ext4: Optimize ext4 DIO overwrites
[linux/fpc-iii.git] / net / tipc / crypto.c
blob990a872cec46ebce6280b4cab6b6b44bd052da36
1 // SPDX-License-Identifier: GPL-2.0
2 /**
3 * net/tipc/crypto.c: TIPC crypto for key handling & packet en/decryption
5 * Copyright (c) 2019, Ericsson AB
6 * All rights reserved.
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions are met:
11 * 1. Redistributions of source code must retain the above copyright
12 * notice, this list of conditions and the following disclaimer.
13 * 2. Redistributions in binary form must reproduce the above copyright
14 * notice, this list of conditions and the following disclaimer in the
15 * documentation and/or other materials provided with the distribution.
16 * 3. Neither the names of the copyright holders nor the names of its
17 * contributors may be used to endorse or promote products derived from
18 * this software without specific prior written permission.
20 * Alternatively, this software may be distributed under the terms of the
21 * GNU General Public License ("GPL") version 2 as published by the Free
22 * Software Foundation.
24 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
25 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
26 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
27 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
28 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
29 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
30 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
31 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
32 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
33 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
34 * POSSIBILITY OF SUCH DAMAGE.
37 #include <crypto/aead.h>
38 #include <crypto/aes.h>
39 #include "crypto.h"
41 #define TIPC_TX_PROBE_LIM msecs_to_jiffies(1000) /* > 1s */
42 #define TIPC_TX_LASTING_LIM msecs_to_jiffies(120000) /* 2 mins */
43 #define TIPC_RX_ACTIVE_LIM msecs_to_jiffies(3000) /* 3s */
44 #define TIPC_RX_PASSIVE_LIM msecs_to_jiffies(180000) /* 3 mins */
45 #define TIPC_MAX_TFMS_DEF 10
46 #define TIPC_MAX_TFMS_LIM 1000
48 /**
49 * TIPC Key ids
51 enum {
52 KEY_UNUSED = 0,
53 KEY_MIN,
54 KEY_1 = KEY_MIN,
55 KEY_2,
56 KEY_3,
57 KEY_MAX = KEY_3,
60 /**
61 * TIPC Crypto statistics
63 enum {
64 STAT_OK,
65 STAT_NOK,
66 STAT_ASYNC,
67 STAT_ASYNC_OK,
68 STAT_ASYNC_NOK,
69 STAT_BADKEYS, /* tx only */
70 STAT_BADMSGS = STAT_BADKEYS, /* rx only */
71 STAT_NOKEYS,
72 STAT_SWITCHES,
74 MAX_STATS,
77 /* TIPC crypto statistics' header */
78 static const char *hstats[MAX_STATS] = {"ok", "nok", "async", "async_ok",
79 "async_nok", "badmsgs", "nokeys",
80 "switches"};
82 /* Max TFMs number per key */
83 int sysctl_tipc_max_tfms __read_mostly = TIPC_MAX_TFMS_DEF;
85 /**
86 * struct tipc_key - TIPC keys' status indicator
88 * 7 6 5 4 3 2 1 0
89 * +-----+-----+-----+-----+-----+-----+-----+-----+
90 * key: | (reserved)|passive idx| active idx|pending idx|
91 * +-----+-----+-----+-----+-----+-----+-----+-----+
93 struct tipc_key {
94 #define KEY_BITS (2)
95 #define KEY_MASK ((1 << KEY_BITS) - 1)
96 union {
97 struct {
98 #if defined(__LITTLE_ENDIAN_BITFIELD)
99 u8 pending:2,
100 active:2,
101 passive:2, /* rx only */
102 reserved:2;
103 #elif defined(__BIG_ENDIAN_BITFIELD)
104 u8 reserved:2,
105 passive:2, /* rx only */
106 active:2,
107 pending:2;
108 #else
109 #error "Please fix <asm/byteorder.h>"
110 #endif
111 } __packed;
112 u8 keys;
117 * struct tipc_tfm - TIPC TFM structure to form a list of TFMs
119 struct tipc_tfm {
120 struct crypto_aead *tfm;
121 struct list_head list;
125 * struct tipc_aead - TIPC AEAD key structure
126 * @tfm_entry: per-cpu pointer to one entry in TFM list
127 * @crypto: TIPC crypto owns this key
128 * @cloned: reference to the source key in case cloning
129 * @users: the number of the key users (TX/RX)
130 * @salt: the key's SALT value
131 * @authsize: authentication tag size (max = 16)
132 * @mode: crypto mode is applied to the key
133 * @hint[]: a hint for user key
134 * @rcu: struct rcu_head
135 * @seqno: the key seqno (cluster scope)
136 * @refcnt: the key reference counter
138 struct tipc_aead {
139 #define TIPC_AEAD_HINT_LEN (5)
140 struct tipc_tfm * __percpu *tfm_entry;
141 struct tipc_crypto *crypto;
142 struct tipc_aead *cloned;
143 atomic_t users;
144 u32 salt;
145 u8 authsize;
146 u8 mode;
147 char hint[TIPC_AEAD_HINT_LEN + 1];
148 struct rcu_head rcu;
150 atomic64_t seqno ____cacheline_aligned;
151 refcount_t refcnt ____cacheline_aligned;
153 } ____cacheline_aligned;
156 * struct tipc_crypto_stats - TIPC Crypto statistics
158 struct tipc_crypto_stats {
159 unsigned int stat[MAX_STATS];
163 * struct tipc_crypto - TIPC TX/RX crypto structure
164 * @net: struct net
165 * @node: TIPC node (RX)
166 * @aead: array of pointers to AEAD keys for encryption/decryption
167 * @peer_rx_active: replicated peer RX active key index
168 * @key: the key states
169 * @working: the crypto is working or not
170 * @stats: the crypto statistics
171 * @sndnxt: the per-peer sndnxt (TX)
172 * @timer1: general timer 1 (jiffies)
173 * @timer2: general timer 1 (jiffies)
174 * @lock: tipc_key lock
176 struct tipc_crypto {
177 struct net *net;
178 struct tipc_node *node;
179 struct tipc_aead __rcu *aead[KEY_MAX + 1]; /* key[0] is UNUSED */
180 atomic_t peer_rx_active;
181 struct tipc_key key;
182 u8 working:1;
183 struct tipc_crypto_stats __percpu *stats;
185 atomic64_t sndnxt ____cacheline_aligned;
186 unsigned long timer1;
187 unsigned long timer2;
188 spinlock_t lock; /* crypto lock */
190 } ____cacheline_aligned;
192 /* struct tipc_crypto_tx_ctx - TX context for callbacks */
193 struct tipc_crypto_tx_ctx {
194 struct tipc_aead *aead;
195 struct tipc_bearer *bearer;
196 struct tipc_media_addr dst;
199 /* struct tipc_crypto_rx_ctx - RX context for callbacks */
200 struct tipc_crypto_rx_ctx {
201 struct tipc_aead *aead;
202 struct tipc_bearer *bearer;
205 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead);
206 static inline void tipc_aead_put(struct tipc_aead *aead);
207 static void tipc_aead_free(struct rcu_head *rp);
208 static int tipc_aead_users(struct tipc_aead __rcu *aead);
209 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim);
210 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim);
211 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val);
212 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead);
213 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
214 u8 mode);
215 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src);
216 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
217 unsigned int crypto_ctx_size,
218 u8 **iv, struct aead_request **req,
219 struct scatterlist **sg, int nsg);
220 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
221 struct tipc_bearer *b,
222 struct tipc_media_addr *dst,
223 struct tipc_node *__dnode);
224 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err);
225 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
226 struct sk_buff *skb, struct tipc_bearer *b);
227 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err);
228 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr);
229 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
230 u8 tx_key, struct sk_buff *skb,
231 struct tipc_crypto *__rx);
232 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
233 u8 new_passive,
234 u8 new_active,
235 u8 new_pending);
236 static int tipc_crypto_key_attach(struct tipc_crypto *c,
237 struct tipc_aead *aead, u8 pos);
238 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending);
239 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
240 struct tipc_crypto *rx,
241 struct sk_buff *skb);
242 static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active,
243 struct tipc_msg *hdr);
244 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key);
245 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
246 struct tipc_bearer *b,
247 struct sk_buff **skb, int err);
248 static void tipc_crypto_do_cmd(struct net *net, int cmd);
249 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf);
250 #ifdef TIPC_CRYPTO_DEBUG
251 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
252 char *buf);
253 #endif
255 #define key_next(cur) ((cur) % KEY_MAX + 1)
257 #define tipc_aead_rcu_ptr(rcu_ptr, lock) \
258 rcu_dereference_protected((rcu_ptr), lockdep_is_held(lock))
260 #define tipc_aead_rcu_swap(rcu_ptr, ptr, lock) \
261 rcu_swap_protected((rcu_ptr), (ptr), lockdep_is_held(lock))
263 #define tipc_aead_rcu_replace(rcu_ptr, ptr, lock) \
264 do { \
265 typeof(rcu_ptr) __tmp = rcu_dereference_protected((rcu_ptr), \
266 lockdep_is_held(lock)); \
267 rcu_assign_pointer((rcu_ptr), (ptr)); \
268 tipc_aead_put(__tmp); \
269 } while (0)
271 #define tipc_crypto_key_detach(rcu_ptr, lock) \
272 tipc_aead_rcu_replace((rcu_ptr), NULL, lock)
275 * tipc_aead_key_validate - Validate a AEAD user key
277 int tipc_aead_key_validate(struct tipc_aead_key *ukey)
279 int keylen;
281 /* Check if algorithm exists */
282 if (unlikely(!crypto_has_alg(ukey->alg_name, 0, 0))) {
283 pr_info("Not found cipher: \"%s\"!\n", ukey->alg_name);
284 return -ENODEV;
287 /* Currently, we only support the "gcm(aes)" cipher algorithm */
288 if (strcmp(ukey->alg_name, "gcm(aes)"))
289 return -ENOTSUPP;
291 /* Check if key size is correct */
292 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
293 if (unlikely(keylen != TIPC_AES_GCM_KEY_SIZE_128 &&
294 keylen != TIPC_AES_GCM_KEY_SIZE_192 &&
295 keylen != TIPC_AES_GCM_KEY_SIZE_256))
296 return -EINVAL;
298 return 0;
301 static struct tipc_aead *tipc_aead_get(struct tipc_aead __rcu *aead)
303 struct tipc_aead *tmp;
305 rcu_read_lock();
306 tmp = rcu_dereference(aead);
307 if (unlikely(!tmp || !refcount_inc_not_zero(&tmp->refcnt)))
308 tmp = NULL;
309 rcu_read_unlock();
311 return tmp;
314 static inline void tipc_aead_put(struct tipc_aead *aead)
316 if (aead && refcount_dec_and_test(&aead->refcnt))
317 call_rcu(&aead->rcu, tipc_aead_free);
321 * tipc_aead_free - Release AEAD key incl. all the TFMs in the list
322 * @rp: rcu head pointer
324 static void tipc_aead_free(struct rcu_head *rp)
326 struct tipc_aead *aead = container_of(rp, struct tipc_aead, rcu);
327 struct tipc_tfm *tfm_entry, *head, *tmp;
329 if (aead->cloned) {
330 tipc_aead_put(aead->cloned);
331 } else {
332 head = *this_cpu_ptr(aead->tfm_entry);
333 list_for_each_entry_safe(tfm_entry, tmp, &head->list, list) {
334 crypto_free_aead(tfm_entry->tfm);
335 list_del(&tfm_entry->list);
336 kfree(tfm_entry);
338 /* Free the head */
339 crypto_free_aead(head->tfm);
340 list_del(&head->list);
341 kfree(head);
343 free_percpu(aead->tfm_entry);
344 kfree(aead);
347 static int tipc_aead_users(struct tipc_aead __rcu *aead)
349 struct tipc_aead *tmp;
350 int users = 0;
352 rcu_read_lock();
353 tmp = rcu_dereference(aead);
354 if (tmp)
355 users = atomic_read(&tmp->users);
356 rcu_read_unlock();
358 return users;
361 static void tipc_aead_users_inc(struct tipc_aead __rcu *aead, int lim)
363 struct tipc_aead *tmp;
365 rcu_read_lock();
366 tmp = rcu_dereference(aead);
367 if (tmp)
368 atomic_add_unless(&tmp->users, 1, lim);
369 rcu_read_unlock();
372 static void tipc_aead_users_dec(struct tipc_aead __rcu *aead, int lim)
374 struct tipc_aead *tmp;
376 rcu_read_lock();
377 tmp = rcu_dereference(aead);
378 if (tmp)
379 atomic_add_unless(&rcu_dereference(aead)->users, -1, lim);
380 rcu_read_unlock();
383 static void tipc_aead_users_set(struct tipc_aead __rcu *aead, int val)
385 struct tipc_aead *tmp;
386 int cur;
388 rcu_read_lock();
389 tmp = rcu_dereference(aead);
390 if (tmp) {
391 do {
392 cur = atomic_read(&tmp->users);
393 if (cur == val)
394 break;
395 } while (atomic_cmpxchg(&tmp->users, cur, val) != cur);
397 rcu_read_unlock();
401 * tipc_aead_tfm_next - Move TFM entry to the next one in list and return it
403 static struct crypto_aead *tipc_aead_tfm_next(struct tipc_aead *aead)
405 struct tipc_tfm **tfm_entry = this_cpu_ptr(aead->tfm_entry);
407 *tfm_entry = list_next_entry(*tfm_entry, list);
408 return (*tfm_entry)->tfm;
412 * tipc_aead_init - Initiate TIPC AEAD
413 * @aead: returned new TIPC AEAD key handle pointer
414 * @ukey: pointer to user key data
415 * @mode: the key mode
417 * Allocate a (list of) new cipher transformation (TFM) with the specific user
418 * key data if valid. The number of the allocated TFMs can be set via the sysfs
419 * "net/tipc/max_tfms" first.
420 * Also, all the other AEAD data are also initialized.
422 * Return: 0 if the initiation is successful, otherwise: < 0
424 static int tipc_aead_init(struct tipc_aead **aead, struct tipc_aead_key *ukey,
425 u8 mode)
427 struct tipc_tfm *tfm_entry, *head;
428 struct crypto_aead *tfm;
429 struct tipc_aead *tmp;
430 int keylen, err, cpu;
431 int tfm_cnt = 0;
433 if (unlikely(*aead))
434 return -EEXIST;
436 /* Allocate a new AEAD */
437 tmp = kzalloc(sizeof(*tmp), GFP_ATOMIC);
438 if (unlikely(!tmp))
439 return -ENOMEM;
441 /* The key consists of two parts: [AES-KEY][SALT] */
442 keylen = ukey->keylen - TIPC_AES_GCM_SALT_SIZE;
444 /* Allocate per-cpu TFM entry pointer */
445 tmp->tfm_entry = alloc_percpu(struct tipc_tfm *);
446 if (!tmp->tfm_entry) {
447 kzfree(tmp);
448 return -ENOMEM;
451 /* Make a list of TFMs with the user key data */
452 do {
453 tfm = crypto_alloc_aead(ukey->alg_name, 0, 0);
454 if (IS_ERR(tfm)) {
455 err = PTR_ERR(tfm);
456 break;
459 if (unlikely(!tfm_cnt &&
460 crypto_aead_ivsize(tfm) != TIPC_AES_GCM_IV_SIZE)) {
461 crypto_free_aead(tfm);
462 err = -ENOTSUPP;
463 break;
466 err = crypto_aead_setauthsize(tfm, TIPC_AES_GCM_TAG_SIZE);
467 err |= crypto_aead_setkey(tfm, ukey->key, keylen);
468 if (unlikely(err)) {
469 crypto_free_aead(tfm);
470 break;
473 tfm_entry = kmalloc(sizeof(*tfm_entry), GFP_KERNEL);
474 if (unlikely(!tfm_entry)) {
475 crypto_free_aead(tfm);
476 err = -ENOMEM;
477 break;
479 INIT_LIST_HEAD(&tfm_entry->list);
480 tfm_entry->tfm = tfm;
482 /* First entry? */
483 if (!tfm_cnt) {
484 head = tfm_entry;
485 for_each_possible_cpu(cpu) {
486 *per_cpu_ptr(tmp->tfm_entry, cpu) = head;
488 } else {
489 list_add_tail(&tfm_entry->list, &head->list);
492 } while (++tfm_cnt < sysctl_tipc_max_tfms);
494 /* Not any TFM is allocated? */
495 if (!tfm_cnt) {
496 free_percpu(tmp->tfm_entry);
497 kzfree(tmp);
498 return err;
501 /* Copy some chars from the user key as a hint */
502 memcpy(tmp->hint, ukey->key, TIPC_AEAD_HINT_LEN);
503 tmp->hint[TIPC_AEAD_HINT_LEN] = '\0';
505 /* Initialize the other data */
506 tmp->mode = mode;
507 tmp->cloned = NULL;
508 tmp->authsize = TIPC_AES_GCM_TAG_SIZE;
509 memcpy(&tmp->salt, ukey->key + keylen, TIPC_AES_GCM_SALT_SIZE);
510 atomic_set(&tmp->users, 0);
511 atomic64_set(&tmp->seqno, 0);
512 refcount_set(&tmp->refcnt, 1);
514 *aead = tmp;
515 return 0;
519 * tipc_aead_clone - Clone a TIPC AEAD key
520 * @dst: dest key for the cloning
521 * @src: source key to clone from
523 * Make a "copy" of the source AEAD key data to the dest, the TFMs list is
524 * common for the keys.
525 * A reference to the source is hold in the "cloned" pointer for the later
526 * freeing purposes.
528 * Note: this must be done in cluster-key mode only!
529 * Return: 0 in case of success, otherwise < 0
531 static int tipc_aead_clone(struct tipc_aead **dst, struct tipc_aead *src)
533 struct tipc_aead *aead;
534 int cpu;
536 if (!src)
537 return -ENOKEY;
539 if (src->mode != CLUSTER_KEY)
540 return -EINVAL;
542 if (unlikely(*dst))
543 return -EEXIST;
545 aead = kzalloc(sizeof(*aead), GFP_ATOMIC);
546 if (unlikely(!aead))
547 return -ENOMEM;
549 aead->tfm_entry = alloc_percpu_gfp(struct tipc_tfm *, GFP_ATOMIC);
550 if (unlikely(!aead->tfm_entry)) {
551 kzfree(aead);
552 return -ENOMEM;
555 for_each_possible_cpu(cpu) {
556 *per_cpu_ptr(aead->tfm_entry, cpu) =
557 *per_cpu_ptr(src->tfm_entry, cpu);
560 memcpy(aead->hint, src->hint, sizeof(src->hint));
561 aead->mode = src->mode;
562 aead->salt = src->salt;
563 aead->authsize = src->authsize;
564 atomic_set(&aead->users, 0);
565 atomic64_set(&aead->seqno, 0);
566 refcount_set(&aead->refcnt, 1);
568 WARN_ON(!refcount_inc_not_zero(&src->refcnt));
569 aead->cloned = src;
571 *dst = aead;
572 return 0;
576 * tipc_aead_mem_alloc - Allocate memory for AEAD request operations
577 * @tfm: cipher handle to be registered with the request
578 * @crypto_ctx_size: size of crypto context for callback
579 * @iv: returned pointer to IV data
580 * @req: returned pointer to AEAD request data
581 * @sg: returned pointer to SG lists
582 * @nsg: number of SG lists to be allocated
584 * Allocate memory to store the crypto context data, AEAD request, IV and SG
585 * lists, the memory layout is as follows:
586 * crypto_ctx || iv || aead_req || sg[]
588 * Return: the pointer to the memory areas in case of success, otherwise NULL
590 static void *tipc_aead_mem_alloc(struct crypto_aead *tfm,
591 unsigned int crypto_ctx_size,
592 u8 **iv, struct aead_request **req,
593 struct scatterlist **sg, int nsg)
595 unsigned int iv_size, req_size;
596 unsigned int len;
597 u8 *mem;
599 iv_size = crypto_aead_ivsize(tfm);
600 req_size = sizeof(**req) + crypto_aead_reqsize(tfm);
602 len = crypto_ctx_size;
603 len += iv_size;
604 len += crypto_aead_alignmask(tfm) & ~(crypto_tfm_ctx_alignment() - 1);
605 len = ALIGN(len, crypto_tfm_ctx_alignment());
606 len += req_size;
607 len = ALIGN(len, __alignof__(struct scatterlist));
608 len += nsg * sizeof(**sg);
610 mem = kmalloc(len, GFP_ATOMIC);
611 if (!mem)
612 return NULL;
614 *iv = (u8 *)PTR_ALIGN(mem + crypto_ctx_size,
615 crypto_aead_alignmask(tfm) + 1);
616 *req = (struct aead_request *)PTR_ALIGN(*iv + iv_size,
617 crypto_tfm_ctx_alignment());
618 *sg = (struct scatterlist *)PTR_ALIGN((u8 *)*req + req_size,
619 __alignof__(struct scatterlist));
621 return (void *)mem;
625 * tipc_aead_encrypt - Encrypt a message
626 * @aead: TIPC AEAD key for the message encryption
627 * @skb: the input/output skb
628 * @b: TIPC bearer where the message will be delivered after the encryption
629 * @dst: the destination media address
630 * @__dnode: TIPC dest node if "known"
632 * Return:
633 * 0 : if the encryption has completed
634 * -EINPROGRESS/-EBUSY : if a callback will be performed
635 * < 0 : the encryption has failed
637 static int tipc_aead_encrypt(struct tipc_aead *aead, struct sk_buff *skb,
638 struct tipc_bearer *b,
639 struct tipc_media_addr *dst,
640 struct tipc_node *__dnode)
642 struct crypto_aead *tfm = tipc_aead_tfm_next(aead);
643 struct tipc_crypto_tx_ctx *tx_ctx;
644 struct aead_request *req;
645 struct sk_buff *trailer;
646 struct scatterlist *sg;
647 struct tipc_ehdr *ehdr;
648 int ehsz, len, tailen, nsg, rc;
649 void *ctx;
650 u32 salt;
651 u8 *iv;
653 /* Make sure message len at least 4-byte aligned */
654 len = ALIGN(skb->len, 4);
655 tailen = len - skb->len + aead->authsize;
657 /* Expand skb tail for authentication tag:
658 * As for simplicity, we'd have made sure skb having enough tailroom
659 * for authentication tag @skb allocation. Even when skb is nonlinear
660 * but there is no frag_list, it should be still fine!
661 * Otherwise, we must cow it to be a writable buffer with the tailroom.
663 #ifdef TIPC_CRYPTO_DEBUG
664 SKB_LINEAR_ASSERT(skb);
665 if (tailen > skb_tailroom(skb)) {
666 pr_warn("TX: skb tailroom is not enough: %d, requires: %d\n",
667 skb_tailroom(skb), tailen);
669 #endif
671 if (unlikely(!skb_cloned(skb) && tailen <= skb_tailroom(skb))) {
672 nsg = 1;
673 trailer = skb;
674 } else {
675 /* TODO: We could avoid skb_cow_data() if skb has no frag_list
676 * e.g. by skb_fill_page_desc() to add another page to the skb
677 * with the wanted tailen... However, page skbs look not often,
678 * so take it easy now!
679 * Cloned skbs e.g. from link_xmit() seems no choice though :(
681 nsg = skb_cow_data(skb, tailen, &trailer);
682 if (unlikely(nsg < 0)) {
683 pr_err("TX: skb_cow_data() returned %d\n", nsg);
684 return nsg;
688 pskb_put(skb, trailer, tailen);
690 /* Allocate memory for the AEAD operation */
691 ctx = tipc_aead_mem_alloc(tfm, sizeof(*tx_ctx), &iv, &req, &sg, nsg);
692 if (unlikely(!ctx))
693 return -ENOMEM;
694 TIPC_SKB_CB(skb)->crypto_ctx = ctx;
696 /* Map skb to the sg lists */
697 sg_init_table(sg, nsg);
698 rc = skb_to_sgvec(skb, sg, 0, skb->len);
699 if (unlikely(rc < 0)) {
700 pr_err("TX: skb_to_sgvec() returned %d, nsg %d!\n", rc, nsg);
701 goto exit;
704 /* Prepare IV: [SALT (4 octets)][SEQNO (8 octets)]
705 * In case we're in cluster-key mode, SALT is varied by xor-ing with
706 * the source address (or w0 of id), otherwise with the dest address
707 * if dest is known.
709 ehdr = (struct tipc_ehdr *)skb->data;
710 salt = aead->salt;
711 if (aead->mode == CLUSTER_KEY)
712 salt ^= ehdr->addr; /* __be32 */
713 else if (__dnode)
714 salt ^= tipc_node_get_addr(__dnode);
715 memcpy(iv, &salt, 4);
716 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
718 /* Prepare request */
719 ehsz = tipc_ehdr_size(ehdr);
720 aead_request_set_tfm(req, tfm);
721 aead_request_set_ad(req, ehsz);
722 aead_request_set_crypt(req, sg, sg, len - ehsz, iv);
724 /* Set callback function & data */
725 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
726 tipc_aead_encrypt_done, skb);
727 tx_ctx = (struct tipc_crypto_tx_ctx *)ctx;
728 tx_ctx->aead = aead;
729 tx_ctx->bearer = b;
730 memcpy(&tx_ctx->dst, dst, sizeof(*dst));
732 /* Hold bearer */
733 if (unlikely(!tipc_bearer_hold(b))) {
734 rc = -ENODEV;
735 goto exit;
738 /* Now, do encrypt */
739 rc = crypto_aead_encrypt(req);
740 if (rc == -EINPROGRESS || rc == -EBUSY)
741 return rc;
743 tipc_bearer_put(b);
745 exit:
746 kfree(ctx);
747 TIPC_SKB_CB(skb)->crypto_ctx = NULL;
748 return rc;
751 static void tipc_aead_encrypt_done(struct crypto_async_request *base, int err)
753 struct sk_buff *skb = base->data;
754 struct tipc_crypto_tx_ctx *tx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
755 struct tipc_bearer *b = tx_ctx->bearer;
756 struct tipc_aead *aead = tx_ctx->aead;
757 struct tipc_crypto *tx = aead->crypto;
758 struct net *net = tx->net;
760 switch (err) {
761 case 0:
762 this_cpu_inc(tx->stats->stat[STAT_ASYNC_OK]);
763 if (likely(test_bit(0, &b->up)))
764 b->media->send_msg(net, skb, b, &tx_ctx->dst);
765 else
766 kfree_skb(skb);
767 break;
768 case -EINPROGRESS:
769 return;
770 default:
771 this_cpu_inc(tx->stats->stat[STAT_ASYNC_NOK]);
772 kfree_skb(skb);
773 break;
776 kfree(tx_ctx);
777 tipc_bearer_put(b);
778 tipc_aead_put(aead);
782 * tipc_aead_decrypt - Decrypt an encrypted message
783 * @net: struct net
784 * @aead: TIPC AEAD for the message decryption
785 * @skb: the input/output skb
786 * @b: TIPC bearer where the message has been received
788 * Return:
789 * 0 : if the decryption has completed
790 * -EINPROGRESS/-EBUSY : if a callback will be performed
791 * < 0 : the decryption has failed
793 static int tipc_aead_decrypt(struct net *net, struct tipc_aead *aead,
794 struct sk_buff *skb, struct tipc_bearer *b)
796 struct tipc_crypto_rx_ctx *rx_ctx;
797 struct aead_request *req;
798 struct crypto_aead *tfm;
799 struct sk_buff *unused;
800 struct scatterlist *sg;
801 struct tipc_ehdr *ehdr;
802 int ehsz, nsg, rc;
803 void *ctx;
804 u32 salt;
805 u8 *iv;
807 if (unlikely(!aead))
808 return -ENOKEY;
810 /* Cow skb data if needed */
811 if (likely(!skb_cloned(skb) &&
812 (!skb_is_nonlinear(skb) || !skb_has_frag_list(skb)))) {
813 nsg = 1 + skb_shinfo(skb)->nr_frags;
814 } else {
815 nsg = skb_cow_data(skb, 0, &unused);
816 if (unlikely(nsg < 0)) {
817 pr_err("RX: skb_cow_data() returned %d\n", nsg);
818 return nsg;
822 /* Allocate memory for the AEAD operation */
823 tfm = tipc_aead_tfm_next(aead);
824 ctx = tipc_aead_mem_alloc(tfm, sizeof(*rx_ctx), &iv, &req, &sg, nsg);
825 if (unlikely(!ctx))
826 return -ENOMEM;
827 TIPC_SKB_CB(skb)->crypto_ctx = ctx;
829 /* Map skb to the sg lists */
830 sg_init_table(sg, nsg);
831 rc = skb_to_sgvec(skb, sg, 0, skb->len);
832 if (unlikely(rc < 0)) {
833 pr_err("RX: skb_to_sgvec() returned %d, nsg %d\n", rc, nsg);
834 goto exit;
837 /* Reconstruct IV: */
838 ehdr = (struct tipc_ehdr *)skb->data;
839 salt = aead->salt;
840 if (aead->mode == CLUSTER_KEY)
841 salt ^= ehdr->addr; /* __be32 */
842 else if (ehdr->destined)
843 salt ^= tipc_own_addr(net);
844 memcpy(iv, &salt, 4);
845 memcpy(iv + 4, (u8 *)&ehdr->seqno, 8);
847 /* Prepare request */
848 ehsz = tipc_ehdr_size(ehdr);
849 aead_request_set_tfm(req, tfm);
850 aead_request_set_ad(req, ehsz);
851 aead_request_set_crypt(req, sg, sg, skb->len - ehsz, iv);
853 /* Set callback function & data */
854 aead_request_set_callback(req, CRYPTO_TFM_REQ_MAY_BACKLOG,
855 tipc_aead_decrypt_done, skb);
856 rx_ctx = (struct tipc_crypto_rx_ctx *)ctx;
857 rx_ctx->aead = aead;
858 rx_ctx->bearer = b;
860 /* Hold bearer */
861 if (unlikely(!tipc_bearer_hold(b))) {
862 rc = -ENODEV;
863 goto exit;
866 /* Now, do decrypt */
867 rc = crypto_aead_decrypt(req);
868 if (rc == -EINPROGRESS || rc == -EBUSY)
869 return rc;
871 tipc_bearer_put(b);
873 exit:
874 kfree(ctx);
875 TIPC_SKB_CB(skb)->crypto_ctx = NULL;
876 return rc;
879 static void tipc_aead_decrypt_done(struct crypto_async_request *base, int err)
881 struct sk_buff *skb = base->data;
882 struct tipc_crypto_rx_ctx *rx_ctx = TIPC_SKB_CB(skb)->crypto_ctx;
883 struct tipc_bearer *b = rx_ctx->bearer;
884 struct tipc_aead *aead = rx_ctx->aead;
885 struct tipc_crypto_stats __percpu *stats = aead->crypto->stats;
886 struct net *net = aead->crypto->net;
888 switch (err) {
889 case 0:
890 this_cpu_inc(stats->stat[STAT_ASYNC_OK]);
891 break;
892 case -EINPROGRESS:
893 return;
894 default:
895 this_cpu_inc(stats->stat[STAT_ASYNC_NOK]);
896 break;
899 kfree(rx_ctx);
900 tipc_crypto_rcv_complete(net, aead, b, &skb, err);
901 if (likely(skb)) {
902 if (likely(test_bit(0, &b->up)))
903 tipc_rcv(net, skb, b);
904 else
905 kfree_skb(skb);
908 tipc_bearer_put(b);
911 static inline int tipc_ehdr_size(struct tipc_ehdr *ehdr)
913 return (ehdr->user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
917 * tipc_ehdr_validate - Validate an encryption message
918 * @skb: the message buffer
920 * Returns "true" if this is a valid encryption message, otherwise "false"
922 bool tipc_ehdr_validate(struct sk_buff *skb)
924 struct tipc_ehdr *ehdr;
925 int ehsz;
927 if (unlikely(!pskb_may_pull(skb, EHDR_MIN_SIZE)))
928 return false;
930 ehdr = (struct tipc_ehdr *)skb->data;
931 if (unlikely(ehdr->version != TIPC_EVERSION))
932 return false;
933 ehsz = tipc_ehdr_size(ehdr);
934 if (unlikely(!pskb_may_pull(skb, ehsz)))
935 return false;
936 if (unlikely(skb->len <= ehsz + TIPC_AES_GCM_TAG_SIZE))
937 return false;
938 if (unlikely(!ehdr->tx_key))
939 return false;
941 return true;
945 * tipc_ehdr_build - Build TIPC encryption message header
946 * @net: struct net
947 * @aead: TX AEAD key to be used for the message encryption
948 * @tx_key: key id used for the message encryption
949 * @skb: input/output message skb
950 * @__rx: RX crypto handle if dest is "known"
952 * Return: the header size if the building is successful, otherwise < 0
954 static int tipc_ehdr_build(struct net *net, struct tipc_aead *aead,
955 u8 tx_key, struct sk_buff *skb,
956 struct tipc_crypto *__rx)
958 struct tipc_msg *hdr = buf_msg(skb);
959 struct tipc_ehdr *ehdr;
960 u32 user = msg_user(hdr);
961 u64 seqno;
962 int ehsz;
964 /* Make room for encryption header */
965 ehsz = (user != LINK_CONFIG) ? EHDR_SIZE : EHDR_CFG_SIZE;
966 WARN_ON(skb_headroom(skb) < ehsz);
967 ehdr = (struct tipc_ehdr *)skb_push(skb, ehsz);
969 /* Obtain a seqno first:
970 * Use the key seqno (= cluster wise) if dest is unknown or we're in
971 * cluster key mode, otherwise it's better for a per-peer seqno!
973 if (!__rx || aead->mode == CLUSTER_KEY)
974 seqno = atomic64_inc_return(&aead->seqno);
975 else
976 seqno = atomic64_inc_return(&__rx->sndnxt);
978 /* Revoke the key if seqno is wrapped around */
979 if (unlikely(!seqno))
980 return tipc_crypto_key_revoke(net, tx_key);
982 /* Word 1-2 */
983 ehdr->seqno = cpu_to_be64(seqno);
985 /* Words 0, 3- */
986 ehdr->version = TIPC_EVERSION;
987 ehdr->user = 0;
988 ehdr->keepalive = 0;
989 ehdr->tx_key = tx_key;
990 ehdr->destined = (__rx) ? 1 : 0;
991 ehdr->rx_key_active = (__rx) ? __rx->key.active : 0;
992 ehdr->reserved_1 = 0;
993 ehdr->reserved_2 = 0;
995 switch (user) {
996 case LINK_CONFIG:
997 ehdr->user = LINK_CONFIG;
998 memcpy(ehdr->id, tipc_own_id(net), NODE_ID_LEN);
999 break;
1000 default:
1001 if (user == LINK_PROTOCOL && msg_type(hdr) == STATE_MSG) {
1002 ehdr->user = LINK_PROTOCOL;
1003 ehdr->keepalive = msg_is_keepalive(hdr);
1005 ehdr->addr = hdr->hdr[3];
1006 break;
1009 return ehsz;
1012 static inline void tipc_crypto_key_set_state(struct tipc_crypto *c,
1013 u8 new_passive,
1014 u8 new_active,
1015 u8 new_pending)
1017 #ifdef TIPC_CRYPTO_DEBUG
1018 struct tipc_key old = c->key;
1019 char buf[32];
1020 #endif
1022 c->key.keys = ((new_passive & KEY_MASK) << (KEY_BITS * 2)) |
1023 ((new_active & KEY_MASK) << (KEY_BITS)) |
1024 ((new_pending & KEY_MASK));
1026 #ifdef TIPC_CRYPTO_DEBUG
1027 pr_info("%s(%s): key changing %s ::%pS\n",
1028 (c->node) ? "RX" : "TX",
1029 (c->node) ? tipc_node_get_id_str(c->node) :
1030 tipc_own_id_string(c->net),
1031 tipc_key_change_dump(old, c->key, buf),
1032 __builtin_return_address(0));
1033 #endif
1037 * tipc_crypto_key_init - Initiate a new user / AEAD key
1038 * @c: TIPC crypto to which new key is attached
1039 * @ukey: the user key
1040 * @mode: the key mode (CLUSTER_KEY or PER_NODE_KEY)
1042 * A new TIPC AEAD key will be allocated and initiated with the specified user
1043 * key, then attached to the TIPC crypto.
1045 * Return: new key id in case of success, otherwise: < 0
1047 int tipc_crypto_key_init(struct tipc_crypto *c, struct tipc_aead_key *ukey,
1048 u8 mode)
1050 struct tipc_aead *aead = NULL;
1051 int rc = 0;
1053 /* Initiate with the new user key */
1054 rc = tipc_aead_init(&aead, ukey, mode);
1056 /* Attach it to the crypto */
1057 if (likely(!rc)) {
1058 rc = tipc_crypto_key_attach(c, aead, 0);
1059 if (rc < 0)
1060 tipc_aead_free(&aead->rcu);
1063 pr_info("%s(%s): key initiating, rc %d!\n",
1064 (c->node) ? "RX" : "TX",
1065 (c->node) ? tipc_node_get_id_str(c->node) :
1066 tipc_own_id_string(c->net),
1067 rc);
1069 return rc;
1073 * tipc_crypto_key_attach - Attach a new AEAD key to TIPC crypto
1074 * @c: TIPC crypto to which the new AEAD key is attached
1075 * @aead: the new AEAD key pointer
1076 * @pos: desired slot in the crypto key array, = 0 if any!
1078 * Return: new key id in case of success, otherwise: -EBUSY
1080 static int tipc_crypto_key_attach(struct tipc_crypto *c,
1081 struct tipc_aead *aead, u8 pos)
1083 u8 new_pending, new_passive, new_key;
1084 struct tipc_key key;
1085 int rc = -EBUSY;
1087 spin_lock_bh(&c->lock);
1088 key = c->key;
1089 if (key.active && key.passive)
1090 goto exit;
1091 if (key.passive && !tipc_aead_users(c->aead[key.passive]))
1092 goto exit;
1093 if (key.pending) {
1094 if (pos)
1095 goto exit;
1096 if (tipc_aead_users(c->aead[key.pending]) > 0)
1097 goto exit;
1098 /* Replace it */
1099 new_pending = key.pending;
1100 new_passive = key.passive;
1101 new_key = new_pending;
1102 } else {
1103 if (pos) {
1104 if (key.active && pos != key_next(key.active)) {
1105 new_pending = key.pending;
1106 new_passive = pos;
1107 new_key = new_passive;
1108 goto attach;
1109 } else if (!key.active && !key.passive) {
1110 new_pending = pos;
1111 new_passive = key.passive;
1112 new_key = new_pending;
1113 goto attach;
1116 new_pending = key_next(key.active ?: key.passive);
1117 new_passive = key.passive;
1118 new_key = new_pending;
1121 attach:
1122 aead->crypto = c;
1123 tipc_crypto_key_set_state(c, new_passive, key.active, new_pending);
1124 tipc_aead_rcu_replace(c->aead[new_key], aead, &c->lock);
1126 c->working = 1;
1127 c->timer1 = jiffies;
1128 c->timer2 = jiffies;
1129 rc = new_key;
1131 exit:
1132 spin_unlock_bh(&c->lock);
1133 return rc;
1136 void tipc_crypto_key_flush(struct tipc_crypto *c)
1138 int k;
1140 spin_lock_bh(&c->lock);
1141 c->working = 0;
1142 tipc_crypto_key_set_state(c, 0, 0, 0);
1143 for (k = KEY_MIN; k <= KEY_MAX; k++)
1144 tipc_crypto_key_detach(c->aead[k], &c->lock);
1145 atomic_set(&c->peer_rx_active, 0);
1146 atomic64_set(&c->sndnxt, 0);
1147 spin_unlock_bh(&c->lock);
1151 * tipc_crypto_key_try_align - Align RX keys if possible
1152 * @rx: RX crypto handle
1153 * @new_pending: new pending slot if aligned (= TX key from peer)
1155 * Peer has used an unknown key slot, this only happens when peer has left and
1156 * rejoned, or we are newcomer.
1157 * That means, there must be no active key but a pending key at unaligned slot.
1158 * If so, we try to move the pending key to the new slot.
1159 * Note: A potential passive key can exist, it will be shifted correspondingly!
1161 * Return: "true" if key is successfully aligned, otherwise "false"
1163 static bool tipc_crypto_key_try_align(struct tipc_crypto *rx, u8 new_pending)
1165 struct tipc_aead *tmp1, *tmp2 = NULL;
1166 struct tipc_key key;
1167 bool aligned = false;
1168 u8 new_passive = 0;
1169 int x;
1171 spin_lock(&rx->lock);
1172 key = rx->key;
1173 if (key.pending == new_pending) {
1174 aligned = true;
1175 goto exit;
1177 if (key.active)
1178 goto exit;
1179 if (!key.pending)
1180 goto exit;
1181 if (tipc_aead_users(rx->aead[key.pending]) > 0)
1182 goto exit;
1184 /* Try to "isolate" this pending key first */
1185 tmp1 = tipc_aead_rcu_ptr(rx->aead[key.pending], &rx->lock);
1186 if (!refcount_dec_if_one(&tmp1->refcnt))
1187 goto exit;
1188 rcu_assign_pointer(rx->aead[key.pending], NULL);
1190 /* Move passive key if any */
1191 if (key.passive) {
1192 tipc_aead_rcu_swap(rx->aead[key.passive], tmp2, &rx->lock);
1193 x = (key.passive - key.pending + new_pending) % KEY_MAX;
1194 new_passive = (x <= 0) ? x + KEY_MAX : x;
1197 /* Re-allocate the key(s) */
1198 tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1199 rcu_assign_pointer(rx->aead[new_pending], tmp1);
1200 if (new_passive)
1201 rcu_assign_pointer(rx->aead[new_passive], tmp2);
1202 refcount_set(&tmp1->refcnt, 1);
1203 aligned = true;
1204 pr_info("RX(%s): key is aligned!\n", tipc_node_get_id_str(rx->node));
1206 exit:
1207 spin_unlock(&rx->lock);
1208 return aligned;
1212 * tipc_crypto_key_pick_tx - Pick one TX key for message decryption
1213 * @tx: TX crypto handle
1214 * @rx: RX crypto handle (can be NULL)
1215 * @skb: the message skb which will be decrypted later
1217 * This function looks up the existing TX keys and pick one which is suitable
1218 * for the message decryption, that must be a cluster key and not used before
1219 * on the same message (i.e. recursive).
1221 * Return: the TX AEAD key handle in case of success, otherwise NULL
1223 static struct tipc_aead *tipc_crypto_key_pick_tx(struct tipc_crypto *tx,
1224 struct tipc_crypto *rx,
1225 struct sk_buff *skb)
1227 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(skb);
1228 struct tipc_aead *aead = NULL;
1229 struct tipc_key key = tx->key;
1230 u8 k, i = 0;
1232 /* Initialize data if not yet */
1233 if (!skb_cb->tx_clone_deferred) {
1234 skb_cb->tx_clone_deferred = 1;
1235 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1238 skb_cb->tx_clone_ctx.rx = rx;
1239 if (++skb_cb->tx_clone_ctx.recurs > 2)
1240 return NULL;
1242 /* Pick one TX key */
1243 spin_lock(&tx->lock);
1244 do {
1245 k = (i == 0) ? key.pending :
1246 ((i == 1) ? key.active : key.passive);
1247 if (!k)
1248 continue;
1249 aead = tipc_aead_rcu_ptr(tx->aead[k], &tx->lock);
1250 if (!aead)
1251 continue;
1252 if (aead->mode != CLUSTER_KEY ||
1253 aead == skb_cb->tx_clone_ctx.last) {
1254 aead = NULL;
1255 continue;
1257 /* Ok, found one cluster key */
1258 skb_cb->tx_clone_ctx.last = aead;
1259 WARN_ON(skb->next);
1260 skb->next = skb_clone(skb, GFP_ATOMIC);
1261 if (unlikely(!skb->next))
1262 pr_warn("Failed to clone skb for next round if any\n");
1263 WARN_ON(!refcount_inc_not_zero(&aead->refcnt));
1264 break;
1265 } while (++i < 3);
1266 spin_unlock(&tx->lock);
1268 return aead;
1272 * tipc_crypto_key_synch: Synch own key data according to peer key status
1273 * @rx: RX crypto handle
1274 * @new_rx_active: latest RX active key from peer
1275 * @hdr: TIPCv2 message
1277 * This function updates the peer node related data as the peer RX active key
1278 * has changed, so the number of TX keys' users on this node are increased and
1279 * decreased correspondingly.
1281 * The "per-peer" sndnxt is also reset when the peer key has switched.
1283 static void tipc_crypto_key_synch(struct tipc_crypto *rx, u8 new_rx_active,
1284 struct tipc_msg *hdr)
1286 struct net *net = rx->net;
1287 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1288 u8 cur_rx_active;
1290 /* TX might be even not ready yet */
1291 if (unlikely(!tx->key.active && !tx->key.pending))
1292 return;
1294 cur_rx_active = atomic_read(&rx->peer_rx_active);
1295 if (likely(cur_rx_active == new_rx_active))
1296 return;
1298 /* Make sure this message destined for this node */
1299 if (unlikely(msg_short(hdr) ||
1300 msg_destnode(hdr) != tipc_own_addr(net)))
1301 return;
1303 /* Peer RX active key has changed, try to update owns' & TX users */
1304 if (atomic_cmpxchg(&rx->peer_rx_active,
1305 cur_rx_active,
1306 new_rx_active) == cur_rx_active) {
1307 if (new_rx_active)
1308 tipc_aead_users_inc(tx->aead[new_rx_active], INT_MAX);
1309 if (cur_rx_active)
1310 tipc_aead_users_dec(tx->aead[cur_rx_active], 0);
1312 atomic64_set(&rx->sndnxt, 0);
1313 /* Mark the point TX key users changed */
1314 tx->timer1 = jiffies;
1316 #ifdef TIPC_CRYPTO_DEBUG
1317 pr_info("TX(%s): key users changed %d-- %d++, peer RX(%s)\n",
1318 tipc_own_id_string(net), cur_rx_active,
1319 new_rx_active, tipc_node_get_id_str(rx->node));
1320 #endif
1324 static int tipc_crypto_key_revoke(struct net *net, u8 tx_key)
1326 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1327 struct tipc_key key;
1329 spin_lock(&tx->lock);
1330 key = tx->key;
1331 WARN_ON(!key.active || tx_key != key.active);
1333 /* Free the active key */
1334 tipc_crypto_key_set_state(tx, key.passive, 0, key.pending);
1335 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1336 spin_unlock(&tx->lock);
1338 pr_warn("TX(%s): key is revoked!\n", tipc_own_id_string(net));
1339 return -EKEYREVOKED;
1342 int tipc_crypto_start(struct tipc_crypto **crypto, struct net *net,
1343 struct tipc_node *node)
1345 struct tipc_crypto *c;
1347 if (*crypto)
1348 return -EEXIST;
1350 /* Allocate crypto */
1351 c = kzalloc(sizeof(*c), GFP_ATOMIC);
1352 if (!c)
1353 return -ENOMEM;
1355 /* Allocate statistic structure */
1356 c->stats = alloc_percpu_gfp(struct tipc_crypto_stats, GFP_ATOMIC);
1357 if (!c->stats) {
1358 kzfree(c);
1359 return -ENOMEM;
1362 c->working = 0;
1363 c->net = net;
1364 c->node = node;
1365 tipc_crypto_key_set_state(c, 0, 0, 0);
1366 atomic_set(&c->peer_rx_active, 0);
1367 atomic64_set(&c->sndnxt, 0);
1368 c->timer1 = jiffies;
1369 c->timer2 = jiffies;
1370 spin_lock_init(&c->lock);
1371 *crypto = c;
1373 return 0;
1376 void tipc_crypto_stop(struct tipc_crypto **crypto)
1378 struct tipc_crypto *c, *tx, *rx;
1379 bool is_rx;
1380 u8 k;
1382 if (!*crypto)
1383 return;
1385 rcu_read_lock();
1386 /* RX stopping? => decrease TX key users if any */
1387 is_rx = !!((*crypto)->node);
1388 if (is_rx) {
1389 rx = *crypto;
1390 tx = tipc_net(rx->net)->crypto_tx;
1391 k = atomic_read(&rx->peer_rx_active);
1392 if (k) {
1393 tipc_aead_users_dec(tx->aead[k], 0);
1394 /* Mark the point TX key users changed */
1395 tx->timer1 = jiffies;
1399 /* Release AEAD keys */
1400 c = *crypto;
1401 for (k = KEY_MIN; k <= KEY_MAX; k++)
1402 tipc_aead_put(rcu_dereference(c->aead[k]));
1403 rcu_read_unlock();
1405 pr_warn("%s(%s) has been purged, node left!\n",
1406 (is_rx) ? "RX" : "TX",
1407 (is_rx) ? tipc_node_get_id_str((*crypto)->node) :
1408 tipc_own_id_string((*crypto)->net));
1410 /* Free this crypto statistics */
1411 free_percpu(c->stats);
1413 *crypto = NULL;
1414 kzfree(c);
1417 void tipc_crypto_timeout(struct tipc_crypto *rx)
1419 struct tipc_net *tn = tipc_net(rx->net);
1420 struct tipc_crypto *tx = tn->crypto_tx;
1421 struct tipc_key key;
1422 u8 new_pending, new_passive;
1423 int cmd;
1425 /* TX key activating:
1426 * The pending key (users > 0) -> active
1427 * The active key if any (users == 0) -> free
1429 spin_lock(&tx->lock);
1430 key = tx->key;
1431 if (key.active && tipc_aead_users(tx->aead[key.active]) > 0)
1432 goto s1;
1433 if (!key.pending || tipc_aead_users(tx->aead[key.pending]) <= 0)
1434 goto s1;
1435 if (time_before(jiffies, tx->timer1 + TIPC_TX_LASTING_LIM))
1436 goto s1;
1438 tipc_crypto_key_set_state(tx, key.passive, key.pending, 0);
1439 if (key.active)
1440 tipc_crypto_key_detach(tx->aead[key.active], &tx->lock);
1441 this_cpu_inc(tx->stats->stat[STAT_SWITCHES]);
1442 pr_info("TX(%s): key %d is activated!\n", tipc_own_id_string(tx->net),
1443 key.pending);
1446 spin_unlock(&tx->lock);
1448 /* RX key activating:
1449 * The pending key (users > 0) -> active
1450 * The active key if any -> passive, freed later
1452 spin_lock(&rx->lock);
1453 key = rx->key;
1454 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) <= 0)
1455 goto s2;
1457 new_pending = (key.passive &&
1458 !tipc_aead_users(rx->aead[key.passive])) ?
1459 key.passive : 0;
1460 new_passive = (key.active) ?: ((new_pending) ? 0 : key.passive);
1461 tipc_crypto_key_set_state(rx, new_passive, key.pending, new_pending);
1462 this_cpu_inc(rx->stats->stat[STAT_SWITCHES]);
1463 pr_info("RX(%s): key %d is activated!\n",
1464 tipc_node_get_id_str(rx->node), key.pending);
1465 goto s5;
1468 /* RX key "faulty" switching:
1469 * The faulty pending key (users < -30) -> passive
1470 * The passive key (users = 0) -> pending
1471 * Note: This only happens after RX deactivated - s3!
1473 key = rx->key;
1474 if (!key.pending || tipc_aead_users(rx->aead[key.pending]) > -30)
1475 goto s3;
1476 if (!key.passive || tipc_aead_users(rx->aead[key.passive]) != 0)
1477 goto s3;
1479 new_pending = key.passive;
1480 new_passive = key.pending;
1481 tipc_crypto_key_set_state(rx, new_passive, key.active, new_pending);
1482 goto s5;
1485 /* RX key deactivating:
1486 * The passive key if any -> pending
1487 * The active key -> passive (users = 0) / pending
1488 * The pending key if any -> passive (users = 0)
1490 key = rx->key;
1491 if (!key.active)
1492 goto s4;
1493 if (time_before(jiffies, rx->timer1 + TIPC_RX_ACTIVE_LIM))
1494 goto s4;
1496 new_pending = (key.passive) ?: key.active;
1497 new_passive = (key.passive) ? key.active : key.pending;
1498 tipc_aead_users_set(rx->aead[new_pending], 0);
1499 if (new_passive)
1500 tipc_aead_users_set(rx->aead[new_passive], 0);
1501 tipc_crypto_key_set_state(rx, new_passive, 0, new_pending);
1502 pr_info("RX(%s): key %d is deactivated!\n",
1503 tipc_node_get_id_str(rx->node), key.active);
1504 goto s5;
1507 /* RX key passive -> freed: */
1508 key = rx->key;
1509 if (!key.passive || !tipc_aead_users(rx->aead[key.passive]))
1510 goto s5;
1511 if (time_before(jiffies, rx->timer2 + TIPC_RX_PASSIVE_LIM))
1512 goto s5;
1514 tipc_crypto_key_set_state(rx, 0, key.active, key.pending);
1515 tipc_crypto_key_detach(rx->aead[key.passive], &rx->lock);
1516 pr_info("RX(%s): key %d is freed!\n", tipc_node_get_id_str(rx->node),
1517 key.passive);
1520 spin_unlock(&rx->lock);
1522 /* Limit max_tfms & do debug commands if needed */
1523 if (likely(sysctl_tipc_max_tfms <= TIPC_MAX_TFMS_LIM))
1524 return;
1526 cmd = sysctl_tipc_max_tfms;
1527 sysctl_tipc_max_tfms = TIPC_MAX_TFMS_DEF;
1528 tipc_crypto_do_cmd(rx->net, cmd);
1532 * tipc_crypto_xmit - Build & encrypt TIPC message for xmit
1533 * @net: struct net
1534 * @skb: input/output message skb pointer
1535 * @b: bearer used for xmit later
1536 * @dst: destination media address
1537 * @__dnode: destination node for reference if any
1539 * First, build an encryption message header on the top of the message, then
1540 * encrypt the original TIPC message by using the active or pending TX key.
1541 * If the encryption is successful, the encrypted skb is returned directly or
1542 * via the callback.
1543 * Otherwise, the skb is freed!
1545 * Return:
1546 * 0 : the encryption has succeeded (or no encryption)
1547 * -EINPROGRESS/-EBUSY : the encryption is ongoing, a callback will be made
1548 * -ENOKEK : the encryption has failed due to no key
1549 * -EKEYREVOKED : the encryption has failed due to key revoked
1550 * -ENOMEM : the encryption has failed due to no memory
1551 * < 0 : the encryption has failed due to other reasons
1553 int tipc_crypto_xmit(struct net *net, struct sk_buff **skb,
1554 struct tipc_bearer *b, struct tipc_media_addr *dst,
1555 struct tipc_node *__dnode)
1557 struct tipc_crypto *__rx = tipc_node_crypto_rx(__dnode);
1558 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1559 struct tipc_crypto_stats __percpu *stats = tx->stats;
1560 struct tipc_key key = tx->key;
1561 struct tipc_aead *aead = NULL;
1562 struct sk_buff *probe;
1563 int rc = -ENOKEY;
1564 u8 tx_key;
1566 /* No encryption? */
1567 if (!tx->working)
1568 return 0;
1570 /* Try with the pending key if available and:
1571 * 1) This is the only choice (i.e. no active key) or;
1572 * 2) Peer has switched to this key (unicast only) or;
1573 * 3) It is time to do a pending key probe;
1575 if (unlikely(key.pending)) {
1576 tx_key = key.pending;
1577 if (!key.active)
1578 goto encrypt;
1579 if (__rx && atomic_read(&__rx->peer_rx_active) == tx_key)
1580 goto encrypt;
1581 if (TIPC_SKB_CB(*skb)->probe)
1582 goto encrypt;
1583 if (!__rx &&
1584 time_after(jiffies, tx->timer2 + TIPC_TX_PROBE_LIM)) {
1585 tx->timer2 = jiffies;
1586 probe = skb_clone(*skb, GFP_ATOMIC);
1587 if (probe) {
1588 TIPC_SKB_CB(probe)->probe = 1;
1589 tipc_crypto_xmit(net, &probe, b, dst, __dnode);
1590 if (probe)
1591 b->media->send_msg(net, probe, b, dst);
1595 /* Else, use the active key if any */
1596 if (likely(key.active)) {
1597 tx_key = key.active;
1598 goto encrypt;
1600 goto exit;
1602 encrypt:
1603 aead = tipc_aead_get(tx->aead[tx_key]);
1604 if (unlikely(!aead))
1605 goto exit;
1606 rc = tipc_ehdr_build(net, aead, tx_key, *skb, __rx);
1607 if (likely(rc > 0))
1608 rc = tipc_aead_encrypt(aead, *skb, b, dst, __dnode);
1610 exit:
1611 switch (rc) {
1612 case 0:
1613 this_cpu_inc(stats->stat[STAT_OK]);
1614 break;
1615 case -EINPROGRESS:
1616 case -EBUSY:
1617 this_cpu_inc(stats->stat[STAT_ASYNC]);
1618 *skb = NULL;
1619 return rc;
1620 default:
1621 this_cpu_inc(stats->stat[STAT_NOK]);
1622 if (rc == -ENOKEY)
1623 this_cpu_inc(stats->stat[STAT_NOKEYS]);
1624 else if (rc == -EKEYREVOKED)
1625 this_cpu_inc(stats->stat[STAT_BADKEYS]);
1626 kfree_skb(*skb);
1627 *skb = NULL;
1628 break;
1631 tipc_aead_put(aead);
1632 return rc;
1636 * tipc_crypto_rcv - Decrypt an encrypted TIPC message from peer
1637 * @net: struct net
1638 * @rx: RX crypto handle
1639 * @skb: input/output message skb pointer
1640 * @b: bearer where the message has been received
1642 * If the decryption is successful, the decrypted skb is returned directly or
1643 * as the callback, the encryption header and auth tag will be trimed out
1644 * before forwarding to tipc_rcv() via the tipc_crypto_rcv_complete().
1645 * Otherwise, the skb will be freed!
1646 * Note: RX key(s) can be re-aligned, or in case of no key suitable, TX
1647 * cluster key(s) can be taken for decryption (- recursive).
1649 * Return:
1650 * 0 : the decryption has successfully completed
1651 * -EINPROGRESS/-EBUSY : the decryption is ongoing, a callback will be made
1652 * -ENOKEY : the decryption has failed due to no key
1653 * -EBADMSG : the decryption has failed due to bad message
1654 * -ENOMEM : the decryption has failed due to no memory
1655 * < 0 : the decryption has failed due to other reasons
1657 int tipc_crypto_rcv(struct net *net, struct tipc_crypto *rx,
1658 struct sk_buff **skb, struct tipc_bearer *b)
1660 struct tipc_crypto *tx = tipc_net(net)->crypto_tx;
1661 struct tipc_crypto_stats __percpu *stats;
1662 struct tipc_aead *aead = NULL;
1663 struct tipc_key key;
1664 int rc = -ENOKEY;
1665 u8 tx_key = 0;
1667 /* New peer?
1668 * Let's try with TX key (i.e. cluster mode) & verify the skb first!
1670 if (unlikely(!rx))
1671 goto pick_tx;
1673 /* Pick RX key according to TX key, three cases are possible:
1674 * 1) The current active key (likely) or;
1675 * 2) The pending (new or deactivated) key (if any) or;
1676 * 3) The passive or old active key (i.e. users > 0);
1678 tx_key = ((struct tipc_ehdr *)(*skb)->data)->tx_key;
1679 key = rx->key;
1680 if (likely(tx_key == key.active))
1681 goto decrypt;
1682 if (tx_key == key.pending)
1683 goto decrypt;
1684 if (tx_key == key.passive) {
1685 rx->timer2 = jiffies;
1686 if (tipc_aead_users(rx->aead[key.passive]) > 0)
1687 goto decrypt;
1690 /* Unknown key, let's try to align RX key(s) */
1691 if (tipc_crypto_key_try_align(rx, tx_key))
1692 goto decrypt;
1694 pick_tx:
1695 /* No key suitable? Try to pick one from TX... */
1696 aead = tipc_crypto_key_pick_tx(tx, rx, *skb);
1697 if (aead)
1698 goto decrypt;
1699 goto exit;
1701 decrypt:
1702 rcu_read_lock();
1703 if (!aead)
1704 aead = tipc_aead_get(rx->aead[tx_key]);
1705 rc = tipc_aead_decrypt(net, aead, *skb, b);
1706 rcu_read_unlock();
1708 exit:
1709 stats = ((rx) ?: tx)->stats;
1710 switch (rc) {
1711 case 0:
1712 this_cpu_inc(stats->stat[STAT_OK]);
1713 break;
1714 case -EINPROGRESS:
1715 case -EBUSY:
1716 this_cpu_inc(stats->stat[STAT_ASYNC]);
1717 *skb = NULL;
1718 return rc;
1719 default:
1720 this_cpu_inc(stats->stat[STAT_NOK]);
1721 if (rc == -ENOKEY) {
1722 kfree_skb(*skb);
1723 *skb = NULL;
1724 if (rx)
1725 tipc_node_put(rx->node);
1726 this_cpu_inc(stats->stat[STAT_NOKEYS]);
1727 return rc;
1728 } else if (rc == -EBADMSG) {
1729 this_cpu_inc(stats->stat[STAT_BADMSGS]);
1731 break;
1734 tipc_crypto_rcv_complete(net, aead, b, skb, rc);
1735 return rc;
1738 static void tipc_crypto_rcv_complete(struct net *net, struct tipc_aead *aead,
1739 struct tipc_bearer *b,
1740 struct sk_buff **skb, int err)
1742 struct tipc_skb_cb *skb_cb = TIPC_SKB_CB(*skb);
1743 struct tipc_crypto *rx = aead->crypto;
1744 struct tipc_aead *tmp = NULL;
1745 struct tipc_ehdr *ehdr;
1746 struct tipc_node *n;
1747 u8 rx_key_active;
1748 bool destined;
1750 /* Is this completed by TX? */
1751 if (unlikely(!rx->node)) {
1752 rx = skb_cb->tx_clone_ctx.rx;
1753 #ifdef TIPC_CRYPTO_DEBUG
1754 pr_info("TX->RX(%s): err %d, aead %p, skb->next %p, flags %x\n",
1755 (rx) ? tipc_node_get_id_str(rx->node) : "-", err, aead,
1756 (*skb)->next, skb_cb->flags);
1757 pr_info("skb_cb [recurs %d, last %p], tx->aead [%p %p %p]\n",
1758 skb_cb->tx_clone_ctx.recurs, skb_cb->tx_clone_ctx.last,
1759 aead->crypto->aead[1], aead->crypto->aead[2],
1760 aead->crypto->aead[3]);
1761 #endif
1762 if (unlikely(err)) {
1763 if (err == -EBADMSG && (*skb)->next)
1764 tipc_rcv(net, (*skb)->next, b);
1765 goto free_skb;
1768 if (likely((*skb)->next)) {
1769 kfree_skb((*skb)->next);
1770 (*skb)->next = NULL;
1772 ehdr = (struct tipc_ehdr *)(*skb)->data;
1773 if (!rx) {
1774 WARN_ON(ehdr->user != LINK_CONFIG);
1775 n = tipc_node_create(net, 0, ehdr->id, 0xffffu, 0,
1776 true);
1777 rx = tipc_node_crypto_rx(n);
1778 if (unlikely(!rx))
1779 goto free_skb;
1782 /* Skip cloning this time as we had a RX pending key */
1783 if (rx->key.pending)
1784 goto rcv;
1785 if (tipc_aead_clone(&tmp, aead) < 0)
1786 goto rcv;
1787 if (tipc_crypto_key_attach(rx, tmp, ehdr->tx_key) < 0) {
1788 tipc_aead_free(&tmp->rcu);
1789 goto rcv;
1791 tipc_aead_put(aead);
1792 aead = tipc_aead_get(tmp);
1795 if (unlikely(err)) {
1796 tipc_aead_users_dec(aead, INT_MIN);
1797 goto free_skb;
1800 /* Set the RX key's user */
1801 tipc_aead_users_set(aead, 1);
1803 rcv:
1804 /* Mark this point, RX works */
1805 rx->timer1 = jiffies;
1807 /* Remove ehdr & auth. tag prior to tipc_rcv() */
1808 ehdr = (struct tipc_ehdr *)(*skb)->data;
1809 destined = ehdr->destined;
1810 rx_key_active = ehdr->rx_key_active;
1811 skb_pull(*skb, tipc_ehdr_size(ehdr));
1812 pskb_trim(*skb, (*skb)->len - aead->authsize);
1814 /* Validate TIPCv2 message */
1815 if (unlikely(!tipc_msg_validate(skb))) {
1816 pr_err_ratelimited("Packet dropped after decryption!\n");
1817 goto free_skb;
1820 /* Update peer RX active key & TX users */
1821 if (destined)
1822 tipc_crypto_key_synch(rx, rx_key_active, buf_msg(*skb));
1824 /* Mark skb decrypted */
1825 skb_cb->decrypted = 1;
1827 /* Clear clone cxt if any */
1828 if (likely(!skb_cb->tx_clone_deferred))
1829 goto exit;
1830 skb_cb->tx_clone_deferred = 0;
1831 memset(&skb_cb->tx_clone_ctx, 0, sizeof(skb_cb->tx_clone_ctx));
1832 goto exit;
1834 free_skb:
1835 kfree_skb(*skb);
1836 *skb = NULL;
1838 exit:
1839 tipc_aead_put(aead);
1840 if (rx)
1841 tipc_node_put(rx->node);
1844 static void tipc_crypto_do_cmd(struct net *net, int cmd)
1846 struct tipc_net *tn = tipc_net(net);
1847 struct tipc_crypto *tx = tn->crypto_tx, *rx;
1848 struct list_head *p;
1849 unsigned int stat;
1850 int i, j, cpu;
1851 char buf[200];
1853 /* Currently only one command is supported */
1854 switch (cmd) {
1855 case 0xfff1:
1856 goto print_stats;
1857 default:
1858 return;
1861 print_stats:
1862 /* Print a header */
1863 pr_info("\n=============== TIPC Crypto Statistics ===============\n\n");
1865 /* Print key status */
1866 pr_info("Key status:\n");
1867 pr_info("TX(%7.7s)\n%s", tipc_own_id_string(net),
1868 tipc_crypto_key_dump(tx, buf));
1870 rcu_read_lock();
1871 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
1872 rx = tipc_node_crypto_rx_by_list(p);
1873 pr_info("RX(%7.7s)\n%s", tipc_node_get_id_str(rx->node),
1874 tipc_crypto_key_dump(rx, buf));
1876 rcu_read_unlock();
1878 /* Print crypto statistics */
1879 for (i = 0, j = 0; i < MAX_STATS; i++)
1880 j += scnprintf(buf + j, 200 - j, "|%11s ", hstats[i]);
1881 pr_info("\nCounter %s", buf);
1883 memset(buf, '-', 115);
1884 buf[115] = '\0';
1885 pr_info("%s\n", buf);
1887 j = scnprintf(buf, 200, "TX(%7.7s) ", tipc_own_id_string(net));
1888 for_each_possible_cpu(cpu) {
1889 for (i = 0; i < MAX_STATS; i++) {
1890 stat = per_cpu_ptr(tx->stats, cpu)->stat[i];
1891 j += scnprintf(buf + j, 200 - j, "|%11d ", stat);
1893 pr_info("%s", buf);
1894 j = scnprintf(buf, 200, "%12s", " ");
1897 rcu_read_lock();
1898 for (p = tn->node_list.next; p != &tn->node_list; p = p->next) {
1899 rx = tipc_node_crypto_rx_by_list(p);
1900 j = scnprintf(buf, 200, "RX(%7.7s) ",
1901 tipc_node_get_id_str(rx->node));
1902 for_each_possible_cpu(cpu) {
1903 for (i = 0; i < MAX_STATS; i++) {
1904 stat = per_cpu_ptr(rx->stats, cpu)->stat[i];
1905 j += scnprintf(buf + j, 200 - j, "|%11d ",
1906 stat);
1908 pr_info("%s", buf);
1909 j = scnprintf(buf, 200, "%12s", " ");
1912 rcu_read_unlock();
1914 pr_info("\n======================== Done ========================\n");
1917 static char *tipc_crypto_key_dump(struct tipc_crypto *c, char *buf)
1919 struct tipc_key key = c->key;
1920 struct tipc_aead *aead;
1921 int k, i = 0;
1922 char *s;
1924 for (k = KEY_MIN; k <= KEY_MAX; k++) {
1925 if (k == key.passive)
1926 s = "PAS";
1927 else if (k == key.active)
1928 s = "ACT";
1929 else if (k == key.pending)
1930 s = "PEN";
1931 else
1932 s = "-";
1933 i += scnprintf(buf + i, 200 - i, "\tKey%d: %s", k, s);
1935 rcu_read_lock();
1936 aead = rcu_dereference(c->aead[k]);
1937 if (aead)
1938 i += scnprintf(buf + i, 200 - i,
1939 "{\"%s...\", \"%s\"}/%d:%d",
1940 aead->hint,
1941 (aead->mode == CLUSTER_KEY) ? "c" : "p",
1942 atomic_read(&aead->users),
1943 refcount_read(&aead->refcnt));
1944 rcu_read_unlock();
1945 i += scnprintf(buf + i, 200 - i, "\n");
1948 if (c->node)
1949 i += scnprintf(buf + i, 200 - i, "\tPeer RX active: %d\n",
1950 atomic_read(&c->peer_rx_active));
1952 return buf;
1955 #ifdef TIPC_CRYPTO_DEBUG
1956 static char *tipc_key_change_dump(struct tipc_key old, struct tipc_key new,
1957 char *buf)
1959 struct tipc_key *key = &old;
1960 int k, i = 0;
1961 char *s;
1963 /* Output format: "[%s %s %s] -> [%s %s %s]", max len = 32 */
1964 again:
1965 i += scnprintf(buf + i, 32 - i, "[");
1966 for (k = KEY_MIN; k <= KEY_MAX; k++) {
1967 if (k == key->passive)
1968 s = "pas";
1969 else if (k == key->active)
1970 s = "act";
1971 else if (k == key->pending)
1972 s = "pen";
1973 else
1974 s = "-";
1975 i += scnprintf(buf + i, 32 - i,
1976 (k != KEY_MAX) ? "%s " : "%s", s);
1978 if (key != &new) {
1979 i += scnprintf(buf + i, 32 - i, "] -> ");
1980 key = &new;
1981 goto again;
1983 i += scnprintf(buf + i, 32 - i, "]");
1984 return buf;
1986 #endif