1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
7 * Extent allocs and frees
9 * Copyright (C) 2002, 2004 Oracle. All rights reserved.
13 #include <linux/types.h>
14 #include <linux/slab.h>
15 #include <linux/highmem.h>
16 #include <linux/swap.h>
17 #include <linux/quotaops.h>
18 #include <linux/blkdev.h>
19 #include <linux/sched/signal.h>
21 #include <cluster/masklog.h>
27 #include "blockcheck.h"
29 #include "extent_map.h"
32 #include "localalloc.h"
39 #include "refcounttree.h"
40 #include "ocfs2_trace.h"
42 #include "buffer_head_io.h"
44 enum ocfs2_contig_type
{
51 static enum ocfs2_contig_type
52 ocfs2_extent_rec_contig(struct super_block
*sb
,
53 struct ocfs2_extent_rec
*ext
,
54 struct ocfs2_extent_rec
*insert_rec
);
56 * Operations for a specific extent tree type.
58 * To implement an on-disk btree (extent tree) type in ocfs2, add
59 * an ocfs2_extent_tree_operations structure and the matching
60 * ocfs2_init_<thingy>_extent_tree() function. That's pretty much it
61 * for the allocation portion of the extent tree.
63 struct ocfs2_extent_tree_operations
{
65 * last_eb_blk is the block number of the right most leaf extent
66 * block. Most on-disk structures containing an extent tree store
67 * this value for fast access. The ->eo_set_last_eb_blk() and
68 * ->eo_get_last_eb_blk() operations access this value. They are
71 void (*eo_set_last_eb_blk
)(struct ocfs2_extent_tree
*et
,
73 u64 (*eo_get_last_eb_blk
)(struct ocfs2_extent_tree
*et
);
76 * The on-disk structure usually keeps track of how many total
77 * clusters are stored in this extent tree. This function updates
78 * that value. new_clusters is the delta, and must be
79 * added to the total. Required.
81 void (*eo_update_clusters
)(struct ocfs2_extent_tree
*et
,
85 * If this extent tree is supported by an extent map, insert
86 * a record into the map.
88 void (*eo_extent_map_insert
)(struct ocfs2_extent_tree
*et
,
89 struct ocfs2_extent_rec
*rec
);
92 * If this extent tree is supported by an extent map, truncate the
95 void (*eo_extent_map_truncate
)(struct ocfs2_extent_tree
*et
,
99 * If ->eo_insert_check() exists, it is called before rec is
100 * inserted into the extent tree. It is optional.
102 int (*eo_insert_check
)(struct ocfs2_extent_tree
*et
,
103 struct ocfs2_extent_rec
*rec
);
104 int (*eo_sanity_check
)(struct ocfs2_extent_tree
*et
);
107 * --------------------------------------------------------------
108 * The remaining are internal to ocfs2_extent_tree and don't have
113 * ->eo_fill_root_el() takes et->et_object and sets et->et_root_el.
116 void (*eo_fill_root_el
)(struct ocfs2_extent_tree
*et
);
119 * ->eo_fill_max_leaf_clusters sets et->et_max_leaf_clusters if
120 * it exists. If it does not, et->et_max_leaf_clusters is set
121 * to 0 (unlimited). Optional.
123 void (*eo_fill_max_leaf_clusters
)(struct ocfs2_extent_tree
*et
);
126 * ->eo_extent_contig test whether the 2 ocfs2_extent_rec
127 * are contiguous or not. Optional. Don't need to set it if use
128 * ocfs2_extent_rec as the tree leaf.
130 enum ocfs2_contig_type
131 (*eo_extent_contig
)(struct ocfs2_extent_tree
*et
,
132 struct ocfs2_extent_rec
*ext
,
133 struct ocfs2_extent_rec
*insert_rec
);
138 * Pre-declare ocfs2_dinode_et_ops so we can use it as a sanity check
141 static u64
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree
*et
);
142 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
144 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree
*et
,
146 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree
*et
,
147 struct ocfs2_extent_rec
*rec
);
148 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree
*et
,
150 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree
*et
,
151 struct ocfs2_extent_rec
*rec
);
152 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree
*et
);
153 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree
*et
);
155 static int ocfs2_reuse_blk_from_dealloc(handle_t
*handle
,
156 struct ocfs2_extent_tree
*et
,
157 struct buffer_head
**new_eb_bh
,
158 int blk_wanted
, int *blk_given
);
159 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree
*et
);
161 static const struct ocfs2_extent_tree_operations ocfs2_dinode_et_ops
= {
162 .eo_set_last_eb_blk
= ocfs2_dinode_set_last_eb_blk
,
163 .eo_get_last_eb_blk
= ocfs2_dinode_get_last_eb_blk
,
164 .eo_update_clusters
= ocfs2_dinode_update_clusters
,
165 .eo_extent_map_insert
= ocfs2_dinode_extent_map_insert
,
166 .eo_extent_map_truncate
= ocfs2_dinode_extent_map_truncate
,
167 .eo_insert_check
= ocfs2_dinode_insert_check
,
168 .eo_sanity_check
= ocfs2_dinode_sanity_check
,
169 .eo_fill_root_el
= ocfs2_dinode_fill_root_el
,
172 static void ocfs2_dinode_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
175 struct ocfs2_dinode
*di
= et
->et_object
;
177 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
178 di
->i_last_eb_blk
= cpu_to_le64(blkno
);
181 static u64
ocfs2_dinode_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
183 struct ocfs2_dinode
*di
= et
->et_object
;
185 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
186 return le64_to_cpu(di
->i_last_eb_blk
);
189 static void ocfs2_dinode_update_clusters(struct ocfs2_extent_tree
*et
,
192 struct ocfs2_inode_info
*oi
= cache_info_to_inode(et
->et_ci
);
193 struct ocfs2_dinode
*di
= et
->et_object
;
195 le32_add_cpu(&di
->i_clusters
, clusters
);
196 spin_lock(&oi
->ip_lock
);
197 oi
->ip_clusters
= le32_to_cpu(di
->i_clusters
);
198 spin_unlock(&oi
->ip_lock
);
201 static void ocfs2_dinode_extent_map_insert(struct ocfs2_extent_tree
*et
,
202 struct ocfs2_extent_rec
*rec
)
204 struct inode
*inode
= &cache_info_to_inode(et
->et_ci
)->vfs_inode
;
206 ocfs2_extent_map_insert_rec(inode
, rec
);
209 static void ocfs2_dinode_extent_map_truncate(struct ocfs2_extent_tree
*et
,
212 struct inode
*inode
= &cache_info_to_inode(et
->et_ci
)->vfs_inode
;
214 ocfs2_extent_map_trunc(inode
, clusters
);
217 static int ocfs2_dinode_insert_check(struct ocfs2_extent_tree
*et
,
218 struct ocfs2_extent_rec
*rec
)
220 struct ocfs2_inode_info
*oi
= cache_info_to_inode(et
->et_ci
);
221 struct ocfs2_super
*osb
= OCFS2_SB(oi
->vfs_inode
.i_sb
);
223 BUG_ON(oi
->ip_dyn_features
& OCFS2_INLINE_DATA_FL
);
224 mlog_bug_on_msg(!ocfs2_sparse_alloc(osb
) &&
225 (oi
->ip_clusters
!= le32_to_cpu(rec
->e_cpos
)),
226 "Device %s, asking for sparse allocation: inode %llu, "
227 "cpos %u, clusters %u\n",
229 (unsigned long long)oi
->ip_blkno
,
230 rec
->e_cpos
, oi
->ip_clusters
);
235 static int ocfs2_dinode_sanity_check(struct ocfs2_extent_tree
*et
)
237 struct ocfs2_dinode
*di
= et
->et_object
;
239 BUG_ON(et
->et_ops
!= &ocfs2_dinode_et_ops
);
240 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
245 static void ocfs2_dinode_fill_root_el(struct ocfs2_extent_tree
*et
)
247 struct ocfs2_dinode
*di
= et
->et_object
;
249 et
->et_root_el
= &di
->id2
.i_list
;
253 static void ocfs2_xattr_value_fill_root_el(struct ocfs2_extent_tree
*et
)
255 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
257 et
->et_root_el
= &vb
->vb_xv
->xr_list
;
260 static void ocfs2_xattr_value_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
263 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
265 vb
->vb_xv
->xr_last_eb_blk
= cpu_to_le64(blkno
);
268 static u64
ocfs2_xattr_value_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
270 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
272 return le64_to_cpu(vb
->vb_xv
->xr_last_eb_blk
);
275 static void ocfs2_xattr_value_update_clusters(struct ocfs2_extent_tree
*et
,
278 struct ocfs2_xattr_value_buf
*vb
= et
->et_object
;
280 le32_add_cpu(&vb
->vb_xv
->xr_clusters
, clusters
);
283 static const struct ocfs2_extent_tree_operations ocfs2_xattr_value_et_ops
= {
284 .eo_set_last_eb_blk
= ocfs2_xattr_value_set_last_eb_blk
,
285 .eo_get_last_eb_blk
= ocfs2_xattr_value_get_last_eb_blk
,
286 .eo_update_clusters
= ocfs2_xattr_value_update_clusters
,
287 .eo_fill_root_el
= ocfs2_xattr_value_fill_root_el
,
290 static void ocfs2_xattr_tree_fill_root_el(struct ocfs2_extent_tree
*et
)
292 struct ocfs2_xattr_block
*xb
= et
->et_object
;
294 et
->et_root_el
= &xb
->xb_attrs
.xb_root
.xt_list
;
297 static void ocfs2_xattr_tree_fill_max_leaf_clusters(struct ocfs2_extent_tree
*et
)
299 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
300 et
->et_max_leaf_clusters
=
301 ocfs2_clusters_for_bytes(sb
, OCFS2_MAX_XATTR_TREE_LEAF_SIZE
);
304 static void ocfs2_xattr_tree_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
307 struct ocfs2_xattr_block
*xb
= et
->et_object
;
308 struct ocfs2_xattr_tree_root
*xt
= &xb
->xb_attrs
.xb_root
;
310 xt
->xt_last_eb_blk
= cpu_to_le64(blkno
);
313 static u64
ocfs2_xattr_tree_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
315 struct ocfs2_xattr_block
*xb
= et
->et_object
;
316 struct ocfs2_xattr_tree_root
*xt
= &xb
->xb_attrs
.xb_root
;
318 return le64_to_cpu(xt
->xt_last_eb_blk
);
321 static void ocfs2_xattr_tree_update_clusters(struct ocfs2_extent_tree
*et
,
324 struct ocfs2_xattr_block
*xb
= et
->et_object
;
326 le32_add_cpu(&xb
->xb_attrs
.xb_root
.xt_clusters
, clusters
);
329 static const struct ocfs2_extent_tree_operations ocfs2_xattr_tree_et_ops
= {
330 .eo_set_last_eb_blk
= ocfs2_xattr_tree_set_last_eb_blk
,
331 .eo_get_last_eb_blk
= ocfs2_xattr_tree_get_last_eb_blk
,
332 .eo_update_clusters
= ocfs2_xattr_tree_update_clusters
,
333 .eo_fill_root_el
= ocfs2_xattr_tree_fill_root_el
,
334 .eo_fill_max_leaf_clusters
= ocfs2_xattr_tree_fill_max_leaf_clusters
,
337 static void ocfs2_dx_root_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
340 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
342 dx_root
->dr_last_eb_blk
= cpu_to_le64(blkno
);
345 static u64
ocfs2_dx_root_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
347 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
349 return le64_to_cpu(dx_root
->dr_last_eb_blk
);
352 static void ocfs2_dx_root_update_clusters(struct ocfs2_extent_tree
*et
,
355 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
357 le32_add_cpu(&dx_root
->dr_clusters
, clusters
);
360 static int ocfs2_dx_root_sanity_check(struct ocfs2_extent_tree
*et
)
362 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
364 BUG_ON(!OCFS2_IS_VALID_DX_ROOT(dx_root
));
369 static void ocfs2_dx_root_fill_root_el(struct ocfs2_extent_tree
*et
)
371 struct ocfs2_dx_root_block
*dx_root
= et
->et_object
;
373 et
->et_root_el
= &dx_root
->dr_list
;
376 static const struct ocfs2_extent_tree_operations ocfs2_dx_root_et_ops
= {
377 .eo_set_last_eb_blk
= ocfs2_dx_root_set_last_eb_blk
,
378 .eo_get_last_eb_blk
= ocfs2_dx_root_get_last_eb_blk
,
379 .eo_update_clusters
= ocfs2_dx_root_update_clusters
,
380 .eo_sanity_check
= ocfs2_dx_root_sanity_check
,
381 .eo_fill_root_el
= ocfs2_dx_root_fill_root_el
,
384 static void ocfs2_refcount_tree_fill_root_el(struct ocfs2_extent_tree
*et
)
386 struct ocfs2_refcount_block
*rb
= et
->et_object
;
388 et
->et_root_el
= &rb
->rf_list
;
391 static void ocfs2_refcount_tree_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
394 struct ocfs2_refcount_block
*rb
= et
->et_object
;
396 rb
->rf_last_eb_blk
= cpu_to_le64(blkno
);
399 static u64
ocfs2_refcount_tree_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
401 struct ocfs2_refcount_block
*rb
= et
->et_object
;
403 return le64_to_cpu(rb
->rf_last_eb_blk
);
406 static void ocfs2_refcount_tree_update_clusters(struct ocfs2_extent_tree
*et
,
409 struct ocfs2_refcount_block
*rb
= et
->et_object
;
411 le32_add_cpu(&rb
->rf_clusters
, clusters
);
414 static enum ocfs2_contig_type
415 ocfs2_refcount_tree_extent_contig(struct ocfs2_extent_tree
*et
,
416 struct ocfs2_extent_rec
*ext
,
417 struct ocfs2_extent_rec
*insert_rec
)
422 static const struct ocfs2_extent_tree_operations ocfs2_refcount_tree_et_ops
= {
423 .eo_set_last_eb_blk
= ocfs2_refcount_tree_set_last_eb_blk
,
424 .eo_get_last_eb_blk
= ocfs2_refcount_tree_get_last_eb_blk
,
425 .eo_update_clusters
= ocfs2_refcount_tree_update_clusters
,
426 .eo_fill_root_el
= ocfs2_refcount_tree_fill_root_el
,
427 .eo_extent_contig
= ocfs2_refcount_tree_extent_contig
,
430 static void __ocfs2_init_extent_tree(struct ocfs2_extent_tree
*et
,
431 struct ocfs2_caching_info
*ci
,
432 struct buffer_head
*bh
,
433 ocfs2_journal_access_func access
,
435 const struct ocfs2_extent_tree_operations
*ops
)
440 et
->et_root_journal_access
= access
;
442 obj
= (void *)bh
->b_data
;
444 et
->et_dealloc
= NULL
;
446 et
->et_ops
->eo_fill_root_el(et
);
447 if (!et
->et_ops
->eo_fill_max_leaf_clusters
)
448 et
->et_max_leaf_clusters
= 0;
450 et
->et_ops
->eo_fill_max_leaf_clusters(et
);
453 void ocfs2_init_dinode_extent_tree(struct ocfs2_extent_tree
*et
,
454 struct ocfs2_caching_info
*ci
,
455 struct buffer_head
*bh
)
457 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_di
,
458 NULL
, &ocfs2_dinode_et_ops
);
461 void ocfs2_init_xattr_tree_extent_tree(struct ocfs2_extent_tree
*et
,
462 struct ocfs2_caching_info
*ci
,
463 struct buffer_head
*bh
)
465 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_xb
,
466 NULL
, &ocfs2_xattr_tree_et_ops
);
469 void ocfs2_init_xattr_value_extent_tree(struct ocfs2_extent_tree
*et
,
470 struct ocfs2_caching_info
*ci
,
471 struct ocfs2_xattr_value_buf
*vb
)
473 __ocfs2_init_extent_tree(et
, ci
, vb
->vb_bh
, vb
->vb_access
, vb
,
474 &ocfs2_xattr_value_et_ops
);
477 void ocfs2_init_dx_root_extent_tree(struct ocfs2_extent_tree
*et
,
478 struct ocfs2_caching_info
*ci
,
479 struct buffer_head
*bh
)
481 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_dr
,
482 NULL
, &ocfs2_dx_root_et_ops
);
485 void ocfs2_init_refcount_extent_tree(struct ocfs2_extent_tree
*et
,
486 struct ocfs2_caching_info
*ci
,
487 struct buffer_head
*bh
)
489 __ocfs2_init_extent_tree(et
, ci
, bh
, ocfs2_journal_access_rb
,
490 NULL
, &ocfs2_refcount_tree_et_ops
);
493 static inline void ocfs2_et_set_last_eb_blk(struct ocfs2_extent_tree
*et
,
496 et
->et_ops
->eo_set_last_eb_blk(et
, new_last_eb_blk
);
499 static inline u64
ocfs2_et_get_last_eb_blk(struct ocfs2_extent_tree
*et
)
501 return et
->et_ops
->eo_get_last_eb_blk(et
);
504 static inline void ocfs2_et_update_clusters(struct ocfs2_extent_tree
*et
,
507 et
->et_ops
->eo_update_clusters(et
, clusters
);
510 static inline void ocfs2_et_extent_map_insert(struct ocfs2_extent_tree
*et
,
511 struct ocfs2_extent_rec
*rec
)
513 if (et
->et_ops
->eo_extent_map_insert
)
514 et
->et_ops
->eo_extent_map_insert(et
, rec
);
517 static inline void ocfs2_et_extent_map_truncate(struct ocfs2_extent_tree
*et
,
520 if (et
->et_ops
->eo_extent_map_truncate
)
521 et
->et_ops
->eo_extent_map_truncate(et
, clusters
);
524 static inline int ocfs2_et_root_journal_access(handle_t
*handle
,
525 struct ocfs2_extent_tree
*et
,
528 return et
->et_root_journal_access(handle
, et
->et_ci
, et
->et_root_bh
,
532 static inline enum ocfs2_contig_type
533 ocfs2_et_extent_contig(struct ocfs2_extent_tree
*et
,
534 struct ocfs2_extent_rec
*rec
,
535 struct ocfs2_extent_rec
*insert_rec
)
537 if (et
->et_ops
->eo_extent_contig
)
538 return et
->et_ops
->eo_extent_contig(et
, rec
, insert_rec
);
540 return ocfs2_extent_rec_contig(
541 ocfs2_metadata_cache_get_super(et
->et_ci
),
545 static inline int ocfs2_et_insert_check(struct ocfs2_extent_tree
*et
,
546 struct ocfs2_extent_rec
*rec
)
550 if (et
->et_ops
->eo_insert_check
)
551 ret
= et
->et_ops
->eo_insert_check(et
, rec
);
555 static inline int ocfs2_et_sanity_check(struct ocfs2_extent_tree
*et
)
559 if (et
->et_ops
->eo_sanity_check
)
560 ret
= et
->et_ops
->eo_sanity_check(et
);
564 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
565 struct ocfs2_extent_block
*eb
);
566 static void ocfs2_adjust_rightmost_records(handle_t
*handle
,
567 struct ocfs2_extent_tree
*et
,
568 struct ocfs2_path
*path
,
569 struct ocfs2_extent_rec
*insert_rec
);
571 * Reset the actual path elements so that we can re-use the structure
572 * to build another path. Generally, this involves freeing the buffer
575 void ocfs2_reinit_path(struct ocfs2_path
*path
, int keep_root
)
577 int i
, start
= 0, depth
= 0;
578 struct ocfs2_path_item
*node
;
583 for(i
= start
; i
< path_num_items(path
); i
++) {
584 node
= &path
->p_node
[i
];
592 * Tree depth may change during truncate, or insert. If we're
593 * keeping the root extent list, then make sure that our path
594 * structure reflects the proper depth.
597 depth
= le16_to_cpu(path_root_el(path
)->l_tree_depth
);
599 path_root_access(path
) = NULL
;
601 path
->p_tree_depth
= depth
;
604 void ocfs2_free_path(struct ocfs2_path
*path
)
607 ocfs2_reinit_path(path
, 0);
613 * All the elements of src into dest. After this call, src could be freed
614 * without affecting dest.
616 * Both paths should have the same root. Any non-root elements of dest
619 static void ocfs2_cp_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
623 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
624 BUG_ON(path_root_el(dest
) != path_root_el(src
));
625 BUG_ON(path_root_access(dest
) != path_root_access(src
));
627 ocfs2_reinit_path(dest
, 1);
629 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
630 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
631 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
633 if (dest
->p_node
[i
].bh
)
634 get_bh(dest
->p_node
[i
].bh
);
639 * Make the *dest path the same as src and re-initialize src path to
642 static void ocfs2_mv_path(struct ocfs2_path
*dest
, struct ocfs2_path
*src
)
646 BUG_ON(path_root_bh(dest
) != path_root_bh(src
));
647 BUG_ON(path_root_access(dest
) != path_root_access(src
));
649 for(i
= 1; i
< OCFS2_MAX_PATH_DEPTH
; i
++) {
650 brelse(dest
->p_node
[i
].bh
);
652 dest
->p_node
[i
].bh
= src
->p_node
[i
].bh
;
653 dest
->p_node
[i
].el
= src
->p_node
[i
].el
;
655 src
->p_node
[i
].bh
= NULL
;
656 src
->p_node
[i
].el
= NULL
;
661 * Insert an extent block at given index.
663 * This will not take an additional reference on eb_bh.
665 static inline void ocfs2_path_insert_eb(struct ocfs2_path
*path
, int index
,
666 struct buffer_head
*eb_bh
)
668 struct ocfs2_extent_block
*eb
= (struct ocfs2_extent_block
*)eb_bh
->b_data
;
671 * Right now, no root bh is an extent block, so this helps
672 * catch code errors with dinode trees. The assertion can be
673 * safely removed if we ever need to insert extent block
674 * structures at the root.
678 path
->p_node
[index
].bh
= eb_bh
;
679 path
->p_node
[index
].el
= &eb
->h_list
;
682 static struct ocfs2_path
*ocfs2_new_path(struct buffer_head
*root_bh
,
683 struct ocfs2_extent_list
*root_el
,
684 ocfs2_journal_access_func access
)
686 struct ocfs2_path
*path
;
688 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) >= OCFS2_MAX_PATH_DEPTH
);
690 path
= kzalloc(sizeof(*path
), GFP_NOFS
);
692 path
->p_tree_depth
= le16_to_cpu(root_el
->l_tree_depth
);
694 path_root_bh(path
) = root_bh
;
695 path_root_el(path
) = root_el
;
696 path_root_access(path
) = access
;
702 struct ocfs2_path
*ocfs2_new_path_from_path(struct ocfs2_path
*path
)
704 return ocfs2_new_path(path_root_bh(path
), path_root_el(path
),
705 path_root_access(path
));
708 struct ocfs2_path
*ocfs2_new_path_from_et(struct ocfs2_extent_tree
*et
)
710 return ocfs2_new_path(et
->et_root_bh
, et
->et_root_el
,
711 et
->et_root_journal_access
);
715 * Journal the buffer at depth idx. All idx>0 are extent_blocks,
716 * otherwise it's the root_access function.
718 * I don't like the way this function's name looks next to
719 * ocfs2_journal_access_path(), but I don't have a better one.
721 int ocfs2_path_bh_journal_access(handle_t
*handle
,
722 struct ocfs2_caching_info
*ci
,
723 struct ocfs2_path
*path
,
726 ocfs2_journal_access_func access
= path_root_access(path
);
729 access
= ocfs2_journal_access
;
732 access
= ocfs2_journal_access_eb
;
734 return access(handle
, ci
, path
->p_node
[idx
].bh
,
735 OCFS2_JOURNAL_ACCESS_WRITE
);
739 * Convenience function to journal all components in a path.
741 int ocfs2_journal_access_path(struct ocfs2_caching_info
*ci
,
743 struct ocfs2_path
*path
)
750 for(i
= 0; i
< path_num_items(path
); i
++) {
751 ret
= ocfs2_path_bh_journal_access(handle
, ci
, path
, i
);
763 * Return the index of the extent record which contains cluster #v_cluster.
764 * -1 is returned if it was not found.
766 * Should work fine on interior and exterior nodes.
768 int ocfs2_search_extent_list(struct ocfs2_extent_list
*el
, u32 v_cluster
)
772 struct ocfs2_extent_rec
*rec
;
773 u32 rec_end
, rec_start
, clusters
;
775 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
776 rec
= &el
->l_recs
[i
];
778 rec_start
= le32_to_cpu(rec
->e_cpos
);
779 clusters
= ocfs2_rec_clusters(el
, rec
);
781 rec_end
= rec_start
+ clusters
;
783 if (v_cluster
>= rec_start
&& v_cluster
< rec_end
) {
793 * NOTE: ocfs2_block_extent_contig(), ocfs2_extents_adjacent() and
794 * ocfs2_extent_rec_contig only work properly against leaf nodes!
796 static int ocfs2_block_extent_contig(struct super_block
*sb
,
797 struct ocfs2_extent_rec
*ext
,
800 u64 blk_end
= le64_to_cpu(ext
->e_blkno
);
802 blk_end
+= ocfs2_clusters_to_blocks(sb
,
803 le16_to_cpu(ext
->e_leaf_clusters
));
805 return blkno
== blk_end
;
808 static int ocfs2_extents_adjacent(struct ocfs2_extent_rec
*left
,
809 struct ocfs2_extent_rec
*right
)
813 left_range
= le32_to_cpu(left
->e_cpos
) +
814 le16_to_cpu(left
->e_leaf_clusters
);
816 return (left_range
== le32_to_cpu(right
->e_cpos
));
819 static enum ocfs2_contig_type
820 ocfs2_extent_rec_contig(struct super_block
*sb
,
821 struct ocfs2_extent_rec
*ext
,
822 struct ocfs2_extent_rec
*insert_rec
)
824 u64 blkno
= le64_to_cpu(insert_rec
->e_blkno
);
827 * Refuse to coalesce extent records with different flag
828 * fields - we don't want to mix unwritten extents with user
831 if (ext
->e_flags
!= insert_rec
->e_flags
)
834 if (ocfs2_extents_adjacent(ext
, insert_rec
) &&
835 ocfs2_block_extent_contig(sb
, ext
, blkno
))
838 blkno
= le64_to_cpu(ext
->e_blkno
);
839 if (ocfs2_extents_adjacent(insert_rec
, ext
) &&
840 ocfs2_block_extent_contig(sb
, insert_rec
, blkno
))
847 * NOTE: We can have pretty much any combination of contiguousness and
850 * The usefulness of APPEND_TAIL is more in that it lets us know that
851 * we'll have to update the path to that leaf.
853 enum ocfs2_append_type
{
858 enum ocfs2_split_type
{
864 struct ocfs2_insert_type
{
865 enum ocfs2_split_type ins_split
;
866 enum ocfs2_append_type ins_appending
;
867 enum ocfs2_contig_type ins_contig
;
868 int ins_contig_index
;
872 struct ocfs2_merge_ctxt
{
873 enum ocfs2_contig_type c_contig_type
;
874 int c_has_empty_extent
;
875 int c_split_covers_rec
;
878 static int ocfs2_validate_extent_block(struct super_block
*sb
,
879 struct buffer_head
*bh
)
882 struct ocfs2_extent_block
*eb
=
883 (struct ocfs2_extent_block
*)bh
->b_data
;
885 trace_ocfs2_validate_extent_block((unsigned long long)bh
->b_blocknr
);
887 BUG_ON(!buffer_uptodate(bh
));
890 * If the ecc fails, we return the error but otherwise
891 * leave the filesystem running. We know any error is
892 * local to this block.
894 rc
= ocfs2_validate_meta_ecc(sb
, bh
->b_data
, &eb
->h_check
);
896 mlog(ML_ERROR
, "Checksum failed for extent block %llu\n",
897 (unsigned long long)bh
->b_blocknr
);
902 * Errors after here are fatal.
905 if (!OCFS2_IS_VALID_EXTENT_BLOCK(eb
)) {
907 "Extent block #%llu has bad signature %.*s\n",
908 (unsigned long long)bh
->b_blocknr
, 7,
913 if (le64_to_cpu(eb
->h_blkno
) != bh
->b_blocknr
) {
915 "Extent block #%llu has an invalid h_blkno of %llu\n",
916 (unsigned long long)bh
->b_blocknr
,
917 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
921 if (le32_to_cpu(eb
->h_fs_generation
) != OCFS2_SB(sb
)->fs_generation
)
923 "Extent block #%llu has an invalid h_fs_generation of #%u\n",
924 (unsigned long long)bh
->b_blocknr
,
925 le32_to_cpu(eb
->h_fs_generation
));
930 int ocfs2_read_extent_block(struct ocfs2_caching_info
*ci
, u64 eb_blkno
,
931 struct buffer_head
**bh
)
934 struct buffer_head
*tmp
= *bh
;
936 rc
= ocfs2_read_block(ci
, eb_blkno
, &tmp
,
937 ocfs2_validate_extent_block
);
939 /* If ocfs2_read_block() got us a new bh, pass it up. */
948 * How many free extents have we got before we need more meta data?
950 int ocfs2_num_free_extents(struct ocfs2_extent_tree
*et
)
953 struct ocfs2_extent_list
*el
= NULL
;
954 struct ocfs2_extent_block
*eb
;
955 struct buffer_head
*eb_bh
= NULL
;
959 last_eb_blk
= ocfs2_et_get_last_eb_blk(et
);
962 retval
= ocfs2_read_extent_block(et
->et_ci
, last_eb_blk
,
968 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
972 BUG_ON(el
->l_tree_depth
!= 0);
974 retval
= le16_to_cpu(el
->l_count
) - le16_to_cpu(el
->l_next_free_rec
);
978 trace_ocfs2_num_free_extents(retval
);
982 /* expects array to already be allocated
984 * sets h_signature, h_blkno, h_suballoc_bit, h_suballoc_slot, and
987 static int ocfs2_create_new_meta_bhs(handle_t
*handle
,
988 struct ocfs2_extent_tree
*et
,
990 struct ocfs2_alloc_context
*meta_ac
,
991 struct buffer_head
*bhs
[])
993 int count
, status
, i
;
994 u16 suballoc_bit_start
;
996 u64 suballoc_loc
, first_blkno
;
997 struct ocfs2_super
*osb
=
998 OCFS2_SB(ocfs2_metadata_cache_get_super(et
->et_ci
));
999 struct ocfs2_extent_block
*eb
;
1002 while (count
< wanted
) {
1003 status
= ocfs2_claim_metadata(handle
,
1007 &suballoc_bit_start
,
1015 for(i
= count
; i
< (num_got
+ count
); i
++) {
1016 bhs
[i
] = sb_getblk(osb
->sb
, first_blkno
);
1017 if (bhs
[i
] == NULL
) {
1022 ocfs2_set_new_buffer_uptodate(et
->et_ci
, bhs
[i
]);
1024 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
,
1026 OCFS2_JOURNAL_ACCESS_CREATE
);
1032 memset(bhs
[i
]->b_data
, 0, osb
->sb
->s_blocksize
);
1033 eb
= (struct ocfs2_extent_block
*) bhs
[i
]->b_data
;
1034 /* Ok, setup the minimal stuff here. */
1035 strcpy(eb
->h_signature
, OCFS2_EXTENT_BLOCK_SIGNATURE
);
1036 eb
->h_blkno
= cpu_to_le64(first_blkno
);
1037 eb
->h_fs_generation
= cpu_to_le32(osb
->fs_generation
);
1038 eb
->h_suballoc_slot
=
1039 cpu_to_le16(meta_ac
->ac_alloc_slot
);
1040 eb
->h_suballoc_loc
= cpu_to_le64(suballoc_loc
);
1041 eb
->h_suballoc_bit
= cpu_to_le16(suballoc_bit_start
);
1042 eb
->h_list
.l_count
=
1043 cpu_to_le16(ocfs2_extent_recs_per_eb(osb
->sb
));
1045 suballoc_bit_start
++;
1048 /* We'll also be dirtied by the caller, so
1049 * this isn't absolutely necessary. */
1050 ocfs2_journal_dirty(handle
, bhs
[i
]);
1059 for(i
= 0; i
< wanted
; i
++) {
1069 * Helper function for ocfs2_add_branch() and ocfs2_shift_tree_depth().
1071 * Returns the sum of the rightmost extent rec logical offset and
1074 * ocfs2_add_branch() uses this to determine what logical cluster
1075 * value should be populated into the leftmost new branch records.
1077 * ocfs2_shift_tree_depth() uses this to determine the # clusters
1078 * value for the new topmost tree record.
1080 static inline u32
ocfs2_sum_rightmost_rec(struct ocfs2_extent_list
*el
)
1084 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1086 return le32_to_cpu(el
->l_recs
[i
].e_cpos
) +
1087 ocfs2_rec_clusters(el
, &el
->l_recs
[i
]);
1091 * Change range of the branches in the right most path according to the leaf
1092 * extent block's rightmost record.
1094 static int ocfs2_adjust_rightmost_branch(handle_t
*handle
,
1095 struct ocfs2_extent_tree
*et
)
1098 struct ocfs2_path
*path
= NULL
;
1099 struct ocfs2_extent_list
*el
;
1100 struct ocfs2_extent_rec
*rec
;
1102 path
= ocfs2_new_path_from_et(et
);
1108 status
= ocfs2_find_path(et
->et_ci
, path
, UINT_MAX
);
1114 status
= ocfs2_extend_trans(handle
, path_num_items(path
));
1120 status
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
1126 el
= path_leaf_el(path
);
1127 rec
= &el
->l_recs
[le16_to_cpu(el
->l_next_free_rec
) - 1];
1129 ocfs2_adjust_rightmost_records(handle
, et
, path
, rec
);
1132 ocfs2_free_path(path
);
1137 * Add an entire tree branch to our inode. eb_bh is the extent block
1138 * to start at, if we don't want to start the branch at the root
1141 * last_eb_bh is required as we have to update it's next_leaf pointer
1142 * for the new last extent block.
1144 * the new branch will be 'empty' in the sense that every block will
1145 * contain a single record with cluster count == 0.
1147 static int ocfs2_add_branch(handle_t
*handle
,
1148 struct ocfs2_extent_tree
*et
,
1149 struct buffer_head
*eb_bh
,
1150 struct buffer_head
**last_eb_bh
,
1151 struct ocfs2_alloc_context
*meta_ac
)
1153 int status
, new_blocks
, i
, block_given
= 0;
1154 u64 next_blkno
, new_last_eb_blk
;
1155 struct buffer_head
*bh
;
1156 struct buffer_head
**new_eb_bhs
= NULL
;
1157 struct ocfs2_extent_block
*eb
;
1158 struct ocfs2_extent_list
*eb_el
;
1159 struct ocfs2_extent_list
*el
;
1160 u32 new_cpos
, root_end
;
1162 BUG_ON(!last_eb_bh
|| !*last_eb_bh
);
1165 eb
= (struct ocfs2_extent_block
*) eb_bh
->b_data
;
1168 el
= et
->et_root_el
;
1170 /* we never add a branch to a leaf. */
1171 BUG_ON(!el
->l_tree_depth
);
1173 new_blocks
= le16_to_cpu(el
->l_tree_depth
);
1175 eb
= (struct ocfs2_extent_block
*)(*last_eb_bh
)->b_data
;
1176 new_cpos
= ocfs2_sum_rightmost_rec(&eb
->h_list
);
1177 root_end
= ocfs2_sum_rightmost_rec(et
->et_root_el
);
1180 * If there is a gap before the root end and the real end
1181 * of the righmost leaf block, we need to remove the gap
1182 * between new_cpos and root_end first so that the tree
1183 * is consistent after we add a new branch(it will start
1186 if (root_end
> new_cpos
) {
1187 trace_ocfs2_adjust_rightmost_branch(
1188 (unsigned long long)
1189 ocfs2_metadata_cache_owner(et
->et_ci
),
1190 root_end
, new_cpos
);
1192 status
= ocfs2_adjust_rightmost_branch(handle
, et
);
1199 /* allocate the number of new eb blocks we need */
1200 new_eb_bhs
= kcalloc(new_blocks
, sizeof(struct buffer_head
*),
1208 /* Firstyly, try to reuse dealloc since we have already estimated how
1209 * many extent blocks we may use.
1211 if (!ocfs2_is_dealloc_empty(et
)) {
1212 status
= ocfs2_reuse_blk_from_dealloc(handle
, et
,
1213 new_eb_bhs
, new_blocks
,
1221 BUG_ON(block_given
> new_blocks
);
1223 if (block_given
< new_blocks
) {
1225 status
= ocfs2_create_new_meta_bhs(handle
, et
,
1226 new_blocks
- block_given
,
1228 &new_eb_bhs
[block_given
]);
1235 /* Note: new_eb_bhs[new_blocks - 1] is the guy which will be
1236 * linked with the rest of the tree.
1237 * conversly, new_eb_bhs[0] is the new bottommost leaf.
1239 * when we leave the loop, new_last_eb_blk will point to the
1240 * newest leaf, and next_blkno will point to the topmost extent
1242 next_blkno
= new_last_eb_blk
= 0;
1243 for(i
= 0; i
< new_blocks
; i
++) {
1245 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1246 /* ocfs2_create_new_meta_bhs() should create it right! */
1247 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb
));
1248 eb_el
= &eb
->h_list
;
1250 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, bh
,
1251 OCFS2_JOURNAL_ACCESS_CREATE
);
1257 eb
->h_next_leaf_blk
= 0;
1258 eb_el
->l_tree_depth
= cpu_to_le16(i
);
1259 eb_el
->l_next_free_rec
= cpu_to_le16(1);
1261 * This actually counts as an empty extent as
1264 eb_el
->l_recs
[0].e_cpos
= cpu_to_le32(new_cpos
);
1265 eb_el
->l_recs
[0].e_blkno
= cpu_to_le64(next_blkno
);
1267 * eb_el isn't always an interior node, but even leaf
1268 * nodes want a zero'd flags and reserved field so
1269 * this gets the whole 32 bits regardless of use.
1271 eb_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(0);
1272 if (!eb_el
->l_tree_depth
)
1273 new_last_eb_blk
= le64_to_cpu(eb
->h_blkno
);
1275 ocfs2_journal_dirty(handle
, bh
);
1276 next_blkno
= le64_to_cpu(eb
->h_blkno
);
1279 /* This is a bit hairy. We want to update up to three blocks
1280 * here without leaving any of them in an inconsistent state
1281 * in case of error. We don't have to worry about
1282 * journal_dirty erroring as it won't unless we've aborted the
1283 * handle (in which case we would never be here) so reserving
1284 * the write with journal_access is all we need to do. */
1285 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, *last_eb_bh
,
1286 OCFS2_JOURNAL_ACCESS_WRITE
);
1291 status
= ocfs2_et_root_journal_access(handle
, et
,
1292 OCFS2_JOURNAL_ACCESS_WRITE
);
1298 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, eb_bh
,
1299 OCFS2_JOURNAL_ACCESS_WRITE
);
1306 /* Link the new branch into the rest of the tree (el will
1307 * either be on the root_bh, or the extent block passed in. */
1308 i
= le16_to_cpu(el
->l_next_free_rec
);
1309 el
->l_recs
[i
].e_blkno
= cpu_to_le64(next_blkno
);
1310 el
->l_recs
[i
].e_cpos
= cpu_to_le32(new_cpos
);
1311 el
->l_recs
[i
].e_int_clusters
= 0;
1312 le16_add_cpu(&el
->l_next_free_rec
, 1);
1314 /* fe needs a new last extent block pointer, as does the
1315 * next_leaf on the previously last-extent-block. */
1316 ocfs2_et_set_last_eb_blk(et
, new_last_eb_blk
);
1318 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
1319 eb
->h_next_leaf_blk
= cpu_to_le64(new_last_eb_blk
);
1321 ocfs2_journal_dirty(handle
, *last_eb_bh
);
1322 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
1324 ocfs2_journal_dirty(handle
, eb_bh
);
1327 * Some callers want to track the rightmost leaf so pass it
1330 brelse(*last_eb_bh
);
1331 get_bh(new_eb_bhs
[0]);
1332 *last_eb_bh
= new_eb_bhs
[0];
1337 for (i
= 0; i
< new_blocks
; i
++)
1338 brelse(new_eb_bhs
[i
]);
1346 * adds another level to the allocation tree.
1347 * returns back the new extent block so you can add a branch to it
1350 static int ocfs2_shift_tree_depth(handle_t
*handle
,
1351 struct ocfs2_extent_tree
*et
,
1352 struct ocfs2_alloc_context
*meta_ac
,
1353 struct buffer_head
**ret_new_eb_bh
)
1355 int status
, i
, block_given
= 0;
1357 struct buffer_head
*new_eb_bh
= NULL
;
1358 struct ocfs2_extent_block
*eb
;
1359 struct ocfs2_extent_list
*root_el
;
1360 struct ocfs2_extent_list
*eb_el
;
1362 if (!ocfs2_is_dealloc_empty(et
)) {
1363 status
= ocfs2_reuse_blk_from_dealloc(handle
, et
,
1366 } else if (meta_ac
) {
1367 status
= ocfs2_create_new_meta_bhs(handle
, et
, 1, meta_ac
,
1379 eb
= (struct ocfs2_extent_block
*) new_eb_bh
->b_data
;
1380 /* ocfs2_create_new_meta_bhs() should create it right! */
1381 BUG_ON(!OCFS2_IS_VALID_EXTENT_BLOCK(eb
));
1383 eb_el
= &eb
->h_list
;
1384 root_el
= et
->et_root_el
;
1386 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
, new_eb_bh
,
1387 OCFS2_JOURNAL_ACCESS_CREATE
);
1393 /* copy the root extent list data into the new extent block */
1394 eb_el
->l_tree_depth
= root_el
->l_tree_depth
;
1395 eb_el
->l_next_free_rec
= root_el
->l_next_free_rec
;
1396 for (i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
1397 eb_el
->l_recs
[i
] = root_el
->l_recs
[i
];
1399 ocfs2_journal_dirty(handle
, new_eb_bh
);
1401 status
= ocfs2_et_root_journal_access(handle
, et
,
1402 OCFS2_JOURNAL_ACCESS_WRITE
);
1408 new_clusters
= ocfs2_sum_rightmost_rec(eb_el
);
1410 /* update root_bh now */
1411 le16_add_cpu(&root_el
->l_tree_depth
, 1);
1412 root_el
->l_recs
[0].e_cpos
= 0;
1413 root_el
->l_recs
[0].e_blkno
= eb
->h_blkno
;
1414 root_el
->l_recs
[0].e_int_clusters
= cpu_to_le32(new_clusters
);
1415 for (i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
1416 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
1417 root_el
->l_next_free_rec
= cpu_to_le16(1);
1419 /* If this is our 1st tree depth shift, then last_eb_blk
1420 * becomes the allocated extent block */
1421 if (root_el
->l_tree_depth
== cpu_to_le16(1))
1422 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
1424 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
1426 *ret_new_eb_bh
= new_eb_bh
;
1436 * Should only be called when there is no space left in any of the
1437 * leaf nodes. What we want to do is find the lowest tree depth
1438 * non-leaf extent block with room for new records. There are three
1439 * valid results of this search:
1441 * 1) a lowest extent block is found, then we pass it back in
1442 * *lowest_eb_bh and return '0'
1444 * 2) the search fails to find anything, but the root_el has room. We
1445 * pass NULL back in *lowest_eb_bh, but still return '0'
1447 * 3) the search fails to find anything AND the root_el is full, in
1448 * which case we return > 0
1450 * return status < 0 indicates an error.
1452 static int ocfs2_find_branch_target(struct ocfs2_extent_tree
*et
,
1453 struct buffer_head
**target_bh
)
1457 struct ocfs2_extent_block
*eb
;
1458 struct ocfs2_extent_list
*el
;
1459 struct buffer_head
*bh
= NULL
;
1460 struct buffer_head
*lowest_bh
= NULL
;
1464 el
= et
->et_root_el
;
1466 while(le16_to_cpu(el
->l_tree_depth
) > 1) {
1467 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1468 status
= ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
1469 "Owner %llu has empty extent list (next_free_rec == 0)\n",
1470 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
));
1473 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
1474 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1476 status
= ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
1477 "Owner %llu has extent list where extent # %d has no physical block start\n",
1478 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
), i
);
1485 status
= ocfs2_read_extent_block(et
->et_ci
, blkno
, &bh
);
1491 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1494 if (le16_to_cpu(el
->l_next_free_rec
) <
1495 le16_to_cpu(el
->l_count
)) {
1502 /* If we didn't find one and the fe doesn't have any room,
1503 * then return '1' */
1504 el
= et
->et_root_el
;
1505 if (!lowest_bh
&& (el
->l_next_free_rec
== el
->l_count
))
1508 *target_bh
= lowest_bh
;
1516 * Grow a b-tree so that it has more records.
1518 * We might shift the tree depth in which case existing paths should
1519 * be considered invalid.
1521 * Tree depth after the grow is returned via *final_depth.
1523 * *last_eb_bh will be updated by ocfs2_add_branch().
1525 static int ocfs2_grow_tree(handle_t
*handle
, struct ocfs2_extent_tree
*et
,
1526 int *final_depth
, struct buffer_head
**last_eb_bh
,
1527 struct ocfs2_alloc_context
*meta_ac
)
1530 struct ocfs2_extent_list
*el
= et
->et_root_el
;
1531 int depth
= le16_to_cpu(el
->l_tree_depth
);
1532 struct buffer_head
*bh
= NULL
;
1534 BUG_ON(meta_ac
== NULL
&& ocfs2_is_dealloc_empty(et
));
1536 shift
= ocfs2_find_branch_target(et
, &bh
);
1543 /* We traveled all the way to the bottom of the allocation tree
1544 * and didn't find room for any more extents - we need to add
1545 * another tree level */
1548 trace_ocfs2_grow_tree(
1549 (unsigned long long)
1550 ocfs2_metadata_cache_owner(et
->et_ci
),
1553 /* ocfs2_shift_tree_depth will return us a buffer with
1554 * the new extent block (so we can pass that to
1555 * ocfs2_add_branch). */
1556 ret
= ocfs2_shift_tree_depth(handle
, et
, meta_ac
, &bh
);
1564 * Special case: we have room now if we shifted from
1565 * tree_depth 0, so no more work needs to be done.
1567 * We won't be calling add_branch, so pass
1568 * back *last_eb_bh as the new leaf. At depth
1569 * zero, it should always be null so there's
1570 * no reason to brelse.
1572 BUG_ON(*last_eb_bh
);
1579 /* call ocfs2_add_branch to add the final part of the tree with
1581 ret
= ocfs2_add_branch(handle
, et
, bh
, last_eb_bh
,
1588 *final_depth
= depth
;
1594 * This function will discard the rightmost extent record.
1596 static void ocfs2_shift_records_right(struct ocfs2_extent_list
*el
)
1598 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1599 int count
= le16_to_cpu(el
->l_count
);
1600 unsigned int num_bytes
;
1603 /* This will cause us to go off the end of our extent list. */
1604 BUG_ON(next_free
>= count
);
1606 num_bytes
= sizeof(struct ocfs2_extent_rec
) * next_free
;
1608 memmove(&el
->l_recs
[1], &el
->l_recs
[0], num_bytes
);
1611 static void ocfs2_rotate_leaf(struct ocfs2_extent_list
*el
,
1612 struct ocfs2_extent_rec
*insert_rec
)
1614 int i
, insert_index
, next_free
, has_empty
, num_bytes
;
1615 u32 insert_cpos
= le32_to_cpu(insert_rec
->e_cpos
);
1616 struct ocfs2_extent_rec
*rec
;
1618 next_free
= le16_to_cpu(el
->l_next_free_rec
);
1619 has_empty
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
1623 /* The tree code before us didn't allow enough room in the leaf. */
1624 BUG_ON(el
->l_next_free_rec
== el
->l_count
&& !has_empty
);
1627 * The easiest way to approach this is to just remove the
1628 * empty extent and temporarily decrement next_free.
1632 * If next_free was 1 (only an empty extent), this
1633 * loop won't execute, which is fine. We still want
1634 * the decrement above to happen.
1636 for(i
= 0; i
< (next_free
- 1); i
++)
1637 el
->l_recs
[i
] = el
->l_recs
[i
+1];
1643 * Figure out what the new record index should be.
1645 for(i
= 0; i
< next_free
; i
++) {
1646 rec
= &el
->l_recs
[i
];
1648 if (insert_cpos
< le32_to_cpu(rec
->e_cpos
))
1653 trace_ocfs2_rotate_leaf(insert_cpos
, insert_index
,
1654 has_empty
, next_free
,
1655 le16_to_cpu(el
->l_count
));
1657 BUG_ON(insert_index
< 0);
1658 BUG_ON(insert_index
>= le16_to_cpu(el
->l_count
));
1659 BUG_ON(insert_index
> next_free
);
1662 * No need to memmove if we're just adding to the tail.
1664 if (insert_index
!= next_free
) {
1665 BUG_ON(next_free
>= le16_to_cpu(el
->l_count
));
1667 num_bytes
= next_free
- insert_index
;
1668 num_bytes
*= sizeof(struct ocfs2_extent_rec
);
1669 memmove(&el
->l_recs
[insert_index
+ 1],
1670 &el
->l_recs
[insert_index
],
1675 * Either we had an empty extent, and need to re-increment or
1676 * there was no empty extent on a non full rightmost leaf node,
1677 * in which case we still need to increment.
1680 el
->l_next_free_rec
= cpu_to_le16(next_free
);
1682 * Make sure none of the math above just messed up our tree.
1684 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) > le16_to_cpu(el
->l_count
));
1686 el
->l_recs
[insert_index
] = *insert_rec
;
1690 static void ocfs2_remove_empty_extent(struct ocfs2_extent_list
*el
)
1692 int size
, num_recs
= le16_to_cpu(el
->l_next_free_rec
);
1694 BUG_ON(num_recs
== 0);
1696 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
1698 size
= num_recs
* sizeof(struct ocfs2_extent_rec
);
1699 memmove(&el
->l_recs
[0], &el
->l_recs
[1], size
);
1700 memset(&el
->l_recs
[num_recs
], 0,
1701 sizeof(struct ocfs2_extent_rec
));
1702 el
->l_next_free_rec
= cpu_to_le16(num_recs
);
1707 * Create an empty extent record .
1709 * l_next_free_rec may be updated.
1711 * If an empty extent already exists do nothing.
1713 static void ocfs2_create_empty_extent(struct ocfs2_extent_list
*el
)
1715 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
1717 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
1722 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
1725 mlog_bug_on_msg(el
->l_count
== el
->l_next_free_rec
,
1726 "Asked to create an empty extent in a full list:\n"
1727 "count = %u, tree depth = %u",
1728 le16_to_cpu(el
->l_count
),
1729 le16_to_cpu(el
->l_tree_depth
));
1731 ocfs2_shift_records_right(el
);
1734 le16_add_cpu(&el
->l_next_free_rec
, 1);
1735 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
1739 * For a rotation which involves two leaf nodes, the "root node" is
1740 * the lowest level tree node which contains a path to both leafs. This
1741 * resulting set of information can be used to form a complete "subtree"
1743 * This function is passed two full paths from the dinode down to a
1744 * pair of adjacent leaves. It's task is to figure out which path
1745 * index contains the subtree root - this can be the root index itself
1746 * in a worst-case rotation.
1748 * The array index of the subtree root is passed back.
1750 int ocfs2_find_subtree_root(struct ocfs2_extent_tree
*et
,
1751 struct ocfs2_path
*left
,
1752 struct ocfs2_path
*right
)
1757 * Check that the caller passed in two paths from the same tree.
1759 BUG_ON(path_root_bh(left
) != path_root_bh(right
));
1765 * The caller didn't pass two adjacent paths.
1767 mlog_bug_on_msg(i
> left
->p_tree_depth
,
1768 "Owner %llu, left depth %u, right depth %u\n"
1769 "left leaf blk %llu, right leaf blk %llu\n",
1770 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
1771 left
->p_tree_depth
, right
->p_tree_depth
,
1772 (unsigned long long)path_leaf_bh(left
)->b_blocknr
,
1773 (unsigned long long)path_leaf_bh(right
)->b_blocknr
);
1774 } while (left
->p_node
[i
].bh
->b_blocknr
==
1775 right
->p_node
[i
].bh
->b_blocknr
);
1780 typedef void (path_insert_t
)(void *, struct buffer_head
*);
1783 * Traverse a btree path in search of cpos, starting at root_el.
1785 * This code can be called with a cpos larger than the tree, in which
1786 * case it will return the rightmost path.
1788 static int __ocfs2_find_path(struct ocfs2_caching_info
*ci
,
1789 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1790 path_insert_t
*func
, void *data
)
1795 struct buffer_head
*bh
= NULL
;
1796 struct ocfs2_extent_block
*eb
;
1797 struct ocfs2_extent_list
*el
;
1798 struct ocfs2_extent_rec
*rec
;
1801 while (el
->l_tree_depth
) {
1802 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
1803 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1804 "Owner %llu has empty extent list at depth %u\n",
1805 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1806 le16_to_cpu(el
->l_tree_depth
));
1812 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
) - 1; i
++) {
1813 rec
= &el
->l_recs
[i
];
1816 * In the case that cpos is off the allocation
1817 * tree, this should just wind up returning the
1820 range
= le32_to_cpu(rec
->e_cpos
) +
1821 ocfs2_rec_clusters(el
, rec
);
1822 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
1826 blkno
= le64_to_cpu(el
->l_recs
[i
].e_blkno
);
1828 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1829 "Owner %llu has bad blkno in extent list at depth %u (index %d)\n",
1830 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1831 le16_to_cpu(el
->l_tree_depth
), i
);
1838 ret
= ocfs2_read_extent_block(ci
, blkno
, &bh
);
1844 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
1847 if (le16_to_cpu(el
->l_next_free_rec
) >
1848 le16_to_cpu(el
->l_count
)) {
1849 ocfs2_error(ocfs2_metadata_cache_get_super(ci
),
1850 "Owner %llu has bad count in extent list at block %llu (next free=%u, count=%u)\n",
1851 (unsigned long long)ocfs2_metadata_cache_owner(ci
),
1852 (unsigned long long)bh
->b_blocknr
,
1853 le16_to_cpu(el
->l_next_free_rec
),
1854 le16_to_cpu(el
->l_count
));
1865 * Catch any trailing bh that the loop didn't handle.
1873 * Given an initialized path (that is, it has a valid root extent
1874 * list), this function will traverse the btree in search of the path
1875 * which would contain cpos.
1877 * The path traveled is recorded in the path structure.
1879 * Note that this will not do any comparisons on leaf node extent
1880 * records, so it will work fine in the case that we just added a tree
1883 struct find_path_data
{
1885 struct ocfs2_path
*path
;
1887 static void find_path_ins(void *data
, struct buffer_head
*bh
)
1889 struct find_path_data
*fp
= data
;
1892 ocfs2_path_insert_eb(fp
->path
, fp
->index
, bh
);
1895 int ocfs2_find_path(struct ocfs2_caching_info
*ci
,
1896 struct ocfs2_path
*path
, u32 cpos
)
1898 struct find_path_data data
;
1902 return __ocfs2_find_path(ci
, path_root_el(path
), cpos
,
1903 find_path_ins
, &data
);
1906 static void find_leaf_ins(void *data
, struct buffer_head
*bh
)
1908 struct ocfs2_extent_block
*eb
=(struct ocfs2_extent_block
*)bh
->b_data
;
1909 struct ocfs2_extent_list
*el
= &eb
->h_list
;
1910 struct buffer_head
**ret
= data
;
1912 /* We want to retain only the leaf block. */
1913 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
1919 * Find the leaf block in the tree which would contain cpos. No
1920 * checking of the actual leaf is done.
1922 * Some paths want to call this instead of allocating a path structure
1923 * and calling ocfs2_find_path().
1925 * This function doesn't handle non btree extent lists.
1927 int ocfs2_find_leaf(struct ocfs2_caching_info
*ci
,
1928 struct ocfs2_extent_list
*root_el
, u32 cpos
,
1929 struct buffer_head
**leaf_bh
)
1932 struct buffer_head
*bh
= NULL
;
1934 ret
= __ocfs2_find_path(ci
, root_el
, cpos
, find_leaf_ins
, &bh
);
1946 * Adjust the adjacent records (left_rec, right_rec) involved in a rotation.
1948 * Basically, we've moved stuff around at the bottom of the tree and
1949 * we need to fix up the extent records above the changes to reflect
1952 * left_rec: the record on the left.
1953 * right_rec: the record to the right of left_rec
1954 * right_child_el: is the child list pointed to by right_rec
1956 * By definition, this only works on interior nodes.
1958 static void ocfs2_adjust_adjacent_records(struct ocfs2_extent_rec
*left_rec
,
1959 struct ocfs2_extent_rec
*right_rec
,
1960 struct ocfs2_extent_list
*right_child_el
)
1962 u32 left_clusters
, right_end
;
1965 * Interior nodes never have holes. Their cpos is the cpos of
1966 * the leftmost record in their child list. Their cluster
1967 * count covers the full theoretical range of their child list
1968 * - the range between their cpos and the cpos of the record
1969 * immediately to their right.
1971 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[0].e_cpos
);
1972 if (!ocfs2_rec_clusters(right_child_el
, &right_child_el
->l_recs
[0])) {
1973 BUG_ON(right_child_el
->l_tree_depth
);
1974 BUG_ON(le16_to_cpu(right_child_el
->l_next_free_rec
) <= 1);
1975 left_clusters
= le32_to_cpu(right_child_el
->l_recs
[1].e_cpos
);
1977 left_clusters
-= le32_to_cpu(left_rec
->e_cpos
);
1978 left_rec
->e_int_clusters
= cpu_to_le32(left_clusters
);
1981 * Calculate the rightmost cluster count boundary before
1982 * moving cpos - we will need to adjust clusters after
1983 * updating e_cpos to keep the same highest cluster count.
1985 right_end
= le32_to_cpu(right_rec
->e_cpos
);
1986 right_end
+= le32_to_cpu(right_rec
->e_int_clusters
);
1988 right_rec
->e_cpos
= left_rec
->e_cpos
;
1989 le32_add_cpu(&right_rec
->e_cpos
, left_clusters
);
1991 right_end
-= le32_to_cpu(right_rec
->e_cpos
);
1992 right_rec
->e_int_clusters
= cpu_to_le32(right_end
);
1996 * Adjust the adjacent root node records involved in a
1997 * rotation. left_el_blkno is passed in as a key so that we can easily
1998 * find it's index in the root list.
2000 static void ocfs2_adjust_root_records(struct ocfs2_extent_list
*root_el
,
2001 struct ocfs2_extent_list
*left_el
,
2002 struct ocfs2_extent_list
*right_el
,
2007 BUG_ON(le16_to_cpu(root_el
->l_tree_depth
) <=
2008 le16_to_cpu(left_el
->l_tree_depth
));
2010 for(i
= 0; i
< le16_to_cpu(root_el
->l_next_free_rec
) - 1; i
++) {
2011 if (le64_to_cpu(root_el
->l_recs
[i
].e_blkno
) == left_el_blkno
)
2016 * The path walking code should have never returned a root and
2017 * two paths which are not adjacent.
2019 BUG_ON(i
>= (le16_to_cpu(root_el
->l_next_free_rec
) - 1));
2021 ocfs2_adjust_adjacent_records(&root_el
->l_recs
[i
],
2022 &root_el
->l_recs
[i
+ 1], right_el
);
2026 * We've changed a leaf block (in right_path) and need to reflect that
2027 * change back up the subtree.
2029 * This happens in multiple places:
2030 * - When we've moved an extent record from the left path leaf to the right
2031 * path leaf to make room for an empty extent in the left path leaf.
2032 * - When our insert into the right path leaf is at the leftmost edge
2033 * and requires an update of the path immediately to it's left. This
2034 * can occur at the end of some types of rotation and appending inserts.
2035 * - When we've adjusted the last extent record in the left path leaf and the
2036 * 1st extent record in the right path leaf during cross extent block merge.
2038 static void ocfs2_complete_edge_insert(handle_t
*handle
,
2039 struct ocfs2_path
*left_path
,
2040 struct ocfs2_path
*right_path
,
2044 struct ocfs2_extent_list
*el
, *left_el
, *right_el
;
2045 struct ocfs2_extent_rec
*left_rec
, *right_rec
;
2046 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
2049 * Update the counts and position values within all the
2050 * interior nodes to reflect the leaf rotation we just did.
2052 * The root node is handled below the loop.
2054 * We begin the loop with right_el and left_el pointing to the
2055 * leaf lists and work our way up.
2057 * NOTE: within this loop, left_el and right_el always refer
2058 * to the *child* lists.
2060 left_el
= path_leaf_el(left_path
);
2061 right_el
= path_leaf_el(right_path
);
2062 for(i
= left_path
->p_tree_depth
- 1; i
> subtree_index
; i
--) {
2063 trace_ocfs2_complete_edge_insert(i
);
2066 * One nice property of knowing that all of these
2067 * nodes are below the root is that we only deal with
2068 * the leftmost right node record and the rightmost
2071 el
= left_path
->p_node
[i
].el
;
2072 idx
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
2073 left_rec
= &el
->l_recs
[idx
];
2075 el
= right_path
->p_node
[i
].el
;
2076 right_rec
= &el
->l_recs
[0];
2078 ocfs2_adjust_adjacent_records(left_rec
, right_rec
, right_el
);
2080 ocfs2_journal_dirty(handle
, left_path
->p_node
[i
].bh
);
2081 ocfs2_journal_dirty(handle
, right_path
->p_node
[i
].bh
);
2084 * Setup our list pointers now so that the current
2085 * parents become children in the next iteration.
2087 left_el
= left_path
->p_node
[i
].el
;
2088 right_el
= right_path
->p_node
[i
].el
;
2092 * At the root node, adjust the two adjacent records which
2093 * begin our path to the leaves.
2096 el
= left_path
->p_node
[subtree_index
].el
;
2097 left_el
= left_path
->p_node
[subtree_index
+ 1].el
;
2098 right_el
= right_path
->p_node
[subtree_index
+ 1].el
;
2100 ocfs2_adjust_root_records(el
, left_el
, right_el
,
2101 left_path
->p_node
[subtree_index
+ 1].bh
->b_blocknr
);
2103 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2105 ocfs2_journal_dirty(handle
, root_bh
);
2108 static int ocfs2_rotate_subtree_right(handle_t
*handle
,
2109 struct ocfs2_extent_tree
*et
,
2110 struct ocfs2_path
*left_path
,
2111 struct ocfs2_path
*right_path
,
2115 struct buffer_head
*right_leaf_bh
;
2116 struct buffer_head
*left_leaf_bh
= NULL
;
2117 struct buffer_head
*root_bh
;
2118 struct ocfs2_extent_list
*right_el
, *left_el
;
2119 struct ocfs2_extent_rec move_rec
;
2121 left_leaf_bh
= path_leaf_bh(left_path
);
2122 left_el
= path_leaf_el(left_path
);
2124 if (left_el
->l_next_free_rec
!= left_el
->l_count
) {
2125 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
2126 "Inode %llu has non-full interior leaf node %llu (next free = %u)\n",
2127 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2128 (unsigned long long)left_leaf_bh
->b_blocknr
,
2129 le16_to_cpu(left_el
->l_next_free_rec
));
2134 * This extent block may already have an empty record, so we
2135 * return early if so.
2137 if (ocfs2_is_empty_extent(&left_el
->l_recs
[0]))
2140 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2141 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2143 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
2150 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
2151 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2158 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2166 right_leaf_bh
= path_leaf_bh(right_path
);
2167 right_el
= path_leaf_el(right_path
);
2169 /* This is a code error, not a disk corruption. */
2170 mlog_bug_on_msg(!right_el
->l_next_free_rec
, "Inode %llu: Rotate fails "
2171 "because rightmost leaf block %llu is empty\n",
2172 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2173 (unsigned long long)right_leaf_bh
->b_blocknr
);
2175 ocfs2_create_empty_extent(right_el
);
2177 ocfs2_journal_dirty(handle
, right_leaf_bh
);
2179 /* Do the copy now. */
2180 i
= le16_to_cpu(left_el
->l_next_free_rec
) - 1;
2181 move_rec
= left_el
->l_recs
[i
];
2182 right_el
->l_recs
[0] = move_rec
;
2185 * Clear out the record we just copied and shift everything
2186 * over, leaving an empty extent in the left leaf.
2188 * We temporarily subtract from next_free_rec so that the
2189 * shift will lose the tail record (which is now defunct).
2191 le16_add_cpu(&left_el
->l_next_free_rec
, -1);
2192 ocfs2_shift_records_right(left_el
);
2193 memset(&left_el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2194 le16_add_cpu(&left_el
->l_next_free_rec
, 1);
2196 ocfs2_journal_dirty(handle
, left_leaf_bh
);
2198 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
2206 * Given a full path, determine what cpos value would return us a path
2207 * containing the leaf immediately to the left of the current one.
2209 * Will return zero if the path passed in is already the leftmost path.
2211 int ocfs2_find_cpos_for_left_leaf(struct super_block
*sb
,
2212 struct ocfs2_path
*path
, u32
*cpos
)
2216 struct ocfs2_extent_list
*el
;
2218 BUG_ON(path
->p_tree_depth
== 0);
2222 blkno
= path_leaf_bh(path
)->b_blocknr
;
2224 /* Start at the tree node just above the leaf and work our way up. */
2225 i
= path
->p_tree_depth
- 1;
2227 el
= path
->p_node
[i
].el
;
2230 * Find the extent record just before the one in our
2233 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2234 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2238 * We've determined that the
2239 * path specified is already
2240 * the leftmost one - return a
2246 * The leftmost record points to our
2247 * leaf - we need to travel up the
2253 *cpos
= le32_to_cpu(el
->l_recs
[j
- 1].e_cpos
);
2254 *cpos
= *cpos
+ ocfs2_rec_clusters(el
,
2255 &el
->l_recs
[j
- 1]);
2262 * If we got here, we never found a valid node where
2263 * the tree indicated one should be.
2265 ocfs2_error(sb
, "Invalid extent tree at extent block %llu\n",
2266 (unsigned long long)blkno
);
2271 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2280 * Extend the transaction by enough credits to complete the rotation,
2281 * and still leave at least the original number of credits allocated
2282 * to this transaction.
2284 static int ocfs2_extend_rotate_transaction(handle_t
*handle
, int subtree_depth
,
2286 struct ocfs2_path
*path
)
2289 int credits
= (path
->p_tree_depth
- subtree_depth
) * 2 + 1 + op_credits
;
2291 if (jbd2_handle_buffer_credits(handle
) < credits
)
2292 ret
= ocfs2_extend_trans(handle
,
2293 credits
- jbd2_handle_buffer_credits(handle
));
2299 * Trap the case where we're inserting into the theoretical range past
2300 * the _actual_ left leaf range. Otherwise, we'll rotate a record
2301 * whose cpos is less than ours into the right leaf.
2303 * It's only necessary to look at the rightmost record of the left
2304 * leaf because the logic that calls us should ensure that the
2305 * theoretical ranges in the path components above the leaves are
2308 static int ocfs2_rotate_requires_path_adjustment(struct ocfs2_path
*left_path
,
2311 struct ocfs2_extent_list
*left_el
;
2312 struct ocfs2_extent_rec
*rec
;
2315 left_el
= path_leaf_el(left_path
);
2316 next_free
= le16_to_cpu(left_el
->l_next_free_rec
);
2317 rec
= &left_el
->l_recs
[next_free
- 1];
2319 if (insert_cpos
> le32_to_cpu(rec
->e_cpos
))
2324 static int ocfs2_leftmost_rec_contains(struct ocfs2_extent_list
*el
, u32 cpos
)
2326 int next_free
= le16_to_cpu(el
->l_next_free_rec
);
2328 struct ocfs2_extent_rec
*rec
;
2333 rec
= &el
->l_recs
[0];
2334 if (ocfs2_is_empty_extent(rec
)) {
2338 rec
= &el
->l_recs
[1];
2341 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
2342 if (cpos
>= le32_to_cpu(rec
->e_cpos
) && cpos
< range
)
2348 * Rotate all the records in a btree right one record, starting at insert_cpos.
2350 * The path to the rightmost leaf should be passed in.
2352 * The array is assumed to be large enough to hold an entire path (tree depth).
2354 * Upon successful return from this function:
2356 * - The 'right_path' array will contain a path to the leaf block
2357 * whose range contains e_cpos.
2358 * - That leaf block will have a single empty extent in list index 0.
2359 * - In the case that the rotation requires a post-insert update,
2360 * *ret_left_path will contain a valid path which can be passed to
2361 * ocfs2_insert_path().
2363 static int ocfs2_rotate_tree_right(handle_t
*handle
,
2364 struct ocfs2_extent_tree
*et
,
2365 enum ocfs2_split_type split
,
2367 struct ocfs2_path
*right_path
,
2368 struct ocfs2_path
**ret_left_path
)
2370 int ret
, start
, orig_credits
= jbd2_handle_buffer_credits(handle
);
2372 struct ocfs2_path
*left_path
= NULL
;
2373 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
2375 *ret_left_path
= NULL
;
2377 left_path
= ocfs2_new_path_from_path(right_path
);
2384 ret
= ocfs2_find_cpos_for_left_leaf(sb
, right_path
, &cpos
);
2390 trace_ocfs2_rotate_tree_right(
2391 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2395 * What we want to do here is:
2397 * 1) Start with the rightmost path.
2399 * 2) Determine a path to the leaf block directly to the left
2402 * 3) Determine the 'subtree root' - the lowest level tree node
2403 * which contains a path to both leaves.
2405 * 4) Rotate the subtree.
2407 * 5) Find the next subtree by considering the left path to be
2408 * the new right path.
2410 * The check at the top of this while loop also accepts
2411 * insert_cpos == cpos because cpos is only a _theoretical_
2412 * value to get us the left path - insert_cpos might very well
2413 * be filling that hole.
2415 * Stop at a cpos of '0' because we either started at the
2416 * leftmost branch (i.e., a tree with one branch and a
2417 * rotation inside of it), or we've gone as far as we can in
2418 * rotating subtrees.
2420 while (cpos
&& insert_cpos
<= cpos
) {
2421 trace_ocfs2_rotate_tree_right(
2422 (unsigned long long)
2423 ocfs2_metadata_cache_owner(et
->et_ci
),
2426 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
2432 mlog_bug_on_msg(path_leaf_bh(left_path
) ==
2433 path_leaf_bh(right_path
),
2434 "Owner %llu: error during insert of %u "
2435 "(left path cpos %u) results in two identical "
2436 "paths ending at %llu\n",
2437 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2439 (unsigned long long)
2440 path_leaf_bh(left_path
)->b_blocknr
);
2442 if (split
== SPLIT_NONE
&&
2443 ocfs2_rotate_requires_path_adjustment(left_path
,
2447 * We've rotated the tree as much as we
2448 * should. The rest is up to
2449 * ocfs2_insert_path() to complete, after the
2450 * record insertion. We indicate this
2451 * situation by returning the left path.
2453 * The reason we don't adjust the records here
2454 * before the record insert is that an error
2455 * later might break the rule where a parent
2456 * record e_cpos will reflect the actual
2457 * e_cpos of the 1st nonempty record of the
2460 *ret_left_path
= left_path
;
2464 start
= ocfs2_find_subtree_root(et
, left_path
, right_path
);
2466 trace_ocfs2_rotate_subtree(start
,
2467 (unsigned long long)
2468 right_path
->p_node
[start
].bh
->b_blocknr
,
2469 right_path
->p_tree_depth
);
2471 ret
= ocfs2_extend_rotate_transaction(handle
, start
,
2472 orig_credits
, right_path
);
2478 ret
= ocfs2_rotate_subtree_right(handle
, et
, left_path
,
2485 if (split
!= SPLIT_NONE
&&
2486 ocfs2_leftmost_rec_contains(path_leaf_el(right_path
),
2489 * A rotate moves the rightmost left leaf
2490 * record over to the leftmost right leaf
2491 * slot. If we're doing an extent split
2492 * instead of a real insert, then we have to
2493 * check that the extent to be split wasn't
2494 * just moved over. If it was, then we can
2495 * exit here, passing left_path back -
2496 * ocfs2_split_extent() is smart enough to
2497 * search both leaves.
2499 *ret_left_path
= left_path
;
2504 * There is no need to re-read the next right path
2505 * as we know that it'll be our current left
2506 * path. Optimize by copying values instead.
2508 ocfs2_mv_path(right_path
, left_path
);
2510 ret
= ocfs2_find_cpos_for_left_leaf(sb
, right_path
, &cpos
);
2518 ocfs2_free_path(left_path
);
2524 static int ocfs2_update_edge_lengths(handle_t
*handle
,
2525 struct ocfs2_extent_tree
*et
,
2526 struct ocfs2_path
*path
)
2529 struct ocfs2_extent_rec
*rec
;
2530 struct ocfs2_extent_list
*el
;
2531 struct ocfs2_extent_block
*eb
;
2534 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
2540 /* Path should always be rightmost. */
2541 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
2542 BUG_ON(eb
->h_next_leaf_blk
!= 0ULL);
2545 BUG_ON(le16_to_cpu(el
->l_next_free_rec
) == 0);
2546 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
2547 rec
= &el
->l_recs
[idx
];
2548 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
2550 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
2551 el
= path
->p_node
[i
].el
;
2552 idx
= le16_to_cpu(el
->l_next_free_rec
) - 1;
2553 rec
= &el
->l_recs
[idx
];
2555 rec
->e_int_clusters
= cpu_to_le32(range
);
2556 le32_add_cpu(&rec
->e_int_clusters
, -le32_to_cpu(rec
->e_cpos
));
2558 ocfs2_journal_dirty(handle
, path
->p_node
[i
].bh
);
2564 static void ocfs2_unlink_path(handle_t
*handle
,
2565 struct ocfs2_extent_tree
*et
,
2566 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2567 struct ocfs2_path
*path
, int unlink_start
)
2570 struct ocfs2_extent_block
*eb
;
2571 struct ocfs2_extent_list
*el
;
2572 struct buffer_head
*bh
;
2574 for(i
= unlink_start
; i
< path_num_items(path
); i
++) {
2575 bh
= path
->p_node
[i
].bh
;
2577 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
2579 * Not all nodes might have had their final count
2580 * decremented by the caller - handle this here.
2583 if (le16_to_cpu(el
->l_next_free_rec
) > 1) {
2585 "Inode %llu, attempted to remove extent block "
2586 "%llu with %u records\n",
2587 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
2588 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
2589 le16_to_cpu(el
->l_next_free_rec
));
2591 ocfs2_journal_dirty(handle
, bh
);
2592 ocfs2_remove_from_cache(et
->et_ci
, bh
);
2596 el
->l_next_free_rec
= 0;
2597 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
2599 ocfs2_journal_dirty(handle
, bh
);
2601 ret
= ocfs2_cache_extent_block_free(dealloc
, eb
);
2605 ocfs2_remove_from_cache(et
->et_ci
, bh
);
2609 static void ocfs2_unlink_subtree(handle_t
*handle
,
2610 struct ocfs2_extent_tree
*et
,
2611 struct ocfs2_path
*left_path
,
2612 struct ocfs2_path
*right_path
,
2614 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
2617 struct buffer_head
*root_bh
= left_path
->p_node
[subtree_index
].bh
;
2618 struct ocfs2_extent_list
*root_el
= left_path
->p_node
[subtree_index
].el
;
2619 struct ocfs2_extent_block
*eb
;
2621 eb
= (struct ocfs2_extent_block
*)right_path
->p_node
[subtree_index
+ 1].bh
->b_data
;
2623 for(i
= 1; i
< le16_to_cpu(root_el
->l_next_free_rec
); i
++)
2624 if (root_el
->l_recs
[i
].e_blkno
== eb
->h_blkno
)
2627 BUG_ON(i
>= le16_to_cpu(root_el
->l_next_free_rec
));
2629 memset(&root_el
->l_recs
[i
], 0, sizeof(struct ocfs2_extent_rec
));
2630 le16_add_cpu(&root_el
->l_next_free_rec
, -1);
2632 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2633 eb
->h_next_leaf_blk
= 0;
2635 ocfs2_journal_dirty(handle
, root_bh
);
2636 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2638 ocfs2_unlink_path(handle
, et
, dealloc
, right_path
,
2642 static int ocfs2_rotate_subtree_left(handle_t
*handle
,
2643 struct ocfs2_extent_tree
*et
,
2644 struct ocfs2_path
*left_path
,
2645 struct ocfs2_path
*right_path
,
2647 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2650 int ret
, i
, del_right_subtree
= 0, right_has_empty
= 0;
2651 struct buffer_head
*root_bh
, *et_root_bh
= path_root_bh(right_path
);
2652 struct ocfs2_extent_list
*right_leaf_el
, *left_leaf_el
;
2653 struct ocfs2_extent_block
*eb
;
2657 right_leaf_el
= path_leaf_el(right_path
);
2658 left_leaf_el
= path_leaf_el(left_path
);
2659 root_bh
= left_path
->p_node
[subtree_index
].bh
;
2660 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
2662 if (!ocfs2_is_empty_extent(&left_leaf_el
->l_recs
[0]))
2665 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(right_path
)->b_data
;
2666 if (ocfs2_is_empty_extent(&right_leaf_el
->l_recs
[0])) {
2668 * It's legal for us to proceed if the right leaf is
2669 * the rightmost one and it has an empty extent. There
2670 * are two cases to handle - whether the leaf will be
2671 * empty after removal or not. If the leaf isn't empty
2672 * then just remove the empty extent up front. The
2673 * next block will handle empty leaves by flagging
2676 * Non rightmost leaves will throw -EAGAIN and the
2677 * caller can manually move the subtree and retry.
2680 if (eb
->h_next_leaf_blk
!= 0ULL)
2683 if (le16_to_cpu(right_leaf_el
->l_next_free_rec
) > 1) {
2684 ret
= ocfs2_journal_access_eb(handle
, et
->et_ci
,
2685 path_leaf_bh(right_path
),
2686 OCFS2_JOURNAL_ACCESS_WRITE
);
2692 ocfs2_remove_empty_extent(right_leaf_el
);
2694 right_has_empty
= 1;
2697 if (eb
->h_next_leaf_blk
== 0ULL &&
2698 le16_to_cpu(right_leaf_el
->l_next_free_rec
) == 1) {
2700 * We have to update i_last_eb_blk during the meta
2703 ret
= ocfs2_et_root_journal_access(handle
, et
,
2704 OCFS2_JOURNAL_ACCESS_WRITE
);
2710 del_right_subtree
= 1;
2714 * Getting here with an empty extent in the right path implies
2715 * that it's the rightmost path and will be deleted.
2717 BUG_ON(right_has_empty
&& !del_right_subtree
);
2719 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
2726 for(i
= subtree_index
+ 1; i
< path_num_items(right_path
); i
++) {
2727 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2734 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2742 if (!right_has_empty
) {
2744 * Only do this if we're moving a real
2745 * record. Otherwise, the action is delayed until
2746 * after removal of the right path in which case we
2747 * can do a simple shift to remove the empty extent.
2749 ocfs2_rotate_leaf(left_leaf_el
, &right_leaf_el
->l_recs
[0]);
2750 memset(&right_leaf_el
->l_recs
[0], 0,
2751 sizeof(struct ocfs2_extent_rec
));
2753 if (eb
->h_next_leaf_blk
== 0ULL) {
2755 * Move recs over to get rid of empty extent, decrease
2756 * next_free. This is allowed to remove the last
2757 * extent in our leaf (setting l_next_free_rec to
2758 * zero) - the delete code below won't care.
2760 ocfs2_remove_empty_extent(right_leaf_el
);
2763 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
2764 ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
2766 if (del_right_subtree
) {
2767 ocfs2_unlink_subtree(handle
, et
, left_path
, right_path
,
2768 subtree_index
, dealloc
);
2769 ret
= ocfs2_update_edge_lengths(handle
, et
, left_path
);
2775 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
2776 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
2779 * Removal of the extent in the left leaf was skipped
2780 * above so we could delete the right path
2783 if (right_has_empty
)
2784 ocfs2_remove_empty_extent(left_leaf_el
);
2786 ocfs2_journal_dirty(handle
, et_root_bh
);
2790 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
2798 * Given a full path, determine what cpos value would return us a path
2799 * containing the leaf immediately to the right of the current one.
2801 * Will return zero if the path passed in is already the rightmost path.
2803 * This looks similar, but is subtly different to
2804 * ocfs2_find_cpos_for_left_leaf().
2806 int ocfs2_find_cpos_for_right_leaf(struct super_block
*sb
,
2807 struct ocfs2_path
*path
, u32
*cpos
)
2811 struct ocfs2_extent_list
*el
;
2815 if (path
->p_tree_depth
== 0)
2818 blkno
= path_leaf_bh(path
)->b_blocknr
;
2820 /* Start at the tree node just above the leaf and work our way up. */
2821 i
= path
->p_tree_depth
- 1;
2825 el
= path
->p_node
[i
].el
;
2828 * Find the extent record just after the one in our
2831 next_free
= le16_to_cpu(el
->l_next_free_rec
);
2832 for(j
= 0; j
< le16_to_cpu(el
->l_next_free_rec
); j
++) {
2833 if (le64_to_cpu(el
->l_recs
[j
].e_blkno
) == blkno
) {
2834 if (j
== (next_free
- 1)) {
2837 * We've determined that the
2838 * path specified is already
2839 * the rightmost one - return a
2845 * The rightmost record points to our
2846 * leaf - we need to travel up the
2852 *cpos
= le32_to_cpu(el
->l_recs
[j
+ 1].e_cpos
);
2858 * If we got here, we never found a valid node where
2859 * the tree indicated one should be.
2861 ocfs2_error(sb
, "Invalid extent tree at extent block %llu\n",
2862 (unsigned long long)blkno
);
2867 blkno
= path
->p_node
[i
].bh
->b_blocknr
;
2875 static int ocfs2_rotate_rightmost_leaf_left(handle_t
*handle
,
2876 struct ocfs2_extent_tree
*et
,
2877 struct ocfs2_path
*path
)
2880 struct buffer_head
*bh
= path_leaf_bh(path
);
2881 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
2883 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
2886 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, path
,
2887 path_num_items(path
) - 1);
2893 ocfs2_remove_empty_extent(el
);
2894 ocfs2_journal_dirty(handle
, bh
);
2900 static int __ocfs2_rotate_tree_left(handle_t
*handle
,
2901 struct ocfs2_extent_tree
*et
,
2903 struct ocfs2_path
*path
,
2904 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
2905 struct ocfs2_path
**empty_extent_path
)
2907 int ret
, subtree_root
, deleted
;
2909 struct ocfs2_path
*left_path
= NULL
;
2910 struct ocfs2_path
*right_path
= NULL
;
2911 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
2913 if (!ocfs2_is_empty_extent(&(path_leaf_el(path
)->l_recs
[0])))
2916 *empty_extent_path
= NULL
;
2918 ret
= ocfs2_find_cpos_for_right_leaf(sb
, path
, &right_cpos
);
2924 left_path
= ocfs2_new_path_from_path(path
);
2931 ocfs2_cp_path(left_path
, path
);
2933 right_path
= ocfs2_new_path_from_path(path
);
2940 while (right_cpos
) {
2941 ret
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
2947 subtree_root
= ocfs2_find_subtree_root(et
, left_path
,
2950 trace_ocfs2_rotate_subtree(subtree_root
,
2951 (unsigned long long)
2952 right_path
->p_node
[subtree_root
].bh
->b_blocknr
,
2953 right_path
->p_tree_depth
);
2955 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
2956 orig_credits
, left_path
);
2963 * Caller might still want to make changes to the
2964 * tree root, so re-add it to the journal here.
2966 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
2973 ret
= ocfs2_rotate_subtree_left(handle
, et
, left_path
,
2974 right_path
, subtree_root
,
2976 if (ret
== -EAGAIN
) {
2978 * The rotation has to temporarily stop due to
2979 * the right subtree having an empty
2980 * extent. Pass it back to the caller for a
2983 *empty_extent_path
= right_path
;
2993 * The subtree rotate might have removed records on
2994 * the rightmost edge. If so, then rotation is
3000 ocfs2_mv_path(left_path
, right_path
);
3002 ret
= ocfs2_find_cpos_for_right_leaf(sb
, left_path
,
3011 ocfs2_free_path(right_path
);
3012 ocfs2_free_path(left_path
);
3017 static int ocfs2_remove_rightmost_path(handle_t
*handle
,
3018 struct ocfs2_extent_tree
*et
,
3019 struct ocfs2_path
*path
,
3020 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3022 int ret
, subtree_index
;
3024 struct ocfs2_path
*left_path
= NULL
;
3025 struct ocfs2_extent_block
*eb
;
3026 struct ocfs2_extent_list
*el
;
3028 ret
= ocfs2_et_sanity_check(et
);
3032 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
3038 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3047 * We have a path to the left of this one - it needs
3050 left_path
= ocfs2_new_path_from_path(path
);
3057 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
3063 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
3069 subtree_index
= ocfs2_find_subtree_root(et
, left_path
, path
);
3071 ocfs2_unlink_subtree(handle
, et
, left_path
, path
,
3072 subtree_index
, dealloc
);
3073 ret
= ocfs2_update_edge_lengths(handle
, et
, left_path
);
3079 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(left_path
)->b_data
;
3080 ocfs2_et_set_last_eb_blk(et
, le64_to_cpu(eb
->h_blkno
));
3083 * 'path' is also the leftmost path which
3084 * means it must be the only one. This gets
3085 * handled differently because we want to
3086 * revert the root back to having extents
3089 ocfs2_unlink_path(handle
, et
, dealloc
, path
, 1);
3091 el
= et
->et_root_el
;
3092 el
->l_tree_depth
= 0;
3093 el
->l_next_free_rec
= 0;
3094 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
3096 ocfs2_et_set_last_eb_blk(et
, 0);
3099 ocfs2_journal_dirty(handle
, path_root_bh(path
));
3102 ocfs2_free_path(left_path
);
3106 static int ocfs2_remove_rightmost_empty_extent(struct ocfs2_super
*osb
,
3107 struct ocfs2_extent_tree
*et
,
3108 struct ocfs2_path
*path
,
3109 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3113 int credits
= path
->p_tree_depth
* 2 + 1;
3115 handle
= ocfs2_start_trans(osb
, credits
);
3116 if (IS_ERR(handle
)) {
3117 ret
= PTR_ERR(handle
);
3122 ret
= ocfs2_remove_rightmost_path(handle
, et
, path
, dealloc
);
3126 ocfs2_commit_trans(osb
, handle
);
3131 * Left rotation of btree records.
3133 * In many ways, this is (unsurprisingly) the opposite of right
3134 * rotation. We start at some non-rightmost path containing an empty
3135 * extent in the leaf block. The code works its way to the rightmost
3136 * path by rotating records to the left in every subtree.
3138 * This is used by any code which reduces the number of extent records
3139 * in a leaf. After removal, an empty record should be placed in the
3140 * leftmost list position.
3142 * This won't handle a length update of the rightmost path records if
3143 * the rightmost tree leaf record is removed so the caller is
3144 * responsible for detecting and correcting that.
3146 static int ocfs2_rotate_tree_left(handle_t
*handle
,
3147 struct ocfs2_extent_tree
*et
,
3148 struct ocfs2_path
*path
,
3149 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
3151 int ret
, orig_credits
= jbd2_handle_buffer_credits(handle
);
3152 struct ocfs2_path
*tmp_path
= NULL
, *restart_path
= NULL
;
3153 struct ocfs2_extent_block
*eb
;
3154 struct ocfs2_extent_list
*el
;
3156 el
= path_leaf_el(path
);
3157 if (!ocfs2_is_empty_extent(&el
->l_recs
[0]))
3160 if (path
->p_tree_depth
== 0) {
3161 rightmost_no_delete
:
3163 * Inline extents. This is trivially handled, so do
3166 ret
= ocfs2_rotate_rightmost_leaf_left(handle
, et
, path
);
3173 * Handle rightmost branch now. There's several cases:
3174 * 1) simple rotation leaving records in there. That's trivial.
3175 * 2) rotation requiring a branch delete - there's no more
3176 * records left. Two cases of this:
3177 * a) There are branches to the left.
3178 * b) This is also the leftmost (the only) branch.
3180 * 1) is handled via ocfs2_rotate_rightmost_leaf_left()
3181 * 2a) we need the left branch so that we can update it with the unlink
3182 * 2b) we need to bring the root back to inline extents.
3185 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
3187 if (eb
->h_next_leaf_blk
== 0) {
3189 * This gets a bit tricky if we're going to delete the
3190 * rightmost path. Get the other cases out of the way
3193 if (le16_to_cpu(el
->l_next_free_rec
) > 1)
3194 goto rightmost_no_delete
;
3196 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
3197 ret
= ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
3198 "Owner %llu has empty extent block at %llu\n",
3199 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
3200 (unsigned long long)le64_to_cpu(eb
->h_blkno
));
3205 * XXX: The caller can not trust "path" any more after
3206 * this as it will have been deleted. What do we do?
3208 * In theory the rotate-for-merge code will never get
3209 * here because it'll always ask for a rotate in a
3213 ret
= ocfs2_remove_rightmost_path(handle
, et
, path
,
3221 * Now we can loop, remembering the path we get from -EAGAIN
3222 * and restarting from there.
3225 ret
= __ocfs2_rotate_tree_left(handle
, et
, orig_credits
, path
,
3226 dealloc
, &restart_path
);
3227 if (ret
&& ret
!= -EAGAIN
) {
3232 while (ret
== -EAGAIN
) {
3233 tmp_path
= restart_path
;
3234 restart_path
= NULL
;
3236 ret
= __ocfs2_rotate_tree_left(handle
, et
, orig_credits
,
3239 if (ret
&& ret
!= -EAGAIN
) {
3244 ocfs2_free_path(tmp_path
);
3252 ocfs2_free_path(tmp_path
);
3253 ocfs2_free_path(restart_path
);
3257 static void ocfs2_cleanup_merge(struct ocfs2_extent_list
*el
,
3260 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[index
];
3263 if (rec
->e_leaf_clusters
== 0) {
3265 * We consumed all of the merged-from record. An empty
3266 * extent cannot exist anywhere but the 1st array
3267 * position, so move things over if the merged-from
3268 * record doesn't occupy that position.
3270 * This creates a new empty extent so the caller
3271 * should be smart enough to have removed any existing
3275 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
3276 size
= index
* sizeof(struct ocfs2_extent_rec
);
3277 memmove(&el
->l_recs
[1], &el
->l_recs
[0], size
);
3281 * Always memset - the caller doesn't check whether it
3282 * created an empty extent, so there could be junk in
3285 memset(&el
->l_recs
[0], 0, sizeof(struct ocfs2_extent_rec
));
3289 static int ocfs2_get_right_path(struct ocfs2_extent_tree
*et
,
3290 struct ocfs2_path
*left_path
,
3291 struct ocfs2_path
**ret_right_path
)
3295 struct ocfs2_path
*right_path
= NULL
;
3296 struct ocfs2_extent_list
*left_el
;
3298 *ret_right_path
= NULL
;
3300 /* This function shouldn't be called for non-trees. */
3301 BUG_ON(left_path
->p_tree_depth
== 0);
3303 left_el
= path_leaf_el(left_path
);
3304 BUG_ON(left_el
->l_next_free_rec
!= left_el
->l_count
);
3306 ret
= ocfs2_find_cpos_for_right_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3307 left_path
, &right_cpos
);
3313 /* This function shouldn't be called for the rightmost leaf. */
3314 BUG_ON(right_cpos
== 0);
3316 right_path
= ocfs2_new_path_from_path(left_path
);
3323 ret
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
3329 *ret_right_path
= right_path
;
3332 ocfs2_free_path(right_path
);
3337 * Remove split_rec clusters from the record at index and merge them
3338 * onto the beginning of the record "next" to it.
3339 * For index < l_count - 1, the next means the extent rec at index + 1.
3340 * For index == l_count - 1, the "next" means the 1st extent rec of the
3341 * next extent block.
3343 static int ocfs2_merge_rec_right(struct ocfs2_path
*left_path
,
3345 struct ocfs2_extent_tree
*et
,
3346 struct ocfs2_extent_rec
*split_rec
,
3349 int ret
, next_free
, i
;
3350 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
3351 struct ocfs2_extent_rec
*left_rec
;
3352 struct ocfs2_extent_rec
*right_rec
;
3353 struct ocfs2_extent_list
*right_el
;
3354 struct ocfs2_path
*right_path
= NULL
;
3355 int subtree_index
= 0;
3356 struct ocfs2_extent_list
*el
= path_leaf_el(left_path
);
3357 struct buffer_head
*bh
= path_leaf_bh(left_path
);
3358 struct buffer_head
*root_bh
= NULL
;
3360 BUG_ON(index
>= le16_to_cpu(el
->l_next_free_rec
));
3361 left_rec
= &el
->l_recs
[index
];
3363 if (index
== le16_to_cpu(el
->l_next_free_rec
) - 1 &&
3364 le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
)) {
3365 /* we meet with a cross extent block merge. */
3366 ret
= ocfs2_get_right_path(et
, left_path
, &right_path
);
3372 right_el
= path_leaf_el(right_path
);
3373 next_free
= le16_to_cpu(right_el
->l_next_free_rec
);
3374 BUG_ON(next_free
<= 0);
3375 right_rec
= &right_el
->l_recs
[0];
3376 if (ocfs2_is_empty_extent(right_rec
)) {
3377 BUG_ON(next_free
<= 1);
3378 right_rec
= &right_el
->l_recs
[1];
3381 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
3382 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
3383 le32_to_cpu(right_rec
->e_cpos
));
3385 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
3388 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
3389 jbd2_handle_buffer_credits(handle
),
3396 root_bh
= left_path
->p_node
[subtree_index
].bh
;
3397 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
3399 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3406 for (i
= subtree_index
+ 1;
3407 i
< path_num_items(right_path
); i
++) {
3408 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3415 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3424 BUG_ON(index
== le16_to_cpu(el
->l_next_free_rec
) - 1);
3425 right_rec
= &el
->l_recs
[index
+ 1];
3428 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, left_path
,
3429 path_num_items(left_path
) - 1);
3435 le16_add_cpu(&left_rec
->e_leaf_clusters
, -split_clusters
);
3437 le32_add_cpu(&right_rec
->e_cpos
, -split_clusters
);
3438 le64_add_cpu(&right_rec
->e_blkno
,
3439 -ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et
->et_ci
),
3441 le16_add_cpu(&right_rec
->e_leaf_clusters
, split_clusters
);
3443 ocfs2_cleanup_merge(el
, index
);
3445 ocfs2_journal_dirty(handle
, bh
);
3447 ocfs2_journal_dirty(handle
, path_leaf_bh(right_path
));
3448 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
3452 ocfs2_free_path(right_path
);
3456 static int ocfs2_get_left_path(struct ocfs2_extent_tree
*et
,
3457 struct ocfs2_path
*right_path
,
3458 struct ocfs2_path
**ret_left_path
)
3462 struct ocfs2_path
*left_path
= NULL
;
3464 *ret_left_path
= NULL
;
3466 /* This function shouldn't be called for non-trees. */
3467 BUG_ON(right_path
->p_tree_depth
== 0);
3469 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
3470 right_path
, &left_cpos
);
3476 /* This function shouldn't be called for the leftmost leaf. */
3477 BUG_ON(left_cpos
== 0);
3479 left_path
= ocfs2_new_path_from_path(right_path
);
3486 ret
= ocfs2_find_path(et
->et_ci
, left_path
, left_cpos
);
3492 *ret_left_path
= left_path
;
3495 ocfs2_free_path(left_path
);
3500 * Remove split_rec clusters from the record at index and merge them
3501 * onto the tail of the record "before" it.
3502 * For index > 0, the "before" means the extent rec at index - 1.
3504 * For index == 0, the "before" means the last record of the previous
3505 * extent block. And there is also a situation that we may need to
3506 * remove the rightmost leaf extent block in the right_path and change
3507 * the right path to indicate the new rightmost path.
3509 static int ocfs2_merge_rec_left(struct ocfs2_path
*right_path
,
3511 struct ocfs2_extent_tree
*et
,
3512 struct ocfs2_extent_rec
*split_rec
,
3513 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
3516 int ret
, i
, subtree_index
= 0, has_empty_extent
= 0;
3517 unsigned int split_clusters
= le16_to_cpu(split_rec
->e_leaf_clusters
);
3518 struct ocfs2_extent_rec
*left_rec
;
3519 struct ocfs2_extent_rec
*right_rec
;
3520 struct ocfs2_extent_list
*el
= path_leaf_el(right_path
);
3521 struct buffer_head
*bh
= path_leaf_bh(right_path
);
3522 struct buffer_head
*root_bh
= NULL
;
3523 struct ocfs2_path
*left_path
= NULL
;
3524 struct ocfs2_extent_list
*left_el
;
3528 right_rec
= &el
->l_recs
[index
];
3530 /* we meet with a cross extent block merge. */
3531 ret
= ocfs2_get_left_path(et
, right_path
, &left_path
);
3537 left_el
= path_leaf_el(left_path
);
3538 BUG_ON(le16_to_cpu(left_el
->l_next_free_rec
) !=
3539 le16_to_cpu(left_el
->l_count
));
3541 left_rec
= &left_el
->l_recs
[
3542 le16_to_cpu(left_el
->l_next_free_rec
) - 1];
3543 BUG_ON(le32_to_cpu(left_rec
->e_cpos
) +
3544 le16_to_cpu(left_rec
->e_leaf_clusters
) !=
3545 le32_to_cpu(split_rec
->e_cpos
));
3547 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
3550 ret
= ocfs2_extend_rotate_transaction(handle
, subtree_index
,
3551 jbd2_handle_buffer_credits(handle
),
3558 root_bh
= left_path
->p_node
[subtree_index
].bh
;
3559 BUG_ON(root_bh
!= right_path
->p_node
[subtree_index
].bh
);
3561 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3568 for (i
= subtree_index
+ 1;
3569 i
< path_num_items(right_path
); i
++) {
3570 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3577 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
,
3585 left_rec
= &el
->l_recs
[index
- 1];
3586 if (ocfs2_is_empty_extent(&el
->l_recs
[0]))
3587 has_empty_extent
= 1;
3590 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, right_path
,
3591 path_num_items(right_path
) - 1);
3597 if (has_empty_extent
&& index
== 1) {
3599 * The easy case - we can just plop the record right in.
3601 *left_rec
= *split_rec
;
3603 le16_add_cpu(&left_rec
->e_leaf_clusters
, split_clusters
);
3605 le32_add_cpu(&right_rec
->e_cpos
, split_clusters
);
3606 le64_add_cpu(&right_rec
->e_blkno
,
3607 ocfs2_clusters_to_blocks(ocfs2_metadata_cache_get_super(et
->et_ci
),
3609 le16_add_cpu(&right_rec
->e_leaf_clusters
, -split_clusters
);
3611 ocfs2_cleanup_merge(el
, index
);
3613 ocfs2_journal_dirty(handle
, bh
);
3615 ocfs2_journal_dirty(handle
, path_leaf_bh(left_path
));
3618 * In the situation that the right_rec is empty and the extent
3619 * block is empty also, ocfs2_complete_edge_insert can't handle
3620 * it and we need to delete the right extent block.
3622 if (le16_to_cpu(right_rec
->e_leaf_clusters
) == 0 &&
3623 le16_to_cpu(el
->l_next_free_rec
) == 1) {
3624 /* extend credit for ocfs2_remove_rightmost_path */
3625 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
3626 jbd2_handle_buffer_credits(handle
),
3633 ret
= ocfs2_remove_rightmost_path(handle
, et
,
3641 /* Now the rightmost extent block has been deleted.
3642 * So we use the new rightmost path.
3644 ocfs2_mv_path(right_path
, left_path
);
3647 ocfs2_complete_edge_insert(handle
, left_path
,
3648 right_path
, subtree_index
);
3651 ocfs2_free_path(left_path
);
3655 static int ocfs2_try_to_merge_extent(handle_t
*handle
,
3656 struct ocfs2_extent_tree
*et
,
3657 struct ocfs2_path
*path
,
3659 struct ocfs2_extent_rec
*split_rec
,
3660 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
3661 struct ocfs2_merge_ctxt
*ctxt
)
3664 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
3665 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
3667 BUG_ON(ctxt
->c_contig_type
== CONTIG_NONE
);
3669 if (ctxt
->c_split_covers_rec
&& ctxt
->c_has_empty_extent
) {
3670 /* extend credit for ocfs2_remove_rightmost_path */
3671 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
3672 jbd2_handle_buffer_credits(handle
),
3679 * The merge code will need to create an empty
3680 * extent to take the place of the newly
3681 * emptied slot. Remove any pre-existing empty
3682 * extents - having more than one in a leaf is
3685 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3691 rec
= &el
->l_recs
[split_index
];
3694 if (ctxt
->c_contig_type
== CONTIG_LEFTRIGHT
) {
3696 * Left-right contig implies this.
3698 BUG_ON(!ctxt
->c_split_covers_rec
);
3701 * Since the leftright insert always covers the entire
3702 * extent, this call will delete the insert record
3703 * entirely, resulting in an empty extent record added to
3706 * Since the adding of an empty extent shifts
3707 * everything back to the right, there's no need to
3708 * update split_index here.
3710 * When the split_index is zero, we need to merge it to the
3711 * prevoius extent block. It is more efficient and easier
3712 * if we do merge_right first and merge_left later.
3714 ret
= ocfs2_merge_rec_right(path
, handle
, et
, split_rec
,
3722 * We can only get this from logic error above.
3724 BUG_ON(!ocfs2_is_empty_extent(&el
->l_recs
[0]));
3726 /* extend credit for ocfs2_remove_rightmost_path */
3727 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
3728 jbd2_handle_buffer_credits(handle
),
3735 /* The merge left us with an empty extent, remove it. */
3736 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3742 rec
= &el
->l_recs
[split_index
];
3745 * Note that we don't pass split_rec here on purpose -
3746 * we've merged it into the rec already.
3748 ret
= ocfs2_merge_rec_left(path
, handle
, et
, rec
,
3749 dealloc
, split_index
);
3756 /* extend credit for ocfs2_remove_rightmost_path */
3757 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
3758 jbd2_handle_buffer_credits(handle
),
3765 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
3767 * Error from this last rotate is not critical, so
3768 * print but don't bubble it up.
3775 * Merge a record to the left or right.
3777 * 'contig_type' is relative to the existing record,
3778 * so for example, if we're "right contig", it's to
3779 * the record on the left (hence the left merge).
3781 if (ctxt
->c_contig_type
== CONTIG_RIGHT
) {
3782 ret
= ocfs2_merge_rec_left(path
, handle
, et
,
3790 ret
= ocfs2_merge_rec_right(path
, handle
,
3799 if (ctxt
->c_split_covers_rec
) {
3800 /* extend credit for ocfs2_remove_rightmost_path */
3801 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
3802 jbd2_handle_buffer_credits(handle
),
3811 * The merge may have left an empty extent in
3812 * our leaf. Try to rotate it away.
3814 ret
= ocfs2_rotate_tree_left(handle
, et
, path
,
3826 static void ocfs2_subtract_from_rec(struct super_block
*sb
,
3827 enum ocfs2_split_type split
,
3828 struct ocfs2_extent_rec
*rec
,
3829 struct ocfs2_extent_rec
*split_rec
)
3833 len_blocks
= ocfs2_clusters_to_blocks(sb
,
3834 le16_to_cpu(split_rec
->e_leaf_clusters
));
3836 if (split
== SPLIT_LEFT
) {
3838 * Region is on the left edge of the existing
3841 le32_add_cpu(&rec
->e_cpos
,
3842 le16_to_cpu(split_rec
->e_leaf_clusters
));
3843 le64_add_cpu(&rec
->e_blkno
, len_blocks
);
3844 le16_add_cpu(&rec
->e_leaf_clusters
,
3845 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3848 * Region is on the right edge of the existing
3851 le16_add_cpu(&rec
->e_leaf_clusters
,
3852 -le16_to_cpu(split_rec
->e_leaf_clusters
));
3857 * Do the final bits of extent record insertion at the target leaf
3858 * list. If this leaf is part of an allocation tree, it is assumed
3859 * that the tree above has been prepared.
3861 static void ocfs2_insert_at_leaf(struct ocfs2_extent_tree
*et
,
3862 struct ocfs2_extent_rec
*insert_rec
,
3863 struct ocfs2_extent_list
*el
,
3864 struct ocfs2_insert_type
*insert
)
3866 int i
= insert
->ins_contig_index
;
3868 struct ocfs2_extent_rec
*rec
;
3870 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
3872 if (insert
->ins_split
!= SPLIT_NONE
) {
3873 i
= ocfs2_search_extent_list(el
, le32_to_cpu(insert_rec
->e_cpos
));
3875 rec
= &el
->l_recs
[i
];
3876 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
3877 insert
->ins_split
, rec
,
3883 * Contiguous insert - either left or right.
3885 if (insert
->ins_contig
!= CONTIG_NONE
) {
3886 rec
= &el
->l_recs
[i
];
3887 if (insert
->ins_contig
== CONTIG_LEFT
) {
3888 rec
->e_blkno
= insert_rec
->e_blkno
;
3889 rec
->e_cpos
= insert_rec
->e_cpos
;
3891 le16_add_cpu(&rec
->e_leaf_clusters
,
3892 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3897 * Handle insert into an empty leaf.
3899 if (le16_to_cpu(el
->l_next_free_rec
) == 0 ||
3900 ((le16_to_cpu(el
->l_next_free_rec
) == 1) &&
3901 ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
3902 el
->l_recs
[0] = *insert_rec
;
3903 el
->l_next_free_rec
= cpu_to_le16(1);
3910 if (insert
->ins_appending
== APPEND_TAIL
) {
3911 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
3912 rec
= &el
->l_recs
[i
];
3913 range
= le32_to_cpu(rec
->e_cpos
)
3914 + le16_to_cpu(rec
->e_leaf_clusters
);
3915 BUG_ON(le32_to_cpu(insert_rec
->e_cpos
) < range
);
3917 mlog_bug_on_msg(le16_to_cpu(el
->l_next_free_rec
) >=
3918 le16_to_cpu(el
->l_count
),
3919 "owner %llu, depth %u, count %u, next free %u, "
3920 "rec.cpos %u, rec.clusters %u, "
3921 "insert.cpos %u, insert.clusters %u\n",
3922 ocfs2_metadata_cache_owner(et
->et_ci
),
3923 le16_to_cpu(el
->l_tree_depth
),
3924 le16_to_cpu(el
->l_count
),
3925 le16_to_cpu(el
->l_next_free_rec
),
3926 le32_to_cpu(el
->l_recs
[i
].e_cpos
),
3927 le16_to_cpu(el
->l_recs
[i
].e_leaf_clusters
),
3928 le32_to_cpu(insert_rec
->e_cpos
),
3929 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3931 el
->l_recs
[i
] = *insert_rec
;
3932 le16_add_cpu(&el
->l_next_free_rec
, 1);
3938 * Ok, we have to rotate.
3940 * At this point, it is safe to assume that inserting into an
3941 * empty leaf and appending to a leaf have both been handled
3944 * This leaf needs to have space, either by the empty 1st
3945 * extent record, or by virtue of an l_next_rec < l_count.
3947 ocfs2_rotate_leaf(el
, insert_rec
);
3950 static void ocfs2_adjust_rightmost_records(handle_t
*handle
,
3951 struct ocfs2_extent_tree
*et
,
3952 struct ocfs2_path
*path
,
3953 struct ocfs2_extent_rec
*insert_rec
)
3956 struct buffer_head
*bh
;
3957 struct ocfs2_extent_list
*el
;
3958 struct ocfs2_extent_rec
*rec
;
3961 * Update everything except the leaf block.
3963 for (i
= 0; i
< path
->p_tree_depth
; i
++) {
3964 bh
= path
->p_node
[i
].bh
;
3965 el
= path
->p_node
[i
].el
;
3967 next_free
= le16_to_cpu(el
->l_next_free_rec
);
3968 if (next_free
== 0) {
3969 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
3970 "Owner %llu has a bad extent list\n",
3971 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
));
3975 rec
= &el
->l_recs
[next_free
- 1];
3977 rec
->e_int_clusters
= insert_rec
->e_cpos
;
3978 le32_add_cpu(&rec
->e_int_clusters
,
3979 le16_to_cpu(insert_rec
->e_leaf_clusters
));
3980 le32_add_cpu(&rec
->e_int_clusters
,
3981 -le32_to_cpu(rec
->e_cpos
));
3983 ocfs2_journal_dirty(handle
, bh
);
3987 static int ocfs2_append_rec_to_path(handle_t
*handle
,
3988 struct ocfs2_extent_tree
*et
,
3989 struct ocfs2_extent_rec
*insert_rec
,
3990 struct ocfs2_path
*right_path
,
3991 struct ocfs2_path
**ret_left_path
)
3994 struct ocfs2_extent_list
*el
;
3995 struct ocfs2_path
*left_path
= NULL
;
3997 *ret_left_path
= NULL
;
4000 * This shouldn't happen for non-trees. The extent rec cluster
4001 * count manipulation below only works for interior nodes.
4003 BUG_ON(right_path
->p_tree_depth
== 0);
4006 * If our appending insert is at the leftmost edge of a leaf,
4007 * then we might need to update the rightmost records of the
4010 el
= path_leaf_el(right_path
);
4011 next_free
= le16_to_cpu(el
->l_next_free_rec
);
4012 if (next_free
== 0 ||
4013 (next_free
== 1 && ocfs2_is_empty_extent(&el
->l_recs
[0]))) {
4016 ret
= ocfs2_find_cpos_for_left_leaf(ocfs2_metadata_cache_get_super(et
->et_ci
),
4017 right_path
, &left_cpos
);
4023 trace_ocfs2_append_rec_to_path(
4024 (unsigned long long)
4025 ocfs2_metadata_cache_owner(et
->et_ci
),
4026 le32_to_cpu(insert_rec
->e_cpos
),
4030 * No need to worry if the append is already in the
4034 left_path
= ocfs2_new_path_from_path(right_path
);
4041 ret
= ocfs2_find_path(et
->et_ci
, left_path
,
4049 * ocfs2_insert_path() will pass the left_path to the
4055 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, right_path
);
4061 ocfs2_adjust_rightmost_records(handle
, et
, right_path
, insert_rec
);
4063 *ret_left_path
= left_path
;
4067 ocfs2_free_path(left_path
);
4072 static void ocfs2_split_record(struct ocfs2_extent_tree
*et
,
4073 struct ocfs2_path
*left_path
,
4074 struct ocfs2_path
*right_path
,
4075 struct ocfs2_extent_rec
*split_rec
,
4076 enum ocfs2_split_type split
)
4079 u32 cpos
= le32_to_cpu(split_rec
->e_cpos
);
4080 struct ocfs2_extent_list
*left_el
= NULL
, *right_el
, *insert_el
, *el
;
4081 struct ocfs2_extent_rec
*rec
, *tmprec
;
4083 right_el
= path_leaf_el(right_path
);
4085 left_el
= path_leaf_el(left_path
);
4088 insert_el
= right_el
;
4089 index
= ocfs2_search_extent_list(el
, cpos
);
4091 if (index
== 0 && left_path
) {
4092 BUG_ON(ocfs2_is_empty_extent(&el
->l_recs
[0]));
4095 * This typically means that the record
4096 * started in the left path but moved to the
4097 * right as a result of rotation. We either
4098 * move the existing record to the left, or we
4099 * do the later insert there.
4101 * In this case, the left path should always
4102 * exist as the rotate code will have passed
4103 * it back for a post-insert update.
4106 if (split
== SPLIT_LEFT
) {
4108 * It's a left split. Since we know
4109 * that the rotate code gave us an
4110 * empty extent in the left path, we
4111 * can just do the insert there.
4113 insert_el
= left_el
;
4116 * Right split - we have to move the
4117 * existing record over to the left
4118 * leaf. The insert will be into the
4119 * newly created empty extent in the
4122 tmprec
= &right_el
->l_recs
[index
];
4123 ocfs2_rotate_leaf(left_el
, tmprec
);
4126 memset(tmprec
, 0, sizeof(*tmprec
));
4127 index
= ocfs2_search_extent_list(left_el
, cpos
);
4128 BUG_ON(index
== -1);
4133 BUG_ON(!ocfs2_is_empty_extent(&left_el
->l_recs
[0]));
4135 * Left path is easy - we can just allow the insert to
4139 insert_el
= left_el
;
4140 index
= ocfs2_search_extent_list(el
, cpos
);
4141 BUG_ON(index
== -1);
4144 rec
= &el
->l_recs
[index
];
4145 ocfs2_subtract_from_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
4146 split
, rec
, split_rec
);
4147 ocfs2_rotate_leaf(insert_el
, split_rec
);
4151 * This function only does inserts on an allocation b-tree. For tree
4152 * depth = 0, ocfs2_insert_at_leaf() is called directly.
4154 * right_path is the path we want to do the actual insert
4155 * in. left_path should only be passed in if we need to update that
4156 * portion of the tree after an edge insert.
4158 static int ocfs2_insert_path(handle_t
*handle
,
4159 struct ocfs2_extent_tree
*et
,
4160 struct ocfs2_path
*left_path
,
4161 struct ocfs2_path
*right_path
,
4162 struct ocfs2_extent_rec
*insert_rec
,
4163 struct ocfs2_insert_type
*insert
)
4165 int ret
, subtree_index
;
4166 struct buffer_head
*leaf_bh
= path_leaf_bh(right_path
);
4170 * There's a chance that left_path got passed back to
4171 * us without being accounted for in the
4172 * journal. Extend our transaction here to be sure we
4173 * can change those blocks.
4175 ret
= ocfs2_extend_trans(handle
, left_path
->p_tree_depth
);
4181 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
4189 * Pass both paths to the journal. The majority of inserts
4190 * will be touching all components anyway.
4192 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, right_path
);
4198 if (insert
->ins_split
!= SPLIT_NONE
) {
4200 * We could call ocfs2_insert_at_leaf() for some types
4201 * of splits, but it's easier to just let one separate
4202 * function sort it all out.
4204 ocfs2_split_record(et
, left_path
, right_path
,
4205 insert_rec
, insert
->ins_split
);
4208 * Split might have modified either leaf and we don't
4209 * have a guarantee that the later edge insert will
4210 * dirty this for us.
4213 ocfs2_journal_dirty(handle
,
4214 path_leaf_bh(left_path
));
4216 ocfs2_insert_at_leaf(et
, insert_rec
, path_leaf_el(right_path
),
4219 ocfs2_journal_dirty(handle
, leaf_bh
);
4223 * The rotate code has indicated that we need to fix
4224 * up portions of the tree after the insert.
4226 * XXX: Should we extend the transaction here?
4228 subtree_index
= ocfs2_find_subtree_root(et
, left_path
,
4230 ocfs2_complete_edge_insert(handle
, left_path
, right_path
,
4239 static int ocfs2_do_insert_extent(handle_t
*handle
,
4240 struct ocfs2_extent_tree
*et
,
4241 struct ocfs2_extent_rec
*insert_rec
,
4242 struct ocfs2_insert_type
*type
)
4244 int ret
, rotate
= 0;
4246 struct ocfs2_path
*right_path
= NULL
;
4247 struct ocfs2_path
*left_path
= NULL
;
4248 struct ocfs2_extent_list
*el
;
4250 el
= et
->et_root_el
;
4252 ret
= ocfs2_et_root_journal_access(handle
, et
,
4253 OCFS2_JOURNAL_ACCESS_WRITE
);
4259 if (le16_to_cpu(el
->l_tree_depth
) == 0) {
4260 ocfs2_insert_at_leaf(et
, insert_rec
, el
, type
);
4261 goto out_update_clusters
;
4264 right_path
= ocfs2_new_path_from_et(et
);
4272 * Determine the path to start with. Rotations need the
4273 * rightmost path, everything else can go directly to the
4276 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
4277 if (type
->ins_appending
== APPEND_NONE
&&
4278 type
->ins_contig
== CONTIG_NONE
) {
4283 ret
= ocfs2_find_path(et
->et_ci
, right_path
, cpos
);
4290 * Rotations and appends need special treatment - they modify
4291 * parts of the tree's above them.
4293 * Both might pass back a path immediate to the left of the
4294 * one being inserted to. This will be cause
4295 * ocfs2_insert_path() to modify the rightmost records of
4296 * left_path to account for an edge insert.
4298 * XXX: When modifying this code, keep in mind that an insert
4299 * can wind up skipping both of these two special cases...
4302 ret
= ocfs2_rotate_tree_right(handle
, et
, type
->ins_split
,
4303 le32_to_cpu(insert_rec
->e_cpos
),
4304 right_path
, &left_path
);
4311 * ocfs2_rotate_tree_right() might have extended the
4312 * transaction without re-journaling our tree root.
4314 ret
= ocfs2_et_root_journal_access(handle
, et
,
4315 OCFS2_JOURNAL_ACCESS_WRITE
);
4320 } else if (type
->ins_appending
== APPEND_TAIL
4321 && type
->ins_contig
!= CONTIG_LEFT
) {
4322 ret
= ocfs2_append_rec_to_path(handle
, et
, insert_rec
,
4323 right_path
, &left_path
);
4330 ret
= ocfs2_insert_path(handle
, et
, left_path
, right_path
,
4337 out_update_clusters
:
4338 if (type
->ins_split
== SPLIT_NONE
)
4339 ocfs2_et_update_clusters(et
,
4340 le16_to_cpu(insert_rec
->e_leaf_clusters
));
4342 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
4345 ocfs2_free_path(left_path
);
4346 ocfs2_free_path(right_path
);
4351 static int ocfs2_figure_merge_contig_type(struct ocfs2_extent_tree
*et
,
4352 struct ocfs2_path
*path
,
4353 struct ocfs2_extent_list
*el
, int index
,
4354 struct ocfs2_extent_rec
*split_rec
,
4355 struct ocfs2_merge_ctxt
*ctxt
)
4358 enum ocfs2_contig_type ret
= CONTIG_NONE
;
4359 u32 left_cpos
, right_cpos
;
4360 struct ocfs2_extent_rec
*rec
= NULL
;
4361 struct ocfs2_extent_list
*new_el
;
4362 struct ocfs2_path
*left_path
= NULL
, *right_path
= NULL
;
4363 struct buffer_head
*bh
;
4364 struct ocfs2_extent_block
*eb
;
4365 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
4368 rec
= &el
->l_recs
[index
- 1];
4369 } else if (path
->p_tree_depth
> 0) {
4370 status
= ocfs2_find_cpos_for_left_leaf(sb
, path
, &left_cpos
);
4374 if (left_cpos
!= 0) {
4375 left_path
= ocfs2_new_path_from_path(path
);
4382 status
= ocfs2_find_path(et
->et_ci
, left_path
,
4385 goto free_left_path
;
4387 new_el
= path_leaf_el(left_path
);
4389 if (le16_to_cpu(new_el
->l_next_free_rec
) !=
4390 le16_to_cpu(new_el
->l_count
)) {
4391 bh
= path_leaf_bh(left_path
);
4392 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
4393 status
= ocfs2_error(sb
,
4394 "Extent block #%llu has an invalid l_next_free_rec of %d. It should have matched the l_count of %d\n",
4395 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
4396 le16_to_cpu(new_el
->l_next_free_rec
),
4397 le16_to_cpu(new_el
->l_count
));
4398 goto free_left_path
;
4400 rec
= &new_el
->l_recs
[
4401 le16_to_cpu(new_el
->l_next_free_rec
) - 1];
4406 * We're careful to check for an empty extent record here -
4407 * the merge code will know what to do if it sees one.
4410 if (index
== 1 && ocfs2_is_empty_extent(rec
)) {
4411 if (split_rec
->e_cpos
== el
->l_recs
[index
].e_cpos
)
4414 ret
= ocfs2_et_extent_contig(et
, rec
, split_rec
);
4419 if (index
< (le16_to_cpu(el
->l_next_free_rec
) - 1))
4420 rec
= &el
->l_recs
[index
+ 1];
4421 else if (le16_to_cpu(el
->l_next_free_rec
) == le16_to_cpu(el
->l_count
) &&
4422 path
->p_tree_depth
> 0) {
4423 status
= ocfs2_find_cpos_for_right_leaf(sb
, path
, &right_cpos
);
4425 goto free_left_path
;
4427 if (right_cpos
== 0)
4428 goto free_left_path
;
4430 right_path
= ocfs2_new_path_from_path(path
);
4434 goto free_left_path
;
4437 status
= ocfs2_find_path(et
->et_ci
, right_path
, right_cpos
);
4439 goto free_right_path
;
4441 new_el
= path_leaf_el(right_path
);
4442 rec
= &new_el
->l_recs
[0];
4443 if (ocfs2_is_empty_extent(rec
)) {
4444 if (le16_to_cpu(new_el
->l_next_free_rec
) <= 1) {
4445 bh
= path_leaf_bh(right_path
);
4446 eb
= (struct ocfs2_extent_block
*)bh
->b_data
;
4447 status
= ocfs2_error(sb
,
4448 "Extent block #%llu has an invalid l_next_free_rec of %d\n",
4449 (unsigned long long)le64_to_cpu(eb
->h_blkno
),
4450 le16_to_cpu(new_el
->l_next_free_rec
));
4451 goto free_right_path
;
4453 rec
= &new_el
->l_recs
[1];
4458 enum ocfs2_contig_type contig_type
;
4460 contig_type
= ocfs2_et_extent_contig(et
, rec
, split_rec
);
4462 if (contig_type
== CONTIG_LEFT
&& ret
== CONTIG_RIGHT
)
4463 ret
= CONTIG_LEFTRIGHT
;
4464 else if (ret
== CONTIG_NONE
)
4469 ocfs2_free_path(right_path
);
4471 ocfs2_free_path(left_path
);
4474 ctxt
->c_contig_type
= ret
;
4479 static void ocfs2_figure_contig_type(struct ocfs2_extent_tree
*et
,
4480 struct ocfs2_insert_type
*insert
,
4481 struct ocfs2_extent_list
*el
,
4482 struct ocfs2_extent_rec
*insert_rec
)
4485 enum ocfs2_contig_type contig_type
= CONTIG_NONE
;
4487 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
4489 for(i
= 0; i
< le16_to_cpu(el
->l_next_free_rec
); i
++) {
4490 contig_type
= ocfs2_et_extent_contig(et
, &el
->l_recs
[i
],
4492 if (contig_type
!= CONTIG_NONE
) {
4493 insert
->ins_contig_index
= i
;
4497 insert
->ins_contig
= contig_type
;
4499 if (insert
->ins_contig
!= CONTIG_NONE
) {
4500 struct ocfs2_extent_rec
*rec
=
4501 &el
->l_recs
[insert
->ins_contig_index
];
4502 unsigned int len
= le16_to_cpu(rec
->e_leaf_clusters
) +
4503 le16_to_cpu(insert_rec
->e_leaf_clusters
);
4506 * Caller might want us to limit the size of extents, don't
4507 * calculate contiguousness if we might exceed that limit.
4509 if (et
->et_max_leaf_clusters
&&
4510 (len
> et
->et_max_leaf_clusters
))
4511 insert
->ins_contig
= CONTIG_NONE
;
4516 * This should only be called against the righmost leaf extent list.
4518 * ocfs2_figure_appending_type() will figure out whether we'll have to
4519 * insert at the tail of the rightmost leaf.
4521 * This should also work against the root extent list for tree's with 0
4522 * depth. If we consider the root extent list to be the rightmost leaf node
4523 * then the logic here makes sense.
4525 static void ocfs2_figure_appending_type(struct ocfs2_insert_type
*insert
,
4526 struct ocfs2_extent_list
*el
,
4527 struct ocfs2_extent_rec
*insert_rec
)
4530 u32 cpos
= le32_to_cpu(insert_rec
->e_cpos
);
4531 struct ocfs2_extent_rec
*rec
;
4533 insert
->ins_appending
= APPEND_NONE
;
4535 BUG_ON(le16_to_cpu(el
->l_tree_depth
) != 0);
4537 if (!el
->l_next_free_rec
)
4538 goto set_tail_append
;
4540 if (ocfs2_is_empty_extent(&el
->l_recs
[0])) {
4541 /* Were all records empty? */
4542 if (le16_to_cpu(el
->l_next_free_rec
) == 1)
4543 goto set_tail_append
;
4546 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
4547 rec
= &el
->l_recs
[i
];
4550 (le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)))
4551 goto set_tail_append
;
4556 insert
->ins_appending
= APPEND_TAIL
;
4560 * Helper function called at the beginning of an insert.
4562 * This computes a few things that are commonly used in the process of
4563 * inserting into the btree:
4564 * - Whether the new extent is contiguous with an existing one.
4565 * - The current tree depth.
4566 * - Whether the insert is an appending one.
4567 * - The total # of free records in the tree.
4569 * All of the information is stored on the ocfs2_insert_type
4572 static int ocfs2_figure_insert_type(struct ocfs2_extent_tree
*et
,
4573 struct buffer_head
**last_eb_bh
,
4574 struct ocfs2_extent_rec
*insert_rec
,
4576 struct ocfs2_insert_type
*insert
)
4579 struct ocfs2_extent_block
*eb
;
4580 struct ocfs2_extent_list
*el
;
4581 struct ocfs2_path
*path
= NULL
;
4582 struct buffer_head
*bh
= NULL
;
4584 insert
->ins_split
= SPLIT_NONE
;
4586 el
= et
->et_root_el
;
4587 insert
->ins_tree_depth
= le16_to_cpu(el
->l_tree_depth
);
4589 if (el
->l_tree_depth
) {
4591 * If we have tree depth, we read in the
4592 * rightmost extent block ahead of time as
4593 * ocfs2_figure_insert_type() and ocfs2_add_branch()
4594 * may want it later.
4596 ret
= ocfs2_read_extent_block(et
->et_ci
,
4597 ocfs2_et_get_last_eb_blk(et
),
4603 eb
= (struct ocfs2_extent_block
*) bh
->b_data
;
4608 * Unless we have a contiguous insert, we'll need to know if
4609 * there is room left in our allocation tree for another
4612 * XXX: This test is simplistic, we can search for empty
4613 * extent records too.
4615 *free_records
= le16_to_cpu(el
->l_count
) -
4616 le16_to_cpu(el
->l_next_free_rec
);
4618 if (!insert
->ins_tree_depth
) {
4619 ocfs2_figure_contig_type(et
, insert
, el
, insert_rec
);
4620 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4624 path
= ocfs2_new_path_from_et(et
);
4632 * In the case that we're inserting past what the tree
4633 * currently accounts for, ocfs2_find_path() will return for
4634 * us the rightmost tree path. This is accounted for below in
4635 * the appending code.
4637 ret
= ocfs2_find_path(et
->et_ci
, path
, le32_to_cpu(insert_rec
->e_cpos
));
4643 el
= path_leaf_el(path
);
4646 * Now that we have the path, there's two things we want to determine:
4647 * 1) Contiguousness (also set contig_index if this is so)
4649 * 2) Are we doing an append? We can trivially break this up
4650 * into two types of appends: simple record append, or a
4651 * rotate inside the tail leaf.
4653 ocfs2_figure_contig_type(et
, insert
, el
, insert_rec
);
4656 * The insert code isn't quite ready to deal with all cases of
4657 * left contiguousness. Specifically, if it's an insert into
4658 * the 1st record in a leaf, it will require the adjustment of
4659 * cluster count on the last record of the path directly to it's
4660 * left. For now, just catch that case and fool the layers
4661 * above us. This works just fine for tree_depth == 0, which
4662 * is why we allow that above.
4664 if (insert
->ins_contig
== CONTIG_LEFT
&&
4665 insert
->ins_contig_index
== 0)
4666 insert
->ins_contig
= CONTIG_NONE
;
4669 * Ok, so we can simply compare against last_eb to figure out
4670 * whether the path doesn't exist. This will only happen in
4671 * the case that we're doing a tail append, so maybe we can
4672 * take advantage of that information somehow.
4674 if (ocfs2_et_get_last_eb_blk(et
) ==
4675 path_leaf_bh(path
)->b_blocknr
) {
4677 * Ok, ocfs2_find_path() returned us the rightmost
4678 * tree path. This might be an appending insert. There are
4680 * 1) We're doing a true append at the tail:
4681 * -This might even be off the end of the leaf
4682 * 2) We're "appending" by rotating in the tail
4684 ocfs2_figure_appending_type(insert
, el
, insert_rec
);
4688 ocfs2_free_path(path
);
4698 * Insert an extent into a btree.
4700 * The caller needs to update the owning btree's cluster count.
4702 int ocfs2_insert_extent(handle_t
*handle
,
4703 struct ocfs2_extent_tree
*et
,
4708 struct ocfs2_alloc_context
*meta_ac
)
4711 int uninitialized_var(free_records
);
4712 struct buffer_head
*last_eb_bh
= NULL
;
4713 struct ocfs2_insert_type insert
= {0, };
4714 struct ocfs2_extent_rec rec
;
4716 trace_ocfs2_insert_extent_start(
4717 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
4718 cpos
, new_clusters
);
4720 memset(&rec
, 0, sizeof(rec
));
4721 rec
.e_cpos
= cpu_to_le32(cpos
);
4722 rec
.e_blkno
= cpu_to_le64(start_blk
);
4723 rec
.e_leaf_clusters
= cpu_to_le16(new_clusters
);
4724 rec
.e_flags
= flags
;
4725 status
= ocfs2_et_insert_check(et
, &rec
);
4731 status
= ocfs2_figure_insert_type(et
, &last_eb_bh
, &rec
,
4732 &free_records
, &insert
);
4738 trace_ocfs2_insert_extent(insert
.ins_appending
, insert
.ins_contig
,
4739 insert
.ins_contig_index
, free_records
,
4740 insert
.ins_tree_depth
);
4742 if (insert
.ins_contig
== CONTIG_NONE
&& free_records
== 0) {
4743 status
= ocfs2_grow_tree(handle
, et
,
4744 &insert
.ins_tree_depth
, &last_eb_bh
,
4752 /* Finally, we can add clusters. This might rotate the tree for us. */
4753 status
= ocfs2_do_insert_extent(handle
, et
, &rec
, &insert
);
4757 ocfs2_et_extent_map_insert(et
, &rec
);
4766 * Allcate and add clusters into the extent b-tree.
4767 * The new clusters(clusters_to_add) will be inserted at logical_offset.
4768 * The extent b-tree's root is specified by et, and
4769 * it is not limited to the file storage. Any extent tree can use this
4770 * function if it implements the proper ocfs2_extent_tree.
4772 int ocfs2_add_clusters_in_btree(handle_t
*handle
,
4773 struct ocfs2_extent_tree
*et
,
4774 u32
*logical_offset
,
4775 u32 clusters_to_add
,
4777 struct ocfs2_alloc_context
*data_ac
,
4778 struct ocfs2_alloc_context
*meta_ac
,
4779 enum ocfs2_alloc_restarted
*reason_ret
)
4781 int status
= 0, err
= 0;
4784 enum ocfs2_alloc_restarted reason
= RESTART_NONE
;
4785 u32 bit_off
, num_bits
;
4788 struct ocfs2_super
*osb
=
4789 OCFS2_SB(ocfs2_metadata_cache_get_super(et
->et_ci
));
4791 BUG_ON(!clusters_to_add
);
4794 flags
= OCFS2_EXT_UNWRITTEN
;
4796 free_extents
= ocfs2_num_free_extents(et
);
4797 if (free_extents
< 0) {
4798 status
= free_extents
;
4803 /* there are two cases which could cause us to EAGAIN in the
4804 * we-need-more-metadata case:
4805 * 1) we haven't reserved *any*
4806 * 2) we are so fragmented, we've needed to add metadata too
4808 if (!free_extents
&& !meta_ac
) {
4811 reason
= RESTART_META
;
4813 } else if ((!free_extents
)
4814 && (ocfs2_alloc_context_bits_left(meta_ac
)
4815 < ocfs2_extend_meta_needed(et
->et_root_el
))) {
4818 reason
= RESTART_META
;
4822 status
= __ocfs2_claim_clusters(handle
, data_ac
, 1,
4823 clusters_to_add
, &bit_off
, &num_bits
);
4825 if (status
!= -ENOSPC
)
4830 BUG_ON(num_bits
> clusters_to_add
);
4832 /* reserve our write early -- insert_extent may update the tree root */
4833 status
= ocfs2_et_root_journal_access(handle
, et
,
4834 OCFS2_JOURNAL_ACCESS_WRITE
);
4841 block
= ocfs2_clusters_to_blocks(osb
->sb
, bit_off
);
4842 trace_ocfs2_add_clusters_in_btree(
4843 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
4845 status
= ocfs2_insert_extent(handle
, et
, *logical_offset
, block
,
4846 num_bits
, flags
, meta_ac
);
4853 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
4855 clusters_to_add
-= num_bits
;
4856 *logical_offset
+= num_bits
;
4858 if (clusters_to_add
) {
4859 err
= clusters_to_add
;
4861 reason
= RESTART_TRANS
;
4866 if (data_ac
->ac_which
== OCFS2_AC_USE_LOCAL
)
4867 ocfs2_free_local_alloc_bits(osb
, handle
, data_ac
,
4870 ocfs2_free_clusters(handle
,
4873 ocfs2_clusters_to_blocks(osb
->sb
, bit_off
),
4879 *reason_ret
= reason
;
4880 trace_ocfs2_add_clusters_in_btree_ret(status
, reason
, err
);
4884 static void ocfs2_make_right_split_rec(struct super_block
*sb
,
4885 struct ocfs2_extent_rec
*split_rec
,
4887 struct ocfs2_extent_rec
*rec
)
4889 u32 rec_cpos
= le32_to_cpu(rec
->e_cpos
);
4890 u32 rec_range
= rec_cpos
+ le16_to_cpu(rec
->e_leaf_clusters
);
4892 memset(split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
4894 split_rec
->e_cpos
= cpu_to_le32(cpos
);
4895 split_rec
->e_leaf_clusters
= cpu_to_le16(rec_range
- cpos
);
4897 split_rec
->e_blkno
= rec
->e_blkno
;
4898 le64_add_cpu(&split_rec
->e_blkno
,
4899 ocfs2_clusters_to_blocks(sb
, cpos
- rec_cpos
));
4901 split_rec
->e_flags
= rec
->e_flags
;
4904 static int ocfs2_split_and_insert(handle_t
*handle
,
4905 struct ocfs2_extent_tree
*et
,
4906 struct ocfs2_path
*path
,
4907 struct buffer_head
**last_eb_bh
,
4909 struct ocfs2_extent_rec
*orig_split_rec
,
4910 struct ocfs2_alloc_context
*meta_ac
)
4913 unsigned int insert_range
, rec_range
, do_leftright
= 0;
4914 struct ocfs2_extent_rec tmprec
;
4915 struct ocfs2_extent_list
*rightmost_el
;
4916 struct ocfs2_extent_rec rec
;
4917 struct ocfs2_extent_rec split_rec
= *orig_split_rec
;
4918 struct ocfs2_insert_type insert
;
4919 struct ocfs2_extent_block
*eb
;
4923 * Store a copy of the record on the stack - it might move
4924 * around as the tree is manipulated below.
4926 rec
= path_leaf_el(path
)->l_recs
[split_index
];
4928 rightmost_el
= et
->et_root_el
;
4930 depth
= le16_to_cpu(rightmost_el
->l_tree_depth
);
4932 BUG_ON(!(*last_eb_bh
));
4933 eb
= (struct ocfs2_extent_block
*) (*last_eb_bh
)->b_data
;
4934 rightmost_el
= &eb
->h_list
;
4937 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
4938 le16_to_cpu(rightmost_el
->l_count
)) {
4939 ret
= ocfs2_grow_tree(handle
, et
,
4940 &depth
, last_eb_bh
, meta_ac
);
4947 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
4948 insert
.ins_appending
= APPEND_NONE
;
4949 insert
.ins_contig
= CONTIG_NONE
;
4950 insert
.ins_tree_depth
= depth
;
4952 insert_range
= le32_to_cpu(split_rec
.e_cpos
) +
4953 le16_to_cpu(split_rec
.e_leaf_clusters
);
4954 rec_range
= le32_to_cpu(rec
.e_cpos
) +
4955 le16_to_cpu(rec
.e_leaf_clusters
);
4957 if (split_rec
.e_cpos
== rec
.e_cpos
) {
4958 insert
.ins_split
= SPLIT_LEFT
;
4959 } else if (insert_range
== rec_range
) {
4960 insert
.ins_split
= SPLIT_RIGHT
;
4963 * Left/right split. We fake this as a right split
4964 * first and then make a second pass as a left split.
4966 insert
.ins_split
= SPLIT_RIGHT
;
4968 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
4969 &tmprec
, insert_range
, &rec
);
4973 BUG_ON(do_leftright
);
4977 ret
= ocfs2_do_insert_extent(handle
, et
, &split_rec
, &insert
);
4983 if (do_leftright
== 1) {
4985 struct ocfs2_extent_list
*el
;
4988 split_rec
= *orig_split_rec
;
4990 ocfs2_reinit_path(path
, 1);
4992 cpos
= le32_to_cpu(split_rec
.e_cpos
);
4993 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
4999 el
= path_leaf_el(path
);
5000 split_index
= ocfs2_search_extent_list(el
, cpos
);
5001 if (split_index
== -1) {
5002 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5003 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5004 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5016 static int ocfs2_replace_extent_rec(handle_t
*handle
,
5017 struct ocfs2_extent_tree
*et
,
5018 struct ocfs2_path
*path
,
5019 struct ocfs2_extent_list
*el
,
5021 struct ocfs2_extent_rec
*split_rec
)
5025 ret
= ocfs2_path_bh_journal_access(handle
, et
->et_ci
, path
,
5026 path_num_items(path
) - 1);
5032 el
->l_recs
[split_index
] = *split_rec
;
5034 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
5040 * Split part or all of the extent record at split_index in the leaf
5041 * pointed to by path. Merge with the contiguous extent record if needed.
5043 * Care is taken to handle contiguousness so as to not grow the tree.
5045 * meta_ac is not strictly necessary - we only truly need it if growth
5046 * of the tree is required. All other cases will degrade into a less
5047 * optimal tree layout.
5049 * last_eb_bh should be the rightmost leaf block for any extent
5050 * btree. Since a split may grow the tree or a merge might shrink it,
5051 * the caller cannot trust the contents of that buffer after this call.
5053 * This code is optimized for readability - several passes might be
5054 * made over certain portions of the tree. All of those blocks will
5055 * have been brought into cache (and pinned via the journal), so the
5056 * extra overhead is not expressed in terms of disk reads.
5058 int ocfs2_split_extent(handle_t
*handle
,
5059 struct ocfs2_extent_tree
*et
,
5060 struct ocfs2_path
*path
,
5062 struct ocfs2_extent_rec
*split_rec
,
5063 struct ocfs2_alloc_context
*meta_ac
,
5064 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5067 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
5068 struct buffer_head
*last_eb_bh
= NULL
;
5069 struct ocfs2_extent_rec
*rec
= &el
->l_recs
[split_index
];
5070 struct ocfs2_merge_ctxt ctxt
;
5072 if (le32_to_cpu(rec
->e_cpos
) > le32_to_cpu(split_rec
->e_cpos
) ||
5073 ((le32_to_cpu(rec
->e_cpos
) + le16_to_cpu(rec
->e_leaf_clusters
)) <
5074 (le32_to_cpu(split_rec
->e_cpos
) + le16_to_cpu(split_rec
->e_leaf_clusters
)))) {
5080 ret
= ocfs2_figure_merge_contig_type(et
, path
, el
,
5090 * The core merge / split code wants to know how much room is
5091 * left in this allocation tree, so we pass the
5092 * rightmost extent list.
5094 if (path
->p_tree_depth
) {
5095 ret
= ocfs2_read_extent_block(et
->et_ci
,
5096 ocfs2_et_get_last_eb_blk(et
),
5104 if (rec
->e_cpos
== split_rec
->e_cpos
&&
5105 rec
->e_leaf_clusters
== split_rec
->e_leaf_clusters
)
5106 ctxt
.c_split_covers_rec
= 1;
5108 ctxt
.c_split_covers_rec
= 0;
5110 ctxt
.c_has_empty_extent
= ocfs2_is_empty_extent(&el
->l_recs
[0]);
5112 trace_ocfs2_split_extent(split_index
, ctxt
.c_contig_type
,
5113 ctxt
.c_has_empty_extent
,
5114 ctxt
.c_split_covers_rec
);
5116 if (ctxt
.c_contig_type
== CONTIG_NONE
) {
5117 if (ctxt
.c_split_covers_rec
)
5118 ret
= ocfs2_replace_extent_rec(handle
, et
, path
, el
,
5119 split_index
, split_rec
);
5121 ret
= ocfs2_split_and_insert(handle
, et
, path
,
5122 &last_eb_bh
, split_index
,
5123 split_rec
, meta_ac
);
5127 ret
= ocfs2_try_to_merge_extent(handle
, et
, path
,
5128 split_index
, split_rec
,
5140 * Change the flags of the already-existing extent at cpos for len clusters.
5142 * new_flags: the flags we want to set.
5143 * clear_flags: the flags we want to clear.
5144 * phys: the new physical offset we want this new extent starts from.
5146 * If the existing extent is larger than the request, initiate a
5147 * split. An attempt will be made at merging with adjacent extents.
5149 * The caller is responsible for passing down meta_ac if we'll need it.
5151 int ocfs2_change_extent_flag(handle_t
*handle
,
5152 struct ocfs2_extent_tree
*et
,
5153 u32 cpos
, u32 len
, u32 phys
,
5154 struct ocfs2_alloc_context
*meta_ac
,
5155 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5156 int new_flags
, int clear_flags
)
5159 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
5160 u64 start_blkno
= ocfs2_clusters_to_blocks(sb
, phys
);
5161 struct ocfs2_extent_rec split_rec
;
5162 struct ocfs2_path
*left_path
= NULL
;
5163 struct ocfs2_extent_list
*el
;
5164 struct ocfs2_extent_rec
*rec
;
5166 left_path
= ocfs2_new_path_from_et(et
);
5173 ret
= ocfs2_find_path(et
->et_ci
, left_path
, cpos
);
5178 el
= path_leaf_el(left_path
);
5180 index
= ocfs2_search_extent_list(el
, cpos
);
5183 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5184 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5191 rec
= &el
->l_recs
[index
];
5192 if (new_flags
&& (rec
->e_flags
& new_flags
)) {
5193 mlog(ML_ERROR
, "Owner %llu tried to set %d flags on an "
5194 "extent that already had them\n",
5195 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5200 if (clear_flags
&& !(rec
->e_flags
& clear_flags
)) {
5201 mlog(ML_ERROR
, "Owner %llu tried to clear %d flags on an "
5202 "extent that didn't have them\n",
5203 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5208 memset(&split_rec
, 0, sizeof(struct ocfs2_extent_rec
));
5209 split_rec
.e_cpos
= cpu_to_le32(cpos
);
5210 split_rec
.e_leaf_clusters
= cpu_to_le16(len
);
5211 split_rec
.e_blkno
= cpu_to_le64(start_blkno
);
5212 split_rec
.e_flags
= rec
->e_flags
;
5214 split_rec
.e_flags
|= new_flags
;
5216 split_rec
.e_flags
&= ~clear_flags
;
5218 ret
= ocfs2_split_extent(handle
, et
, left_path
,
5219 index
, &split_rec
, meta_ac
,
5225 ocfs2_free_path(left_path
);
5231 * Mark the already-existing extent at cpos as written for len clusters.
5232 * This removes the unwritten extent flag.
5234 * If the existing extent is larger than the request, initiate a
5235 * split. An attempt will be made at merging with adjacent extents.
5237 * The caller is responsible for passing down meta_ac if we'll need it.
5239 int ocfs2_mark_extent_written(struct inode
*inode
,
5240 struct ocfs2_extent_tree
*et
,
5241 handle_t
*handle
, u32 cpos
, u32 len
, u32 phys
,
5242 struct ocfs2_alloc_context
*meta_ac
,
5243 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5247 trace_ocfs2_mark_extent_written(
5248 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
5251 if (!ocfs2_writes_unwritten_extents(OCFS2_SB(inode
->i_sb
))) {
5252 ocfs2_error(inode
->i_sb
, "Inode %llu has unwritten extents that are being written to, but the feature bit is not set in the super block\n",
5253 (unsigned long long)OCFS2_I(inode
)->ip_blkno
);
5259 * XXX: This should be fixed up so that we just re-insert the
5260 * next extent records.
5262 ocfs2_et_extent_map_truncate(et
, 0);
5264 ret
= ocfs2_change_extent_flag(handle
, et
, cpos
,
5265 len
, phys
, meta_ac
, dealloc
,
5266 0, OCFS2_EXT_UNWRITTEN
);
5274 static int ocfs2_split_tree(handle_t
*handle
, struct ocfs2_extent_tree
*et
,
5275 struct ocfs2_path
*path
,
5276 int index
, u32 new_range
,
5277 struct ocfs2_alloc_context
*meta_ac
)
5279 int ret
, depth
, credits
;
5280 struct buffer_head
*last_eb_bh
= NULL
;
5281 struct ocfs2_extent_block
*eb
;
5282 struct ocfs2_extent_list
*rightmost_el
, *el
;
5283 struct ocfs2_extent_rec split_rec
;
5284 struct ocfs2_extent_rec
*rec
;
5285 struct ocfs2_insert_type insert
;
5288 * Setup the record to split before we grow the tree.
5290 el
= path_leaf_el(path
);
5291 rec
= &el
->l_recs
[index
];
5292 ocfs2_make_right_split_rec(ocfs2_metadata_cache_get_super(et
->et_ci
),
5293 &split_rec
, new_range
, rec
);
5295 depth
= path
->p_tree_depth
;
5297 ret
= ocfs2_read_extent_block(et
->et_ci
,
5298 ocfs2_et_get_last_eb_blk(et
),
5305 eb
= (struct ocfs2_extent_block
*) last_eb_bh
->b_data
;
5306 rightmost_el
= &eb
->h_list
;
5308 rightmost_el
= path_leaf_el(path
);
5310 credits
= path
->p_tree_depth
+
5311 ocfs2_extend_meta_needed(et
->et_root_el
);
5312 ret
= ocfs2_extend_trans(handle
, credits
);
5318 if (le16_to_cpu(rightmost_el
->l_next_free_rec
) ==
5319 le16_to_cpu(rightmost_el
->l_count
)) {
5320 ret
= ocfs2_grow_tree(handle
, et
, &depth
, &last_eb_bh
,
5328 memset(&insert
, 0, sizeof(struct ocfs2_insert_type
));
5329 insert
.ins_appending
= APPEND_NONE
;
5330 insert
.ins_contig
= CONTIG_NONE
;
5331 insert
.ins_split
= SPLIT_RIGHT
;
5332 insert
.ins_tree_depth
= depth
;
5334 ret
= ocfs2_do_insert_extent(handle
, et
, &split_rec
, &insert
);
5343 static int ocfs2_truncate_rec(handle_t
*handle
,
5344 struct ocfs2_extent_tree
*et
,
5345 struct ocfs2_path
*path
, int index
,
5346 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5350 u32 left_cpos
, rec_range
, trunc_range
;
5351 int is_rightmost_tree_rec
= 0;
5352 struct super_block
*sb
= ocfs2_metadata_cache_get_super(et
->et_ci
);
5353 struct ocfs2_path
*left_path
= NULL
;
5354 struct ocfs2_extent_list
*el
= path_leaf_el(path
);
5355 struct ocfs2_extent_rec
*rec
;
5356 struct ocfs2_extent_block
*eb
;
5358 if (ocfs2_is_empty_extent(&el
->l_recs
[0]) && index
> 0) {
5359 /* extend credit for ocfs2_remove_rightmost_path */
5360 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
5361 jbd2_handle_buffer_credits(handle
),
5368 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
5377 if (index
== (le16_to_cpu(el
->l_next_free_rec
) - 1) &&
5378 path
->p_tree_depth
) {
5380 * Check whether this is the rightmost tree record. If
5381 * we remove all of this record or part of its right
5382 * edge then an update of the record lengths above it
5385 eb
= (struct ocfs2_extent_block
*)path_leaf_bh(path
)->b_data
;
5386 if (eb
->h_next_leaf_blk
== 0)
5387 is_rightmost_tree_rec
= 1;
5390 rec
= &el
->l_recs
[index
];
5391 if (index
== 0 && path
->p_tree_depth
&&
5392 le32_to_cpu(rec
->e_cpos
) == cpos
) {
5394 * Changing the leftmost offset (via partial or whole
5395 * record truncate) of an interior (or rightmost) path
5396 * means we have to update the subtree that is formed
5397 * by this leaf and the one to it's left.
5399 * There are two cases we can skip:
5400 * 1) Path is the leftmost one in our btree.
5401 * 2) The leaf is rightmost and will be empty after
5402 * we remove the extent record - the rotate code
5403 * knows how to update the newly formed edge.
5406 ret
= ocfs2_find_cpos_for_left_leaf(sb
, path
, &left_cpos
);
5412 if (left_cpos
&& le16_to_cpu(el
->l_next_free_rec
) > 1) {
5413 left_path
= ocfs2_new_path_from_path(path
);
5420 ret
= ocfs2_find_path(et
->et_ci
, left_path
,
5429 ret
= ocfs2_extend_rotate_transaction(handle
, 0,
5430 jbd2_handle_buffer_credits(handle
),
5437 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, path
);
5443 ret
= ocfs2_journal_access_path(et
->et_ci
, handle
, left_path
);
5449 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
5450 trunc_range
= cpos
+ len
;
5452 if (le32_to_cpu(rec
->e_cpos
) == cpos
&& rec_range
== trunc_range
) {
5455 memset(rec
, 0, sizeof(*rec
));
5456 ocfs2_cleanup_merge(el
, index
);
5458 next_free
= le16_to_cpu(el
->l_next_free_rec
);
5459 if (is_rightmost_tree_rec
&& next_free
> 1) {
5461 * We skip the edge update if this path will
5462 * be deleted by the rotate code.
5464 rec
= &el
->l_recs
[next_free
- 1];
5465 ocfs2_adjust_rightmost_records(handle
, et
, path
,
5468 } else if (le32_to_cpu(rec
->e_cpos
) == cpos
) {
5469 /* Remove leftmost portion of the record. */
5470 le32_add_cpu(&rec
->e_cpos
, len
);
5471 le64_add_cpu(&rec
->e_blkno
, ocfs2_clusters_to_blocks(sb
, len
));
5472 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
5473 } else if (rec_range
== trunc_range
) {
5474 /* Remove rightmost portion of the record */
5475 le16_add_cpu(&rec
->e_leaf_clusters
, -len
);
5476 if (is_rightmost_tree_rec
)
5477 ocfs2_adjust_rightmost_records(handle
, et
, path
, rec
);
5479 /* Caller should have trapped this. */
5480 mlog(ML_ERROR
, "Owner %llu: Invalid record truncate: (%u, %u) "
5482 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5483 le32_to_cpu(rec
->e_cpos
),
5484 le16_to_cpu(rec
->e_leaf_clusters
), cpos
, len
);
5491 subtree_index
= ocfs2_find_subtree_root(et
, left_path
, path
);
5492 ocfs2_complete_edge_insert(handle
, left_path
, path
,
5496 ocfs2_journal_dirty(handle
, path_leaf_bh(path
));
5498 ret
= ocfs2_rotate_tree_left(handle
, et
, path
, dealloc
);
5503 ocfs2_free_path(left_path
);
5507 int ocfs2_remove_extent(handle_t
*handle
,
5508 struct ocfs2_extent_tree
*et
,
5510 struct ocfs2_alloc_context
*meta_ac
,
5511 struct ocfs2_cached_dealloc_ctxt
*dealloc
)
5514 u32 rec_range
, trunc_range
;
5515 struct ocfs2_extent_rec
*rec
;
5516 struct ocfs2_extent_list
*el
;
5517 struct ocfs2_path
*path
= NULL
;
5520 * XXX: Why are we truncating to 0 instead of wherever this
5523 ocfs2_et_extent_map_truncate(et
, 0);
5525 path
= ocfs2_new_path_from_et(et
);
5532 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
5538 el
= path_leaf_el(path
);
5539 index
= ocfs2_search_extent_list(el
, cpos
);
5541 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5542 "Owner %llu has an extent at cpos %u which can no longer be found\n",
5543 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5550 * We have 3 cases of extent removal:
5551 * 1) Range covers the entire extent rec
5552 * 2) Range begins or ends on one edge of the extent rec
5553 * 3) Range is in the middle of the extent rec (no shared edges)
5555 * For case 1 we remove the extent rec and left rotate to
5558 * For case 2 we just shrink the existing extent rec, with a
5559 * tree update if the shrinking edge is also the edge of an
5562 * For case 3 we do a right split to turn the extent rec into
5563 * something case 2 can handle.
5565 rec
= &el
->l_recs
[index
];
5566 rec_range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
5567 trunc_range
= cpos
+ len
;
5569 BUG_ON(cpos
< le32_to_cpu(rec
->e_cpos
) || trunc_range
> rec_range
);
5571 trace_ocfs2_remove_extent(
5572 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5573 cpos
, len
, index
, le32_to_cpu(rec
->e_cpos
),
5574 ocfs2_rec_clusters(el
, rec
));
5576 if (le32_to_cpu(rec
->e_cpos
) == cpos
|| rec_range
== trunc_range
) {
5577 ret
= ocfs2_truncate_rec(handle
, et
, path
, index
, dealloc
,
5584 ret
= ocfs2_split_tree(handle
, et
, path
, index
,
5585 trunc_range
, meta_ac
);
5592 * The split could have manipulated the tree enough to
5593 * move the record location, so we have to look for it again.
5595 ocfs2_reinit_path(path
, 1);
5597 ret
= ocfs2_find_path(et
->et_ci
, path
, cpos
);
5603 el
= path_leaf_el(path
);
5604 index
= ocfs2_search_extent_list(el
, cpos
);
5606 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5607 "Owner %llu: split at cpos %u lost record\n",
5608 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5615 * Double check our values here. If anything is fishy,
5616 * it's easier to catch it at the top level.
5618 rec
= &el
->l_recs
[index
];
5619 rec_range
= le32_to_cpu(rec
->e_cpos
) +
5620 ocfs2_rec_clusters(el
, rec
);
5621 if (rec_range
!= trunc_range
) {
5622 ocfs2_error(ocfs2_metadata_cache_get_super(et
->et_ci
),
5623 "Owner %llu: error after split at cpos %u trunc len %u, existing record is (%u,%u)\n",
5624 (unsigned long long)ocfs2_metadata_cache_owner(et
->et_ci
),
5625 cpos
, len
, le32_to_cpu(rec
->e_cpos
),
5626 ocfs2_rec_clusters(el
, rec
));
5631 ret
= ocfs2_truncate_rec(handle
, et
, path
, index
, dealloc
,
5638 ocfs2_free_path(path
);
5643 * ocfs2_reserve_blocks_for_rec_trunc() would look basically the
5644 * same as ocfs2_lock_alloctors(), except for it accepts a blocks
5645 * number to reserve some extra blocks, and it only handles meta
5648 * Currently, only ocfs2_remove_btree_range() uses it for truncating
5649 * and punching holes.
5651 static int ocfs2_reserve_blocks_for_rec_trunc(struct inode
*inode
,
5652 struct ocfs2_extent_tree
*et
,
5653 u32 extents_to_split
,
5654 struct ocfs2_alloc_context
**ac
,
5657 int ret
= 0, num_free_extents
;
5658 unsigned int max_recs_needed
= 2 * extents_to_split
;
5659 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
5663 num_free_extents
= ocfs2_num_free_extents(et
);
5664 if (num_free_extents
< 0) {
5665 ret
= num_free_extents
;
5670 if (!num_free_extents
||
5671 (ocfs2_sparse_alloc(osb
) && num_free_extents
< max_recs_needed
))
5672 extra_blocks
+= ocfs2_extend_meta_needed(et
->et_root_el
);
5675 ret
= ocfs2_reserve_new_metadata_blocks(osb
, extra_blocks
, ac
);
5685 ocfs2_free_alloc_context(*ac
);
5693 int ocfs2_remove_btree_range(struct inode
*inode
,
5694 struct ocfs2_extent_tree
*et
,
5695 u32 cpos
, u32 phys_cpos
, u32 len
, int flags
,
5696 struct ocfs2_cached_dealloc_ctxt
*dealloc
,
5697 u64 refcount_loc
, bool refcount_tree_locked
)
5699 int ret
, credits
= 0, extra_blocks
= 0;
5700 u64 phys_blkno
= ocfs2_clusters_to_blocks(inode
->i_sb
, phys_cpos
);
5701 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
5702 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5704 struct ocfs2_alloc_context
*meta_ac
= NULL
;
5705 struct ocfs2_refcount_tree
*ref_tree
= NULL
;
5707 if ((flags
& OCFS2_EXT_REFCOUNTED
) && len
) {
5708 BUG_ON(!ocfs2_is_refcount_inode(inode
));
5710 if (!refcount_tree_locked
) {
5711 ret
= ocfs2_lock_refcount_tree(osb
, refcount_loc
, 1,
5719 ret
= ocfs2_prepare_refcount_change_for_del(inode
,
5731 ret
= ocfs2_reserve_blocks_for_rec_trunc(inode
, et
, 1, &meta_ac
,
5738 inode_lock(tl_inode
);
5740 if (ocfs2_truncate_log_needs_flush(osb
)) {
5741 ret
= __ocfs2_flush_truncate_log(osb
);
5748 handle
= ocfs2_start_trans(osb
,
5749 ocfs2_remove_extent_credits(osb
->sb
) + credits
);
5750 if (IS_ERR(handle
)) {
5751 ret
= PTR_ERR(handle
);
5756 ret
= ocfs2_et_root_journal_access(handle
, et
,
5757 OCFS2_JOURNAL_ACCESS_WRITE
);
5763 dquot_free_space_nodirty(inode
,
5764 ocfs2_clusters_to_bytes(inode
->i_sb
, len
));
5766 ret
= ocfs2_remove_extent(handle
, et
, cpos
, len
, meta_ac
, dealloc
);
5772 ocfs2_et_update_clusters(et
, -len
);
5773 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
5775 ocfs2_journal_dirty(handle
, et
->et_root_bh
);
5778 if (flags
& OCFS2_EXT_REFCOUNTED
)
5779 ret
= ocfs2_decrease_refcount(inode
, handle
,
5780 ocfs2_blocks_to_clusters(osb
->sb
,
5785 ret
= ocfs2_truncate_log_append(osb
, handle
,
5793 ocfs2_commit_trans(osb
, handle
);
5795 inode_unlock(tl_inode
);
5798 ocfs2_free_alloc_context(meta_ac
);
5801 ocfs2_unlock_refcount_tree(osb
, ref_tree
, 1);
5806 int ocfs2_truncate_log_needs_flush(struct ocfs2_super
*osb
)
5808 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5809 struct ocfs2_dinode
*di
;
5810 struct ocfs2_truncate_log
*tl
;
5812 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5813 tl
= &di
->id2
.i_dealloc
;
5815 mlog_bug_on_msg(le16_to_cpu(tl
->tl_used
) > le16_to_cpu(tl
->tl_count
),
5816 "slot %d, invalid truncate log parameters: used = "
5817 "%u, count = %u\n", osb
->slot_num
,
5818 le16_to_cpu(tl
->tl_used
), le16_to_cpu(tl
->tl_count
));
5819 return le16_to_cpu(tl
->tl_used
) == le16_to_cpu(tl
->tl_count
);
5822 static int ocfs2_truncate_log_can_coalesce(struct ocfs2_truncate_log
*tl
,
5823 unsigned int new_start
)
5825 unsigned int tail_index
;
5826 unsigned int current_tail
;
5828 /* No records, nothing to coalesce */
5829 if (!le16_to_cpu(tl
->tl_used
))
5832 tail_index
= le16_to_cpu(tl
->tl_used
) - 1;
5833 current_tail
= le32_to_cpu(tl
->tl_recs
[tail_index
].t_start
);
5834 current_tail
+= le32_to_cpu(tl
->tl_recs
[tail_index
].t_clusters
);
5836 return current_tail
== new_start
;
5839 int ocfs2_truncate_log_append(struct ocfs2_super
*osb
,
5842 unsigned int num_clusters
)
5845 unsigned int start_cluster
, tl_count
;
5846 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5847 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5848 struct ocfs2_dinode
*di
;
5849 struct ocfs2_truncate_log
*tl
;
5851 BUG_ON(inode_trylock(tl_inode
));
5853 start_cluster
= ocfs2_blocks_to_clusters(osb
->sb
, start_blk
);
5855 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5857 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
5858 * by the underlying call to ocfs2_read_inode_block(), so any
5859 * corruption is a code bug */
5860 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
5862 tl
= &di
->id2
.i_dealloc
;
5863 tl_count
= le16_to_cpu(tl
->tl_count
);
5864 mlog_bug_on_msg(tl_count
> ocfs2_truncate_recs_per_inode(osb
->sb
) ||
5866 "Truncate record count on #%llu invalid "
5867 "wanted %u, actual %u\n",
5868 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5869 ocfs2_truncate_recs_per_inode(osb
->sb
),
5870 le16_to_cpu(tl
->tl_count
));
5872 /* Caller should have known to flush before calling us. */
5873 index
= le16_to_cpu(tl
->tl_used
);
5874 if (index
>= tl_count
) {
5880 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(tl_inode
), tl_bh
,
5881 OCFS2_JOURNAL_ACCESS_WRITE
);
5887 trace_ocfs2_truncate_log_append(
5888 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
, index
,
5889 start_cluster
, num_clusters
);
5890 if (ocfs2_truncate_log_can_coalesce(tl
, start_cluster
)) {
5892 * Move index back to the record we are coalescing with.
5893 * ocfs2_truncate_log_can_coalesce() guarantees nonzero
5897 num_clusters
+= le32_to_cpu(tl
->tl_recs
[index
].t_clusters
);
5898 trace_ocfs2_truncate_log_append(
5899 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5900 index
, le32_to_cpu(tl
->tl_recs
[index
].t_start
),
5903 tl
->tl_recs
[index
].t_start
= cpu_to_le32(start_cluster
);
5904 tl
->tl_used
= cpu_to_le16(index
+ 1);
5906 tl
->tl_recs
[index
].t_clusters
= cpu_to_le32(num_clusters
);
5908 ocfs2_journal_dirty(handle
, tl_bh
);
5910 osb
->truncated_clusters
+= num_clusters
;
5915 static int ocfs2_replay_truncate_records(struct ocfs2_super
*osb
,
5916 struct inode
*data_alloc_inode
,
5917 struct buffer_head
*data_alloc_bh
)
5921 unsigned int num_clusters
;
5923 struct ocfs2_truncate_rec rec
;
5924 struct ocfs2_dinode
*di
;
5925 struct ocfs2_truncate_log
*tl
;
5926 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5927 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5930 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
5931 tl
= &di
->id2
.i_dealloc
;
5932 i
= le16_to_cpu(tl
->tl_used
) - 1;
5934 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_FLUSH_ONE_REC
);
5935 if (IS_ERR(handle
)) {
5936 status
= PTR_ERR(handle
);
5941 /* Caller has given us at least enough credits to
5942 * update the truncate log dinode */
5943 status
= ocfs2_journal_access_di(handle
, INODE_CACHE(tl_inode
), tl_bh
,
5944 OCFS2_JOURNAL_ACCESS_WRITE
);
5950 tl
->tl_used
= cpu_to_le16(i
);
5952 ocfs2_journal_dirty(handle
, tl_bh
);
5954 rec
= tl
->tl_recs
[i
];
5955 start_blk
= ocfs2_clusters_to_blocks(data_alloc_inode
->i_sb
,
5956 le32_to_cpu(rec
.t_start
));
5957 num_clusters
= le32_to_cpu(rec
.t_clusters
);
5959 /* if start_blk is not set, we ignore the record as
5962 trace_ocfs2_replay_truncate_records(
5963 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
5964 i
, le32_to_cpu(rec
.t_start
), num_clusters
);
5966 status
= ocfs2_free_clusters(handle
, data_alloc_inode
,
5967 data_alloc_bh
, start_blk
,
5975 ocfs2_commit_trans(osb
, handle
);
5979 osb
->truncated_clusters
= 0;
5985 /* Expects you to already be holding tl_inode->i_mutex */
5986 int __ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
5989 unsigned int num_to_flush
;
5990 struct inode
*tl_inode
= osb
->osb_tl_inode
;
5991 struct inode
*data_alloc_inode
= NULL
;
5992 struct buffer_head
*tl_bh
= osb
->osb_tl_bh
;
5993 struct buffer_head
*data_alloc_bh
= NULL
;
5994 struct ocfs2_dinode
*di
;
5995 struct ocfs2_truncate_log
*tl
;
5996 struct ocfs2_journal
*journal
= osb
->journal
;
5998 BUG_ON(inode_trylock(tl_inode
));
6000 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
6002 /* tl_bh is loaded from ocfs2_truncate_log_init(). It's validated
6003 * by the underlying call to ocfs2_read_inode_block(), so any
6004 * corruption is a code bug */
6005 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
6007 tl
= &di
->id2
.i_dealloc
;
6008 num_to_flush
= le16_to_cpu(tl
->tl_used
);
6009 trace_ocfs2_flush_truncate_log(
6010 (unsigned long long)OCFS2_I(tl_inode
)->ip_blkno
,
6012 if (!num_to_flush
) {
6017 /* Appending truncate log(TA) and and flushing truncate log(TF) are
6018 * two separated transactions. They can be both committed but not
6019 * checkpointed. If crash occurs then, both two transaction will be
6020 * replayed with several already released to global bitmap clusters.
6021 * Then truncate log will be replayed resulting in cluster double free.
6023 jbd2_journal_lock_updates(journal
->j_journal
);
6024 status
= jbd2_journal_flush(journal
->j_journal
);
6025 jbd2_journal_unlock_updates(journal
->j_journal
);
6031 data_alloc_inode
= ocfs2_get_system_file_inode(osb
,
6032 GLOBAL_BITMAP_SYSTEM_INODE
,
6033 OCFS2_INVALID_SLOT
);
6034 if (!data_alloc_inode
) {
6036 mlog(ML_ERROR
, "Could not get bitmap inode!\n");
6040 inode_lock(data_alloc_inode
);
6042 status
= ocfs2_inode_lock(data_alloc_inode
, &data_alloc_bh
, 1);
6048 status
= ocfs2_replay_truncate_records(osb
, data_alloc_inode
,
6053 brelse(data_alloc_bh
);
6054 ocfs2_inode_unlock(data_alloc_inode
, 1);
6057 inode_unlock(data_alloc_inode
);
6058 iput(data_alloc_inode
);
6064 int ocfs2_flush_truncate_log(struct ocfs2_super
*osb
)
6067 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6069 inode_lock(tl_inode
);
6070 status
= __ocfs2_flush_truncate_log(osb
);
6071 inode_unlock(tl_inode
);
6076 static void ocfs2_truncate_log_worker(struct work_struct
*work
)
6079 struct ocfs2_super
*osb
=
6080 container_of(work
, struct ocfs2_super
,
6081 osb_truncate_log_wq
.work
);
6083 status
= ocfs2_flush_truncate_log(osb
);
6087 ocfs2_init_steal_slots(osb
);
6090 #define OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL (2 * HZ)
6091 void ocfs2_schedule_truncate_log_flush(struct ocfs2_super
*osb
,
6094 if (osb
->osb_tl_inode
&&
6095 atomic_read(&osb
->osb_tl_disable
) == 0) {
6096 /* We want to push off log flushes while truncates are
6099 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
6101 queue_delayed_work(osb
->ocfs2_wq
, &osb
->osb_truncate_log_wq
,
6102 OCFS2_TRUNCATE_LOG_FLUSH_INTERVAL
);
6107 * Try to flush truncate logs if we can free enough clusters from it.
6108 * As for return value, "< 0" means error, "0" no space and "1" means
6109 * we have freed enough spaces and let the caller try to allocate again.
6111 int ocfs2_try_to_free_truncate_log(struct ocfs2_super
*osb
,
6112 unsigned int needed
)
6116 unsigned int truncated_clusters
;
6118 inode_lock(osb
->osb_tl_inode
);
6119 truncated_clusters
= osb
->truncated_clusters
;
6120 inode_unlock(osb
->osb_tl_inode
);
6123 * Check whether we can succeed in allocating if we free
6126 if (truncated_clusters
< needed
)
6129 ret
= ocfs2_flush_truncate_log(osb
);
6135 if (jbd2_journal_start_commit(osb
->journal
->j_journal
, &target
)) {
6136 jbd2_log_wait_commit(osb
->journal
->j_journal
, target
);
6143 static int ocfs2_get_truncate_log_info(struct ocfs2_super
*osb
,
6145 struct inode
**tl_inode
,
6146 struct buffer_head
**tl_bh
)
6149 struct inode
*inode
= NULL
;
6150 struct buffer_head
*bh
= NULL
;
6152 inode
= ocfs2_get_system_file_inode(osb
,
6153 TRUNCATE_LOG_SYSTEM_INODE
,
6157 mlog(ML_ERROR
, "Could not get load truncate log inode!\n");
6161 status
= ocfs2_read_inode_block(inode
, &bh
);
6174 /* called during the 1st stage of node recovery. we stamp a clean
6175 * truncate log and pass back a copy for processing later. if the
6176 * truncate log does not require processing, a *tl_copy is set to
6178 int ocfs2_begin_truncate_log_recovery(struct ocfs2_super
*osb
,
6180 struct ocfs2_dinode
**tl_copy
)
6183 struct inode
*tl_inode
= NULL
;
6184 struct buffer_head
*tl_bh
= NULL
;
6185 struct ocfs2_dinode
*di
;
6186 struct ocfs2_truncate_log
*tl
;
6190 trace_ocfs2_begin_truncate_log_recovery(slot_num
);
6192 status
= ocfs2_get_truncate_log_info(osb
, slot_num
, &tl_inode
, &tl_bh
);
6198 di
= (struct ocfs2_dinode
*) tl_bh
->b_data
;
6200 /* tl_bh is loaded from ocfs2_get_truncate_log_info(). It's
6201 * validated by the underlying call to ocfs2_read_inode_block(),
6202 * so any corruption is a code bug */
6203 BUG_ON(!OCFS2_IS_VALID_DINODE(di
));
6205 tl
= &di
->id2
.i_dealloc
;
6206 if (le16_to_cpu(tl
->tl_used
)) {
6207 trace_ocfs2_truncate_log_recovery_num(le16_to_cpu(tl
->tl_used
));
6210 * Assuming the write-out below goes well, this copy will be
6211 * passed back to recovery for processing.
6213 *tl_copy
= kmemdup(tl_bh
->b_data
, tl_bh
->b_size
, GFP_KERNEL
);
6220 /* All we need to do to clear the truncate log is set
6224 ocfs2_compute_meta_ecc(osb
->sb
, tl_bh
->b_data
, &di
->i_check
);
6225 status
= ocfs2_write_block(osb
, tl_bh
, INODE_CACHE(tl_inode
));
6245 int ocfs2_complete_truncate_log_recovery(struct ocfs2_super
*osb
,
6246 struct ocfs2_dinode
*tl_copy
)
6250 unsigned int clusters
, num_recs
, start_cluster
;
6253 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6254 struct ocfs2_truncate_log
*tl
;
6256 if (OCFS2_I(tl_inode
)->ip_blkno
== le64_to_cpu(tl_copy
->i_blkno
)) {
6257 mlog(ML_ERROR
, "Asked to recover my own truncate log!\n");
6261 tl
= &tl_copy
->id2
.i_dealloc
;
6262 num_recs
= le16_to_cpu(tl
->tl_used
);
6263 trace_ocfs2_complete_truncate_log_recovery(
6264 (unsigned long long)le64_to_cpu(tl_copy
->i_blkno
),
6267 inode_lock(tl_inode
);
6268 for(i
= 0; i
< num_recs
; i
++) {
6269 if (ocfs2_truncate_log_needs_flush(osb
)) {
6270 status
= __ocfs2_flush_truncate_log(osb
);
6277 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
6278 if (IS_ERR(handle
)) {
6279 status
= PTR_ERR(handle
);
6284 clusters
= le32_to_cpu(tl
->tl_recs
[i
].t_clusters
);
6285 start_cluster
= le32_to_cpu(tl
->tl_recs
[i
].t_start
);
6286 start_blk
= ocfs2_clusters_to_blocks(osb
->sb
, start_cluster
);
6288 status
= ocfs2_truncate_log_append(osb
, handle
,
6289 start_blk
, clusters
);
6290 ocfs2_commit_trans(osb
, handle
);
6298 inode_unlock(tl_inode
);
6303 void ocfs2_truncate_log_shutdown(struct ocfs2_super
*osb
)
6306 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6308 atomic_set(&osb
->osb_tl_disable
, 1);
6311 cancel_delayed_work(&osb
->osb_truncate_log_wq
);
6312 flush_workqueue(osb
->ocfs2_wq
);
6314 status
= ocfs2_flush_truncate_log(osb
);
6318 brelse(osb
->osb_tl_bh
);
6319 iput(osb
->osb_tl_inode
);
6323 int ocfs2_truncate_log_init(struct ocfs2_super
*osb
)
6326 struct inode
*tl_inode
= NULL
;
6327 struct buffer_head
*tl_bh
= NULL
;
6329 status
= ocfs2_get_truncate_log_info(osb
,
6336 /* ocfs2_truncate_log_shutdown keys on the existence of
6337 * osb->osb_tl_inode so we don't set any of the osb variables
6338 * until we're sure all is well. */
6339 INIT_DELAYED_WORK(&osb
->osb_truncate_log_wq
,
6340 ocfs2_truncate_log_worker
);
6341 atomic_set(&osb
->osb_tl_disable
, 0);
6342 osb
->osb_tl_bh
= tl_bh
;
6343 osb
->osb_tl_inode
= tl_inode
;
6349 * Delayed de-allocation of suballocator blocks.
6351 * Some sets of block de-allocations might involve multiple suballocator inodes.
6353 * The locking for this can get extremely complicated, especially when
6354 * the suballocator inodes to delete from aren't known until deep
6355 * within an unrelated codepath.
6357 * ocfs2_extent_block structures are a good example of this - an inode
6358 * btree could have been grown by any number of nodes each allocating
6359 * out of their own suballoc inode.
6361 * These structures allow the delay of block de-allocation until a
6362 * later time, when locking of multiple cluster inodes won't cause
6367 * Describe a single bit freed from a suballocator. For the block
6368 * suballocators, it represents one block. For the global cluster
6369 * allocator, it represents some clusters and free_bit indicates
6372 struct ocfs2_cached_block_free
{
6373 struct ocfs2_cached_block_free
*free_next
;
6376 unsigned int free_bit
;
6379 struct ocfs2_per_slot_free_list
{
6380 struct ocfs2_per_slot_free_list
*f_next_suballocator
;
6383 struct ocfs2_cached_block_free
*f_first
;
6386 static int ocfs2_free_cached_blocks(struct ocfs2_super
*osb
,
6389 struct ocfs2_cached_block_free
*head
)
6394 struct inode
*inode
;
6395 struct buffer_head
*di_bh
= NULL
;
6396 struct ocfs2_cached_block_free
*tmp
;
6398 inode
= ocfs2_get_system_file_inode(osb
, sysfile_type
, slot
);
6407 ret
= ocfs2_inode_lock(inode
, &di_bh
, 1);
6415 bg_blkno
= head
->free_bg
;
6417 bg_blkno
= ocfs2_which_suballoc_group(head
->free_blk
,
6419 handle
= ocfs2_start_trans(osb
, OCFS2_SUBALLOC_FREE
);
6420 if (IS_ERR(handle
)) {
6421 ret
= PTR_ERR(handle
);
6426 trace_ocfs2_free_cached_blocks(
6427 (unsigned long long)head
->free_blk
, head
->free_bit
);
6429 ret
= ocfs2_free_suballoc_bits(handle
, inode
, di_bh
,
6430 head
->free_bit
, bg_blkno
, 1);
6434 ocfs2_commit_trans(osb
, handle
);
6437 head
= head
->free_next
;
6442 ocfs2_inode_unlock(inode
, 1);
6445 inode_unlock(inode
);
6449 /* Premature exit may have left some dangling items. */
6451 head
= head
->free_next
;
6458 int ocfs2_cache_cluster_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6459 u64 blkno
, unsigned int bit
)
6462 struct ocfs2_cached_block_free
*item
;
6464 item
= kzalloc(sizeof(*item
), GFP_NOFS
);
6471 trace_ocfs2_cache_cluster_dealloc((unsigned long long)blkno
, bit
);
6473 item
->free_blk
= blkno
;
6474 item
->free_bit
= bit
;
6475 item
->free_next
= ctxt
->c_global_allocator
;
6477 ctxt
->c_global_allocator
= item
;
6481 static int ocfs2_free_cached_clusters(struct ocfs2_super
*osb
,
6482 struct ocfs2_cached_block_free
*head
)
6484 struct ocfs2_cached_block_free
*tmp
;
6485 struct inode
*tl_inode
= osb
->osb_tl_inode
;
6489 inode_lock(tl_inode
);
6492 if (ocfs2_truncate_log_needs_flush(osb
)) {
6493 ret
= __ocfs2_flush_truncate_log(osb
);
6500 handle
= ocfs2_start_trans(osb
, OCFS2_TRUNCATE_LOG_UPDATE
);
6501 if (IS_ERR(handle
)) {
6502 ret
= PTR_ERR(handle
);
6507 ret
= ocfs2_truncate_log_append(osb
, handle
, head
->free_blk
,
6510 ocfs2_commit_trans(osb
, handle
);
6512 head
= head
->free_next
;
6521 inode_unlock(tl_inode
);
6524 /* Premature exit may have left some dangling items. */
6526 head
= head
->free_next
;
6533 int ocfs2_run_deallocs(struct ocfs2_super
*osb
,
6534 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
6537 struct ocfs2_per_slot_free_list
*fl
;
6542 while (ctxt
->c_first_suballocator
) {
6543 fl
= ctxt
->c_first_suballocator
;
6546 trace_ocfs2_run_deallocs(fl
->f_inode_type
,
6548 ret2
= ocfs2_free_cached_blocks(osb
,
6558 ctxt
->c_first_suballocator
= fl
->f_next_suballocator
;
6562 if (ctxt
->c_global_allocator
) {
6563 ret2
= ocfs2_free_cached_clusters(osb
,
6564 ctxt
->c_global_allocator
);
6570 ctxt
->c_global_allocator
= NULL
;
6576 static struct ocfs2_per_slot_free_list
*
6577 ocfs2_find_per_slot_free_list(int type
,
6579 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
6581 struct ocfs2_per_slot_free_list
*fl
= ctxt
->c_first_suballocator
;
6584 if (fl
->f_inode_type
== type
&& fl
->f_slot
== slot
)
6587 fl
= fl
->f_next_suballocator
;
6590 fl
= kmalloc(sizeof(*fl
), GFP_NOFS
);
6592 fl
->f_inode_type
= type
;
6595 fl
->f_next_suballocator
= ctxt
->c_first_suballocator
;
6597 ctxt
->c_first_suballocator
= fl
;
6602 static struct ocfs2_per_slot_free_list
*
6603 ocfs2_find_preferred_free_list(int type
,
6606 struct ocfs2_cached_dealloc_ctxt
*ctxt
)
6608 struct ocfs2_per_slot_free_list
*fl
= ctxt
->c_first_suballocator
;
6611 if (fl
->f_inode_type
== type
&& fl
->f_slot
== preferred_slot
) {
6612 *real_slot
= fl
->f_slot
;
6616 fl
= fl
->f_next_suballocator
;
6619 /* If we can't find any free list matching preferred slot, just use
6622 fl
= ctxt
->c_first_suballocator
;
6623 *real_slot
= fl
->f_slot
;
6628 /* Return Value 1 indicates empty */
6629 static int ocfs2_is_dealloc_empty(struct ocfs2_extent_tree
*et
)
6631 struct ocfs2_per_slot_free_list
*fl
= NULL
;
6633 if (!et
->et_dealloc
)
6636 fl
= et
->et_dealloc
->c_first_suballocator
;
6646 /* If extent was deleted from tree due to extent rotation and merging, and
6647 * no metadata is reserved ahead of time. Try to reuse some extents
6648 * just deleted. This is only used to reuse extent blocks.
6649 * It is supposed to find enough extent blocks in dealloc if our estimation
6650 * on metadata is accurate.
6652 static int ocfs2_reuse_blk_from_dealloc(handle_t
*handle
,
6653 struct ocfs2_extent_tree
*et
,
6654 struct buffer_head
**new_eb_bh
,
6655 int blk_wanted
, int *blk_given
)
6657 int i
, status
= 0, real_slot
;
6658 struct ocfs2_cached_dealloc_ctxt
*dealloc
;
6659 struct ocfs2_per_slot_free_list
*fl
;
6660 struct ocfs2_cached_block_free
*bf
;
6661 struct ocfs2_extent_block
*eb
;
6662 struct ocfs2_super
*osb
=
6663 OCFS2_SB(ocfs2_metadata_cache_get_super(et
->et_ci
));
6667 /* If extent tree doesn't have a dealloc, this is not faulty. Just
6668 * tell upper caller dealloc can't provide any block and it should
6669 * ask for alloc to claim more space.
6671 dealloc
= et
->et_dealloc
;
6675 for (i
= 0; i
< blk_wanted
; i
++) {
6676 /* Prefer to use local slot */
6677 fl
= ocfs2_find_preferred_free_list(EXTENT_ALLOC_SYSTEM_INODE
,
6678 osb
->slot_num
, &real_slot
,
6680 /* If no more block can be reused, we should claim more
6681 * from alloc. Just return here normally.
6689 fl
->f_first
= bf
->free_next
;
6691 new_eb_bh
[i
] = sb_getblk(osb
->sb
, bf
->free_blk
);
6692 if (new_eb_bh
[i
] == NULL
) {
6698 mlog(0, "Reusing block(%llu) from "
6699 "dealloc(local slot:%d, real slot:%d)\n",
6700 bf
->free_blk
, osb
->slot_num
, real_slot
);
6702 ocfs2_set_new_buffer_uptodate(et
->et_ci
, new_eb_bh
[i
]);
6704 status
= ocfs2_journal_access_eb(handle
, et
->et_ci
,
6706 OCFS2_JOURNAL_ACCESS_CREATE
);
6712 memset(new_eb_bh
[i
]->b_data
, 0, osb
->sb
->s_blocksize
);
6713 eb
= (struct ocfs2_extent_block
*) new_eb_bh
[i
]->b_data
;
6715 /* We can't guarantee that buffer head is still cached, so
6716 * polutlate the extent block again.
6718 strcpy(eb
->h_signature
, OCFS2_EXTENT_BLOCK_SIGNATURE
);
6719 eb
->h_blkno
= cpu_to_le64(bf
->free_blk
);
6720 eb
->h_fs_generation
= cpu_to_le32(osb
->fs_generation
);
6721 eb
->h_suballoc_slot
= cpu_to_le16(real_slot
);
6722 eb
->h_suballoc_loc
= cpu_to_le64(bf
->free_bg
);
6723 eb
->h_suballoc_bit
= cpu_to_le16(bf
->free_bit
);
6724 eb
->h_list
.l_count
=
6725 cpu_to_le16(ocfs2_extent_recs_per_eb(osb
->sb
));
6727 /* We'll also be dirtied by the caller, so
6728 * this isn't absolutely necessary.
6730 ocfs2_journal_dirty(handle
, new_eb_bh
[i
]);
6733 dealloc
->c_first_suballocator
= fl
->f_next_suballocator
;
6742 if (unlikely(status
< 0)) {
6743 for (i
= 0; i
< blk_wanted
; i
++)
6744 brelse(new_eb_bh
[i
]);
6750 int ocfs2_cache_block_dealloc(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6751 int type
, int slot
, u64 suballoc
,
6752 u64 blkno
, unsigned int bit
)
6755 struct ocfs2_per_slot_free_list
*fl
;
6756 struct ocfs2_cached_block_free
*item
;
6758 fl
= ocfs2_find_per_slot_free_list(type
, slot
, ctxt
);
6765 item
= kzalloc(sizeof(*item
), GFP_NOFS
);
6772 trace_ocfs2_cache_block_dealloc(type
, slot
,
6773 (unsigned long long)suballoc
,
6774 (unsigned long long)blkno
, bit
);
6776 item
->free_bg
= suballoc
;
6777 item
->free_blk
= blkno
;
6778 item
->free_bit
= bit
;
6779 item
->free_next
= fl
->f_first
;
6788 static int ocfs2_cache_extent_block_free(struct ocfs2_cached_dealloc_ctxt
*ctxt
,
6789 struct ocfs2_extent_block
*eb
)
6791 return ocfs2_cache_block_dealloc(ctxt
, EXTENT_ALLOC_SYSTEM_INODE
,
6792 le16_to_cpu(eb
->h_suballoc_slot
),
6793 le64_to_cpu(eb
->h_suballoc_loc
),
6794 le64_to_cpu(eb
->h_blkno
),
6795 le16_to_cpu(eb
->h_suballoc_bit
));
6798 static int ocfs2_zero_func(handle_t
*handle
, struct buffer_head
*bh
)
6800 set_buffer_uptodate(bh
);
6801 mark_buffer_dirty(bh
);
6805 void ocfs2_map_and_dirty_page(struct inode
*inode
, handle_t
*handle
,
6806 unsigned int from
, unsigned int to
,
6807 struct page
*page
, int zero
, u64
*phys
)
6809 int ret
, partial
= 0;
6810 loff_t start_byte
= ((loff_t
)page
->index
<< PAGE_SHIFT
) + from
;
6811 loff_t length
= to
- from
;
6813 ret
= ocfs2_map_page_blocks(page
, phys
, inode
, from
, to
, 0);
6818 zero_user_segment(page
, from
, to
);
6821 * Need to set the buffers we zero'd into uptodate
6822 * here if they aren't - ocfs2_map_page_blocks()
6823 * might've skipped some
6825 ret
= walk_page_buffers(handle
, page_buffers(page
),
6830 else if (ocfs2_should_order_data(inode
)) {
6831 ret
= ocfs2_jbd2_inode_add_write(handle
, inode
,
6832 start_byte
, length
);
6838 SetPageUptodate(page
);
6840 flush_dcache_page(page
);
6843 static void ocfs2_zero_cluster_pages(struct inode
*inode
, loff_t start
,
6844 loff_t end
, struct page
**pages
,
6845 int numpages
, u64 phys
, handle_t
*handle
)
6849 unsigned int from
, to
= PAGE_SIZE
;
6850 struct super_block
*sb
= inode
->i_sb
;
6852 BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(sb
)));
6858 for(i
= 0; i
< numpages
; i
++) {
6861 from
= start
& (PAGE_SIZE
- 1);
6862 if ((end
>> PAGE_SHIFT
) == page
->index
)
6863 to
= end
& (PAGE_SIZE
- 1);
6865 BUG_ON(from
> PAGE_SIZE
);
6866 BUG_ON(to
> PAGE_SIZE
);
6868 ocfs2_map_and_dirty_page(inode
, handle
, from
, to
, page
, 1,
6871 start
= (page
->index
+ 1) << PAGE_SHIFT
;
6875 ocfs2_unlock_and_free_pages(pages
, numpages
);
6878 int ocfs2_grab_pages(struct inode
*inode
, loff_t start
, loff_t end
,
6879 struct page
**pages
, int *num
)
6881 int numpages
, ret
= 0;
6882 struct address_space
*mapping
= inode
->i_mapping
;
6883 unsigned long index
;
6884 loff_t last_page_bytes
;
6886 BUG_ON(start
> end
);
6889 last_page_bytes
= PAGE_ALIGN(end
);
6890 index
= start
>> PAGE_SHIFT
;
6892 pages
[numpages
] = find_or_create_page(mapping
, index
, GFP_NOFS
);
6893 if (!pages
[numpages
]) {
6901 } while (index
< (last_page_bytes
>> PAGE_SHIFT
));
6906 ocfs2_unlock_and_free_pages(pages
, numpages
);
6915 static int ocfs2_grab_eof_pages(struct inode
*inode
, loff_t start
, loff_t end
,
6916 struct page
**pages
, int *num
)
6918 struct super_block
*sb
= inode
->i_sb
;
6920 BUG_ON(start
>> OCFS2_SB(sb
)->s_clustersize_bits
!=
6921 (end
- 1) >> OCFS2_SB(sb
)->s_clustersize_bits
);
6923 return ocfs2_grab_pages(inode
, start
, end
, pages
, num
);
6927 * Zero the area past i_size but still within an allocated
6928 * cluster. This avoids exposing nonzero data on subsequent file
6931 * We need to call this before i_size is updated on the inode because
6932 * otherwise block_write_full_page() will skip writeout of pages past
6933 * i_size. The new_i_size parameter is passed for this reason.
6935 int ocfs2_zero_range_for_truncate(struct inode
*inode
, handle_t
*handle
,
6936 u64 range_start
, u64 range_end
)
6938 int ret
= 0, numpages
;
6939 struct page
**pages
= NULL
;
6941 unsigned int ext_flags
;
6942 struct super_block
*sb
= inode
->i_sb
;
6945 * File systems which don't support sparse files zero on every
6948 if (!ocfs2_sparse_alloc(OCFS2_SB(sb
)))
6951 pages
= kcalloc(ocfs2_pages_per_cluster(sb
),
6952 sizeof(struct page
*), GFP_NOFS
);
6953 if (pages
== NULL
) {
6959 if (range_start
== range_end
)
6962 ret
= ocfs2_extent_map_get_blocks(inode
,
6963 range_start
>> sb
->s_blocksize_bits
,
6964 &phys
, NULL
, &ext_flags
);
6971 * Tail is a hole, or is marked unwritten. In either case, we
6972 * can count on read and write to return/push zero's.
6974 if (phys
== 0 || ext_flags
& OCFS2_EXT_UNWRITTEN
)
6977 ret
= ocfs2_grab_eof_pages(inode
, range_start
, range_end
, pages
,
6984 ocfs2_zero_cluster_pages(inode
, range_start
, range_end
, pages
,
6985 numpages
, phys
, handle
);
6988 * Initiate writeout of the pages we zero'd here. We don't
6989 * wait on them - the truncate_inode_pages() call later will
6992 ret
= filemap_fdatawrite_range(inode
->i_mapping
, range_start
,
7003 static void ocfs2_zero_dinode_id2_with_xattr(struct inode
*inode
,
7004 struct ocfs2_dinode
*di
)
7006 unsigned int blocksize
= 1 << inode
->i_sb
->s_blocksize_bits
;
7007 unsigned int xattrsize
= le16_to_cpu(di
->i_xattr_inline_size
);
7009 if (le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_XATTR_FL
)
7010 memset(&di
->id2
, 0, blocksize
-
7011 offsetof(struct ocfs2_dinode
, id2
) -
7014 memset(&di
->id2
, 0, blocksize
-
7015 offsetof(struct ocfs2_dinode
, id2
));
7018 void ocfs2_dinode_new_extent_list(struct inode
*inode
,
7019 struct ocfs2_dinode
*di
)
7021 ocfs2_zero_dinode_id2_with_xattr(inode
, di
);
7022 di
->id2
.i_list
.l_tree_depth
= 0;
7023 di
->id2
.i_list
.l_next_free_rec
= 0;
7024 di
->id2
.i_list
.l_count
= cpu_to_le16(
7025 ocfs2_extent_recs_per_inode_with_xattr(inode
->i_sb
, di
));
7028 void ocfs2_set_inode_data_inline(struct inode
*inode
, struct ocfs2_dinode
*di
)
7030 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
7031 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
7033 spin_lock(&oi
->ip_lock
);
7034 oi
->ip_dyn_features
|= OCFS2_INLINE_DATA_FL
;
7035 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
7036 spin_unlock(&oi
->ip_lock
);
7039 * We clear the entire i_data structure here so that all
7040 * fields can be properly initialized.
7042 ocfs2_zero_dinode_id2_with_xattr(inode
, di
);
7044 idata
->id_count
= cpu_to_le16(
7045 ocfs2_max_inline_data_with_xattr(inode
->i_sb
, di
));
7048 int ocfs2_convert_inline_data_to_extents(struct inode
*inode
,
7049 struct buffer_head
*di_bh
)
7051 int ret
, i
, has_data
, num_pages
= 0;
7055 u64
uninitialized_var(block
);
7056 struct ocfs2_inode_info
*oi
= OCFS2_I(inode
);
7057 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
7058 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
7059 struct ocfs2_alloc_context
*data_ac
= NULL
;
7060 struct page
**pages
= NULL
;
7061 loff_t end
= osb
->s_clustersize
;
7062 struct ocfs2_extent_tree et
;
7065 has_data
= i_size_read(inode
) ? 1 : 0;
7068 pages
= kcalloc(ocfs2_pages_per_cluster(osb
->sb
),
7069 sizeof(struct page
*), GFP_NOFS
);
7070 if (pages
== NULL
) {
7076 ret
= ocfs2_reserve_clusters(osb
, 1, &data_ac
);
7083 handle
= ocfs2_start_trans(osb
,
7084 ocfs2_inline_to_extents_credits(osb
->sb
));
7085 if (IS_ERR(handle
)) {
7086 ret
= PTR_ERR(handle
);
7091 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
7092 OCFS2_JOURNAL_ACCESS_WRITE
);
7099 unsigned int page_end
;
7102 ret
= dquot_alloc_space_nodirty(inode
,
7103 ocfs2_clusters_to_bytes(osb
->sb
, 1));
7108 data_ac
->ac_resv
= &oi
->ip_la_data_resv
;
7110 ret
= ocfs2_claim_clusters(handle
, data_ac
, 1, &bit_off
,
7118 * Save two copies, one for insert, and one that can
7119 * be changed by ocfs2_map_and_dirty_page() below.
7121 block
= phys
= ocfs2_clusters_to_blocks(inode
->i_sb
, bit_off
);
7124 * Non sparse file systems zero on extend, so no need
7127 if (!ocfs2_sparse_alloc(osb
) &&
7128 PAGE_SIZE
< osb
->s_clustersize
)
7131 ret
= ocfs2_grab_eof_pages(inode
, 0, end
, pages
, &num_pages
);
7139 * This should populate the 1st page for us and mark
7142 ret
= ocfs2_read_inline_data(inode
, pages
[0], di_bh
);
7149 page_end
= PAGE_SIZE
;
7150 if (PAGE_SIZE
> osb
->s_clustersize
)
7151 page_end
= osb
->s_clustersize
;
7153 for (i
= 0; i
< num_pages
; i
++)
7154 ocfs2_map_and_dirty_page(inode
, handle
, 0, page_end
,
7155 pages
[i
], i
> 0, &phys
);
7158 spin_lock(&oi
->ip_lock
);
7159 oi
->ip_dyn_features
&= ~OCFS2_INLINE_DATA_FL
;
7160 di
->i_dyn_features
= cpu_to_le16(oi
->ip_dyn_features
);
7161 spin_unlock(&oi
->ip_lock
);
7163 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
7164 ocfs2_dinode_new_extent_list(inode
, di
);
7166 ocfs2_journal_dirty(handle
, di_bh
);
7170 * An error at this point should be extremely rare. If
7171 * this proves to be false, we could always re-build
7172 * the in-inode data from our pages.
7174 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
7175 ret
= ocfs2_insert_extent(handle
, &et
, 0, block
, 1, 0, NULL
);
7182 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
7187 ocfs2_unlock_and_free_pages(pages
, num_pages
);
7190 if (ret
< 0 && did_quota
)
7191 dquot_free_space_nodirty(inode
,
7192 ocfs2_clusters_to_bytes(osb
->sb
, 1));
7195 if (data_ac
->ac_which
== OCFS2_AC_USE_LOCAL
)
7196 ocfs2_free_local_alloc_bits(osb
, handle
, data_ac
,
7199 ocfs2_free_clusters(handle
,
7202 ocfs2_clusters_to_blocks(osb
->sb
, bit_off
),
7206 ocfs2_commit_trans(osb
, handle
);
7210 ocfs2_free_alloc_context(data_ac
);
7217 * It is expected, that by the time you call this function,
7218 * inode->i_size and fe->i_size have been adjusted.
7220 * WARNING: This will kfree the truncate context
7222 int ocfs2_commit_truncate(struct ocfs2_super
*osb
,
7223 struct inode
*inode
,
7224 struct buffer_head
*di_bh
)
7226 int status
= 0, i
, flags
= 0;
7227 u32 new_highest_cpos
, range
, trunc_cpos
, trunc_len
, phys_cpos
, coff
;
7229 struct ocfs2_extent_list
*el
;
7230 struct ocfs2_extent_rec
*rec
;
7231 struct ocfs2_path
*path
= NULL
;
7232 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
7233 struct ocfs2_extent_list
*root_el
= &(di
->id2
.i_list
);
7234 u64 refcount_loc
= le64_to_cpu(di
->i_refcount_loc
);
7235 struct ocfs2_extent_tree et
;
7236 struct ocfs2_cached_dealloc_ctxt dealloc
;
7237 struct ocfs2_refcount_tree
*ref_tree
= NULL
;
7239 ocfs2_init_dinode_extent_tree(&et
, INODE_CACHE(inode
), di_bh
);
7240 ocfs2_init_dealloc_ctxt(&dealloc
);
7242 new_highest_cpos
= ocfs2_clusters_for_bytes(osb
->sb
,
7243 i_size_read(inode
));
7245 path
= ocfs2_new_path(di_bh
, &di
->id2
.i_list
,
7246 ocfs2_journal_access_di
);
7253 ocfs2_extent_map_trunc(inode
, new_highest_cpos
);
7257 * Check that we still have allocation to delete.
7259 if (OCFS2_I(inode
)->ip_clusters
== 0) {
7265 * Truncate always works against the rightmost tree branch.
7267 status
= ocfs2_find_path(INODE_CACHE(inode
), path
, UINT_MAX
);
7273 trace_ocfs2_commit_truncate(
7274 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7276 OCFS2_I(inode
)->ip_clusters
,
7277 path
->p_tree_depth
);
7280 * By now, el will point to the extent list on the bottom most
7281 * portion of this tree. Only the tail record is considered in
7284 * We handle the following cases, in order:
7285 * - empty extent: delete the remaining branch
7286 * - remove the entire record
7287 * - remove a partial record
7288 * - no record needs to be removed (truncate has completed)
7290 el
= path_leaf_el(path
);
7291 if (le16_to_cpu(el
->l_next_free_rec
) == 0) {
7292 ocfs2_error(inode
->i_sb
,
7293 "Inode %llu has empty extent block at %llu\n",
7294 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7295 (unsigned long long)path_leaf_bh(path
)->b_blocknr
);
7300 i
= le16_to_cpu(el
->l_next_free_rec
) - 1;
7301 rec
= &el
->l_recs
[i
];
7302 flags
= rec
->e_flags
;
7303 range
= le32_to_cpu(rec
->e_cpos
) + ocfs2_rec_clusters(el
, rec
);
7305 if (i
== 0 && ocfs2_is_empty_extent(rec
)) {
7307 * Lower levels depend on this never happening, but it's best
7308 * to check it up here before changing the tree.
7310 if (root_el
->l_tree_depth
&& rec
->e_int_clusters
== 0) {
7311 mlog(ML_ERROR
, "Inode %lu has an empty "
7312 "extent record, depth %u\n", inode
->i_ino
,
7313 le16_to_cpu(root_el
->l_tree_depth
));
7314 status
= ocfs2_remove_rightmost_empty_extent(osb
,
7315 &et
, path
, &dealloc
);
7321 ocfs2_reinit_path(path
, 1);
7324 trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
7328 } else if (le32_to_cpu(rec
->e_cpos
) >= new_highest_cpos
) {
7330 * Truncate entire record.
7332 trunc_cpos
= le32_to_cpu(rec
->e_cpos
);
7333 trunc_len
= ocfs2_rec_clusters(el
, rec
);
7334 blkno
= le64_to_cpu(rec
->e_blkno
);
7335 } else if (range
> new_highest_cpos
) {
7337 * Partial truncate. it also should be
7338 * the last truncate we're doing.
7340 trunc_cpos
= new_highest_cpos
;
7341 trunc_len
= range
- new_highest_cpos
;
7342 coff
= new_highest_cpos
- le32_to_cpu(rec
->e_cpos
);
7343 blkno
= le64_to_cpu(rec
->e_blkno
) +
7344 ocfs2_clusters_to_blocks(inode
->i_sb
, coff
);
7347 * Truncate completed, leave happily.
7353 phys_cpos
= ocfs2_blocks_to_clusters(inode
->i_sb
, blkno
);
7355 if ((flags
& OCFS2_EXT_REFCOUNTED
) && trunc_len
&& !ref_tree
) {
7356 status
= ocfs2_lock_refcount_tree(osb
, refcount_loc
, 1,
7364 status
= ocfs2_remove_btree_range(inode
, &et
, trunc_cpos
,
7365 phys_cpos
, trunc_len
, flags
, &dealloc
,
7366 refcount_loc
, true);
7372 ocfs2_reinit_path(path
, 1);
7375 * The check above will catch the case where we've truncated
7376 * away all allocation.
7382 ocfs2_unlock_refcount_tree(osb
, ref_tree
, 1);
7384 ocfs2_schedule_truncate_log_flush(osb
, 1);
7386 ocfs2_run_deallocs(osb
, &dealloc
);
7388 ocfs2_free_path(path
);
7394 * 'start' is inclusive, 'end' is not.
7396 int ocfs2_truncate_inline(struct inode
*inode
, struct buffer_head
*di_bh
,
7397 unsigned int start
, unsigned int end
, int trunc
)
7400 unsigned int numbytes
;
7402 struct ocfs2_super
*osb
= OCFS2_SB(inode
->i_sb
);
7403 struct ocfs2_dinode
*di
= (struct ocfs2_dinode
*)di_bh
->b_data
;
7404 struct ocfs2_inline_data
*idata
= &di
->id2
.i_data
;
7406 if (end
> i_size_read(inode
))
7407 end
= i_size_read(inode
);
7409 BUG_ON(start
> end
);
7411 if (!(OCFS2_I(inode
)->ip_dyn_features
& OCFS2_INLINE_DATA_FL
) ||
7412 !(le16_to_cpu(di
->i_dyn_features
) & OCFS2_INLINE_DATA_FL
) ||
7413 !ocfs2_supports_inline_data(osb
)) {
7414 ocfs2_error(inode
->i_sb
,
7415 "Inline data flags for inode %llu don't agree! Disk: 0x%x, Memory: 0x%x, Superblock: 0x%x\n",
7416 (unsigned long long)OCFS2_I(inode
)->ip_blkno
,
7417 le16_to_cpu(di
->i_dyn_features
),
7418 OCFS2_I(inode
)->ip_dyn_features
,
7419 osb
->s_feature_incompat
);
7424 handle
= ocfs2_start_trans(osb
, OCFS2_INODE_UPDATE_CREDITS
);
7425 if (IS_ERR(handle
)) {
7426 ret
= PTR_ERR(handle
);
7431 ret
= ocfs2_journal_access_di(handle
, INODE_CACHE(inode
), di_bh
,
7432 OCFS2_JOURNAL_ACCESS_WRITE
);
7438 numbytes
= end
- start
;
7439 memset(idata
->id_data
+ start
, 0, numbytes
);
7442 * No need to worry about the data page here - it's been
7443 * truncated already and inline data doesn't need it for
7444 * pushing zero's to disk, so we'll let readpage pick it up
7448 i_size_write(inode
, start
);
7449 di
->i_size
= cpu_to_le64(start
);
7452 inode
->i_blocks
= ocfs2_inode_sector_count(inode
);
7453 inode
->i_ctime
= inode
->i_mtime
= current_time(inode
);
7455 di
->i_ctime
= di
->i_mtime
= cpu_to_le64(inode
->i_ctime
.tv_sec
);
7456 di
->i_ctime_nsec
= di
->i_mtime_nsec
= cpu_to_le32(inode
->i_ctime
.tv_nsec
);
7458 ocfs2_update_inode_fsync_trans(handle
, inode
, 1);
7459 ocfs2_journal_dirty(handle
, di_bh
);
7462 ocfs2_commit_trans(osb
, handle
);
7468 static int ocfs2_trim_extent(struct super_block
*sb
,
7469 struct ocfs2_group_desc
*gd
,
7470 u64 group
, u32 start
, u32 count
)
7472 u64 discard
, bcount
;
7473 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
7475 bcount
= ocfs2_clusters_to_blocks(sb
, count
);
7476 discard
= ocfs2_clusters_to_blocks(sb
, start
);
7479 * For the first cluster group, the gd->bg_blkno is not at the start
7480 * of the group, but at an offset from the start. If we add it while
7481 * calculating discard for first group, we will wrongly start fstrim a
7482 * few blocks after the desried start block and the range can cross
7483 * over into the next cluster group. So, add it only if this is not
7484 * the first cluster group.
7486 if (group
!= osb
->first_cluster_group_blkno
)
7487 discard
+= le64_to_cpu(gd
->bg_blkno
);
7489 trace_ocfs2_trim_extent(sb
, (unsigned long long)discard
, bcount
);
7491 return sb_issue_discard(sb
, discard
, bcount
, GFP_NOFS
, 0);
7494 static int ocfs2_trim_group(struct super_block
*sb
,
7495 struct ocfs2_group_desc
*gd
, u64 group
,
7496 u32 start
, u32 max
, u32 minbits
)
7498 int ret
= 0, count
= 0, next
;
7499 void *bitmap
= gd
->bg_bitmap
;
7501 if (le16_to_cpu(gd
->bg_free_bits_count
) < minbits
)
7504 trace_ocfs2_trim_group((unsigned long long)le64_to_cpu(gd
->bg_blkno
),
7505 start
, max
, minbits
);
7507 while (start
< max
) {
7508 start
= ocfs2_find_next_zero_bit(bitmap
, max
, start
);
7511 next
= ocfs2_find_next_bit(bitmap
, max
, start
);
7513 if ((next
- start
) >= minbits
) {
7514 ret
= ocfs2_trim_extent(sb
, gd
, group
,
7515 start
, next
- start
);
7520 count
+= next
- start
;
7524 if (fatal_signal_pending(current
)) {
7525 count
= -ERESTARTSYS
;
7529 if ((le16_to_cpu(gd
->bg_free_bits_count
) - count
) < minbits
)
7540 int ocfs2_trim_mainbm(struct super_block
*sb
, struct fstrim_range
*range
)
7542 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
7543 u64 start
, len
, trimmed
= 0, first_group
, last_group
= 0, group
= 0;
7545 u32 first_bit
, last_bit
, minlen
;
7546 struct buffer_head
*main_bm_bh
= NULL
;
7547 struct inode
*main_bm_inode
= NULL
;
7548 struct buffer_head
*gd_bh
= NULL
;
7549 struct ocfs2_dinode
*main_bm
;
7550 struct ocfs2_group_desc
*gd
= NULL
;
7552 start
= range
->start
>> osb
->s_clustersize_bits
;
7553 len
= range
->len
>> osb
->s_clustersize_bits
;
7554 minlen
= range
->minlen
>> osb
->s_clustersize_bits
;
7556 if (minlen
>= osb
->bitmap_cpg
|| range
->len
< sb
->s_blocksize
)
7559 trace_ocfs2_trim_mainbm(start
, len
, minlen
);
7562 main_bm_inode
= ocfs2_get_system_file_inode(osb
,
7563 GLOBAL_BITMAP_SYSTEM_INODE
,
7564 OCFS2_INVALID_SLOT
);
7565 if (!main_bm_inode
) {
7571 inode_lock(main_bm_inode
);
7573 ret
= ocfs2_inode_lock(main_bm_inode
, &main_bm_bh
, 0);
7578 main_bm
= (struct ocfs2_dinode
*)main_bm_bh
->b_data
;
7581 * Do some check before trim the first group.
7584 if (start
>= le32_to_cpu(main_bm
->i_clusters
)) {
7589 if (start
+ len
> le32_to_cpu(main_bm
->i_clusters
))
7590 len
= le32_to_cpu(main_bm
->i_clusters
) - start
;
7593 * Determine first and last group to examine based on
7596 first_group
= ocfs2_which_cluster_group(main_bm_inode
, start
);
7597 if (first_group
== osb
->first_cluster_group_blkno
)
7600 first_bit
= start
- ocfs2_blocks_to_clusters(sb
,
7602 last_group
= ocfs2_which_cluster_group(main_bm_inode
,
7604 group
= first_group
;
7608 if (first_bit
+ len
>= osb
->bitmap_cpg
)
7609 last_bit
= osb
->bitmap_cpg
;
7611 last_bit
= first_bit
+ len
;
7613 ret
= ocfs2_read_group_descriptor(main_bm_inode
,
7621 gd
= (struct ocfs2_group_desc
*)gd_bh
->b_data
;
7622 cnt
= ocfs2_trim_group(sb
, gd
, group
,
7623 first_bit
, last_bit
, minlen
);
7633 len
-= osb
->bitmap_cpg
- first_bit
;
7635 if (group
== osb
->first_cluster_group_blkno
)
7636 group
= ocfs2_clusters_to_blocks(sb
, osb
->bitmap_cpg
);
7638 group
+= ocfs2_clusters_to_blocks(sb
, osb
->bitmap_cpg
);
7642 ocfs2_inode_unlock(main_bm_inode
, 0);
7646 inode_unlock(main_bm_inode
);
7647 iput(main_bm_inode
);
7650 * If all the groups trim are not done or failed, but we should release
7651 * main_bm related locks for avoiding the current IO starve, then go to
7652 * trim the next group
7654 if (ret
>= 0 && group
<= last_group
)
7657 range
->len
= trimmed
* sb
->s_blocksize
;
7661 int ocfs2_trim_fs(struct super_block
*sb
, struct fstrim_range
*range
)
7664 struct ocfs2_super
*osb
= OCFS2_SB(sb
);
7665 struct ocfs2_trim_fs_info info
, *pinfo
= NULL
;
7667 ocfs2_trim_fs_lock_res_init(osb
);
7669 trace_ocfs2_trim_fs(range
->start
, range
->len
, range
->minlen
);
7671 ret
= ocfs2_trim_fs_lock(osb
, NULL
, 1);
7673 if (ret
!= -EAGAIN
) {
7675 ocfs2_trim_fs_lock_res_uninit(osb
);
7679 mlog(ML_NOTICE
, "Wait for trim on device (%s) to "
7680 "finish, which is running from another node.\n",
7682 ret
= ocfs2_trim_fs_lock(osb
, &info
, 0);
7685 ocfs2_trim_fs_lock_res_uninit(osb
);
7689 if (info
.tf_valid
&& info
.tf_success
&&
7690 info
.tf_start
== range
->start
&&
7691 info
.tf_len
== range
->len
&&
7692 info
.tf_minlen
== range
->minlen
) {
7693 /* Avoid sending duplicated trim to a shared device */
7694 mlog(ML_NOTICE
, "The same trim on device (%s) was "
7695 "just done from node (%u), return.\n",
7696 osb
->dev_str
, info
.tf_nodenum
);
7697 range
->len
= info
.tf_trimlen
;
7702 info
.tf_nodenum
= osb
->node_num
;
7703 info
.tf_start
= range
->start
;
7704 info
.tf_len
= range
->len
;
7705 info
.tf_minlen
= range
->minlen
;
7707 ret
= ocfs2_trim_mainbm(sb
, range
);
7709 info
.tf_trimlen
= range
->len
;
7710 info
.tf_success
= (ret
< 0 ? 0 : 1);
7713 ocfs2_trim_fs_unlock(osb
, pinfo
);
7714 ocfs2_trim_fs_lock_res_uninit(osb
);