction as we can
2810 * release the last reference to io_end which may end
2811 * up doing unwritten extent conversion.
2813 if (handle) {
2814 ext4_put_io_end_defer(mpd.io_submit.io_end);
2815 ext4_journal_stop(handle);
2816 } else
2817 ext4_put_io_end(mpd.io_submit.io_end);
2818 mpd.io_submit.io_end = NULL;
2820 if (ret == -ENOSPC && sbi->s_journal) {
2822 * Commit the transaction which would
2823 * free blocks released in the transaction
2824 * and try again
2826 jbd2_journal_force_commit_nested(sbi->s_journal);
2827 ret = 0;
2828 continue;
2830 /* Fatal error - ENOMEM, EIO... */
2831 if (ret)
2832 break;
2834 unplug:
2835 blk_finish_plug(&plug);
2836 if (!ret && !cycled && wbc->nr_to_write > 0) {
2837 cycled = 1;
2838 mpd.last_page = writeback_index - 1;
2839 mpd.first_page = 0;
2840 goto retry;
2843 /* Update index */
2844 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2846 * Set the writeback_index so that range_cyclic
2847 * mode will write it back later
2849 mapping->writeback_index = mpd.first_page;
2851 out_writepages:
2852 trace_ext4_writepages_result(inode, wbc, ret,
2853 nr_to_write - wbc->nr_to_write);
2854 percpu_up_read(&sbi->s_journal_flag_rwsem);
2855 return ret;
2858 static int ext4_dax_writepages(struct address_space *mapping,
2859 struct writeback_control *wbc)
2861 int ret;
2862 long nr_to_write = wbc->nr_to_write;
2863 struct inode *inode = mapping->host;
2864 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2866 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2867 return -EIO;
2869 percpu_down_read(&sbi->s_journal_flag_rwsem);
2870 trace_ext4_writepages(inode, wbc);
2872 ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev, wbc);
2873 trace_ext4_writepages_result(inode, wbc, ret,
2874 nr_to_write - wbc->nr_to_write);
2875 percpu_up_read(&sbi->s_journal_flag_rwsem);
2876 return ret;
2879 static int ext4_nonda_switch(struct super_block *sb)
2881 s64 free_clusters, dirty_clusters;
2882 struct ext4_sb_info *sbi = EXT4_SB(sb);
2885 * switch to non delalloc mode if we are running low
2886 * on free block. The free block accounting via percpu
2887 * counters can get slightly wrong with percpu_counter_batch getting
2888 * accumulated on each CPU without updating global counters
2889 * Delalloc need an accurate free block accounting. So switch
2890 * to non delalloc when we are near to error range.
2892 free_clusters =
2893 percpu_counter_read_positive(&sbi->s_freeclusters_counter);
2894 dirty_clusters =
2895 percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
2897 * Start pushing delalloc when 1/2 of free blocks are dirty.
2899 if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
2900 try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
2902 if (2 * free_clusters < 3 * dirty_clusters ||
2903 free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
2905 * free block count is less than 150% of dirty blocks
2906 * or free blocks is less than watermark
2908 return 1;
2910 return 0;
2913 /* We always reserve for an inode update; the superblock could be there too */
2914 static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
2916 if (likely(ext4_has_feature_large_file(inode->i_sb)))
2917 return 1;
2919 if (pos + len <= 0x7fffffffULL)
2920 return 1;
2922 /* We might need to update the superblock to set LARGE_FILE */
2923 return 2;
2926 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
2927 loff_t pos, unsigned len, unsigned flags,
2928 struct page **pagep, void **fsdata)
2930 int ret, retries = 0;
2931 struct page *page;
2932 pgoff_t index;
2933 struct inode *inode = mapping->host;
2934 handle_t *handle;
2936 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
2937 return -EIO;
2939 index = pos >> PAGE_SHIFT;
2941 if (ext4_nonda_switch(inode->i_sb) || S_ISLNK(inode->i_mode) ||
2942 ext4_verity_in_progress(inode)) {
2943 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
2944 return ext4_write_begin(file, mapping, pos,
2945 len, flags, pagep, fsdata);
2947 *fsdata = (void *)0;
2948 trace_ext4_da_write_begin(inode, pos, len, flags);
2950 if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
2951 ret = ext4_da_write_inline_data_begin(mapping, inode,
2952 pos, len, flags,
2953 pagep, fsdata);
2954 if (ret < 0)
2955 return ret;
2956 if (ret == 1)
2957 return 0;
2961 * grab_cache_page_write_begin() can take a long time if the
2962 * system is thrashing due to memory pressure, or if the page
2963 * is being written back. So grab it first before we start
2964 * the transaction handle. This also allows us to allocate
2965 * the page (if needed) without using GFP_NOFS.
2967 retry_grab:
2968 page = grab_cache_page_write_begin(mapping, index, flags);
2969 if (!page)
2970 return -ENOMEM;
2971 unlock_page(page);
2974 * With delayed allocation, we don't log the i_disksize update
2975 * if there is delayed block allocation. But we still need
2976 * to journalling the i_disksize update if writes to the end
2977 * of file which has an already mapped buffer.
2979 retry_journal:
2980 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
2981 ext4_da_write_credits(inode, pos, len));
2982 if (IS_ERR(handle)) {
2983 put_page(page);
2984 return PTR_ERR(handle);
2987 lock_page(page);
2988 if (page->mapping != mapping) {
2989 /* The page got truncated from under us */
2990 unlock_page(page);
2991 put_page(page);
2992 ext4_journal_stop(handle);
2993 goto retry_grab;
2995 /* In case writeback began while the page was unlocked */
2996 wait_for_stable_page(page);
2998 #ifdef CONFIG_FS_ENCRYPTION
2999 ret = ext4_block_write_begin(page, pos, len,
3000 ext4_da_get_block_prep);
3001 #else
3002 ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
3003 #endif
3004 if (ret < 0) {
3005 unlock_page(page);
3006 ext4_journal_stop(handle);
3008 * block_write_begin may have instantiated a few blocks
3009 * outside i_size. Trim these off again. Don't need
3010 * i_size_read because we hold i_mutex.
3012 if (pos + len > inode->i_size)
3013 ext4_truncate_failed_write(inode);
3015 if (ret == -ENOSPC &&
3016 ext4_should_retry_alloc(inode->i_sb, &retries))
3017 goto retry_journal;
3019 put_page(page);
3020 return ret;
3023 *pagep = page;
3024 return ret;
3028 * Check if we should update i_disksize
3029 * when write to the end of file but not require block allocation
3031 static int ext4_da_should_update_i_disksize(struct page *page,
3032 unsigned long offset)
3034 struct buffer_head *bh;
3035 struct inode *inode = page->mapping->host;
3036 unsigned int idx;
3037 int i;
3039 bh = page_buffers(page);
3040 idx = offset >> inode->i_blkbits;
3042 for (i = 0; i < idx; i++)
3043 bh = bh->b_this_page;
3045 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3046 return 0;
3047 return 1;
3050 static int ext4_da_write_end(struct file *file,
3051 struct address_space *mapping,
3052 loff_t pos, unsigned len, unsigned copied,
3053 struct page *page, void *fsdata)
3055 struct inode *inode = mapping->host;
3056 int ret = 0, ret2;
3057 handle_t *handle = ext4_journal_current_handle();
3058 loff_t new_i_size;
3059 unsigned long start, end;
3060 int write_mode = (int)(unsigned long)fsdata;
3062 if (write_mode == FALL_BACK_TO_NONDELALLOC)
3063 return ext4_write_end(file, mapping, pos,
3064 len, copied, page, fsdata);
3066 trace_ext4_da_write_end(inode, pos, len, copied);
3067 start = pos & (PAGE_SIZE - 1);
3068 end = start + copied - 1;
3071 * generic_write_end() will run mark_inode_dirty() if i_size
3072 * changes. So let's piggyback the i_disksize mark_inode_dirty
3073 * into that.
3075 new_i_size = pos + copied;
3076 if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
3077 if (ext4_has_inline_data(inode) ||
3078 ext4_da_should_update_i_disksize(page, end)) {
3079 ext4_update_i_disksize(inode, new_i_size);
3080 /* We need to mark inode dirty even if
3081 * new_i_size is less that inode->i_size
3082 * bu greater than i_disksize.(hint delalloc)
3084 ext4_mark_inode_dirty(handle, inode);
3088 if (write_mode != CONVERT_INLINE_DATA &&
3089 ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
3090 ext4_has_inline_data(inode))
3091 ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
3092 page);
3093 else
3094 ret2 = generic_write_end(file, mapping, pos, len, copied,
3095 page, fsdata);
3097 copied = ret2;
3098 if (ret2 < 0)
3099 ret = ret2;
3100 ret2 = ext4_journal_stop(handle);
3101 if (!ret)
3102 ret = ret2;
3104 return ret ? ret : copied;
3108 * Force all delayed allocation blocks to be allocated for a given inode.
3110 int ext4_alloc_da_blocks(struct inode *inode)
3112 trace_ext4_alloc_da_blocks(inode);
3114 if (!EXT4_I(inode)->i_reserved_data_blocks)
3115 return 0;
3118 * We do something simple for now. The filemap_flush() will
3119 * also start triggering a write of the data blocks, which is
3120 * not strictly speaking necessary (and for users of
3121 * laptop_mode, not even desirable). However, to do otherwise
3122 * would require replicating code paths in:
3124 * ext4_writepages() ->
3125 * write_cache_pages() ---> (via passed in callback function)
3126 * __mpage_da_writepage() -->
3127 * mpage_add_bh_to_extent()
3128 * mpage_da_map_blocks()
3130 * The problem is that write_cache_pages(), located in
3131 * mm/page-writeback.c, marks pages clean in preparation for
3132 * doing I/O, which is not desirable if we're not planning on
3133 * doing I/O at all.
3135 * We could call write_cache_pages(), and then redirty all of
3136 * the pages by calling redirty_page_for_writepage() but that
3137 * would be ugly in the extreme. So instead we would need to
3138 * replicate parts of the code in the above functions,
3139 * simplifying them because we wouldn't actually intend to
3140 * write out the pages, but rather only collect contiguous
3141 * logical block extents, call the multi-block allocator, and
3142 * then update the buffer heads with the block allocations.
3144 * For now, though, we'll cheat by calling filemap_flush(),
3145 * which will map the blocks, and start the I/O, but not
3146 * actually wait for the I/O to complete.
3148 return filemap_flush(inode->i_mapping);
3152 * bmap() is special. It gets used by applications such as lilo and by
3153 * the swapper to find the on-disk block of a specific piece of data.
3155 * Naturally, this is dangerous if the block concerned is still in the
3156 * journal. If somebody makes a swapfile on an ext4 data-journaling
3157 * filesystem and enables swap, then they may get a nasty shock when the
3158 * data getting swapped to that swapfile suddenly gets overwritten by
3159 * the original zero's written out previously to the journal and
3160 * awaiting writeback in the kernel's buffer cache.
3162 * So, if we see any bmap calls here on a modified, data-journaled file,
3163 * take extra steps to flush any blocks which might be in the cache.
3165 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3167 struct inode *inode = mapping->host;
3168 journal_t *journal;
3169 int err;
3172 * We can get here for an inline file via the FIBMAP ioctl
3174 if (ext4_has_inline_data(inode))
3175 return 0;
3177 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3178 test_opt(inode->i_sb, DELALLOC)) {
3180 * With delalloc we want to sync the file
3181 * so that we can make sure we allocate
3182 * blocks for file
3184 filemap_write_and_wait(mapping);
3187 if (EXT4_JOURNAL(inode) &&
3188 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3190 * This is a REALLY heavyweight approach, but the use of
3191 * bmap on dirty files is expected to be extremely rare:
3192 * only if we run lilo or swapon on a freshly made file
3193 * do we expect this to happen.
3195 * (bmap requires CAP_SYS_RAWIO so this does not
3196 * represent an unprivileged user DOS attack --- we'd be
3197 * in trouble if mortal users could trigger this path at
3198 * will.)
3200 * NB. EXT4_STATE_JDATA is not set on files other than
3201 * regular files. If somebody wants to bmap a directory
3202 * or symlink and gets confused because the buffer
3203 * hasn't yet been flushed to disk, they deserve
3204 * everything they get.
3207 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3208 journal = EXT4_JOURNAL(inode);
3209 jbd2_journal_lock_updates(journal);
3210 err = jbd2_journal_flush(journal);
3211 jbd2_journal_unlock_updates(journal);
3213 if (err)
3214 return 0;
3217 return generic_block_bmap(mapping, block, ext4_get_block);
3220 static int ext4_readpage(struct file *file, struct page *page)
3222 int ret = -EAGAIN;
3223 struct inode *inode = page->mapping->host;
3225 trace_ext4_readpage(page);
3227 if (ext4_has_inline_data(inode))
3228 ret = ext4_readpage_inline(inode, page);
3230 if (ret == -EAGAIN)
3231 return ext4_mpage_readpages(page->mapping, NULL, page, 1,
3232 false);
3234 return ret;
3237 static int
3238 ext4_readpages(struct file *file, struct address_space *mapping,
3239 struct list_head *pages, unsigned nr_pages)
3241 struct inode *inode = mapping->host;
3243 /* If the file has inline data, no need to do readpages. */
3244 if (ext4_has_inline_data(inode))
3245 return 0;
3247 return ext4_mpage_readpages(mapping, pages, NULL, nr_pages, true);
3250 static void ext4_invalidatepage(struct page *page, unsigned int offset,
3251 unsigned int length)
3253 trace_ext4_invalidatepage(page, offset, length);
3255 /* No journalling happens on data buffers when this function is used */
3256 WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
3258 block_invalidatepage(page, offset, length);
3261 static int __ext4_journalled_invalidatepage(struct page *page,
3262 unsigned int offset,
3263 unsigned int length)
3265 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3267 trace_ext4_journalled_invalidatepage(page, offset, length);
3270 * If it's a full truncate we just forget about the pending dirtying
3272 if (offset == 0 && length == PAGE_SIZE)
3273 ClearPageChecked(page);
3275 return jbd2_journal_invalidatepage(journal, page, offset, length);
3278 /* Wrapper for aops... */
3279 static void ext4_journalled_invalidatepage(struct page *page,
3280 unsigned int offset,
3281 unsigned int length)
3283 WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
3286 static int ext4_releasepage(struct page *page, gfp_t wait)
3288 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3290 trace_ext4_releasepage(page);
3292 /* Page has dirty journalled data -> cannot release */
3293 if (PageChecked(page))
3294 return 0;
3295 if (journal)
3296 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3297 else
3298 return try_to_free_buffers(page);
3301 static bool ext4_inode_datasync_dirty(struct inode *inode)
3303 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
3305 if (journal)
3306 return !jbd2_transaction_committed(journal,
3307 EXT4_I(inode)->i_datasync_tid);
3308 /* Any metadata buffers to write? */
3309 if (!list_empty(&inode->i_mapping->private_list))
3310 return true;
3311 return inode->i_state & I_DIRTY_DATASYNC;
3314 static void ext4_set_iomap(struct inode *inode, struct iomap *iomap,
3315 struct ext4_map_blocks *map, loff_t offset,
3316 loff_t length)
3318 u8 blkbits = inode->i_blkbits;
3321 * Writes that span EOF might trigger an I/O size update on completion,
3322 * so consider them to be dirty for the purpose of O_DSYNC, even if
3323 * there is no other metadata changes being made or are pending.
3325 iomap->flags = 0;
3326 if (ext4_inode_datasync_dirty(inode) ||
3327 offset + length > i_size_read(inode))
3328 iomap->flags |= IOMAP_F_DIRTY;
3330 if (map->m_flags & EXT4_MAP_NEW)
3331 iomap->flags |= IOMAP_F_NEW;
3333 iomap->bdev = inode->i_sb->s_bdev;
3334 iomap->dax_dev = EXT4_SB(inode->i_sb)->s_daxdev;
3335 iomap->offset = (u64) map->m_lblk << blkbits;
3336 iomap->length = (u64) map->m_len << blkbits;
3339 * Flags passed to ext4_map_blocks() for direct I/O writes can result
3340 * in m_flags having both EXT4_MAP_MAPPED and EXT4_MAP_UNWRITTEN bits
3341 * set. In order for any allocated unwritten extents to be converted
3342 * into written extents correctly within the ->end_io() handler, we
3343 * need to ensure that the iomap->type is set appropriately. Hence, the
3344 * reason why we need to check whether the EXT4_MAP_UNWRITTEN bit has
3345 * been set first.
3347 if (map->m_flags & EXT4_MAP_UNWRITTEN) {
3348 iomap->type = IOMAP_UNWRITTEN;
3349 iomap->addr = (u64) map->m_pblk << blkbits;
3350 } else if (map->m_flags & EXT4_MAP_MAPPED) {
3351 iomap->type = IOMAP_MAPPED;
3352 iomap->addr = (u64) map->m_pblk << blkbits;
3353 } else {
3354 iomap->type = IOMAP_HOLE;
3355 iomap->addr = IOMAP_NULL_ADDR;
3359 static int ext4_iomap_alloc(struct inode *inode, struct ext4_map_blocks *map,
3360 unsigned int flags)
3362 handle_t *handle;
3363 u8 blkbits = inode->i_blkbits;
3364 int ret, dio_credits, m_flags = 0, retries = 0;
3367 * Trim the mapping request to the maximum value that we can map at
3368 * once for direct I/O.
3370 if (map->m_len > DIO_MAX_BLOCKS)
3371 map->m_len = DIO_MAX_BLOCKS;
3372 dio_credits = ext4_chunk_trans_blocks(inode, map->m_len);
3374 retry:
3376 * Either we allocate blocks and then don't get an unwritten extent, so
3377 * in that case we have reserved enough credits. Or, the blocks are
3378 * already allocated and unwritten. In that case, the extent conversion
3379 * fits into the credits as well.
3381 handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
3382 if (IS_ERR(handle))
3383 return PTR_ERR(handle);
3386 * DAX and direct I/O are the only two operations that are currently
3387 * supported with IOMAP_WRITE.
3389 WARN_ON(!IS_DAX(inode) && !(flags & IOMAP_DIRECT));
3390 if (IS_DAX(inode))
3391 m_flags = EXT4_GET_BLOCKS_CREATE_ZERO;
3393 * We use i_size instead of i_disksize here because delalloc writeback
3394 * can complete at any point during the I/O and subsequently push the
3395 * i_disksize out to i_size. This could be beyond where direct I/O is
3396 * happening and thus expose allocated blocks to direct I/O reads.
3398 else if ((map->m_lblk * (1 << blkbits)) >= i_size_read(inode))
3399 m_flags = EXT4_GET_BLOCKS_CREATE;
3400 else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
3401 m_flags = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3403 ret = ext4_map_blocks(handle, inode, map, m_flags);
3406 * We cannot fill holes in indirect tree based inodes as that could
3407 * expose stale data in the case of a crash. Use the magic error code
3408 * to fallback to buffered I/O.
3410 if (!m_flags && !ret)
3411 ret = -ENOTBLK;
3413 ext4_journal_stop(handle);
3414 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3415 goto retry;
3417 return ret;
3421 static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
3422 unsigned flags, struct iomap *iomap, struct iomap *srcmap)
3424 int ret;
3425 struct ext4_map_blocks map;
3426 u8 blkbits = inode->i_blkbits;
3428 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3429 return -EINVAL;
3431 if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
3432 return -ERANGE;
3435 * Calculate the first and last logical blocks respectively.
3437 map.m_lblk = offset >> blkbits;
3438 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3439 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3441 if (flags & IOMAP_WRITE)
3442 ret = ext4_iomap_alloc(inode, &map, flags);
3443 else
3444 ret = ext4_map_blocks(NULL, inode, &map, 0);
3446 if (ret < 0)
3447 return ret;
3449 ext4_set_iomap(inode, iomap, &map, offset, length);
3451 return 0;
3454 static int ext4_iomap_overwrite_begin(struct inode *inode, loff_t offset,
3455 loff_t length, unsigned flags, struct iomap *iomap,
3456 struct iomap *srcmap)
3458 int ret;
3461 * Even for writes we don't need to allocate blocks, so just pretend
3462 * we are reading to save overhead of starting a transaction.
3464 flags &= ~IOMAP_WRITE;
3465 ret = ext4_iomap_begin(inode, offset, length, flags, iomap, srcmap);
3466 WARN_ON_ONCE(iomap->type != IOMAP_MAPPED);
3467 return ret;
3470 static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
3471 ssize_t written, unsigned flags, struct iomap *iomap)
3474 * Check to see whether an error occurred while writing out the data to
3475 * the allocated blocks. If so, return the magic error code so that we
3476 * fallback to buffered I/O and attempt to complete the remainder of
3477 * the I/O. Any blocks that may have been allocated in preparation for
3478 * the direct I/O will be reused during buffered I/O.
3480 if (flags & (IOMAP_WRITE | IOMAP_DIRECT) && written == 0)
3481 return -ENOTBLK;
3483 return 0;
3486 const struct iomap_ops ext4_iomap_ops = {
3487 .iomap_begin = ext4_iomap_begin,
3488 .iomap_end = ext4_iomap_end,
3491 const struct iomap_ops ext4_iomap_overwrite_ops = {
3492 .iomap_begin = ext4_iomap_overwrite_begin,
3493 .iomap_end = ext4_iomap_end,
3496 static bool ext4_iomap_is_delalloc(struct inode *inode,
3497 struct ext4_map_blocks *map)
3499 struct extent_status es;
3500 ext4_lblk_t offset = 0, end = map->m_lblk + map->m_len - 1;
3502 ext4_es_find_extent_range(inode, &ext4_es_is_delayed,
3503 map->m_lblk, end, &es);
3505 if (!es.es_len || es.es_lblk > end)
3506 return false;
3508 if (es.es_lblk > map->m_lblk) {
3509 map->m_len = es.es_lblk - map->m_lblk;
3510 return false;
3513 offset = map->m_lblk - es.es_lblk;
3514 map->m_len = es.es_len - offset;
3516 return true;
3519 static int ext4_iomap_begin_report(struct inode *inode, loff_t offset,
3520 loff_t length, unsigned int flags,
3521 struct iomap *iomap, struct iomap *srcmap)
3523 int ret;
3524 bool delalloc = false;
3525 struct ext4_map_blocks map;
3526 u8 blkbits = inode->i_blkbits;
3528 if ((offset >> blkbits) > EXT4_MAX_LOGICAL_BLOCK)
3529 return -EINVAL;
3531 if (ext4_has_inline_data(inode)) {
3532 ret = ext4_inline_data_iomap(inode, iomap);
3533 if (ret != -EAGAIN) {
3534 if (ret == 0 && offset >= iomap->length)
3535 ret = -ENOENT;
3536 return ret;
3541 * Calculate the first and last logical block respectively.
3543 map.m_lblk = offset >> blkbits;
3544 map.m_len = min_t(loff_t, (offset + length - 1) >> blkbits,
3545 EXT4_MAX_LOGICAL_BLOCK) - map.m_lblk + 1;
3547 ret = ext4_map_blocks(NULL, inode, &map, 0);
3548 if (ret < 0)
3549 return ret;
3550 if (ret == 0)
3551 delalloc = ext4_iomap_is_delalloc(inode, &map);
3553 ext4_set_iomap(inode, iomap, &map, offset, length);
3554 if (delalloc && iomap->type == IOMAP_HOLE)
3555 iomap->type = IOMAP_DELALLOC;
3557 return 0;
3560 const struct iomap_ops ext4_iomap_report_ops = {
3561 .iomap_begin = ext4_iomap_begin_report,
3565 * Pages can be marked dirty completely asynchronously from ext4's journalling
3566 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3567 * much here because ->set_page_dirty is called under VFS locks. The page is
3568 * not necessarily locked.
3570 * We cannot just dirty the page and leave attached buffers clean, because the
3571 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3572 * or jbddirty because all the journalling code will explode.
3574 * So what we do is to mark the page "pending dirty" and next time writepage
3575 * is called, propagate that into the buffers appropriately.
3577 static int ext4_journalled_set_page_dirty(struct page *page)
3579 SetPageChecked(page);
3580 return __set_page_dirty_nobuffers(page);
3583 static int ext4_set_page_dirty(struct page *page)
3585 WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
3586 WARN_ON_ONCE(!page_has_buffers(page));
3587 return __set_page_dirty_buffers(page);
3590 static const struct address_space_operations ext4_aops = {
3591 .readpage = ext4_readpage,
3592 .readpages = ext4_readpages,
3593 .writepage = ext4_writepage,
3594 .writepages = ext4_writepages,
3595 .write_begin = ext4_write_begin,
3596 .write_end = ext4_write_end,
3597 .set_page_dirty = ext4_set_page_dirty,
3598 .bmap = ext4_bmap,
3599 .invalidatepage = ext4_invalidatepage,
3600 .releasepage = ext4_releasepage,
3601 .direct_IO = noop_direct_IO,
3602 .migratepage = buffer_migrate_page,
3603 .is_partially_uptodate = block_is_partially_uptodate,
3604 .error_remove_page = generic_error_remove_page,
3607 static const struct address_space_operations ext4_journalled_aops = {
3608 .readpage = ext4_readpage,
3609 .readpages = ext4_readpages,
3610 .writepage = ext4_writepage,
3611 .writepages = ext4_writepages,
3612 .write_begin = ext4_write_begin,
3613 .write_end = ext4_journalled_write_end,
3614 .set_page_dirty = ext4_journalled_set_page_dirty,
3615 .bmap = ext4_bmap,
3616 .invalidatepage = ext4_journalled_invalidatepage,
3617 .releasepage = ext4_releasepage,
3618 .direct_IO = noop_direct_IO,
3619 .is_partially_uptodate = block_is_partially_uptodate,
3620 .error_remove_page = generic_error_remove_page,
3623 static const struct address_space_operations ext4_da_aops = {
3624 .readpage = ext4_readpage,
3625 .readpages = ext4_readpages,
3626 .writepage = ext4_writepage,
3627 .writepages = ext4_writepages,
3628 .write_begin = ext4_da_write_begin,
3629 .write_end = ext4_da_write_end,
3630 .set_page_dirty = ext4_set_page_dirty,
3631 .bmap = ext4_bmap,
3632 .invalidatepage = ext4_invalidatepage,
3633 .releasepage = ext4_releasepage,
3634 .direct_IO = noop_direct_IO,
3635 .migratepage = buffer_migrate_page,
3636 .is_partially_uptodate = block_is_partially_uptodate,
3637 .error_remove_page = generic_error_remove_page,
3640 static const struct address_space_operations ext4_dax_aops = {
3641 .writepages = ext4_dax_writepages,
3642 .direct_IO = noop_direct_IO,
3643 .set_page_dirty = noop_set_page_dirty,
3644 .bmap = ext4_bmap,
3645 .invalidatepage = noop_invalidatepage,
3648 void ext4_set_aops(struct inode *inode)
3650 switch (ext4_inode_journal_mode(inode)) {
3651 case EXT4_INODE_ORDERED_DATA_MODE:
3652 case EXT4_INODE_WRITEBACK_DATA_MODE:
3653 break;
3654 case EXT4_INODE_JOURNAL_DATA_MODE:
3655 inode->i_mapping->a_ops = &ext4_journalled_aops;
3656 return;
3657 default:
3658 BUG();
3660 if (IS_DAX(inode))
3661 inode->i_mapping->a_ops = &ext4_dax_aops;
3662 else if (test_opt(inode->i_sb, DELALLOC))
3663 inode->i_mapping->a_ops = &ext4_da_aops;
3664 else
3665 inode->i_mapping->a_ops = &ext4_aops;
3668 static int __ext4_block_zero_page_range(handle_t *handle,
3669 struct address_space *mapping, loff_t from, loff_t length)
3671 ext4_fsblk_t index = from >> PAGE_SHIFT;
3672 unsigned offset = from & (PAGE_SIZE-1);
3673 unsigned blocksize, pos;
3674 ext4_lblk_t iblock;
3675 struct inode *inode = mapping->host;
3676 struct buffer_head *bh;
3677 struct page *page;
3678 int err = 0;
3680 page = find_or_create_page(mapping, from >> PAGE_SHIFT,
3681 mapping_gfp_constraint(mapping, ~__GFP_FS));
3682 if (!page)
3683 return -ENOMEM;
3685 blocksize = inode->i_sb->s_blocksize;
3687 iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
3689 if (!page_has_buffers(page))
3690 create_empty_buffers(page, blocksize, 0);
3692 /* Find the buffer that contains "offset" */
3693 bh = page_buffers(page);
3694 pos = blocksize;
3695 while (offset >= pos) {
3696 bh = bh->b_this_page;
3697 iblock++;
3698 pos += blocksize;
3700 if (buffer_freed(bh)) {
3701 BUFFER_TRACE(bh, "freed: skip");
3702 goto unlock;
3704 if (!buffer_mapped(bh)) {
3705 BUFFER_TRACE(bh, "unmapped");
3706 ext4_get_block(inode, iblock, bh, 0);
3707 /* unmapped? It's a hole - nothing to do */
3708 if (!buffer_mapped(bh)) {
3709 BUFFER_TRACE(bh, "still unmapped");
3710 goto unlock;
3714 /* Ok, it's mapped. Make sure it's up-to-date */
3715 if (PageUptodate(page))
3716 set_buffer_uptodate(bh);
3718 if (!buffer_uptodate(bh)) {
3719 err = -EIO;
3720 ll_rw_block(REQ_OP_READ, 0, 1, &bh);
3721 wait_on_buffer(bh);
3722 /* Uhhuh. Read error. Complain and punt. */
3723 if (!buffer_uptodate(bh))
3724 goto unlock;
3725 if (S_ISREG(inode->i_mode) && IS_ENCRYPTED(inode)) {
3726 /* We expect the key to be set. */
3727 BUG_ON(!fscrypt_has_encryption_key(inode));
3728 WARN_ON_ONCE(fscrypt_decrypt_pagecache_blocks(
3729 page, blocksize, bh_offset(bh)));
3732 if (ext4_should_journal_data(inode)) {
3733 BUFFER_TRACE(bh, "get write access");
3734 err = ext4_journal_get_write_access(handle, bh);
3735 if (err)
3736 goto unlock;
3738 zero_user(page, offset, length);
3739 BUFFER_TRACE(bh, "zeroed end of block");
3741 if (ext4_should_journal_data(inode)) {
3742 err = ext4_handle_dirty_metadata(handle, inode, bh);
3743 } else {
3744 err = 0;
3745 mark_buffer_dirty(bh);
3746 if (ext4_should_order_data(inode))
3747 err = ext4_jbd2_inode_add_write(handle, inode, from,
3748 length);
3751 unlock:
3752 unlock_page(page);
3753 put_page(page);
3754 return err;
3758 * ext4_block_zero_page_range() zeros out a mapping of length 'length'
3759 * starting from file offset 'from'. The range to be zero'd must
3760 * be contained with in one block. If the specified range exceeds
3761 * the end of the block it will be shortened to end of the block
3762 * that cooresponds to 'from'
3764 static int ext4_block_zero_page_range(handle_t *handle,
3765 struct address_space *mapping, loff_t from, loff_t length)
3767 struct inode *inode = mapping->host;
3768 unsigned offset = from & (PAGE_SIZE-1);
3769 unsigned blocksize = inode->i_sb->s_blocksize;
3770 unsigned max = blocksize - (offset & (blocksize - 1));
3773 * correct length if it does not fall between
3774 * 'from' and the end of the block
3776 if (length > max || length < 0)
3777 length = max;
3779 if (IS_DAX(inode)) {
3780 return iomap_zero_range(inode, from, length, NULL,
3781 &ext4_iomap_ops);
3783 return __ext4_block_zero_page_range(handle, mapping, from, length);
3787 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
3788 * up to the end of the block which corresponds to `from'.
3789 * This required during truncate. We need to physically zero the tail end
3790 * of that block so it doesn't yield old data if the file is later grown.
3792 static int ext4_block_truncate_page(handle_t *handle,
3793 struct address_space *mapping, loff_t from)
3795 unsigned offset = from & (PAGE_SIZE-1);
3796 unsigned length;
3797 unsigned blocksize;
3798 struct inode *inode = mapping->host;
3800 /* If we are processing an encrypted inode during orphan list handling */
3801 if (IS_ENCRYPTED(inode) && !fscrypt_has_encryption_key(inode))
3802 return 0;
3804 blocksize = inode->i_sb->s_blocksize;
3805 length = blocksize - (offset & (blocksize - 1));
3807 return ext4_block_zero_page_range(handle, mapping, from, length);
3810 int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
3811 loff_t lstart, loff_t length)
3813 struct super_block *sb = inode->i_sb;
3814 struct address_space *mapping = inode->i_mapping;
3815 unsigned partial_start, partial_end;
3816 ext4_fsblk_t start, end;
3817 loff_t byte_end = (lstart + length - 1);
3818 int err = 0;
3820 partial_start = lstart & (sb->s_blocksize - 1);
3821 partial_end = byte_end & (sb->s_blocksize - 1);
3823 start = lstart >> sb->s_blocksize_bits;
3824 end = byte_end >> sb->s_blocksize_bits;
3826 /* Handle partial zero within the single block */
3827 if (start == end &&
3828 (partial_start || (partial_end != sb->s_blocksize - 1))) {
3829 err = ext4_block_zero_page_range(handle, mapping,
3830 lstart, length);
3831 return err;
3833 /* Handle partial zero out on the start of the range */
3834 if (partial_start) {
3835 err = ext4_block_zero_page_range(handle, mapping,
3836 lstart, sb->s_blocksize);
3837 if (err)
3838 return err;
3840 /* Handle partial zero out on the end of the range */
3841 if (partial_end != sb->s_blocksize - 1)
3842 err = ext4_block_zero_page_range(handle, mapping,
3843 byte_end - partial_end,
3844 partial_end + 1);
3845 return err;
3848 int ext4_can_truncate(struct inode *inode)
3850 if (S_ISREG(inode->i_mode))
3851 return 1;
3852 if (S_ISDIR(inode->i_mode))
3853 return 1;
3854 if (S_ISLNK(inode->i_mode))
3855 return !ext4_inode_is_fast_symlink(inode);
3856 return 0;
3860 * We have to make sure i_disksize gets properly updated before we truncate
3861 * page cache due to hole punching or zero range. Otherwise i_disksize update
3862 * can get lost as it may have been postponed to submission of writeback but
3863 * that will never happen after we truncate page cache.
3865 int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
3866 loff_t len)
3868 handle_t *handle;
3869 loff_t size = i_size_read(inode);
3871 WARN_ON(!inode_is_locked(inode));
3872 if (offset > size || offset + len < size)
3873 return 0;
3875 if (EXT4_I(inode)->i_disksize >= size)
3876 return 0;
3878 handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
3879 if (IS_ERR(handle))
3880 return PTR_ERR(handle);
3881 ext4_update_i_disksize(inode, size);
3882 ext4_mark_inode_dirty(handle, inode);
3883 ext4_journal_stop(handle);
3885 return 0;
3888 static void ext4_wait_dax_page(struct ext4_inode_info *ei)
3890 up_write(&ei->i_mmap_sem);
3891 schedule();
3892 down_write(&ei->i_mmap_sem);
3895 int ext4_break_layouts(struct inode *inode)
3897 struct ext4_inode_info *ei = EXT4_I(inode);
3898 struct page *page;
3899 int error;
3901 if (WARN_ON_ONCE(!rwsem_is_locked(&ei->i_mmap_sem)))
3902 return -EINVAL;
3904 do {
3905 page = dax_layout_busy_page(inode->i_mapping);
3906 if (!page)
3907 return 0;
3909 error = ___wait_var_event(&page->_refcount,
3910 atomic_read(&page->_refcount) == 1,
3911 TASK_INTERRUPTIBLE, 0, 0,
3912 ext4_wait_dax_page(ei));
3913 } while (error == 0);
3915 return error;
3919 * ext4_punch_hole: punches a hole in a file by releasing the blocks
3920 * associated with the given offset and length
3922 * @inode: File inode
3923 * @offset: The offset where the hole will begin
3924 * @len: The length of the hole
3926 * Returns: 0 on success or negative on failure
3929 int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
3931 struct super_block *sb = inode->i_sb;
3932 ext4_lblk_t first_block, stop_block;
3933 struct address_space *mapping = inode->i_mapping;
3934 loff_t first_block_offset, last_block_offset;
3935 handle_t *handle;
3936 unsigned int credits;
3937 int ret = 0;
3939 if (!S_ISREG(inode->i_mode))
3940 return -EOPNOTSUPP;
3942 trace_ext4_punch_hole(inode, offset, length, 0);
3944 ext4_clear_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA);
3945 if (ext4_has_inline_data(inode)) {
3946 down_write(&EXT4_I(inode)->i_mmap_sem);
3947 ret = ext4_convert_inline_data(inode);
3948 up_write(&EXT4_I(inode)->i_mmap_sem);
3949 if (ret)
3950 return ret;
3954 * Write out all dirty pages to avoid race conditions
3955 * Then release them.
3957 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
3958 ret = filemap_write_and_wait_range(mapping, offset,
3959 offset + length - 1);
3960 if (ret)
3961 return ret;
3964 inode_lock(inode);
3966 /* No need to punch hole beyond i_size */
3967 if (offset >= inode->i_size)
3968 goto out_mutex;
3971 * If the hole extends beyond i_size, set the hole
3972 * to end after the page that contains i_size
3974 if (offset + length > inode->i_size) {
3975 length = inode->i_size +
3976 PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
3977 offset;
3980 if (offset & (sb->s_blocksize - 1) ||
3981 (offset + length) & (sb->s_blocksize - 1)) {
3983 * Attach jinode to inode for jbd2 if we do any zeroing of
3984 * partial block
3986 ret = ext4_inode_attach_jinode(inode);
3987 if (ret < 0)
3988 goto out_mutex;
3992 /* Wait all existing dio workers, newcomers will block on i_mutex */
3993 inode_dio_wait(inode);
3996 * Prevent page faults from reinstantiating pages we have released from
3997 * page cache.
3999 down_write(&EXT4_I(inode)->i_mmap_sem);
4001 ret = ext4_break_layouts(inode);
4002 if (ret)
4003 goto out_dio;
4005 first_block_offset = round_up(offset, sb->s_blocksize);
4006 last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
4008 /* Now release the pages and zero block aligned part of pages*/
4009 if (last_block_offset > first_block_offset) {
4010 ret = ext4_update_disksize_before_punch(inode, offset, length);
4011 if (ret)
4012 goto out_dio;
4013 truncate_pagecache_range(inode, first_block_offset,
4014 last_block_offset);
4017 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4018 credits = ext4_writepage_trans_blocks(inode);
4019 else
4020 credits = ext4_blocks_for_truncate(inode);
4021 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4022 if (IS_ERR(handle)) {
4023 ret = PTR_ERR(handle);
4024 ext4_std_error(sb, ret);
4025 goto out_dio;
4028 ret = ext4_zero_partial_blocks(handle, inode, offset,
4029 length);
4030 if (ret)
4031 goto out_stop;
4033 first_block = (offset + sb->s_blocksize - 1) >>
4034 EXT4_BLOCK_SIZE_BITS(sb);
4035 stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
4037 /* If there are blocks to remove, do it */
4038 if (stop_block > first_block) {
4040 down_write(&EXT4_I(inode)->i_data_sem);
4041 ext4_discard_preallocations(inode);
4043 ret = ext4_es_remove_extent(inode, first_block,
4044 stop_block - first_block);
4045 if (ret) {
4046 up_write(&EXT4_I(inode)->i_data_sem);
4047 goto out_stop;
4050 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4051 ret = ext4_ext_remove_space(inode, first_block,
4052 stop_block - 1);
4053 else
4054 ret = ext4_ind_remove_space(handle, inode, first_block,
4055 stop_block);
4057 up_write(&EXT4_I(inode)->i_data_sem);
4059 if (IS_SYNC(inode))
4060 ext4_handle_sync(handle);
4062 inode->i_mtime = inode->i_ctime = current_time(inode);
4063 ext4_mark_inode_dirty(handle, inode);
4064 if (ret >= 0)
4065 ext4_update_inode_fsync_trans(handle, inode, 1);
4066 out_stop:
4067 ext4_journal_stop(handle);
4068 out_dio:
4069 up_write(&EXT4_I(inode)->i_mmap_sem);
4070 out_mutex:
4071 inode_unlock(inode);
4072 return ret;
4075 int ext4_inode_attach_jinode(struct inode *inode)
4077 struct ext4_inode_info *ei = EXT4_I(inode);
4078 struct jbd2_inode *jinode;
4080 if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
4081 return 0;
4083 jinode = jbd2_alloc_inode(GFP_KERNEL);
4084 spin_lock(&inode->i_lock);
4085 if (!ei->jinode) {
4086 if (!jinode) {
4087 spin_unlock(&inode->i_lock);
4088 return -ENOMEM;
4090 ei->jinode = jinode;
4091 jbd2_journal_init_jbd_inode(ei->jinode, inode);
4092 jinode = NULL;
4094 spin_unlock(&inode->i_lock);
4095 if (unlikely(jinode != NULL))
4096 jbd2_free_inode(jinode);
4097 return 0;
4101 * ext4_truncate()
4103 * We block out ext4_get_block() block instantiations across the entire
4104 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4105 * simultaneously on behalf of the same inode.
4107 * As we work through the truncate and commit bits of it to the journal there
4108 * is one core, guiding principle: the file's tree must always be consistent on
4109 * disk. We must be able to restart the truncate after a crash.
4111 * The file's tree may be transiently inconsistent in memory (although it
4112 * probably isn't), but whenever we close off and commit a journal transaction,
4113 * the contents of (the filesystem + the journal) must be consistent and
4114 * restartable. It's pretty simple, really: bottom up, right to left (although
4115 * left-to-right works OK too).
4117 * Note that at recovery time, journal replay occurs *before* the restart of
4118 * truncate against the orphan inode list.
4120 * The committed inode has the new, desired i_size (which is the same as
4121 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4122 * that this inode's truncate did not complete and it will again call
4123 * ext4_truncate() to have another go. So there will be instantiated blocks
4124 * to the right of the truncation point in a crashed ext4 filesystem. But
4125 * that's fine - as long as they are linked from the inode, the post-crash
4126 * ext4_truncate() run will find them and release them.
4128 int ext4_truncate(struct inode *inode)
4130 struct ext4_inode_info *ei = EXT4_I(inode);
4131 unsigned int credits;
4132 int err = 0;
4133 handle_t *handle;
4134 struct address_space *mapping = inode->i_mapping;
4137 * There is a possibility that we're either freeing the inode
4138 * or it's a completely new inode. In those cases we might not
4139 * have i_mutex locked because it's not necessary.
4141 if (!(inode->i_state & (I_NEW|I_FREEING)))
4142 WARN_ON(!inode_is_locked(inode));
4143 trace_ext4_truncate_enter(inode);
4145 if (!ext4_can_truncate(inode))
4146 return 0;
4148 ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
4150 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4151 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4153 if (ext4_has_inline_data(inode)) {
4154 int has_inline = 1;
4156 err = ext4_inline_data_truncate(inode, &has_inline);
4157 if (err)
4158 return err;
4159 if (has_inline)
4160 return 0;
4163 /* If we zero-out tail of the page, we have to create jinode for jbd2 */
4164 if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
4165 if (ext4_inode_attach_jinode(inode) < 0)
4166 return 0;
4169 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4170 credits = ext4_writepage_trans_blocks(inode);
4171 else
4172 credits = ext4_blocks_for_truncate(inode);
4174 handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
4175 if (IS_ERR(handle))
4176 return PTR_ERR(handle);
4178 if (inode->i_size & (inode->i_sb->s_blocksize - 1))
4179 ext4_block_truncate_page(handle, mapping, inode->i_size);
4182 * We add the inode to the orphan list, so that if this
4183 * truncate spans multiple transactions, and we crash, we will
4184 * resume the truncate when the filesystem recovers. It also
4185 * marks the inode dirty, to catch the new size.
4187 * Implication: the file must always be in a sane, consistent
4188 * truncatable state while each transaction commits.
4190 err = ext4_orphan_add(handle, inode);
4191 if (err)
4192 goto out_stop;
4194 down_write(&EXT4_I(inode)->i_data_sem);
4196 ext4_discard_preallocations(inode);
4198 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4199 err = ext4_ext_truncate(handle, inode);
4200 else
4201 ext4_ind_truncate(handle, inode);
4203 up_write(&ei->i_data_sem);
4204 if (err)
4205 goto out_stop;
4207 if (IS_SYNC(inode))
4208 ext4_handle_sync(handle);
4210 out_stop:
4212 * If this was a simple ftruncate() and the file will remain alive,
4213 * then we need to clear up the orphan record which we created above.
4214 * However, if this was a real unlink then we were called by
4215 * ext4_evict_inode(), and we allow that function to clean up the
4216 * orphan info for us.
4218 if (inode->i_nlink)
4219 ext4_orphan_del(handle, inode);
4221 inode->i_mtime = inode->i_ctime = current_time(inode);
4222 ext4_mark_inode_dirty(handle, inode);
4223 ext4_journal_stop(handle);
4225 trace_ext4_truncate_exit(inode);
4226 return err;
4230 * ext4_get_inode_loc returns with an extra refcount against the inode's
4231 * underlying buffer_head on success. If 'in_mem' is true, we have all
4232 * data in memory that is needed to recreate the on-disk version of this
4233 * inode.
4235 static int __ext4_get_inode_loc(struct inode *inode,
4236 struct ext4_iloc *iloc, int in_mem)
4238 struct ext4_group_desc *gdp;
4239 struct buffer_head *bh;
4240 struct super_block *sb = inode->i_sb;
4241 ext4_fsblk_t block;
4242 struct blk_plug plug;
4243 int inodes_per_block, inode_offset;
4245 iloc->bh = NULL;
4246 if (inode->i_ino < EXT4_ROOT_INO ||
4247 inode->i_ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))
4248 return -EFSCORRUPTED;
4250 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4251 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4252 if (!gdp)
4253 return -EIO;
4256 * Figure out the offset within the block group inode table
4258 inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4259 inode_offset = ((inode->i_ino - 1) %
4260 EXT4_INODES_PER_GROUP(sb));
4261 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4262 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4264 bh = sb_getblk(sb, block);
4265 if (unlikely(!bh))
4266 return -ENOMEM;
4267 if (ext4_simulate_fail(sb, EXT4_SIM_INODE_EIO))
4268 goto simulate_eio;
4269 if (!buffer_uptodate(bh)) {
4270 lock_buffer(bh);
4273 * If the buffer has the write error flag, we have failed
4274 * to write out another inode in the same block. In this
4275 * case, we don't have to read the block because we may
4276 * read the old inode data successfully.
4278 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4279 set_buffer_uptodate(bh);
4281 if (buffer_uptodate(bh)) {
4282 /* someone brought it uptodate while we waited */
4283 unlock_buffer(bh);
4284 goto has_buffer;
4288 * If we have all information of the inode in memory and this
4289 * is the only valid inode in the block, we need not read the
4290 * block.
4292 if (in_mem) {
4293 struct buffer_head *bitmap_bh;
4294 int i, start;
4296 start = inode_offset & ~(inodes_per_block - 1);
4298 /* Is the inode bitmap in cache? */
4299 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4300 if (unlikely(!bitmap_bh))
4301 goto make_io;
4304 * If the inode bitmap isn't in cache then the
4305 * optimisation may end up performing two reads instead
4306 * of one, so skip it.
4308 if (!buffer_uptodate(bitmap_bh)) {
4309 brelse(bitmap_bh);
4310 goto make_io;
4312 for (i = start; i < start + inodes_per_block; i++) {
4313 if (i == inode_offset)
4314 continue;
4315 if (ext4_test_bit(i, bitmap_bh->b_data))
4316 break;
4318 brelse(bitmap_bh);
4319 if (i == start + inodes_per_block) {
4320 /* all other inodes are free, so skip I/O */
4321 memset(bh->b_data, 0, bh->b_size);
4322 set_buffer_uptodate(bh);
4323 unlock_buffer(bh);
4324 goto has_buffer;
4328 make_io:
4330 * If we need to do any I/O, try to pre-readahead extra
4331 * blocks from the inode table.
4333 blk_start_plug(&plug);
4334 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4335 ext4_fsblk_t b, end, table;
4336 unsigned num;
4337 __u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
4339 table = ext4_inode_table(sb, gdp);
4340 /* s_inode_readahead_blks is always a power of 2 */
4341 b = block & ~((ext4_fsblk_t) ra_blks - 1);
4342 if (table > b)
4343 b = table;
4344 end = b + ra_blks;
4345 num = EXT4_INODES_PER_GROUP(sb);
4346 if (ext4_has_group_desc_csum(sb))
4347 num -= ext4_itable_unused_count(sb, gdp);
4348 table += num / inodes_per_block;
4349 if (end > table)
4350 end = table;
4351 while (b <= end)
4352 sb_breadahead(sb, b++);
4356 * There are other valid inodes in the buffer, this inode
4357 * has in-inode xattrs, or we don't have this inode in memory.
4358 * Read the block from disk.
4360 trace_ext4_load_inode(inode);
4361 get_bh(bh);
4362 bh->b_end_io = end_buffer_read_sync;
4363 submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
4364 blk_finish_plug(&plug);
4365 wait_on_buffer(bh);
4366 if (!buffer_uptodate(bh)) {
4367 simulate_eio:
4368 ext4_set_errno(inode->i_sb, EIO);
4369 EXT4_ERROR_INODE_BLOCK(inode, block,
4370 "unable to read itable block");
4371 brelse(bh);
4372 return -EIO;
4375 has_buffer:
4376 iloc->bh = bh;
4377 return 0;
4380 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4382 /* We have all inode data except xattrs in memory here. */
4383 return __ext4_get_inode_loc(inode, iloc,
4384 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4387 static bool ext4_should_use_dax(struct inode *inode)
4389 if (!test_opt(inode->i_sb, DAX))
4390 return false;
4391 if (!S_ISREG(inode->i_mode))
4392 return false;
4393 if (ext4_should_journal_data(inode))
4394 return false;
4395 if (ext4_has_inline_data(inode))
4396 return false;
4397 if (ext4_test_inode_flag(inode, EXT4_INODE_ENCRYPT))
4398 return false;
4399 if (ext4_test_inode_flag(inode, EXT4_INODE_VERITY))
4400 return false;
4401 return true;
4404 void ext4_set_inode_flags(struct inode *inode)
4406 unsigned int flags = EXT4_I(inode)->i_flags;
4407 unsigned int new_fl = 0;
4409 if (flags & EXT4_SYNC_FL)
4410 new_fl |= S_SYNC;
4411 if (flags & EXT4_APPEND_FL)
4412 new_fl |= S_APPEND;
4413 if (flags & EXT4_IMMUTABLE_FL)
4414 new_fl |= S_IMMUTABLE;
4415 if (flags & EXT4_NOATIME_FL)
4416 new_fl |= S_NOATIME;
4417 if (flags & EXT4_DIRSYNC_FL)
4418 new_fl |= S_DIRSYNC;
4419 if (ext4_should_use_dax(inode))
4420 new_fl |= S_DAX;
4421 if (flags & EXT4_ENCRYPT_FL)
4422 new_fl |= S_ENCRYPTED;
4423 if (flags & EXT4_CASEFOLD_FL)
4424 new_fl |= S_CASEFOLD;
4425 if (flags & EXT4_VERITY_FL)
4426 new_fl |= S_VERITY;
4427 inode_set_flags(inode, new_fl,
4428 S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX|
4429 S_ENCRYPTED|S_CASEFOLD|S_VERITY);
4432 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4433 struct ext4_inode_info *ei)
4435 blkcnt_t i_blocks ;
4436 struct inode *inode = &(ei->vfs_inode);
4437 struct super_block *sb = inode->i_sb;
4439 if (ext4_has_feature_huge_file(sb)) {
4440 /* we are using combined 48 bit field */
4441 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4442 le32_to_cpu(raw_inode->i_blocks_lo);
4443 if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
4444 /* i_blocks represent file system block size */
4445 return i_blocks << (inode->i_blkbits - 9);
4446 } else {
4447 return i_blocks;
4449 } else {
4450 return le32_to_cpu(raw_inode->i_blocks_lo);
4454 static inline int ext4_iget_extra_inode(struct inode *inode,
4455 struct ext4_inode *raw_inode,
4456 struct ext4_inode_info *ei)
4458 __le32 *magic = (void *)raw_inode +
4459 EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
4461 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
4462 EXT4_INODE_SIZE(inode->i_sb) &&
4463 *magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
4464 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
4465 return ext4_find_inline_data_nolock(inode);
4466 } else
4467 EXT4_I(inode)->i_inline_off = 0;
4468 return 0;
4471 int ext4_get_projid(struct inode *inode, kprojid_t *projid)
4473 if (!ext4_has_feature_project(inode->i_sb))
4474 return -EOPNOTSUPP;
4475 *projid = EXT4_I(inode)->i_projid;
4476 return 0;
4480 * ext4 has self-managed i_version for ea inodes, it stores the lower 32bit of
4481 * refcount in i_version, so use raw values if inode has EXT4_EA_INODE_FL flag
4482 * set.
4484 static inline void ext4_inode_set_iversion_queried(struct inode *inode, u64 val)
4486 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4487 inode_set_iversion_raw(inode, val);
4488 else
4489 inode_set_iversion_queried(inode, val);
4491 static inline u64 ext4_inode_peek_iversion(const struct inode *inode)
4493 if (unlikely(EXT4_I(inode)->i_flags & EXT4_EA_INODE_FL))
4494 return inode_peek_iversion_raw(inode);
4495 else
4496 return inode_peek_iversion(inode);
4499 struct inode *__ext4_iget(struct super_block *sb, unsigned long ino,
4500 ext4_iget_flags flags, const char *function,
4501 unsigned int line)
4503 struct ext4_iloc iloc;
4504 struct ext4_inode *raw_inode;
4505 struct ext4_inode_info *ei;
4506 struct inode *inode;
4507 journal_t *journal = EXT4_SB(sb)->s_journal;
4508 long ret;
4509 loff_t size;
4510 int block;
4511 uid_t i_uid;
4512 gid_t i_gid;
4513 projid_t i_projid;
4515 if ((!(flags & EXT4_IGET_SPECIAL) &&
4516 (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)) ||
4517 (ino < EXT4_ROOT_INO) ||
4518 (ino > le32_to_cpu(EXT4_SB(sb)->s_es->s_inodes_count))) {
4519 if (flags & EXT4_IGET_HANDLE)
4520 return ERR_PTR(-ESTALE);
4521 __ext4_error(sb, function, line,
4522 "inode #%lu: comm %s: iget: illegal inode #",
4523 ino, current->comm);
4524 return ERR_PTR(-EFSCORRUPTED);
4527 inode = iget_locked(sb, ino);
4528 if (!inode)
4529 return ERR_PTR(-ENOMEM);
4530 if (!(inode->i_state & I_NEW))
4531 return inode;
4533 ei = EXT4_I(inode);
4534 iloc.bh = NULL;
4536 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4537 if (ret < 0)
4538 goto bad_inode;
4539 raw_inode = ext4_raw_inode(&iloc);
4541 if ((ino == EXT4_ROOT_INO) && (raw_inode->i_links_count == 0)) {
4542 ext4_error_inode(inode, function, line, 0,
4543 "iget: root inode unallocated");
4544 ret = -EFSCORRUPTED;
4545 goto bad_inode;
4548 if ((flags & EXT4_IGET_HANDLE) &&
4549 (raw_inode->i_links_count == 0) && (raw_inode->i_mode == 0)) {
4550 ret = -ESTALE;
4551 goto bad_inode;
4554 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4555 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
4556 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
4557 EXT4_INODE_SIZE(inode->i_sb) ||
4558 (ei->i_extra_isize & 3)) {
4559 ext4_error_inode(inode, function, line, 0,
4560 "iget: bad extra_isize %u "
4561 "(inode size %u)",
4562 ei->i_extra_isize,
4563 EXT4_INODE_SIZE(inode->i_sb));
4564 ret = -EFSCORRUPTED;
4565 goto bad_inode;
4567 } else
4568 ei->i_extra_isize = 0;
4570 /* Precompute checksum seed for inode metadata */
4571 if (ext4_has_metadata_csum(sb)) {
4572 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
4573 __u32 csum;
4574 __le32 inum = cpu_to_le32(inode->i_ino);
4575 __le32 gen = raw_inode->i_generation;
4576 csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
4577 sizeof(inum));
4578 ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
4579 sizeof(gen));
4582 if (!ext4_inode_csum_verify(inode, raw_inode, ei) ||
4583 ext4_simulate_fail(sb, EXT4_SIM_INODE_CRC)) {
4584 ext4_set_errno(inode->i_sb, EFSBADCRC);
4585 ext4_error_inode(inode, function, line, 0,
4586 "iget: checksum invalid");
4587 ret = -EFSBADCRC;
4588 goto bad_inode;
4591 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4592 i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4593 i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4594 if (ext4_has_feature_project(sb) &&
4595 EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
4596 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
4597 i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
4598 else
4599 i_projid = EXT4_DEF_PROJID;
4601 if (!(test_opt(inode->i_sb, NO_UID32))) {
4602 i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4603 i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4605 i_uid_write(inode, i_uid);
4606 i_gid_write(inode, i_gid);
4607 ei->i_projid = make_kprojid(&init_user_ns, i_projid);
4608 set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
4610 ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
4611 ei->i_inline_off = 0;
4612 ei->i_dir_start_lookup = 0;
4613 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4614 /* We now have enough fields to check if the inode was active or not.
4615 * This is needed because nfsd might try to access dead inodes
4616 * the test is that same one that e2fsck uses
4617 * NeilBrown 1999oct15
4619 if (inode->i_nlink == 0) {
4620 if ((inode->i_mode == 0 ||
4621 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
4622 ino != EXT4_BOOT_LOADER_INO) {
4623 /* this inode is deleted */
4624 ret = -ESTALE;
4625 goto bad_inode;
4627 /* The only unlinked inodes we let through here have
4628 * valid i_mode and are being read by the orphan
4629 * recovery code: that's fine, we're about to complete
4630 * the process of deleting those.
4631 * OR it is the EXT4_BOOT_LOADER_INO which is
4632 * not initialized on a new filesystem. */
4634 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
4635 ext4_set_inode_flags(inode);
4636 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
4637 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
4638 if (ext4_has_feature_64bit(sb))
4639 ei->i_file_acl |=
4640 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
4641 inode->i_size = ext4_isize(sb, raw_inode);
4642 if ((size = i_size_read(inode)) < 0) {
4643 ext4_error_inode(inode, function, line, 0,
4644 "iget: bad i_size value: %lld", size);
4645 ret = -EFSCORRUPTED;
4646 goto bad_inode;
4648 ei->i_disksize = inode->i_size;
4649 #ifdef CONFIG_QUOTA
4650 ei->i_reserved_quota = 0;
4651 #endif
4652 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
4653 ei->i_block_group = iloc.block_group;
4654 ei->i_last_alloc_group = ~0;
4656 * NOTE! The in-memory inode i_data array is in little-endian order
4657 * even on big-endian machines: we do NOT byteswap the block numbers!
4659 for (block = 0; block < EXT4_N_BLOCKS; block++)
4660 ei->i_data[block] = raw_inode->i_block[block];
4661 INIT_LIST_HEAD(&ei->i_orphan);
4664 * Set transaction id's of transactions that have to be committed
4665 * to finish f[data]sync. We set them to currently running transaction
4666 * as we cannot be sure that the inode or some of its metadata isn't
4667 * part of the transaction - the inode could have been reclaimed and
4668 * now it is reread from disk.
4670 if (journal) {
4671 transaction_t *transaction;
4672 tid_t tid;
4674 read_lock(&journal->j_state_lock);
4675 if (journal->j_running_transaction)
4676 transaction = journal->j_running_transaction;
4677 else
4678 transaction = journal->j_committing_transaction;
4679 if (transaction)
4680 tid = transaction->t_tid;
4681 else
4682 tid = journal->j_commit_sequence;
4683 read_unlock(&journal->j_state_lock);
4684 ei->i_sync_tid = tid;
4685 ei->i_datasync_tid = tid;
4688 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4689 if (ei->i_extra_isize == 0) {
4690 /* The extra space is currently unused. Use it. */
4691 BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
4692 ei->i_extra_isize = sizeof(struct ext4_inode) -
4693 EXT4_GOOD_OLD_INODE_SIZE;
4694 } else {
4695 ret = ext4_iget_extra_inode(inode, raw_inode, ei);
4696 if (ret)
4697 goto bad_inode;
4701 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
4702 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
4703 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
4704 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
4706 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
4707 u64 ivers = le32_to_cpu(raw_inode->i_disk_version);
4709 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
4710 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
4711 ivers |=
4712 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
4714 ext4_inode_set_iversion_queried(inode, ivers);
4717 ret = 0;
4718 if (ei->i_file_acl &&
4719 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
4720 ext4_error_inode(inode, function, line, 0,
4721 "iget: bad extended attribute block %llu",
4722 ei->i_file_acl);
4723 ret = -EFSCORRUPTED;
4724 goto bad_inode;
4725 } else if (!ext4_has_inline_data(inode)) {
4726 /* validate the block references in the inode */
4727 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
4728 (S_ISLNK(inode->i_mode) &&
4729 !ext4_inode_is_fast_symlink(inode))) {
4730 if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
4731 ret = ext4_ext_check_inode(inode);
4732 else
4733 ret = ext4_ind_check_inode(inode);
4736 if (ret)
4737 goto bad_inode;
4739 if (S_ISREG(inode->i_mode)) {
4740 inode->i_op = &ext4_file_inode_operations;
4741 inode->i_fop = &ext4_file_operations;
4742 ext4_set_aops(inode);
4743 } else if (S_ISDIR(inode->i_mode)) {
4744 inode->i_op = &ext4_dir_inode_operations;
4745 inode->i_fop = &ext4_dir_operations;
4746 } else if (S_ISLNK(inode->i_mode)) {
4747 /* VFS does not allow setting these so must be corruption */
4748 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) {
4749 ext4_error_inode(inode, function, line, 0,
4750 "iget: immutable or append flags "
4751 "not allowed on symlinks");
4752 ret = -EFSCORRUPTED;
4753 goto bad_inode;
4755 if (IS_ENCRYPTED(inode)) {
4756 inode->i_op = &ext4_encrypted_symlink_inode_operations;
4757 ext4_set_aops(inode);
4758 } else if (ext4_inode_is_fast_symlink(inode)) {
4759 inode->i_link = (char *)ei->i_data;
4760 inode->i_op = &ext4_fast_symlink_inode_operations;
4761 nd_terminate_link(ei->i_data, inode->i_size,
4762 sizeof(ei->i_data) - 1);
4763 } else {
4764 inode->i_op = &ext4_symlink_inode_operations;
4765 ext4_set_aops(inode);
4767 inode_nohighmem(inode);
4768 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
4769 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
4770 inode->i_op = &ext4_special_inode_operations;
4771 if (raw_inode->i_block[0])
4772 init_special_inode(inode, inode->i_mode,
4773 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
4774 else
4775 init_special_inode(inode, inode->i_mode,
4776 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
4777 } else if (ino == EXT4_BOOT_LOADER_INO) {
4778 make_bad_inode(inode);
4779 } else {
4780 ret = -EFSCORRUPTED;
4781 ext4_error_inode(inode, function, line, 0,
4782 "iget: bogus i_mode (%o)", inode->i_mode);
4783 goto bad_inode;
4785 if (IS_CASEFOLDED(inode) && !ext4_has_feature_casefold(inode->i_sb))
4786 ext4_error_inode(inode, function, line, 0,
4787 "casefold flag without casefold feature");
4788 brelse(iloc.bh);
4790 unlock_new_inode(inode);
4791 return inode;
4793 bad_inode:
4794 brelse(iloc.bh);
4795 iget_failed(inode);
4796 return ERR_PTR(ret);
4799 static int ext4_inode_blocks_set(handle_t *handle,
4800 struct ext4_inode *raw_inode,
4801 struct ext4_inode_info *ei)
4803 struct inode *inode = &(ei->vfs_inode);
4804 u64 i_blocks = inode->i_blocks;
4805 struct super_block *sb = inode->i_sb;
4807 if (i_blocks <= ~0U) {
4809 * i_blocks can be represented in a 32 bit variable
4810 * as multiple of 512 bytes
4812 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4813 raw_inode->i_blocks_high = 0;
4814 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4815 return 0;
4817 if (!ext4_has_feature_huge_file(sb))
4818 return -EFBIG;
4820 if (i_blocks <= 0xffffffffffffULL) {
4822 * i_blocks can be represented in a 48 bit variable
4823 * as multiple of 512 bytes
4825 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4826 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4827 ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4828 } else {
4829 ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
4830 /* i_block is stored in file system block size */
4831 i_blocks = i_blocks >> (inode->i_blkbits - 9);
4832 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
4833 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
4835 return 0;
4838 struct other_inode {
4839 unsigned long orig_ino;
4840 struct ext4_inode *raw_inode;
4843 static int other_inode_match(struct inode * inode, unsigned long ino,
4844 void *data)
4846 struct other_inode *oi = (struct other_inode *) data;
4848 if ((inode->i_ino != ino) ||
4849 (inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4850 I_DIRTY_INODE)) ||
4851 ((inode->i_state & I_DIRTY_TIME) == 0))
4852 return 0;
4853 spin_lock(&inode->i_lock);
4854 if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
4855 I_DIRTY_INODE)) == 0) &&
4856 (inode->i_state & I_DIRTY_TIME)) {
4857 struct ext4_inode_info *ei = EXT4_I(inode);
4859 inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
4860 spin_unlock(&inode->i_lock);
4862 spin_lock(&ei->i_raw_lock);
4863 EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
4864 EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
4865 EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
4866 ext4_inode_csum_set(inode, oi->raw_inode, ei);
4867 spin_unlock(&ei->i_raw_lock);
4868 trace_ext4_other_inode_update_time(inode, oi->orig_ino);
4869 return -1;
4871 spin_unlock(&inode->i_lock);
4872 return -1;
4876 * Opportunistically update the other time fields for other inodes in
4877 * the same inode table block.
4879 static void ext4_update_other_inodes_time(struct super_block *sb,
4880 unsigned long orig_ino, char *buf)
4882 struct other_inode oi;
4883 unsigned long ino;
4884 int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
4885 int inode_size = EXT4_INODE_SIZE(sb);
4887 oi.orig_ino = orig_ino;
4889 * Calculate the first inode in the inode table block. Inode
4890 * numbers are one-based. That is, the first inode in a block
4891 * (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
4893 ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
4894 for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
4895 if (ino == orig_ino)
4896 continue;
4897 oi.raw_inode = (struct ext4_inode *) buf;
4898 (void) find_inode_nowait(sb, ino, other_inode_match, &oi);
4903 * Post the struct inode info into an on-disk inode location in the
4904 * buffer-cache. This gobbles the caller's reference to the
4905 * buffer_head in the inode location struct.
4907 * The caller must have write access to iloc->bh.
4909 static int ext4_do_update_inode(handle_t *handle,
4910 struct inode *inode,
4911 struct ext4_iloc *iloc)
4913 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
4914 struct ext4_inode_info *ei = EXT4_I(inode);
4915 struct buffer_head *bh = iloc->bh;
4916 struct super_block *sb = inode->i_sb;
4917 int err = 0, rc, block;
4918 int need_datasync = 0, set_large_file = 0;
4919 uid_t i_uid;
4920 gid_t i_gid;
4921 projid_t i_projid;
4923 spin_lock(&ei->i_raw_lock);
4925 /* For fields not tracked in the in-memory inode,
4926 * initialise them to zero for new inodes. */
4927 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
4928 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
4930 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
4931 i_uid = i_uid_read(inode);
4932 i_gid = i_gid_read(inode);
4933 i_projid = from_kprojid(&init_user_ns, ei->i_projid);
4934 if (!(test_opt(inode->i_sb, NO_UID32))) {
4935 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
4936 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
4938 * Fix up interoperability with old kernels. Otherwise, old inodes get
4939 * re-used with the upper 16 bits of the uid/gid intact
4941 if (ei->i_dtime && list_empty(&ei->i_orphan)) {
4942 raw_inode->i_uid_high = 0;
4943 raw_inode->i_gid_high = 0;
4944 } else {
4945 raw_inode->i_uid_high =
4946 cpu_to_le16(high_16_bits(i_uid));
4947 raw_inode->i_gid_high =
4948 cpu_to_le16(high_16_bits(i_gid));
4950 } else {
4951 raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
4952 raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
4953 raw_inode->i_uid_high = 0;
4954 raw_inode->i_gid_high = 0;
4956 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
4958 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
4959 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
4960 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
4961 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
4963 err = ext4_inode_blocks_set(handle, raw_inode, ei);
4964 if (err) {
4965 spin_unlock(&ei->i_raw_lock);
4966 goto out_brelse;
4968 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
4969 raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
4970 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
4971 raw_inode->i_file_acl_high =
4972 cpu_to_le16(ei->i_file_acl >> 32);
4973 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
4974 if (ei->i_disksize != ext4_isize(inode->i_sb, raw_inode)) {
4975 ext4_isize_set(raw_inode, ei->i_disksize);
4976 need_datasync = 1;
4978 if (ei->i_disksize > 0x7fffffffULL) {
4979 if (!ext4_has_feature_large_file(sb) ||
4980 EXT4_SB(sb)->s_es->s_rev_level ==
4981 cpu_to_le32(EXT4_GOOD_OLD_REV))
4982 set_large_file = 1;
4984 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
4985 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
4986 if (old_valid_dev(inode->i_rdev)) {
4987 raw_inode->i_block[0] =
4988 cpu_to_le32(old_encode_dev(inode->i_rdev));
4989 raw_inode->i_block[1] = 0;
4990 } else {
4991 raw_inode->i_block[0] = 0;
4992 raw_inode->i_block[1] =
4993 cpu_to_le32(new_encode_dev(inode->i_rdev));
4994 raw_inode->i_block[2] = 0;
4996 } else if (!ext4_has_inline_data(inode)) {
4997 for (block = 0; block < EXT4_N_BLOCKS; block++)
4998 raw_inode->i_block[block] = ei->i_data[block];
5001 if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
5002 u64 ivers = ext4_inode_peek_iversion(inode);
5004 raw_inode->i_disk_version = cpu_to_le32(ivers);
5005 if (ei->i_extra_isize) {
5006 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5007 raw_inode->i_version_hi =
5008 cpu_to_le32(ivers >> 32);
5009 raw_inode->i_extra_isize =
5010 cpu_to_le16(ei->i_extra_isize);
5014 BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
5015 i_projid != EXT4_DEF_PROJID);
5017 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
5018 EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
5019 raw_inode->i_projid = cpu_to_le32(i_projid);
5021 ext4_inode_csum_set(inode, raw_inode, ei);
5022 spin_unlock(&ei->i_raw_lock);
5023 if (inode->i_sb->s_flags & SB_LAZYTIME)
5024 ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
5025 bh->b_data);
5027 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5028 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5029 if (!err)
5030 err = rc;
5031 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5032 if (set_large_file) {
5033 BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
5034 err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
5035 if (err)
5036 goto out_brelse;
5037 ext4_set_feature_large_file(sb);
5038 ext4_handle_sync(handle);
5039 err = ext4_handle_dirty_super(handle, sb);
5041 ext4_update_inode_fsync_trans(handle, inode, need_datasync);
5042 out_brelse:
5043 brelse(bh);
5044 ext4_std_error(inode->i_sb, err);
5045 return err;
5049 * ext4_write_inode()
5051 * We are called from a few places:
5053 * - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
5054 * Here, there will be no transaction running. We wait for any running
5055 * transaction to commit.
5057 * - Within flush work (sys_sync(), kupdate and such).
5058 * We wait on commit, if told to.
5060 * - Within iput_final() -> write_inode_now()
5061 * We wait on commit, if told to.
5063 * In all cases it is actually safe for us to return without doing anything,
5064 * because the inode has been copied into a raw inode buffer in
5065 * ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
5066 * writeback.
5068 * Note that we are absolutely dependent upon all inode dirtiers doing the
5069 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5070 * which we are interested.
5072 * It would be a bug for them to not do this. The code:
5074 * mark_inode_dirty(inode)
5075 * stuff();
5076 * inode->i_size = expr;
5078 * is in error because write_inode() could occur while `stuff()' is running,
5079 * and the new i_size will be lost. Plus the inode will no longer be on the
5080 * superblock's dirty inode list.
5082 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5084 int err;
5086 if (WARN_ON_ONCE(current->flags & PF_MEMALLOC) ||
5087 sb_rdonly(inode->i_sb))
5088 return 0;
5090 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5091 return -EIO;
5093 if (EXT4_SB(inode->i_sb)->s_journal) {
5094 if (ext4_journal_current_handle()) {
5095 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5096 dump_stack();
5097 return -EIO;
5101 * No need to force transaction in WB_SYNC_NONE mode. Also
5102 * ext4_sync_fs() will force the commit after everything is
5103 * written.
5105 if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
5106 return 0;
5108 err = jbd2_complete_transaction(EXT4_SB(inode->i_sb)->s_journal,
5109 EXT4_I(inode)->i_sync_tid);
5110 } else {
5111 struct ext4_iloc iloc;
5113 err = __ext4_get_inode_loc(inode, &iloc, 0);
5114 if (err)
5115 return err;
5117 * sync(2) will flush the whole buffer cache. No need to do
5118 * it here separately for each inode.
5120 if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
5121 sync_dirty_buffer(iloc.bh);
5122 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5123 ext4_set_errno(inode->i_sb, EIO);
5124 EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
5125 "IO error syncing inode");
5126 err = -EIO;
5128 brelse(iloc.bh);
5130 return err;
5134 * In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
5135 * buffers that are attached to a page stradding i_size and are undergoing
5136 * commit. In that case we have to wait for commit to finish and try again.
5138 static void ext4_wait_for_tail_page_commit(struct inode *inode)
5140 struct page *page;
5141 unsigned offset;
5142 journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
5143 tid_t commit_tid = 0;
5144 int ret;
5146 offset = inode->i_size & (PAGE_SIZE - 1);
5148 * If the page is fully truncated, we don't need to wait for any commit
5149 * (and we even should not as __ext4_journalled_invalidatepage() may
5150 * strip all buffers from the page but keep the page dirty which can then
5151 * confuse e.g. concurrent ext4_writepage() seeing dirty page without
5152 * buffers). Also we don't need to wait for any commit if all buffers in
5153 * the page remain valid. This is most beneficial for the common case of
5154 * blocksize == PAGESIZE.
5156 if (!offset || offset > (PAGE_SIZE - i_blocksize(inode)))
5157 return;
5158 while (1) {
5159 page = find_lock_page(inode->i_mapping,
5160 inode->i_size >> PAGE_SHIFT);
5161 if (!page)
5162 return;
5163 ret = __ext4_journalled_invalidatepage(page, offset,
5164 PAGE_SIZE - offset);
5165 unlock_page(page);
5166 put_page(page);
5167 if (ret != -EBUSY)
5168 return;
5169 commit_tid = 0;
5170 read_lock(&journal->j_state_lock);
5171 if (journal->j_committing_transaction)
5172 commit_tid = journal->j_committing_transaction->t_tid;
5173 read_unlock(&journal->j_state_lock);
5174 if (commit_tid)
5175 jbd2_log_wait_commit(journal, commit_tid);
5180 * ext4_setattr()
5182 * Called from notify_change.
5184 * We want to trap VFS attempts to truncate the file as soon as
5185 * possible. In particular, we want to make sure that when the VFS
5186 * shrinks i_size, we put the inode on the orphan list and modify
5187 * i_disksize immediately, so that during the subsequent flushing of
5188 * dirty pages and freeing of disk blocks, we can guarantee that any
5189 * commit will leave the blocks being flushed in an unused state on
5190 * disk. (On recovery, the inode will get truncated and the blocks will
5191 * be freed, so we have a strong guarantee that no future commit will
5192 * leave these blocks visible to the user.)
5194 * Another thing we have to assure is that if we are in ordered mode
5195 * and inode is still attached to the committing transaction, we must
5196 * we start writeout of all the dirty pages which are being truncated.
5197 * This way we are sure that all the data written in the previous
5198 * transaction are already on disk (truncate waits for pages under
5199 * writeback).
5201 * Called with inode->i_mutex down.
5203 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5205 struct inode *inode = d_inode(dentry);
5206 int error, rc = 0;
5207 int orphan = 0;
5208 const unsigned int ia_valid = attr->ia_valid;
5210 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5211 return -EIO;
5213 if (unlikely(IS_IMMUTABLE(inode)))
5214 return -EPERM;
5216 if (unlikely(IS_APPEND(inode) &&
5217 (ia_valid & (ATTR_MODE | ATTR_UID |
5218 ATTR_GID | ATTR_TIMES_SET))))
5219 return -EPERM;
5221 error = setattr_prepare(dentry, attr);
5222 if (error)
5223 return error;
5225 error = fscrypt_prepare_setattr(dentry, attr);
5226 if (error)
5227 return error;
5229 error = fsverity_prepare_setattr(dentry, attr);
5230 if (error)
5231 return error;
5233 if (is_quota_modification(inode, attr)) {
5234 error = dquot_initialize(inode);
5235 if (error)
5236 return error;
5238 if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
5239 (ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
5240 handle_t *handle;
5242 /* (user+group)*(old+new) structure, inode write (sb,
5243 * inode block, ? - but truncate inode update has it) */
5244 handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
5245 (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
5246 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
5247 if (IS_ERR(handle)) {
5248 error = PTR_ERR(handle);
5249 goto err_out;
5252 /* dquot_transfer() calls back ext4_get_inode_usage() which
5253 * counts xattr inode references.
5255 down_read(&EXT4_I(inode)->xattr_sem);
5256 error = dquot_transfer(inode, attr);
5257 up_read(&EXT4_I(inode)->xattr_sem);
5259 if (error) {
5260 ext4_journal_stop(handle);
5261 return error;
5263 /* Update corresponding info in inode so that everything is in
5264 * one transaction */
5265 if (attr->ia_valid & ATTR_UID)
5266 inode->i_uid = attr->ia_uid;
5267 if (attr->ia_valid & ATTR_GID)
5268 inode->i_gid = attr->ia_gid;
5269 error = ext4_mark_inode_dirty(handle, inode);
5270 ext4_journal_stop(handle);
5273 if (attr->ia_valid & ATTR_SIZE) {
5274 handle_t *handle;
5275 loff_t oldsize = inode->i_size;
5276 int shrink = (attr->ia_size < inode->i_size);
5278 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
5279 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5281 if (attr->ia_size > sbi->s_bitmap_maxbytes)
5282 return -EFBIG;
5284 if (!S_ISREG(inode->i_mode))
5285 return -EINVAL;
5287 if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
5288 inode_inc_iversion(inode);
5290 if (shrink) {
5291 if (ext4_should_order_data(inode)) {
5292 error = ext4_begin_ordered_truncate(inode,
5293 attr->ia_size);
5294 if (error)
5295 goto err_out;
5298 * Blocks are going to be removed from the inode. Wait
5299 * for dio in flight.
5301 inode_dio_wait(inode);
5304 down_write(&EXT4_I(inode)->i_mmap_sem);
5306 rc = ext4_break_layouts(inode);
5307 if (rc) {
5308 up_write(&EXT4_I(inode)->i_mmap_sem);
5309 return rc;
5312 if (attr->ia_size != inode->i_size) {
5313 handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
5314 if (IS_ERR(handle)) {
5315 error = PTR_ERR(handle);
5316 goto out_mmap_sem;
5318 if (ext4_handle_valid(handle) && shrink) {
5319 error = ext4_orphan_add(handle, inode);
5320 orphan = 1;
5323 * Update c/mtime on truncate up, ext4_truncate() will
5324 * update c/mtime in shrink case below
5326 if (!shrink) {
5327 inode->i_mtime = current_time(inode);
5328 inode->i_ctime = inode->i_mtime;
5330 down_write(&EXT4_I(inode)->i_data_sem);
5331 EXT4_I(inode)->i_disksize = attr->ia_size;
5332 rc = ext4_mark_inode_dirty(handle, inode);
5333 if (!error)
5334 error = rc;
5336 * We have to update i_size under i_data_sem together
5337 * with i_disksize to avoid races with writeback code
5338 * running ext4_wb_update_i_disksize().
5340 if (!error)
5341 i_size_write(inode, attr->ia_size);
5342 up_write(&EXT4_I(inode)->i_data_sem);
5343 ext4_journal_stop(handle);
5344 if (error)
5345 goto out_mmap_sem;
5346 if (!shrink) {
5347 pagecache_isize_extended(inode, oldsize,
5348 inode->i_size);
5349 } else if (ext4_should_journal_data(inode)) {
5350 ext4_wait_for_tail_page_commit(inode);
5355 * Truncate pagecache after we've waited for commit
5356 * in data=journal mode to make pages freeable.
5358 truncate_pagecache(inode, inode->i_size);
5360 * Call ext4_truncate() even if i_size didn't change to
5361 * truncate possible preallocated blocks.
5363 if (attr->ia_size <= oldsize) {
5364 rc = ext4_truncate(inode);
5365 if (rc)
5366 error = rc;
5368 out_mmap_sem:
5369 up_write(&EXT4_I(inode)->i_mmap_sem);
5372 if (!error) {
5373 setattr_copy(inode, attr);
5374 mark_inode_dirty(inode);
5378 * If the call to ext4_truncate failed to get a transaction handle at
5379 * all, we need to clean up the in-core orphan list manually.
5381 if (orphan && inode->i_nlink)
5382 ext4_orphan_del(NULL, inode);
5384 if (!error && (ia_valid & ATTR_MODE))
5385 rc = posix_acl_chmod(inode, inode->i_mode);
5387 err_out:
5388 ext4_std_error(inode->i_sb, error);
5389 if (!error)
5390 error = rc;
5391 return error;
5394 int ext4_getattr(const struct path *path, struct kstat *stat,
5395 u32 request_mask, unsigned int query_flags)
5397 struct inode *inode = d_inode(path->dentry);
5398 struct ext4_inode *raw_inode;
5399 struct ext4_inode_info *ei = EXT4_I(inode);
5400 unsigned int flags;
5402 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_crtime)) {
5403 stat->result_mask |= STATX_BTIME;
5404 stat->btime.tv_sec = ei->i_crtime.tv_sec;
5405 stat->btime.tv_nsec = ei->i_crtime.tv_nsec;
5408 flags = ei->i_flags & EXT4_FL_USER_VISIBLE;
5409 if (flags & EXT4_APPEND_FL)
5410 stat->attributes |= STATX_ATTR_APPEND;
5411 if (flags & EXT4_COMPR_FL)
5412 stat->attributes |= STATX_ATTR_COMPRESSED;
5413 if (flags & EXT4_ENCRYPT_FL)
5414 stat->attributes |= STATX_ATTR_ENCRYPTED;
5415 if (flags & EXT4_IMMUTABLE_FL)
5416 stat->attributes |= STATX_ATTR_IMMUTABLE;
5417 if (flags & EXT4_NODUMP_FL)
5418 stat->attributes |= STATX_ATTR_NODUMP;
5419 if (flags & EXT4_VERITY_FL)
5420 stat->attributes |= STATX_ATTR_VERITY;
5422 stat->attributes_mask |= (STATX_ATTR_APPEND |
5423 STATX_ATTR_COMPRESSED |
5424 STATX_ATTR_ENCRYPTED |
5425 STATX_ATTR_IMMUTABLE |
5426 STATX_ATTR_NODUMP |
5427 STATX_ATTR_VERITY);
5429 generic_fillattr(inode, stat);
5430 return 0;
5433 int ext4_file_getattr(const struct path *path, struct kstat *stat,
5434 u32 request_mask, unsigned int query_flags)
5436 struct inode *inode = d_inode(path->dentry);
5437 u64 delalloc_blocks;
5439 ext4_getattr(path, stat, request_mask, query_flags);
5442 * If there is inline data in the inode, the inode will normally not
5443 * have data blocks allocated (it may have an external xattr block).
5444 * Report at least one sector for such files, so tools like tar, rsync,
5445 * others don't incorrectly think the file is completely sparse.
5447 if (unlikely(ext4_has_inline_data(inode)))
5448 stat->blocks += (stat->size + 511) >> 9;
5451 * We can't update i_blocks if the block allocation is delayed
5452 * otherwise in the case of system crash before the real block
5453 * allocation is done, we will have i_blocks inconsistent with
5454 * on-disk file blocks.
5455 * We always keep i_blocks updated together with real
5456 * allocation. But to not confuse with user, stat
5457 * will return the blocks that include the delayed allocation
5458 * blocks for this file.
5460 delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
5461 EXT4_I(inode)->i_reserved_data_blocks);
5462 stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
5463 return 0;
5466 static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
5467 int pextents)
5469 if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
5470 return ext4_ind_trans_blocks(inode, lblocks);
5471 return ext4_ext_index_trans_blocks(inode, pextents);
5475 * Account for index blocks, block groups bitmaps and block group
5476 * descriptor blocks if modify datablocks and index blocks
5477 * worse case, the indexs blocks spread over different block groups
5479 * If datablocks are discontiguous, they are possible to spread over
5480 * different block groups too. If they are contiguous, with flexbg,
5481 * they could still across block group boundary.
5483 * Also account for superblock, inode, quota and xattr blocks
5485 static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
5486 int pextents)
5488 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5489 int gdpblocks;
5490 int idxblocks;
5491 int ret = 0;
5494 * How many index blocks need to touch to map @lblocks logical blocks
5495 * to @pextents physical extents?
5497 idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
5499 ret = idxblocks;
5502 * Now let's see how many group bitmaps and group descriptors need
5503 * to account
5505 groups = idxblocks + pextents;
5506 gdpblocks = groups;
5507 if (groups > ngroups)
5508 groups = ngroups;
5509 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5510 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5512 /* bitmaps and block group descriptor blocks */
5513 ret += groups + gdpblocks;
5515 /* Blocks for super block, inode, quota and xattr blocks */
5516 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5518 return ret;
5522 * Calculate the total number of credits to reserve to fit
5523 * the modification of a single pages into a single transaction,
5524 * which may include multiple chunks of block allocations.
5526 * This could be called via ext4_write_begin()
5528 * We need to consider the worse case, when
5529 * one new block per extent.
5531 int ext4_writepage_trans_blocks(struct inode *inode)
5533 int bpp = ext4_journal_blocks_per_page(inode);
5534 int ret;
5536 ret = ext4_meta_trans_blocks(inode, bpp, bpp);
5538 /* Account for data blocks for journalled mode */
5539 if (ext4_should_journal_data(inode))
5540 ret += bpp;
5541 return ret;
5545 * Calculate the journal credits for a chunk of data modification.
5547 * This is called from DIO, fallocate or whoever calling
5548 * ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
5550 * journal buffers for data blocks are not included here, as DIO
5551 * and fallocate do no need to journal data buffers.
5553 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5555 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5559 * The caller must have previously called ext4_reserve_inode_write().
5560 * Give this, we know that the caller already has write access to iloc->bh.
5562 int ext4_mark_iloc_dirty(handle_t *handle,
5563 struct inode *inode, struct ext4_iloc *iloc)
5565 int err = 0;
5567 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb)))) {
5568 put_bh(iloc->bh);
5569 return -EIO;
5571 if (IS_I_VERSION(inode))
5572 inode_inc_iversion(inode);
5574 /* the do_update_inode consumes one bh->b_count */
5575 get_bh(iloc->bh);
5577 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5578 err = ext4_do_update_inode(handle, inode, iloc);
5579 put_bh(iloc->bh);
5580 return err;
5584 * On success, We end up with an outstanding reference count against
5585 * iloc->bh. This _must_ be cleaned up later.
5589 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5590 struct ext4_iloc *iloc)
5592 int err;
5594 if (unlikely(ext4_forced_shutdown(EXT4_SB(inode->i_sb))))
5595 return -EIO;
5597 err = ext4_get_inode_loc(inode, iloc);
5598 if (!err) {
5599 BUFFER_TRACE(iloc->bh, "get_write_access");
5600 err = ext4_journal_get_write_access(handle, iloc->bh);
5601 if (err) {
5602 brelse(iloc->bh);
5603 iloc->bh = NULL;
5606 ext4_std_error(inode->i_sb, err);
5607 return err;
5610 static int __ext4_expand_extra_isize(struct inode *inode,
5611 unsigned int new_extra_isize,
5612 struct ext4_iloc *iloc,
5613 handle_t *handle, int *no_expand)
5615 struct ext4_inode *raw_inode;
5616 struct ext4_xattr_ibody_header *header;
5617 unsigned int inode_size = EXT4_INODE_SIZE(inode->i_sb);
5618 struct ext4_inode_info *ei = EXT4_I(inode);
5619 int error;
5621 /* this was checked at iget time, but double check for good measure */
5622 if ((EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize > inode_size) ||
5623 (ei->i_extra_isize & 3)) {
5624 EXT4_ERROR_INODE(inode, "bad extra_isize %u (inode size %u)",
5625 ei->i_extra_isize,
5626 EXT4_INODE_SIZE(inode->i_sb));
5627 return -EFSCORRUPTED;
5629 if ((new_extra_isize < ei->i_extra_isize) ||
5630 (new_extra_isize < 4) ||
5631 (new_extra_isize > inode_size - EXT4_GOOD_OLD_INODE_SIZE))
5632 return -EINVAL; /* Should never happen */
5634 raw_inode = ext4_raw_inode(iloc);
5636 header = IHDR(inode, raw_inode);
5638 /* No extended attributes present */
5639 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5640 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5641 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE +
5642 EXT4_I(inode)->i_extra_isize, 0,
5643 new_extra_isize - EXT4_I(inode)->i_extra_isize);
5644 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5645 return 0;
5648 /* try to expand with EAs present */
5649 error = ext4_expand_extra_isize_ea(inode, new_extra_isize,
5650 raw_inode, handle);
5651 if (error) {
5653 * Inode size expansion failed; don't try again
5655 *no_expand = 1;
5658 return error;
5662 * Expand an inode by new_extra_isize bytes.
5663 * Returns 0 on success or negative error number on failure.
5665 static int ext4_try_to_expand_extra_isize(struct inode *inode,
5666 unsigned int new_extra_isize,
5667 struct ext4_iloc iloc,
5668 handle_t *handle)
5670 int no_expand;
5671 int error;
5673 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND))
5674 return -EOVERFLOW;
5677 * In nojournal mode, we can immediately attempt to expand
5678 * the inode. When journaled, we first need to obtain extra
5679 * buffer credits since we may write into the EA block
5680 * with this same handle. If journal_extend fails, then it will
5681 * only result in a minor loss of functionality for that inode.
5682 * If this is felt to be critical, then e2fsck should be run to
5683 * force a large enough s_min_extra_isize.
5685 if (ext4_journal_extend(handle,
5686 EXT4_DATA_TRANS_BLOCKS(inode->i_sb), 0) != 0)
5687 return -ENOSPC;
5689 if (ext4_write_trylock_xattr(inode, &no_expand) == 0)
5690 return -EBUSY;
5692 error = __ext4_expand_extra_isize(inode, new_extra_isize, &iloc,
5693 handle, &no_expand);
5694 ext4_write_unlock_xattr(inode, &no_expand);
5696 return error;
5699 int ext4_expand_extra_isize(struct inode *inode,
5700 unsigned int new_extra_isize,
5701 struct ext4_iloc *iloc)
5703 handle_t *handle;
5704 int no_expand;
5705 int error, rc;
5707 if (ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5708 brelse(iloc->bh);
5709 return -EOVERFLOW;
5712 handle = ext4_journal_start(inode, EXT4_HT_INODE,
5713 EXT4_DATA_TRANS_BLOCKS(inode->i_sb));
5714 if (IS_ERR(handle)) {
5715 error = PTR_ERR(handle);
5716 brelse(iloc->bh);
5717 return error;
5720 ext4_write_lock_xattr(inode, &no_expand);
5722 BUFFER_TRACE(iloc->bh, "get_write_access");
5723 error = ext4_journal_get_write_access(handle, iloc->bh);
5724 if (error) {
5725 brelse(iloc->bh);
5726 goto out_unlock;
5729 error = __ext4_expand_extra_isize(inode, new_extra_isize, iloc,
5730 handle, &no_expand);
5732 rc = ext4_mark_iloc_dirty(handle, inode, iloc);
5733 if (!error)
5734 error = rc;
5736 out_unlock:
5737 ext4_write_unlock_xattr(inode, &no_expand);
5738 ext4_journal_stop(handle);
5739 return error;
5743 * What we do here is to mark the in-core inode as clean with respect to inode
5744 * dirtiness (it may still be data-dirty).
5745 * This means that the in-core inode may be reaped by prune_icache
5746 * without having to perform any I/O. This is a very good thing,
5747 * because *any* task may call prune_icache - even ones which
5748 * have a transaction open against a different journal.
5750 * Is this cheating? Not really. Sure, we haven't written the
5751 * inode out, but prune_icache isn't a user-visible syncing function.
5752 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5753 * we start and wait on commits.
5755 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5757 struct ext4_iloc iloc;
5758 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5759 int err;
5761 might_sleep();
5762 trace_ext4_mark_inode_dirty(inode, _RET_IP_);
5763 err = ext4_reserve_inode_write(handle, inode, &iloc);
5764 if (err)
5765 return err;
5767 if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize)
5768 ext4_try_to_expand_extra_isize(inode, sbi->s_want_extra_isize,
5769 iloc, handle);
5771 return ext4_mark_iloc_dirty(handle, inode, &iloc);
5775 * ext4_dirty_inode() is called from __mark_inode_dirty()
5777 * We're really interested in the case where a file is being extended.
5778 * i_size has been changed by generic_commit_write() and we thus need
5779 * to include the updated inode in the current transaction.
5781 * Also, dquot_alloc_block() will always dirty the inode when blocks
5782 * are allocated to the file.
5784 * If the inode is marked synchronous, we don't honour that here - doing
5785 * so would cause a commit on atime updates, which we don't bother doing.
5786 * We handle synchronous inodes at the highest possible level.
5788 * If only the I_DIRTY_TIME flag is set, we can skip everything. If
5789 * I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
5790 * to copy into the on-disk inode structure are the timestamp files.
5792 void ext4_dirty_inode(struct inode *inode, int flags)
5794 handle_t *handle;
5796 if (flags == I_DIRTY_TIME)
5797 return;
5798 handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
5799 if (IS_ERR(handle))
5800 goto out;
5802 ext4_mark_inode_dirty(handle, inode);
5804 ext4_journal_stop(handle);
5805 out:
5806 return;
5809 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5811 journal_t *journal;
5812 handle_t *handle;
5813 int err;
5814 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5817 * We have to be very careful here: changing a data block's
5818 * journaling status dynamically is dangerous. If we write a
5819 * data block to the journal, change the status and then delete
5820 * that block, we risk forgetting to revoke the old log record
5821 * from the journal and so a subsequent replay can corrupt data.
5822 * So, first we make sure that the journal is empty and that
5823 * nobody is changing anything.
5826 journal = EXT4_JOURNAL(inode);
5827 if (!journal)
5828 return 0;
5829 if (is_journal_aborted(journal))
5830 return -EROFS;
5832 /* Wait for all existing dio workers */
5833 inode_dio_wait(inode);
5836 * Before flushing the journal and switching inode's aops, we have
5837 * to flush all dirty data the inode has. There can be outstanding
5838 * delayed allocations, there can be unwritten extents created by
5839 * fallocate or buffered writes in dioread_nolock mode covered by
5840 * dirty data which can be converted only after flushing the dirty
5841 * data (and journalled aops don't know how to handle these cases).
5843 if (val) {
5844 down_write(&EXT4_I(inode)->i_mmap_sem);
5845 err = filemap_write_and_wait(inode->i_mapping);
5846 if (err < 0) {
5847 up_write(&EXT4_I(inode)->i_mmap_sem);
5848 return err;
5852 percpu_down_write(&sbi->s_journal_flag_rwsem);
5853 jbd2_journal_lock_updates(journal);
5856 * OK, there are no updates running now, and all cached data is
5857 * synced to disk. We are now in a completely consistent state
5858 * which doesn't have anything in the journal, and we know that
5859 * no filesystem updates are running, so it is safe to modify
5860 * the inode's in-core data-journaling state flag now.
5863 if (val)
5864 ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5865 else {
5866 err = jbd2_journal_flush(journal);
5867 if (err < 0) {
5868 jbd2_journal_unlock_updates(journal);
5869 percpu_up_write(&sbi->s_journal_flag_rwsem);
5870 return err;
5872 ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
5874 ext4_set_aops(inode);
5876 jbd2_journal_unlock_updates(journal);
5877 percpu_up_write(&sbi->s_journal_flag_rwsem);
5879 if (val)
5880 up_write(&EXT4_I(inode)->i_mmap_sem);
5882 /* Finally we can mark the inode as dirty. */
5884 handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
5885 if (IS_ERR(handle))
5886 return PTR_ERR(handle);
5888 err = ext4_mark_inode_dirty(handle, inode);
5889 ext4_handle_sync(handle);
5890 ext4_journal_stop(handle);
5891 ext4_std_error(inode->i_sb, err);
5893 return err;
5896 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5898 return !buffer_mapped(bh);
5901 vm_fault_t ext4_page_mkwrite(struct vm_fault *vmf)
5903 struct vm_area_struct *vma = vmf->vma;
5904 struct page *page = vmf->page;
5905 loff_t size;
5906 unsigned long len;
5907 int err;
5908 vm_fault_t ret;
5909 struct file *file = vma->vm_file;
5910 struct inode *inode = file_inode(file);
5911 struct address_space *mapping = inode->i_mapping;
5912 handle_t *handle;
5913 get_block_t *get_block;
5914 int retries = 0;
5916 if (unlikely(IS_IMMUTABLE(inode)))
5917 return VM_FAULT_SIGBUS;
5919 sb_start_pagefault(inode->i_sb);
5920 file_update_time(vma->vm_file);
5922 down_read(&EXT4_I(inode)->i_mmap_sem);
5924 err = ext4_convert_inline_data(inode);
5925 if (err)
5926 goto out_ret;
5928 /* Delalloc case is easy... */
5929 if (test_opt(inode->i_sb, DELALLOC) &&
5930 !ext4_should_journal_data(inode) &&
5931 !ext4_nonda_switch(inode->i_sb)) {
5932 do {
5933 err = block_page_mkwrite(vma, vmf,
5934 ext4_da_get_block_prep);
5935 } while (err == -ENOSPC &&
5936 ext4_should_retry_alloc(inode->i_sb, &retries));
5937 goto out_ret;
5940 lock_page(page);
5941 size = i_size_read(inode);
5942 /* Page got truncated from under us? */
5943 if (page->mapping != mapping || page_offset(page) > size) {
5944 unlock_page(page);
5945 ret = VM_FAULT_NOPAGE;
5946 goto out;
5949 if (page->index == size >> PAGE_SHIFT)
5950 len = size & ~PAGE_MASK;
5951 else
5952 len = PAGE_SIZE;
5954 * Return if we have all the buffers mapped. This avoids the need to do
5955 * journal_start/journal_stop which can block and take a long time
5957 if (page_has_buffers(page)) {
5958 if (!ext4_walk_page_buffers(NULL, page_buffers(page),
5959 0, len, NULL,
5960 ext4_bh_unmapped)) {
5961 /* Wait so that we don't change page under IO */
5962 wait_for_stable_page(page);
5963 ret = VM_FAULT_LOCKED;
5964 goto out;
5967 unlock_page(page);
5968 /* OK, we need to fill the hole... */
5969 if (ext4_should_dioread_nolock(inode))
5970 get_block = ext4_get_block_unwritten;
5971 else
5972 get_block = ext4_get_block;
5973 retry_alloc:
5974 handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
5975 ext4_writepage_trans_blocks(inode));
5976 if (IS_ERR(handle)) {
5977 ret = VM_FAULT_SIGBUS;
5978 goto out;
5980 err = block_page_mkwrite(vma, vmf, get_block);
5981 if (!err && ext4_should_journal_data(inode)) {
5982 if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
5983 PAGE_SIZE, NULL, do_journal_get_write_access)) {
5984 unlock_page(page);
5985 ret = VM_FAULT_SIGBUS;
5986 ext4_journal_stop(handle);
5987 goto out;
5989 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
5991 ext4_journal_stop(handle);
5992 if (err == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
5993 goto retry_alloc;
5994 out_ret:
5995 ret = block_page_mkwrite_return(err);
5996 out:
5997 up_read(&EXT4_I(inode)->i_mmap_sem);
5998 sb_end_pagefault(inode->i_sb);
5999 return ret;
6002 vm_fault_t ext4_filemap_fault(struct vm_fault *vmf)
6004 struct inode *inode = file_inode(vmf->vma->vm_file);
6005 vm_fault_t ret;
6007 down_read(&EXT4_I(inode)->i_mmap_sem);
6008 ret = filemap_fault(vmf);
6009 up_read(&EXT4_I(inode)->i_mmap_sem);
6011 return ret;