ext4: Optimize ext4 DIO overwrites
[linux/fpc-iii.git] / net / tls / tls_device.c
blobcd91ad8122915f007e046729e7d1dec7dbb0d322
1 /* Copyright (c) 2018, Mellanox Technologies All rights reserved.
3 * This software is available to you under a choice of one of two
4 * licenses. You may choose to be licensed under the terms of the GNU
5 * General Public License (GPL) Version 2, available from the file
6 * COPYING in the main directory of this source tree, or the
7 * OpenIB.org BSD license below:
9 * Redistribution and use in source and binary forms, with or
10 * without modification, are permitted provided that the following
11 * conditions are met:
13 * - Redistributions of source code must retain the above
14 * copyright notice, this list of conditions and the following
15 * disclaimer.
17 * - Redistributions in binary form must reproduce the above
18 * copyright notice, this list of conditions and the following
19 * disclaimer in the documentation and/or other materials
20 * provided with the distribution.
22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
29 * SOFTWARE.
32 #include <crypto/aead.h>
33 #include <linux/highmem.h>
34 #include <linux/module.h>
35 #include <linux/netdevice.h>
36 #include <net/dst.h>
37 #include <net/inet_connection_sock.h>
38 #include <net/tcp.h>
39 #include <net/tls.h>
41 #include "trace.h"
43 /* device_offload_lock is used to synchronize tls_dev_add
44 * against NETDEV_DOWN notifications.
46 static DECLARE_RWSEM(device_offload_lock);
48 static void tls_device_gc_task(struct work_struct *work);
50 static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
51 static LIST_HEAD(tls_device_gc_list);
52 static LIST_HEAD(tls_device_list);
53 static DEFINE_SPINLOCK(tls_device_lock);
55 static void tls_device_free_ctx(struct tls_context *ctx)
57 if (ctx->tx_conf == TLS_HW) {
58 kfree(tls_offload_ctx_tx(ctx));
59 kfree(ctx->tx.rec_seq);
60 kfree(ctx->tx.iv);
63 if (ctx->rx_conf == TLS_HW)
64 kfree(tls_offload_ctx_rx(ctx));
66 tls_ctx_free(NULL, ctx);
69 static void tls_device_gc_task(struct work_struct *work)
71 struct tls_context *ctx, *tmp;
72 unsigned long flags;
73 LIST_HEAD(gc_list);
75 spin_lock_irqsave(&tls_device_lock, flags);
76 list_splice_init(&tls_device_gc_list, &gc_list);
77 spin_unlock_irqrestore(&tls_device_lock, flags);
79 list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
80 struct net_device *netdev = ctx->netdev;
82 if (netdev && ctx->tx_conf == TLS_HW) {
83 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
84 TLS_OFFLOAD_CTX_DIR_TX);
85 dev_put(netdev);
86 ctx->netdev = NULL;
89 list_del(&ctx->list);
90 tls_device_free_ctx(ctx);
94 static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
96 unsigned long flags;
98 spin_lock_irqsave(&tls_device_lock, flags);
99 list_move_tail(&ctx->list, &tls_device_gc_list);
101 /* schedule_work inside the spinlock
102 * to make sure tls_device_down waits for that work.
104 schedule_work(&tls_device_gc_work);
106 spin_unlock_irqrestore(&tls_device_lock, flags);
109 /* We assume that the socket is already connected */
110 static struct net_device *get_netdev_for_sock(struct sock *sk)
112 struct dst_entry *dst = sk_dst_get(sk);
113 struct net_device *netdev = NULL;
115 if (likely(dst)) {
116 netdev = dst->dev;
117 dev_hold(netdev);
120 dst_release(dst);
122 return netdev;
125 static void destroy_record(struct tls_record_info *record)
127 int i;
129 for (i = 0; i < record->num_frags; i++)
130 __skb_frag_unref(&record->frags[i]);
131 kfree(record);
134 static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
136 struct tls_record_info *info, *temp;
138 list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
139 list_del(&info->list);
140 destroy_record(info);
143 offload_ctx->retransmit_hint = NULL;
146 static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
148 struct tls_context *tls_ctx = tls_get_ctx(sk);
149 struct tls_record_info *info, *temp;
150 struct tls_offload_context_tx *ctx;
151 u64 deleted_records = 0;
152 unsigned long flags;
154 if (!tls_ctx)
155 return;
157 ctx = tls_offload_ctx_tx(tls_ctx);
159 spin_lock_irqsave(&ctx->lock, flags);
160 info = ctx->retransmit_hint;
161 if (info && !before(acked_seq, info->end_seq))
162 ctx->retransmit_hint = NULL;
164 list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
165 if (before(acked_seq, info->end_seq))
166 break;
167 list_del(&info->list);
169 destroy_record(info);
170 deleted_records++;
173 ctx->unacked_record_sn += deleted_records;
174 spin_unlock_irqrestore(&ctx->lock, flags);
177 /* At this point, there should be no references on this
178 * socket and no in-flight SKBs associated with this
179 * socket, so it is safe to free all the resources.
181 static void tls_device_sk_destruct(struct sock *sk)
183 struct tls_context *tls_ctx = tls_get_ctx(sk);
184 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
186 tls_ctx->sk_destruct(sk);
188 if (tls_ctx->tx_conf == TLS_HW) {
189 if (ctx->open_record)
190 destroy_record(ctx->open_record);
191 delete_all_records(ctx);
192 crypto_free_aead(ctx->aead_send);
193 clean_acked_data_disable(inet_csk(sk));
196 if (refcount_dec_and_test(&tls_ctx->refcount))
197 tls_device_queue_ctx_destruction(tls_ctx);
200 void tls_device_free_resources_tx(struct sock *sk)
202 struct tls_context *tls_ctx = tls_get_ctx(sk);
204 tls_free_partial_record(sk, tls_ctx);
207 void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
209 struct tls_context *tls_ctx = tls_get_ctx(sk);
211 trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
212 WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
214 EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
216 static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
217 u32 seq)
219 struct net_device *netdev;
220 struct sk_buff *skb;
221 int err = 0;
222 u8 *rcd_sn;
224 skb = tcp_write_queue_tail(sk);
225 if (skb)
226 TCP_SKB_CB(skb)->eor = 1;
228 rcd_sn = tls_ctx->tx.rec_seq;
230 trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
231 down_read(&device_offload_lock);
232 netdev = tls_ctx->netdev;
233 if (netdev)
234 err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
235 rcd_sn,
236 TLS_OFFLOAD_CTX_DIR_TX);
237 up_read(&device_offload_lock);
238 if (err)
239 return;
241 clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
244 static void tls_append_frag(struct tls_record_info *record,
245 struct page_frag *pfrag,
246 int size)
248 skb_frag_t *frag;
250 frag = &record->frags[record->num_frags - 1];
251 if (skb_frag_page(frag) == pfrag->page &&
252 skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
253 skb_frag_size_add(frag, size);
254 } else {
255 ++frag;
256 __skb_frag_set_page(frag, pfrag->page);
257 skb_frag_off_set(frag, pfrag->offset);
258 skb_frag_size_set(frag, size);
259 ++record->num_frags;
260 get_page(pfrag->page);
263 pfrag->offset += size;
264 record->len += size;
267 static int tls_push_record(struct sock *sk,
268 struct tls_context *ctx,
269 struct tls_offload_context_tx *offload_ctx,
270 struct tls_record_info *record,
271 int flags)
273 struct tls_prot_info *prot = &ctx->prot_info;
274 struct tcp_sock *tp = tcp_sk(sk);
275 skb_frag_t *frag;
276 int i;
278 record->end_seq = tp->write_seq + record->len;
279 list_add_tail_rcu(&record->list, &offload_ctx->records_list);
280 offload_ctx->open_record = NULL;
282 if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
283 tls_device_resync_tx(sk, ctx, tp->write_seq);
285 tls_advance_record_sn(sk, prot, &ctx->tx);
287 for (i = 0; i < record->num_frags; i++) {
288 frag = &record->frags[i];
289 sg_unmark_end(&offload_ctx->sg_tx_data[i]);
290 sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
291 skb_frag_size(frag), skb_frag_off(frag));
292 sk_mem_charge(sk, skb_frag_size(frag));
293 get_page(skb_frag_page(frag));
295 sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
297 /* all ready, send */
298 return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
301 static int tls_device_record_close(struct sock *sk,
302 struct tls_context *ctx,
303 struct tls_record_info *record,
304 struct page_frag *pfrag,
305 unsigned char record_type)
307 struct tls_prot_info *prot = &ctx->prot_info;
308 int ret;
310 /* append tag
311 * device will fill in the tag, we just need to append a placeholder
312 * use socket memory to improve coalescing (re-using a single buffer
313 * increases frag count)
314 * if we can't allocate memory now, steal some back from data
316 if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
317 sk->sk_allocation))) {
318 ret = 0;
319 tls_append_frag(record, pfrag, prot->tag_size);
320 } else {
321 ret = prot->tag_size;
322 if (record->len <= prot->overhead_size)
323 return -ENOMEM;
326 /* fill prepend */
327 tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
328 record->len - prot->overhead_size,
329 record_type, prot->version);
330 return ret;
333 static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
334 struct page_frag *pfrag,
335 size_t prepend_size)
337 struct tls_record_info *record;
338 skb_frag_t *frag;
340 record = kmalloc(sizeof(*record), GFP_KERNEL);
341 if (!record)
342 return -ENOMEM;
344 frag = &record->frags[0];
345 __skb_frag_set_page(frag, pfrag->page);
346 skb_frag_off_set(frag, pfrag->offset);
347 skb_frag_size_set(frag, prepend_size);
349 get_page(pfrag->page);
350 pfrag->offset += prepend_size;
352 record->num_frags = 1;
353 record->len = prepend_size;
354 offload_ctx->open_record = record;
355 return 0;
358 static int tls_do_allocation(struct sock *sk,
359 struct tls_offload_context_tx *offload_ctx,
360 struct page_frag *pfrag,
361 size_t prepend_size)
363 int ret;
365 if (!offload_ctx->open_record) {
366 if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
367 sk->sk_allocation))) {
368 sk->sk_prot->enter_memory_pressure(sk);
369 sk_stream_moderate_sndbuf(sk);
370 return -ENOMEM;
373 ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
374 if (ret)
375 return ret;
377 if (pfrag->size > pfrag->offset)
378 return 0;
381 if (!sk_page_frag_refill(sk, pfrag))
382 return -ENOMEM;
384 return 0;
387 static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
389 size_t pre_copy, nocache;
391 pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
392 if (pre_copy) {
393 pre_copy = min(pre_copy, bytes);
394 if (copy_from_iter(addr, pre_copy, i) != pre_copy)
395 return -EFAULT;
396 bytes -= pre_copy;
397 addr += pre_copy;
400 nocache = round_down(bytes, SMP_CACHE_BYTES);
401 if (copy_from_iter_nocache(addr, nocache, i) != nocache)
402 return -EFAULT;
403 bytes -= nocache;
404 addr += nocache;
406 if (bytes && copy_from_iter(addr, bytes, i) != bytes)
407 return -EFAULT;
409 return 0;
412 static int tls_push_data(struct sock *sk,
413 struct iov_iter *msg_iter,
414 size_t size, int flags,
415 unsigned char record_type)
417 struct tls_context *tls_ctx = tls_get_ctx(sk);
418 struct tls_prot_info *prot = &tls_ctx->prot_info;
419 struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
420 int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
421 struct tls_record_info *record = ctx->open_record;
422 int tls_push_record_flags;
423 struct page_frag *pfrag;
424 size_t orig_size = size;
425 u32 max_open_record_len;
426 int copy, rc = 0;
427 bool done = false;
428 long timeo;
430 if (flags &
431 ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
432 return -EOPNOTSUPP;
434 if (unlikely(sk->sk_err))
435 return -sk->sk_err;
437 flags |= MSG_SENDPAGE_DECRYPTED;
438 tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
440 timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
441 if (tls_is_partially_sent_record(tls_ctx)) {
442 rc = tls_push_partial_record(sk, tls_ctx, flags);
443 if (rc < 0)
444 return rc;
447 pfrag = sk_page_frag(sk);
449 /* TLS_HEADER_SIZE is not counted as part of the TLS record, and
450 * we need to leave room for an authentication tag.
452 max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
453 prot->prepend_size;
454 do {
455 rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
456 if (unlikely(rc)) {
457 rc = sk_stream_wait_memory(sk, &timeo);
458 if (!rc)
459 continue;
461 record = ctx->open_record;
462 if (!record)
463 break;
464 handle_error:
465 if (record_type != TLS_RECORD_TYPE_DATA) {
466 /* avoid sending partial
467 * record with type !=
468 * application_data
470 size = orig_size;
471 destroy_record(record);
472 ctx->open_record = NULL;
473 } else if (record->len > prot->prepend_size) {
474 goto last_record;
477 break;
480 record = ctx->open_record;
481 copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
482 copy = min_t(size_t, copy, (max_open_record_len - record->len));
484 rc = tls_device_copy_data(page_address(pfrag->page) +
485 pfrag->offset, copy, msg_iter);
486 if (rc)
487 goto handle_error;
488 tls_append_frag(record, pfrag, copy);
490 size -= copy;
491 if (!size) {
492 last_record:
493 tls_push_record_flags = flags;
494 if (more) {
495 tls_ctx->pending_open_record_frags =
496 !!record->num_frags;
497 break;
500 done = true;
503 if (done || record->len >= max_open_record_len ||
504 (record->num_frags >= MAX_SKB_FRAGS - 1)) {
505 rc = tls_device_record_close(sk, tls_ctx, record,
506 pfrag, record_type);
507 if (rc) {
508 if (rc > 0) {
509 size += rc;
510 } else {
511 size = orig_size;
512 destroy_record(record);
513 ctx->open_record = NULL;
514 break;
518 rc = tls_push_record(sk,
519 tls_ctx,
520 ctx,
521 record,
522 tls_push_record_flags);
523 if (rc < 0)
524 break;
526 } while (!done);
528 if (orig_size - size > 0)
529 rc = orig_size - size;
531 return rc;
534 int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
536 unsigned char record_type = TLS_RECORD_TYPE_DATA;
537 struct tls_context *tls_ctx = tls_get_ctx(sk);
538 int rc;
540 mutex_lock(&tls_ctx->tx_lock);
541 lock_sock(sk);
543 if (unlikely(msg->msg_controllen)) {
544 rc = tls_proccess_cmsg(sk, msg, &record_type);
545 if (rc)
546 goto out;
549 rc = tls_push_data(sk, &msg->msg_iter, size,
550 msg->msg_flags, record_type);
552 out:
553 release_sock(sk);
554 mutex_unlock(&tls_ctx->tx_lock);
555 return rc;
558 int tls_device_sendpage(struct sock *sk, struct page *page,
559 int offset, size_t size, int flags)
561 struct tls_context *tls_ctx = tls_get_ctx(sk);
562 struct iov_iter msg_iter;
563 char *kaddr = kmap(page);
564 struct kvec iov;
565 int rc;
567 if (flags & MSG_SENDPAGE_NOTLAST)
568 flags |= MSG_MORE;
570 mutex_lock(&tls_ctx->tx_lock);
571 lock_sock(sk);
573 if (flags & MSG_OOB) {
574 rc = -EOPNOTSUPP;
575 goto out;
578 iov.iov_base = kaddr + offset;
579 iov.iov_len = size;
580 iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
581 rc = tls_push_data(sk, &msg_iter, size,
582 flags, TLS_RECORD_TYPE_DATA);
583 kunmap(page);
585 out:
586 release_sock(sk);
587 mutex_unlock(&tls_ctx->tx_lock);
588 return rc;
591 struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
592 u32 seq, u64 *p_record_sn)
594 u64 record_sn = context->hint_record_sn;
595 struct tls_record_info *info;
597 info = context->retransmit_hint;
598 if (!info ||
599 before(seq, info->end_seq - info->len)) {
600 /* if retransmit_hint is irrelevant start
601 * from the beggining of the list
603 info = list_first_entry_or_null(&context->records_list,
604 struct tls_record_info, list);
605 if (!info)
606 return NULL;
607 record_sn = context->unacked_record_sn;
610 /* We just need the _rcu for the READ_ONCE() */
611 rcu_read_lock();
612 list_for_each_entry_from_rcu(info, &context->records_list, list) {
613 if (before(seq, info->end_seq)) {
614 if (!context->retransmit_hint ||
615 after(info->end_seq,
616 context->retransmit_hint->end_seq)) {
617 context->hint_record_sn = record_sn;
618 context->retransmit_hint = info;
620 *p_record_sn = record_sn;
621 goto exit_rcu_unlock;
623 record_sn++;
625 info = NULL;
627 exit_rcu_unlock:
628 rcu_read_unlock();
629 return info;
631 EXPORT_SYMBOL(tls_get_record);
633 static int tls_device_push_pending_record(struct sock *sk, int flags)
635 struct iov_iter msg_iter;
637 iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
638 return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
641 void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
643 if (tls_is_partially_sent_record(ctx)) {
644 gfp_t sk_allocation = sk->sk_allocation;
646 WARN_ON_ONCE(sk->sk_write_pending);
648 sk->sk_allocation = GFP_ATOMIC;
649 tls_push_partial_record(sk, ctx,
650 MSG_DONTWAIT | MSG_NOSIGNAL |
651 MSG_SENDPAGE_DECRYPTED);
652 sk->sk_allocation = sk_allocation;
656 static void tls_device_resync_rx(struct tls_context *tls_ctx,
657 struct sock *sk, u32 seq, u8 *rcd_sn)
659 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
660 struct net_device *netdev;
662 if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
663 return;
665 trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
666 netdev = READ_ONCE(tls_ctx->netdev);
667 if (netdev)
668 netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
669 TLS_OFFLOAD_CTX_DIR_RX);
670 clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
671 TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
674 void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
676 struct tls_context *tls_ctx = tls_get_ctx(sk);
677 struct tls_offload_context_rx *rx_ctx;
678 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
679 u32 sock_data, is_req_pending;
680 struct tls_prot_info *prot;
681 s64 resync_req;
682 u32 req_seq;
684 if (tls_ctx->rx_conf != TLS_HW)
685 return;
687 prot = &tls_ctx->prot_info;
688 rx_ctx = tls_offload_ctx_rx(tls_ctx);
689 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
691 switch (rx_ctx->resync_type) {
692 case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
693 resync_req = atomic64_read(&rx_ctx->resync_req);
694 req_seq = resync_req >> 32;
695 seq += TLS_HEADER_SIZE - 1;
696 is_req_pending = resync_req;
698 if (likely(!is_req_pending) || req_seq != seq ||
699 !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
700 return;
701 break;
702 case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
703 if (likely(!rx_ctx->resync_nh_do_now))
704 return;
706 /* head of next rec is already in, note that the sock_inq will
707 * include the currently parsed message when called from parser
709 sock_data = tcp_inq(sk);
710 if (sock_data > rcd_len) {
711 trace_tls_device_rx_resync_nh_delay(sk, sock_data,
712 rcd_len);
713 return;
716 rx_ctx->resync_nh_do_now = 0;
717 seq += rcd_len;
718 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
719 break;
722 tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
725 static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
726 struct tls_offload_context_rx *ctx,
727 struct sock *sk, struct sk_buff *skb)
729 struct strp_msg *rxm;
731 /* device will request resyncs by itself based on stream scan */
732 if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
733 return;
734 /* already scheduled */
735 if (ctx->resync_nh_do_now)
736 return;
737 /* seen decrypted fragments since last fully-failed record */
738 if (ctx->resync_nh_reset) {
739 ctx->resync_nh_reset = 0;
740 ctx->resync_nh.decrypted_failed = 1;
741 ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
742 return;
745 if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
746 return;
748 /* doing resync, bump the next target in case it fails */
749 if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
750 ctx->resync_nh.decrypted_tgt *= 2;
751 else
752 ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
754 rxm = strp_msg(skb);
756 /* head of next rec is already in, parser will sync for us */
757 if (tcp_inq(sk) > rxm->full_len) {
758 trace_tls_device_rx_resync_nh_schedule(sk);
759 ctx->resync_nh_do_now = 1;
760 } else {
761 struct tls_prot_info *prot = &tls_ctx->prot_info;
762 u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
764 memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
765 tls_bigint_increment(rcd_sn, prot->rec_seq_size);
767 tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
768 rcd_sn);
772 static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
774 struct strp_msg *rxm = strp_msg(skb);
775 int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
776 struct sk_buff *skb_iter, *unused;
777 struct scatterlist sg[1];
778 char *orig_buf, *buf;
780 orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
781 TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
782 if (!orig_buf)
783 return -ENOMEM;
784 buf = orig_buf;
786 nsg = skb_cow_data(skb, 0, &unused);
787 if (unlikely(nsg < 0)) {
788 err = nsg;
789 goto free_buf;
792 sg_init_table(sg, 1);
793 sg_set_buf(&sg[0], buf,
794 rxm->full_len + TLS_HEADER_SIZE +
795 TLS_CIPHER_AES_GCM_128_IV_SIZE);
796 err = skb_copy_bits(skb, offset, buf,
797 TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
798 if (err)
799 goto free_buf;
801 /* We are interested only in the decrypted data not the auth */
802 err = decrypt_skb(sk, skb, sg);
803 if (err != -EBADMSG)
804 goto free_buf;
805 else
806 err = 0;
808 data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
810 if (skb_pagelen(skb) > offset) {
811 copy = min_t(int, skb_pagelen(skb) - offset, data_len);
813 if (skb->decrypted) {
814 err = skb_store_bits(skb, offset, buf, copy);
815 if (err)
816 goto free_buf;
819 offset += copy;
820 buf += copy;
823 pos = skb_pagelen(skb);
824 skb_walk_frags(skb, skb_iter) {
825 int frag_pos;
827 /* Practically all frags must belong to msg if reencrypt
828 * is needed with current strparser and coalescing logic,
829 * but strparser may "get optimized", so let's be safe.
831 if (pos + skb_iter->len <= offset)
832 goto done_with_frag;
833 if (pos >= data_len + rxm->offset)
834 break;
836 frag_pos = offset - pos;
837 copy = min_t(int, skb_iter->len - frag_pos,
838 data_len + rxm->offset - offset);
840 if (skb_iter->decrypted) {
841 err = skb_store_bits(skb_iter, frag_pos, buf, copy);
842 if (err)
843 goto free_buf;
846 offset += copy;
847 buf += copy;
848 done_with_frag:
849 pos += skb_iter->len;
852 free_buf:
853 kfree(orig_buf);
854 return err;
857 int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
858 struct sk_buff *skb, struct strp_msg *rxm)
860 struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
861 int is_decrypted = skb->decrypted;
862 int is_encrypted = !is_decrypted;
863 struct sk_buff *skb_iter;
865 /* Check if all the data is decrypted already */
866 skb_walk_frags(skb, skb_iter) {
867 is_decrypted &= skb_iter->decrypted;
868 is_encrypted &= !skb_iter->decrypted;
871 trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
872 tls_ctx->rx.rec_seq, rxm->full_len,
873 is_encrypted, is_decrypted);
875 ctx->sw.decrypted |= is_decrypted;
877 /* Return immediately if the record is either entirely plaintext or
878 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
879 * record.
881 if (is_decrypted) {
882 ctx->resync_nh_reset = 1;
883 return 0;
885 if (is_encrypted) {
886 tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
887 return 0;
890 ctx->resync_nh_reset = 1;
891 return tls_device_reencrypt(sk, skb);
894 static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
895 struct net_device *netdev)
897 if (sk->sk_destruct != tls_device_sk_destruct) {
898 refcount_set(&ctx->refcount, 1);
899 dev_hold(netdev);
900 ctx->netdev = netdev;
901 spin_lock_irq(&tls_device_lock);
902 list_add_tail(&ctx->list, &tls_device_list);
903 spin_unlock_irq(&tls_device_lock);
905 ctx->sk_destruct = sk->sk_destruct;
906 sk->sk_destruct = tls_device_sk_destruct;
910 int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
912 u16 nonce_size, tag_size, iv_size, rec_seq_size;
913 struct tls_context *tls_ctx = tls_get_ctx(sk);
914 struct tls_prot_info *prot = &tls_ctx->prot_info;
915 struct tls_record_info *start_marker_record;
916 struct tls_offload_context_tx *offload_ctx;
917 struct tls_crypto_info *crypto_info;
918 struct net_device *netdev;
919 char *iv, *rec_seq;
920 struct sk_buff *skb;
921 __be64 rcd_sn;
922 int rc;
924 if (!ctx)
925 return -EINVAL;
927 if (ctx->priv_ctx_tx)
928 return -EEXIST;
930 start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
931 if (!start_marker_record)
932 return -ENOMEM;
934 offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
935 if (!offload_ctx) {
936 rc = -ENOMEM;
937 goto free_marker_record;
940 crypto_info = &ctx->crypto_send.info;
941 if (crypto_info->version != TLS_1_2_VERSION) {
942 rc = -EOPNOTSUPP;
943 goto free_offload_ctx;
946 switch (crypto_info->cipher_type) {
947 case TLS_CIPHER_AES_GCM_128:
948 nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
949 tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
950 iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
951 iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
952 rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
953 rec_seq =
954 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
955 break;
956 default:
957 rc = -EINVAL;
958 goto free_offload_ctx;
961 /* Sanity-check the rec_seq_size for stack allocations */
962 if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
963 rc = -EINVAL;
964 goto free_offload_ctx;
967 prot->version = crypto_info->version;
968 prot->cipher_type = crypto_info->cipher_type;
969 prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
970 prot->tag_size = tag_size;
971 prot->overhead_size = prot->prepend_size + prot->tag_size;
972 prot->iv_size = iv_size;
973 ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
974 GFP_KERNEL);
975 if (!ctx->tx.iv) {
976 rc = -ENOMEM;
977 goto free_offload_ctx;
980 memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
982 prot->rec_seq_size = rec_seq_size;
983 ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
984 if (!ctx->tx.rec_seq) {
985 rc = -ENOMEM;
986 goto free_iv;
989 rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
990 if (rc)
991 goto free_rec_seq;
993 /* start at rec_seq - 1 to account for the start marker record */
994 memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
995 offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
997 start_marker_record->end_seq = tcp_sk(sk)->write_seq;
998 start_marker_record->len = 0;
999 start_marker_record->num_frags = 0;
1001 INIT_LIST_HEAD(&offload_ctx->records_list);
1002 list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1003 spin_lock_init(&offload_ctx->lock);
1004 sg_init_table(offload_ctx->sg_tx_data,
1005 ARRAY_SIZE(offload_ctx->sg_tx_data));
1007 clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1008 ctx->push_pending_record = tls_device_push_pending_record;
1010 /* TLS offload is greatly simplified if we don't send
1011 * SKBs where only part of the payload needs to be encrypted.
1012 * So mark the last skb in the write queue as end of record.
1014 skb = tcp_write_queue_tail(sk);
1015 if (skb)
1016 TCP_SKB_CB(skb)->eor = 1;
1018 netdev = get_netdev_for_sock(sk);
1019 if (!netdev) {
1020 pr_err_ratelimited("%s: netdev not found\n", __func__);
1021 rc = -EINVAL;
1022 goto disable_cad;
1025 if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1026 rc = -EOPNOTSUPP;
1027 goto release_netdev;
1030 /* Avoid offloading if the device is down
1031 * We don't want to offload new flows after
1032 * the NETDEV_DOWN event
1034 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1035 * handler thus protecting from the device going down before
1036 * ctx was added to tls_device_list.
1038 down_read(&device_offload_lock);
1039 if (!(netdev->flags & IFF_UP)) {
1040 rc = -EINVAL;
1041 goto release_lock;
1044 ctx->priv_ctx_tx = offload_ctx;
1045 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1046 &ctx->crypto_send.info,
1047 tcp_sk(sk)->write_seq);
1048 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1049 tcp_sk(sk)->write_seq, rec_seq, rc);
1050 if (rc)
1051 goto release_lock;
1053 tls_device_attach(ctx, sk, netdev);
1054 up_read(&device_offload_lock);
1056 /* following this assignment tls_is_sk_tx_device_offloaded
1057 * will return true and the context might be accessed
1058 * by the netdev's xmit function.
1060 smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1061 dev_put(netdev);
1063 return 0;
1065 release_lock:
1066 up_read(&device_offload_lock);
1067 release_netdev:
1068 dev_put(netdev);
1069 disable_cad:
1070 clean_acked_data_disable(inet_csk(sk));
1071 crypto_free_aead(offload_ctx->aead_send);
1072 free_rec_seq:
1073 kfree(ctx->tx.rec_seq);
1074 free_iv:
1075 kfree(ctx->tx.iv);
1076 free_offload_ctx:
1077 kfree(offload_ctx);
1078 ctx->priv_ctx_tx = NULL;
1079 free_marker_record:
1080 kfree(start_marker_record);
1081 return rc;
1084 int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1086 struct tls12_crypto_info_aes_gcm_128 *info;
1087 struct tls_offload_context_rx *context;
1088 struct net_device *netdev;
1089 int rc = 0;
1091 if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1092 return -EOPNOTSUPP;
1094 netdev = get_netdev_for_sock(sk);
1095 if (!netdev) {
1096 pr_err_ratelimited("%s: netdev not found\n", __func__);
1097 return -EINVAL;
1100 if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1101 rc = -EOPNOTSUPP;
1102 goto release_netdev;
1105 /* Avoid offloading if the device is down
1106 * We don't want to offload new flows after
1107 * the NETDEV_DOWN event
1109 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1110 * handler thus protecting from the device going down before
1111 * ctx was added to tls_device_list.
1113 down_read(&device_offload_lock);
1114 if (!(netdev->flags & IFF_UP)) {
1115 rc = -EINVAL;
1116 goto release_lock;
1119 context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1120 if (!context) {
1121 rc = -ENOMEM;
1122 goto release_lock;
1124 context->resync_nh_reset = 1;
1126 ctx->priv_ctx_rx = context;
1127 rc = tls_set_sw_offload(sk, ctx, 0);
1128 if (rc)
1129 goto release_ctx;
1131 rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1132 &ctx->crypto_recv.info,
1133 tcp_sk(sk)->copied_seq);
1134 info = (void *)&ctx->crypto_recv.info;
1135 trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1136 tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1137 if (rc)
1138 goto free_sw_resources;
1140 tls_device_attach(ctx, sk, netdev);
1141 up_read(&device_offload_lock);
1143 dev_put(netdev);
1145 return 0;
1147 free_sw_resources:
1148 up_read(&device_offload_lock);
1149 tls_sw_free_resources_rx(sk);
1150 down_read(&device_offload_lock);
1151 release_ctx:
1152 ctx->priv_ctx_rx = NULL;
1153 release_lock:
1154 up_read(&device_offload_lock);
1155 release_netdev:
1156 dev_put(netdev);
1157 return rc;
1160 void tls_device_offload_cleanup_rx(struct sock *sk)
1162 struct tls_context *tls_ctx = tls_get_ctx(sk);
1163 struct net_device *netdev;
1165 down_read(&device_offload_lock);
1166 netdev = tls_ctx->netdev;
1167 if (!netdev)
1168 goto out;
1170 netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1171 TLS_OFFLOAD_CTX_DIR_RX);
1173 if (tls_ctx->tx_conf != TLS_HW) {
1174 dev_put(netdev);
1175 tls_ctx->netdev = NULL;
1177 out:
1178 up_read(&device_offload_lock);
1179 tls_sw_release_resources_rx(sk);
1182 static int tls_device_down(struct net_device *netdev)
1184 struct tls_context *ctx, *tmp;
1185 unsigned long flags;
1186 LIST_HEAD(list);
1188 /* Request a write lock to block new offload attempts */
1189 down_write(&device_offload_lock);
1191 spin_lock_irqsave(&tls_device_lock, flags);
1192 list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1193 if (ctx->netdev != netdev ||
1194 !refcount_inc_not_zero(&ctx->refcount))
1195 continue;
1197 list_move(&ctx->list, &list);
1199 spin_unlock_irqrestore(&tls_device_lock, flags);
1201 list_for_each_entry_safe(ctx, tmp, &list, list) {
1202 if (ctx->tx_conf == TLS_HW)
1203 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1204 TLS_OFFLOAD_CTX_DIR_TX);
1205 if (ctx->rx_conf == TLS_HW)
1206 netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1207 TLS_OFFLOAD_CTX_DIR_RX);
1208 WRITE_ONCE(ctx->netdev, NULL);
1209 smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
1210 while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
1211 usleep_range(10, 200);
1212 dev_put(netdev);
1213 list_del_init(&ctx->list);
1215 if (refcount_dec_and_test(&ctx->refcount))
1216 tls_device_free_ctx(ctx);
1219 up_write(&device_offload_lock);
1221 flush_work(&tls_device_gc_work);
1223 return NOTIFY_DONE;
1226 static int tls_dev_event(struct notifier_block *this, unsigned long event,
1227 void *ptr)
1229 struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1231 if (!dev->tlsdev_ops &&
1232 !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1233 return NOTIFY_DONE;
1235 switch (event) {
1236 case NETDEV_REGISTER:
1237 case NETDEV_FEAT_CHANGE:
1238 if ((dev->features & NETIF_F_HW_TLS_RX) &&
1239 !dev->tlsdev_ops->tls_dev_resync)
1240 return NOTIFY_BAD;
1242 if (dev->tlsdev_ops &&
1243 dev->tlsdev_ops->tls_dev_add &&
1244 dev->tlsdev_ops->tls_dev_del)
1245 return NOTIFY_DONE;
1246 else
1247 return NOTIFY_BAD;
1248 case NETDEV_DOWN:
1249 return tls_device_down(dev);
1251 return NOTIFY_DONE;
1254 static struct notifier_block tls_dev_notifier = {
1255 .notifier_call = tls_dev_event,
1258 void __init tls_device_init(void)
1260 register_netdevice_notifier(&tls_dev_notifier);
1263 void __exit tls_device_cleanup(void)
1265 unregister_netdevice_notifier(&tls_dev_notifier);
1266 flush_work(&tls_device_gc_work);
1267 clean_acked_data_flush();