ext2: fix missing percpu_counter_inc
[linux/fpc-iii.git] / kernel / audit.c
blob05ae208ad4423cfeaea3def77b443b4465eb216f
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* audit.c -- Auditing support
3 * Gateway between the kernel (e.g., selinux) and the user-space audit daemon.
4 * System-call specific features have moved to auditsc.c
6 * Copyright 2003-2007 Red Hat Inc., Durham, North Carolina.
7 * All Rights Reserved.
9 * Written by Rickard E. (Rik) Faith <faith@redhat.com>
11 * Goals: 1) Integrate fully with Security Modules.
12 * 2) Minimal run-time overhead:
13 * a) Minimal when syscall auditing is disabled (audit_enable=0).
14 * b) Small when syscall auditing is enabled and no audit record
15 * is generated (defer as much work as possible to record
16 * generation time):
17 * i) context is allocated,
18 * ii) names from getname are stored without a copy, and
19 * iii) inode information stored from path_lookup.
20 * 3) Ability to disable syscall auditing at boot time (audit=0).
21 * 4) Usable by other parts of the kernel (if audit_log* is called,
22 * then a syscall record will be generated automatically for the
23 * current syscall).
24 * 5) Netlink interface to user-space.
25 * 6) Support low-overhead kernel-based filtering to minimize the
26 * information that must be passed to user-space.
28 * Audit userspace, documentation, tests, and bug/issue trackers:
29 * https://github.com/linux-audit
32 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
34 #include <linux/file.h>
35 #include <linux/init.h>
36 #include <linux/types.h>
37 #include <linux/atomic.h>
38 #include <linux/mm.h>
39 #include <linux/export.h>
40 #include <linux/slab.h>
41 #include <linux/err.h>
42 #include <linux/kthread.h>
43 #include <linux/kernel.h>
44 #include <linux/syscalls.h>
45 #include <linux/spinlock.h>
46 #include <linux/rcupdate.h>
47 #include <linux/mutex.h>
48 #include <linux/gfp.h>
49 #include <linux/pid.h>
51 #include <linux/audit.h>
53 #include <net/sock.h>
54 #include <net/netlink.h>
55 #include <linux/skbuff.h>
56 #ifdef CONFIG_SECURITY
57 #include <linux/security.h>
58 #endif
59 #include <linux/freezer.h>
60 #include <linux/pid_namespace.h>
61 #include <net/netns/generic.h>
63 #include "audit.h"
65 /* No auditing will take place until audit_initialized == AUDIT_INITIALIZED.
66 * (Initialization happens after skb_init is called.) */
67 #define AUDIT_DISABLED -1
68 #define AUDIT_UNINITIALIZED 0
69 #define AUDIT_INITIALIZED 1
70 static int audit_initialized;
72 u32 audit_enabled = AUDIT_OFF;
73 bool audit_ever_enabled = !!AUDIT_OFF;
75 EXPORT_SYMBOL_GPL(audit_enabled);
77 /* Default state when kernel boots without any parameters. */
78 static u32 audit_default = AUDIT_OFF;
80 /* If auditing cannot proceed, audit_failure selects what happens. */
81 static u32 audit_failure = AUDIT_FAIL_PRINTK;
83 /* private audit network namespace index */
84 static unsigned int audit_net_id;
86 /**
87 * struct audit_net - audit private network namespace data
88 * @sk: communication socket
90 struct audit_net {
91 struct sock *sk;
94 /**
95 * struct auditd_connection - kernel/auditd connection state
96 * @pid: auditd PID
97 * @portid: netlink portid
98 * @net: the associated network namespace
99 * @rcu: RCU head
101 * Description:
102 * This struct is RCU protected; you must either hold the RCU lock for reading
103 * or the associated spinlock for writing.
105 static struct auditd_connection {
106 struct pid *pid;
107 u32 portid;
108 struct net *net;
109 struct rcu_head rcu;
110 } *auditd_conn = NULL;
111 static DEFINE_SPINLOCK(auditd_conn_lock);
113 /* If audit_rate_limit is non-zero, limit the rate of sending audit records
114 * to that number per second. This prevents DoS attacks, but results in
115 * audit records being dropped. */
116 static u32 audit_rate_limit;
118 /* Number of outstanding audit_buffers allowed.
119 * When set to zero, this means unlimited. */
120 static u32 audit_backlog_limit = 64;
121 #define AUDIT_BACKLOG_WAIT_TIME (60 * HZ)
122 static u32 audit_backlog_wait_time = AUDIT_BACKLOG_WAIT_TIME;
124 /* The identity of the user shutting down the audit system. */
125 kuid_t audit_sig_uid = INVALID_UID;
126 pid_t audit_sig_pid = -1;
127 u32 audit_sig_sid = 0;
129 /* Records can be lost in several ways:
130 0) [suppressed in audit_alloc]
131 1) out of memory in audit_log_start [kmalloc of struct audit_buffer]
132 2) out of memory in audit_log_move [alloc_skb]
133 3) suppressed due to audit_rate_limit
134 4) suppressed due to audit_backlog_limit
136 static atomic_t audit_lost = ATOMIC_INIT(0);
138 /* Hash for inode-based rules */
139 struct list_head audit_inode_hash[AUDIT_INODE_BUCKETS];
141 static struct kmem_cache *audit_buffer_cache;
143 /* queue msgs to send via kauditd_task */
144 static struct sk_buff_head audit_queue;
145 /* queue msgs due to temporary unicast send problems */
146 static struct sk_buff_head audit_retry_queue;
147 /* queue msgs waiting for new auditd connection */
148 static struct sk_buff_head audit_hold_queue;
150 /* queue servicing thread */
151 static struct task_struct *kauditd_task;
152 static DECLARE_WAIT_QUEUE_HEAD(kauditd_wait);
154 /* waitqueue for callers who are blocked on the audit backlog */
155 static DECLARE_WAIT_QUEUE_HEAD(audit_backlog_wait);
157 static struct audit_features af = {.vers = AUDIT_FEATURE_VERSION,
158 .mask = -1,
159 .features = 0,
160 .lock = 0,};
162 static char *audit_feature_names[2] = {
163 "only_unset_loginuid",
164 "loginuid_immutable",
168 * struct audit_ctl_mutex - serialize requests from userspace
169 * @lock: the mutex used for locking
170 * @owner: the task which owns the lock
172 * Description:
173 * This is the lock struct used to ensure we only process userspace requests
174 * in an orderly fashion. We can't simply use a mutex/lock here because we
175 * need to track lock ownership so we don't end up blocking the lock owner in
176 * audit_log_start() or similar.
178 static struct audit_ctl_mutex {
179 struct mutex lock;
180 void *owner;
181 } audit_cmd_mutex;
183 /* AUDIT_BUFSIZ is the size of the temporary buffer used for formatting
184 * audit records. Since printk uses a 1024 byte buffer, this buffer
185 * should be at least that large. */
186 #define AUDIT_BUFSIZ 1024
188 /* The audit_buffer is used when formatting an audit record. The caller
189 * locks briefly to get the record off the freelist or to allocate the
190 * buffer, and locks briefly to send the buffer to the netlink layer or
191 * to place it on a transmit queue. Multiple audit_buffers can be in
192 * use simultaneously. */
193 struct audit_buffer {
194 struct sk_buff *skb; /* formatted skb ready to send */
195 struct audit_context *ctx; /* NULL or associated context */
196 gfp_t gfp_mask;
199 struct audit_reply {
200 __u32 portid;
201 struct net *net;
202 struct sk_buff *skb;
206 * auditd_test_task - Check to see if a given task is an audit daemon
207 * @task: the task to check
209 * Description:
210 * Return 1 if the task is a registered audit daemon, 0 otherwise.
212 int auditd_test_task(struct task_struct *task)
214 int rc;
215 struct auditd_connection *ac;
217 rcu_read_lock();
218 ac = rcu_dereference(auditd_conn);
219 rc = (ac && ac->pid == task_tgid(task) ? 1 : 0);
220 rcu_read_unlock();
222 return rc;
226 * audit_ctl_lock - Take the audit control lock
228 void audit_ctl_lock(void)
230 mutex_lock(&audit_cmd_mutex.lock);
231 audit_cmd_mutex.owner = current;
235 * audit_ctl_unlock - Drop the audit control lock
237 void audit_ctl_unlock(void)
239 audit_cmd_mutex.owner = NULL;
240 mutex_unlock(&audit_cmd_mutex.lock);
244 * audit_ctl_owner_current - Test to see if the current task owns the lock
246 * Description:
247 * Return true if the current task owns the audit control lock, false if it
248 * doesn't own the lock.
250 static bool audit_ctl_owner_current(void)
252 return (current == audit_cmd_mutex.owner);
256 * auditd_pid_vnr - Return the auditd PID relative to the namespace
258 * Description:
259 * Returns the PID in relation to the namespace, 0 on failure.
261 static pid_t auditd_pid_vnr(void)
263 pid_t pid;
264 const struct auditd_connection *ac;
266 rcu_read_lock();
267 ac = rcu_dereference(auditd_conn);
268 if (!ac || !ac->pid)
269 pid = 0;
270 else
271 pid = pid_vnr(ac->pid);
272 rcu_read_unlock();
274 return pid;
278 * audit_get_sk - Return the audit socket for the given network namespace
279 * @net: the destination network namespace
281 * Description:
282 * Returns the sock pointer if valid, NULL otherwise. The caller must ensure
283 * that a reference is held for the network namespace while the sock is in use.
285 static struct sock *audit_get_sk(const struct net *net)
287 struct audit_net *aunet;
289 if (!net)
290 return NULL;
292 aunet = net_generic(net, audit_net_id);
293 return aunet->sk;
296 void audit_panic(const char *message)
298 switch (audit_failure) {
299 case AUDIT_FAIL_SILENT:
300 break;
301 case AUDIT_FAIL_PRINTK:
302 if (printk_ratelimit())
303 pr_err("%s\n", message);
304 break;
305 case AUDIT_FAIL_PANIC:
306 panic("audit: %s\n", message);
307 break;
311 static inline int audit_rate_check(void)
313 static unsigned long last_check = 0;
314 static int messages = 0;
315 static DEFINE_SPINLOCK(lock);
316 unsigned long flags;
317 unsigned long now;
318 unsigned long elapsed;
319 int retval = 0;
321 if (!audit_rate_limit) return 1;
323 spin_lock_irqsave(&lock, flags);
324 if (++messages < audit_rate_limit) {
325 retval = 1;
326 } else {
327 now = jiffies;
328 elapsed = now - last_check;
329 if (elapsed > HZ) {
330 last_check = now;
331 messages = 0;
332 retval = 1;
335 spin_unlock_irqrestore(&lock, flags);
337 return retval;
341 * audit_log_lost - conditionally log lost audit message event
342 * @message: the message stating reason for lost audit message
344 * Emit at least 1 message per second, even if audit_rate_check is
345 * throttling.
346 * Always increment the lost messages counter.
348 void audit_log_lost(const char *message)
350 static unsigned long last_msg = 0;
351 static DEFINE_SPINLOCK(lock);
352 unsigned long flags;
353 unsigned long now;
354 int print;
356 atomic_inc(&audit_lost);
358 print = (audit_failure == AUDIT_FAIL_PANIC || !audit_rate_limit);
360 if (!print) {
361 spin_lock_irqsave(&lock, flags);
362 now = jiffies;
363 if (now - last_msg > HZ) {
364 print = 1;
365 last_msg = now;
367 spin_unlock_irqrestore(&lock, flags);
370 if (print) {
371 if (printk_ratelimit())
372 pr_warn("audit_lost=%u audit_rate_limit=%u audit_backlog_limit=%u\n",
373 atomic_read(&audit_lost),
374 audit_rate_limit,
375 audit_backlog_limit);
376 audit_panic(message);
380 static int audit_log_config_change(char *function_name, u32 new, u32 old,
381 int allow_changes)
383 struct audit_buffer *ab;
384 int rc = 0;
386 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_CONFIG_CHANGE);
387 if (unlikely(!ab))
388 return rc;
389 audit_log_format(ab, "op=set %s=%u old=%u ", function_name, new, old);
390 audit_log_session_info(ab);
391 rc = audit_log_task_context(ab);
392 if (rc)
393 allow_changes = 0; /* Something weird, deny request */
394 audit_log_format(ab, " res=%d", allow_changes);
395 audit_log_end(ab);
396 return rc;
399 static int audit_do_config_change(char *function_name, u32 *to_change, u32 new)
401 int allow_changes, rc = 0;
402 u32 old = *to_change;
404 /* check if we are locked */
405 if (audit_enabled == AUDIT_LOCKED)
406 allow_changes = 0;
407 else
408 allow_changes = 1;
410 if (audit_enabled != AUDIT_OFF) {
411 rc = audit_log_config_change(function_name, new, old, allow_changes);
412 if (rc)
413 allow_changes = 0;
416 /* If we are allowed, make the change */
417 if (allow_changes == 1)
418 *to_change = new;
419 /* Not allowed, update reason */
420 else if (rc == 0)
421 rc = -EPERM;
422 return rc;
425 static int audit_set_rate_limit(u32 limit)
427 return audit_do_config_change("audit_rate_limit", &audit_rate_limit, limit);
430 static int audit_set_backlog_limit(u32 limit)
432 return audit_do_config_change("audit_backlog_limit", &audit_backlog_limit, limit);
435 static int audit_set_backlog_wait_time(u32 timeout)
437 return audit_do_config_change("audit_backlog_wait_time",
438 &audit_backlog_wait_time, timeout);
441 static int audit_set_enabled(u32 state)
443 int rc;
444 if (state > AUDIT_LOCKED)
445 return -EINVAL;
447 rc = audit_do_config_change("audit_enabled", &audit_enabled, state);
448 if (!rc)
449 audit_ever_enabled |= !!state;
451 return rc;
454 static int audit_set_failure(u32 state)
456 if (state != AUDIT_FAIL_SILENT
457 && state != AUDIT_FAIL_PRINTK
458 && state != AUDIT_FAIL_PANIC)
459 return -EINVAL;
461 return audit_do_config_change("audit_failure", &audit_failure, state);
465 * auditd_conn_free - RCU helper to release an auditd connection struct
466 * @rcu: RCU head
468 * Description:
469 * Drop any references inside the auditd connection tracking struct and free
470 * the memory.
472 static void auditd_conn_free(struct rcu_head *rcu)
474 struct auditd_connection *ac;
476 ac = container_of(rcu, struct auditd_connection, rcu);
477 put_pid(ac->pid);
478 put_net(ac->net);
479 kfree(ac);
483 * auditd_set - Set/Reset the auditd connection state
484 * @pid: auditd PID
485 * @portid: auditd netlink portid
486 * @net: auditd network namespace pointer
488 * Description:
489 * This function will obtain and drop network namespace references as
490 * necessary. Returns zero on success, negative values on failure.
492 static int auditd_set(struct pid *pid, u32 portid, struct net *net)
494 unsigned long flags;
495 struct auditd_connection *ac_old, *ac_new;
497 if (!pid || !net)
498 return -EINVAL;
500 ac_new = kzalloc(sizeof(*ac_new), GFP_KERNEL);
501 if (!ac_new)
502 return -ENOMEM;
503 ac_new->pid = get_pid(pid);
504 ac_new->portid = portid;
505 ac_new->net = get_net(net);
507 spin_lock_irqsave(&auditd_conn_lock, flags);
508 ac_old = rcu_dereference_protected(auditd_conn,
509 lockdep_is_held(&auditd_conn_lock));
510 rcu_assign_pointer(auditd_conn, ac_new);
511 spin_unlock_irqrestore(&auditd_conn_lock, flags);
513 if (ac_old)
514 call_rcu(&ac_old->rcu, auditd_conn_free);
516 return 0;
520 * kauditd_print_skb - Print the audit record to the ring buffer
521 * @skb: audit record
523 * Whatever the reason, this packet may not make it to the auditd connection
524 * so write it via printk so the information isn't completely lost.
526 static void kauditd_printk_skb(struct sk_buff *skb)
528 struct nlmsghdr *nlh = nlmsg_hdr(skb);
529 char *data = nlmsg_data(nlh);
531 if (nlh->nlmsg_type != AUDIT_EOE && printk_ratelimit())
532 pr_notice("type=%d %s\n", nlh->nlmsg_type, data);
536 * kauditd_rehold_skb - Handle a audit record send failure in the hold queue
537 * @skb: audit record
539 * Description:
540 * This should only be used by the kauditd_thread when it fails to flush the
541 * hold queue.
543 static void kauditd_rehold_skb(struct sk_buff *skb)
545 /* put the record back in the queue at the same place */
546 skb_queue_head(&audit_hold_queue, skb);
550 * kauditd_hold_skb - Queue an audit record, waiting for auditd
551 * @skb: audit record
553 * Description:
554 * Queue the audit record, waiting for an instance of auditd. When this
555 * function is called we haven't given up yet on sending the record, but things
556 * are not looking good. The first thing we want to do is try to write the
557 * record via printk and then see if we want to try and hold on to the record
558 * and queue it, if we have room. If we want to hold on to the record, but we
559 * don't have room, record a record lost message.
561 static void kauditd_hold_skb(struct sk_buff *skb)
563 /* at this point it is uncertain if we will ever send this to auditd so
564 * try to send the message via printk before we go any further */
565 kauditd_printk_skb(skb);
567 /* can we just silently drop the message? */
568 if (!audit_default) {
569 kfree_skb(skb);
570 return;
573 /* if we have room, queue the message */
574 if (!audit_backlog_limit ||
575 skb_queue_len(&audit_hold_queue) < audit_backlog_limit) {
576 skb_queue_tail(&audit_hold_queue, skb);
577 return;
580 /* we have no other options - drop the message */
581 audit_log_lost("kauditd hold queue overflow");
582 kfree_skb(skb);
586 * kauditd_retry_skb - Queue an audit record, attempt to send again to auditd
587 * @skb: audit record
589 * Description:
590 * Not as serious as kauditd_hold_skb() as we still have a connected auditd,
591 * but for some reason we are having problems sending it audit records so
592 * queue the given record and attempt to resend.
594 static void kauditd_retry_skb(struct sk_buff *skb)
596 /* NOTE: because records should only live in the retry queue for a
597 * short period of time, before either being sent or moved to the hold
598 * queue, we don't currently enforce a limit on this queue */
599 skb_queue_tail(&audit_retry_queue, skb);
603 * auditd_reset - Disconnect the auditd connection
604 * @ac: auditd connection state
606 * Description:
607 * Break the auditd/kauditd connection and move all the queued records into the
608 * hold queue in case auditd reconnects. It is important to note that the @ac
609 * pointer should never be dereferenced inside this function as it may be NULL
610 * or invalid, you can only compare the memory address! If @ac is NULL then
611 * the connection will always be reset.
613 static void auditd_reset(const struct auditd_connection *ac)
615 unsigned long flags;
616 struct sk_buff *skb;
617 struct auditd_connection *ac_old;
619 /* if it isn't already broken, break the connection */
620 spin_lock_irqsave(&auditd_conn_lock, flags);
621 ac_old = rcu_dereference_protected(auditd_conn,
622 lockdep_is_held(&auditd_conn_lock));
623 if (ac && ac != ac_old) {
624 /* someone already registered a new auditd connection */
625 spin_unlock_irqrestore(&auditd_conn_lock, flags);
626 return;
628 rcu_assign_pointer(auditd_conn, NULL);
629 spin_unlock_irqrestore(&auditd_conn_lock, flags);
631 if (ac_old)
632 call_rcu(&ac_old->rcu, auditd_conn_free);
634 /* flush the retry queue to the hold queue, but don't touch the main
635 * queue since we need to process that normally for multicast */
636 while ((skb = skb_dequeue(&audit_retry_queue)))
637 kauditd_hold_skb(skb);
641 * auditd_send_unicast_skb - Send a record via unicast to auditd
642 * @skb: audit record
644 * Description:
645 * Send a skb to the audit daemon, returns positive/zero values on success and
646 * negative values on failure; in all cases the skb will be consumed by this
647 * function. If the send results in -ECONNREFUSED the connection with auditd
648 * will be reset. This function may sleep so callers should not hold any locks
649 * where this would cause a problem.
651 static int auditd_send_unicast_skb(struct sk_buff *skb)
653 int rc;
654 u32 portid;
655 struct net *net;
656 struct sock *sk;
657 struct auditd_connection *ac;
659 /* NOTE: we can't call netlink_unicast while in the RCU section so
660 * take a reference to the network namespace and grab local
661 * copies of the namespace, the sock, and the portid; the
662 * namespace and sock aren't going to go away while we hold a
663 * reference and if the portid does become invalid after the RCU
664 * section netlink_unicast() should safely return an error */
666 rcu_read_lock();
667 ac = rcu_dereference(auditd_conn);
668 if (!ac) {
669 rcu_read_unlock();
670 kfree_skb(skb);
671 rc = -ECONNREFUSED;
672 goto err;
674 net = get_net(ac->net);
675 sk = audit_get_sk(net);
676 portid = ac->portid;
677 rcu_read_unlock();
679 rc = netlink_unicast(sk, skb, portid, 0);
680 put_net(net);
681 if (rc < 0)
682 goto err;
684 return rc;
686 err:
687 if (ac && rc == -ECONNREFUSED)
688 auditd_reset(ac);
689 return rc;
693 * kauditd_send_queue - Helper for kauditd_thread to flush skb queues
694 * @sk: the sending sock
695 * @portid: the netlink destination
696 * @queue: the skb queue to process
697 * @retry_limit: limit on number of netlink unicast failures
698 * @skb_hook: per-skb hook for additional processing
699 * @err_hook: hook called if the skb fails the netlink unicast send
701 * Description:
702 * Run through the given queue and attempt to send the audit records to auditd,
703 * returns zero on success, negative values on failure. It is up to the caller
704 * to ensure that the @sk is valid for the duration of this function.
707 static int kauditd_send_queue(struct sock *sk, u32 portid,
708 struct sk_buff_head *queue,
709 unsigned int retry_limit,
710 void (*skb_hook)(struct sk_buff *skb),
711 void (*err_hook)(struct sk_buff *skb))
713 int rc = 0;
714 struct sk_buff *skb;
715 static unsigned int failed = 0;
717 /* NOTE: kauditd_thread takes care of all our locking, we just use
718 * the netlink info passed to us (e.g. sk and portid) */
720 while ((skb = skb_dequeue(queue))) {
721 /* call the skb_hook for each skb we touch */
722 if (skb_hook)
723 (*skb_hook)(skb);
725 /* can we send to anyone via unicast? */
726 if (!sk) {
727 if (err_hook)
728 (*err_hook)(skb);
729 continue;
732 /* grab an extra skb reference in case of error */
733 skb_get(skb);
734 rc = netlink_unicast(sk, skb, portid, 0);
735 if (rc < 0) {
736 /* fatal failure for our queue flush attempt? */
737 if (++failed >= retry_limit ||
738 rc == -ECONNREFUSED || rc == -EPERM) {
739 /* yes - error processing for the queue */
740 sk = NULL;
741 if (err_hook)
742 (*err_hook)(skb);
743 if (!skb_hook)
744 goto out;
745 /* keep processing with the skb_hook */
746 continue;
747 } else
748 /* no - requeue to preserve ordering */
749 skb_queue_head(queue, skb);
750 } else {
751 /* it worked - drop the extra reference and continue */
752 consume_skb(skb);
753 failed = 0;
757 out:
758 return (rc >= 0 ? 0 : rc);
762 * kauditd_send_multicast_skb - Send a record to any multicast listeners
763 * @skb: audit record
765 * Description:
766 * Write a multicast message to anyone listening in the initial network
767 * namespace. This function doesn't consume an skb as might be expected since
768 * it has to copy it anyways.
770 static void kauditd_send_multicast_skb(struct sk_buff *skb)
772 struct sk_buff *copy;
773 struct sock *sock = audit_get_sk(&init_net);
774 struct nlmsghdr *nlh;
776 /* NOTE: we are not taking an additional reference for init_net since
777 * we don't have to worry about it going away */
779 if (!netlink_has_listeners(sock, AUDIT_NLGRP_READLOG))
780 return;
783 * The seemingly wasteful skb_copy() rather than bumping the refcount
784 * using skb_get() is necessary because non-standard mods are made to
785 * the skb by the original kaudit unicast socket send routine. The
786 * existing auditd daemon assumes this breakage. Fixing this would
787 * require co-ordinating a change in the established protocol between
788 * the kaudit kernel subsystem and the auditd userspace code. There is
789 * no reason for new multicast clients to continue with this
790 * non-compliance.
792 copy = skb_copy(skb, GFP_KERNEL);
793 if (!copy)
794 return;
795 nlh = nlmsg_hdr(copy);
796 nlh->nlmsg_len = skb->len;
798 nlmsg_multicast(sock, copy, 0, AUDIT_NLGRP_READLOG, GFP_KERNEL);
802 * kauditd_thread - Worker thread to send audit records to userspace
803 * @dummy: unused
805 static int kauditd_thread(void *dummy)
807 int rc;
808 u32 portid = 0;
809 struct net *net = NULL;
810 struct sock *sk = NULL;
811 struct auditd_connection *ac;
813 #define UNICAST_RETRIES 5
815 set_freezable();
816 while (!kthread_should_stop()) {
817 /* NOTE: see the lock comments in auditd_send_unicast_skb() */
818 rcu_read_lock();
819 ac = rcu_dereference(auditd_conn);
820 if (!ac) {
821 rcu_read_unlock();
822 goto main_queue;
824 net = get_net(ac->net);
825 sk = audit_get_sk(net);
826 portid = ac->portid;
827 rcu_read_unlock();
829 /* attempt to flush the hold queue */
830 rc = kauditd_send_queue(sk, portid,
831 &audit_hold_queue, UNICAST_RETRIES,
832 NULL, kauditd_rehold_skb);
833 if (ac && rc < 0) {
834 sk = NULL;
835 auditd_reset(ac);
836 goto main_queue;
839 /* attempt to flush the retry queue */
840 rc = kauditd_send_queue(sk, portid,
841 &audit_retry_queue, UNICAST_RETRIES,
842 NULL, kauditd_hold_skb);
843 if (ac && rc < 0) {
844 sk = NULL;
845 auditd_reset(ac);
846 goto main_queue;
849 main_queue:
850 /* process the main queue - do the multicast send and attempt
851 * unicast, dump failed record sends to the retry queue; if
852 * sk == NULL due to previous failures we will just do the
853 * multicast send and move the record to the hold queue */
854 rc = kauditd_send_queue(sk, portid, &audit_queue, 1,
855 kauditd_send_multicast_skb,
856 (sk ?
857 kauditd_retry_skb : kauditd_hold_skb));
858 if (ac && rc < 0)
859 auditd_reset(ac);
860 sk = NULL;
862 /* drop our netns reference, no auditd sends past this line */
863 if (net) {
864 put_net(net);
865 net = NULL;
868 /* we have processed all the queues so wake everyone */
869 wake_up(&audit_backlog_wait);
871 /* NOTE: we want to wake up if there is anything on the queue,
872 * regardless of if an auditd is connected, as we need to
873 * do the multicast send and rotate records from the
874 * main queue to the retry/hold queues */
875 wait_event_freezable(kauditd_wait,
876 (skb_queue_len(&audit_queue) ? 1 : 0));
879 return 0;
882 int audit_send_list_thread(void *_dest)
884 struct audit_netlink_list *dest = _dest;
885 struct sk_buff *skb;
886 struct sock *sk = audit_get_sk(dest->net);
888 /* wait for parent to finish and send an ACK */
889 audit_ctl_lock();
890 audit_ctl_unlock();
892 while ((skb = __skb_dequeue(&dest->q)) != NULL)
893 netlink_unicast(sk, skb, dest->portid, 0);
895 put_net(dest->net);
896 kfree(dest);
898 return 0;
901 struct sk_buff *audit_make_reply(int seq, int type, int done,
902 int multi, const void *payload, int size)
904 struct sk_buff *skb;
905 struct nlmsghdr *nlh;
906 void *data;
907 int flags = multi ? NLM_F_MULTI : 0;
908 int t = done ? NLMSG_DONE : type;
910 skb = nlmsg_new(size, GFP_KERNEL);
911 if (!skb)
912 return NULL;
914 nlh = nlmsg_put(skb, 0, seq, t, size, flags);
915 if (!nlh)
916 goto out_kfree_skb;
917 data = nlmsg_data(nlh);
918 memcpy(data, payload, size);
919 return skb;
921 out_kfree_skb:
922 kfree_skb(skb);
923 return NULL;
926 static void audit_free_reply(struct audit_reply *reply)
928 if (!reply)
929 return;
931 if (reply->skb)
932 kfree_skb(reply->skb);
933 if (reply->net)
934 put_net(reply->net);
935 kfree(reply);
938 static int audit_send_reply_thread(void *arg)
940 struct audit_reply *reply = (struct audit_reply *)arg;
942 audit_ctl_lock();
943 audit_ctl_unlock();
945 /* Ignore failure. It'll only happen if the sender goes away,
946 because our timeout is set to infinite. */
947 netlink_unicast(audit_get_sk(reply->net), reply->skb, reply->portid, 0);
948 reply->skb = NULL;
949 audit_free_reply(reply);
950 return 0;
954 * audit_send_reply - send an audit reply message via netlink
955 * @request_skb: skb of request we are replying to (used to target the reply)
956 * @seq: sequence number
957 * @type: audit message type
958 * @done: done (last) flag
959 * @multi: multi-part message flag
960 * @payload: payload data
961 * @size: payload size
963 * Allocates a skb, builds the netlink message, and sends it to the port id.
965 static void audit_send_reply(struct sk_buff *request_skb, int seq, int type, int done,
966 int multi, const void *payload, int size)
968 struct task_struct *tsk;
969 struct audit_reply *reply;
971 reply = kzalloc(sizeof(*reply), GFP_KERNEL);
972 if (!reply)
973 return;
975 reply->skb = audit_make_reply(seq, type, done, multi, payload, size);
976 if (!reply->skb)
977 goto err;
978 reply->net = get_net(sock_net(NETLINK_CB(request_skb).sk));
979 reply->portid = NETLINK_CB(request_skb).portid;
981 tsk = kthread_run(audit_send_reply_thread, reply, "audit_send_reply");
982 if (IS_ERR(tsk))
983 goto err;
985 return;
987 err:
988 audit_free_reply(reply);
992 * Check for appropriate CAP_AUDIT_ capabilities on incoming audit
993 * control messages.
995 static int audit_netlink_ok(struct sk_buff *skb, u16 msg_type)
997 int err = 0;
999 /* Only support initial user namespace for now. */
1001 * We return ECONNREFUSED because it tricks userspace into thinking
1002 * that audit was not configured into the kernel. Lots of users
1003 * configure their PAM stack (because that's what the distro does)
1004 * to reject login if unable to send messages to audit. If we return
1005 * ECONNREFUSED the PAM stack thinks the kernel does not have audit
1006 * configured in and will let login proceed. If we return EPERM
1007 * userspace will reject all logins. This should be removed when we
1008 * support non init namespaces!!
1010 if (current_user_ns() != &init_user_ns)
1011 return -ECONNREFUSED;
1013 switch (msg_type) {
1014 case AUDIT_LIST:
1015 case AUDIT_ADD:
1016 case AUDIT_DEL:
1017 return -EOPNOTSUPP;
1018 case AUDIT_GET:
1019 case AUDIT_SET:
1020 case AUDIT_GET_FEATURE:
1021 case AUDIT_SET_FEATURE:
1022 case AUDIT_LIST_RULES:
1023 case AUDIT_ADD_RULE:
1024 case AUDIT_DEL_RULE:
1025 case AUDIT_SIGNAL_INFO:
1026 case AUDIT_TTY_GET:
1027 case AUDIT_TTY_SET:
1028 case AUDIT_TRIM:
1029 case AUDIT_MAKE_EQUIV:
1030 /* Only support auditd and auditctl in initial pid namespace
1031 * for now. */
1032 if (task_active_pid_ns(current) != &init_pid_ns)
1033 return -EPERM;
1035 if (!netlink_capable(skb, CAP_AUDIT_CONTROL))
1036 err = -EPERM;
1037 break;
1038 case AUDIT_USER:
1039 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1040 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1041 if (!netlink_capable(skb, CAP_AUDIT_WRITE))
1042 err = -EPERM;
1043 break;
1044 default: /* bad msg */
1045 err = -EINVAL;
1048 return err;
1051 static void audit_log_common_recv_msg(struct audit_context *context,
1052 struct audit_buffer **ab, u16 msg_type)
1054 uid_t uid = from_kuid(&init_user_ns, current_uid());
1055 pid_t pid = task_tgid_nr(current);
1057 if (!audit_enabled && msg_type != AUDIT_USER_AVC) {
1058 *ab = NULL;
1059 return;
1062 *ab = audit_log_start(context, GFP_KERNEL, msg_type);
1063 if (unlikely(!*ab))
1064 return;
1065 audit_log_format(*ab, "pid=%d uid=%u ", pid, uid);
1066 audit_log_session_info(*ab);
1067 audit_log_task_context(*ab);
1070 static inline void audit_log_user_recv_msg(struct audit_buffer **ab,
1071 u16 msg_type)
1073 audit_log_common_recv_msg(NULL, ab, msg_type);
1076 int is_audit_feature_set(int i)
1078 return af.features & AUDIT_FEATURE_TO_MASK(i);
1082 static int audit_get_feature(struct sk_buff *skb)
1084 u32 seq;
1086 seq = nlmsg_hdr(skb)->nlmsg_seq;
1088 audit_send_reply(skb, seq, AUDIT_GET_FEATURE, 0, 0, &af, sizeof(af));
1090 return 0;
1093 static void audit_log_feature_change(int which, u32 old_feature, u32 new_feature,
1094 u32 old_lock, u32 new_lock, int res)
1096 struct audit_buffer *ab;
1098 if (audit_enabled == AUDIT_OFF)
1099 return;
1101 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_FEATURE_CHANGE);
1102 if (!ab)
1103 return;
1104 audit_log_task_info(ab);
1105 audit_log_format(ab, " feature=%s old=%u new=%u old_lock=%u new_lock=%u res=%d",
1106 audit_feature_names[which], !!old_feature, !!new_feature,
1107 !!old_lock, !!new_lock, res);
1108 audit_log_end(ab);
1111 static int audit_set_feature(struct audit_features *uaf)
1113 int i;
1115 BUILD_BUG_ON(AUDIT_LAST_FEATURE + 1 > ARRAY_SIZE(audit_feature_names));
1117 /* if there is ever a version 2 we should handle that here */
1119 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1120 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1121 u32 old_feature, new_feature, old_lock, new_lock;
1123 /* if we are not changing this feature, move along */
1124 if (!(feature & uaf->mask))
1125 continue;
1127 old_feature = af.features & feature;
1128 new_feature = uaf->features & feature;
1129 new_lock = (uaf->lock | af.lock) & feature;
1130 old_lock = af.lock & feature;
1132 /* are we changing a locked feature? */
1133 if (old_lock && (new_feature != old_feature)) {
1134 audit_log_feature_change(i, old_feature, new_feature,
1135 old_lock, new_lock, 0);
1136 return -EPERM;
1139 /* nothing invalid, do the changes */
1140 for (i = 0; i <= AUDIT_LAST_FEATURE; i++) {
1141 u32 feature = AUDIT_FEATURE_TO_MASK(i);
1142 u32 old_feature, new_feature, old_lock, new_lock;
1144 /* if we are not changing this feature, move along */
1145 if (!(feature & uaf->mask))
1146 continue;
1148 old_feature = af.features & feature;
1149 new_feature = uaf->features & feature;
1150 old_lock = af.lock & feature;
1151 new_lock = (uaf->lock | af.lock) & feature;
1153 if (new_feature != old_feature)
1154 audit_log_feature_change(i, old_feature, new_feature,
1155 old_lock, new_lock, 1);
1157 if (new_feature)
1158 af.features |= feature;
1159 else
1160 af.features &= ~feature;
1161 af.lock |= new_lock;
1164 return 0;
1167 static int audit_replace(struct pid *pid)
1169 pid_t pvnr;
1170 struct sk_buff *skb;
1172 pvnr = pid_vnr(pid);
1173 skb = audit_make_reply(0, AUDIT_REPLACE, 0, 0, &pvnr, sizeof(pvnr));
1174 if (!skb)
1175 return -ENOMEM;
1176 return auditd_send_unicast_skb(skb);
1179 static int audit_receive_msg(struct sk_buff *skb, struct nlmsghdr *nlh)
1181 u32 seq;
1182 void *data;
1183 int data_len;
1184 int err;
1185 struct audit_buffer *ab;
1186 u16 msg_type = nlh->nlmsg_type;
1187 struct audit_sig_info *sig_data;
1188 char *ctx = NULL;
1189 u32 len;
1191 err = audit_netlink_ok(skb, msg_type);
1192 if (err)
1193 return err;
1195 seq = nlh->nlmsg_seq;
1196 data = nlmsg_data(nlh);
1197 data_len = nlmsg_len(nlh);
1199 switch (msg_type) {
1200 case AUDIT_GET: {
1201 struct audit_status s;
1202 memset(&s, 0, sizeof(s));
1203 s.enabled = audit_enabled;
1204 s.failure = audit_failure;
1205 /* NOTE: use pid_vnr() so the PID is relative to the current
1206 * namespace */
1207 s.pid = auditd_pid_vnr();
1208 s.rate_limit = audit_rate_limit;
1209 s.backlog_limit = audit_backlog_limit;
1210 s.lost = atomic_read(&audit_lost);
1211 s.backlog = skb_queue_len(&audit_queue);
1212 s.feature_bitmap = AUDIT_FEATURE_BITMAP_ALL;
1213 s.backlog_wait_time = audit_backlog_wait_time;
1214 audit_send_reply(skb, seq, AUDIT_GET, 0, 0, &s, sizeof(s));
1215 break;
1217 case AUDIT_SET: {
1218 struct audit_status s;
1219 memset(&s, 0, sizeof(s));
1220 /* guard against past and future API changes */
1221 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1222 if (s.mask & AUDIT_STATUS_ENABLED) {
1223 err = audit_set_enabled(s.enabled);
1224 if (err < 0)
1225 return err;
1227 if (s.mask & AUDIT_STATUS_FAILURE) {
1228 err = audit_set_failure(s.failure);
1229 if (err < 0)
1230 return err;
1232 if (s.mask & AUDIT_STATUS_PID) {
1233 /* NOTE: we are using the vnr PID functions below
1234 * because the s.pid value is relative to the
1235 * namespace of the caller; at present this
1236 * doesn't matter much since you can really only
1237 * run auditd from the initial pid namespace, but
1238 * something to keep in mind if this changes */
1239 pid_t new_pid = s.pid;
1240 pid_t auditd_pid;
1241 struct pid *req_pid = task_tgid(current);
1243 /* Sanity check - PID values must match. Setting
1244 * pid to 0 is how auditd ends auditing. */
1245 if (new_pid && (new_pid != pid_vnr(req_pid)))
1246 return -EINVAL;
1248 /* test the auditd connection */
1249 audit_replace(req_pid);
1251 auditd_pid = auditd_pid_vnr();
1252 if (auditd_pid) {
1253 /* replacing a healthy auditd is not allowed */
1254 if (new_pid) {
1255 audit_log_config_change("audit_pid",
1256 new_pid, auditd_pid, 0);
1257 return -EEXIST;
1259 /* only current auditd can unregister itself */
1260 if (pid_vnr(req_pid) != auditd_pid) {
1261 audit_log_config_change("audit_pid",
1262 new_pid, auditd_pid, 0);
1263 return -EACCES;
1267 if (new_pid) {
1268 /* register a new auditd connection */
1269 err = auditd_set(req_pid,
1270 NETLINK_CB(skb).portid,
1271 sock_net(NETLINK_CB(skb).sk));
1272 if (audit_enabled != AUDIT_OFF)
1273 audit_log_config_change("audit_pid",
1274 new_pid,
1275 auditd_pid,
1276 err ? 0 : 1);
1277 if (err)
1278 return err;
1280 /* try to process any backlog */
1281 wake_up_interruptible(&kauditd_wait);
1282 } else {
1283 if (audit_enabled != AUDIT_OFF)
1284 audit_log_config_change("audit_pid",
1285 new_pid,
1286 auditd_pid, 1);
1288 /* unregister the auditd connection */
1289 auditd_reset(NULL);
1292 if (s.mask & AUDIT_STATUS_RATE_LIMIT) {
1293 err = audit_set_rate_limit(s.rate_limit);
1294 if (err < 0)
1295 return err;
1297 if (s.mask & AUDIT_STATUS_BACKLOG_LIMIT) {
1298 err = audit_set_backlog_limit(s.backlog_limit);
1299 if (err < 0)
1300 return err;
1302 if (s.mask & AUDIT_STATUS_BACKLOG_WAIT_TIME) {
1303 if (sizeof(s) > (size_t)nlh->nlmsg_len)
1304 return -EINVAL;
1305 if (s.backlog_wait_time > 10*AUDIT_BACKLOG_WAIT_TIME)
1306 return -EINVAL;
1307 err = audit_set_backlog_wait_time(s.backlog_wait_time);
1308 if (err < 0)
1309 return err;
1311 if (s.mask == AUDIT_STATUS_LOST) {
1312 u32 lost = atomic_xchg(&audit_lost, 0);
1314 audit_log_config_change("lost", 0, lost, 1);
1315 return lost;
1317 break;
1319 case AUDIT_GET_FEATURE:
1320 err = audit_get_feature(skb);
1321 if (err)
1322 return err;
1323 break;
1324 case AUDIT_SET_FEATURE:
1325 if (data_len < sizeof(struct audit_features))
1326 return -EINVAL;
1327 err = audit_set_feature(data);
1328 if (err)
1329 return err;
1330 break;
1331 case AUDIT_USER:
1332 case AUDIT_FIRST_USER_MSG ... AUDIT_LAST_USER_MSG:
1333 case AUDIT_FIRST_USER_MSG2 ... AUDIT_LAST_USER_MSG2:
1334 if (!audit_enabled && msg_type != AUDIT_USER_AVC)
1335 return 0;
1336 /* exit early if there isn't at least one character to print */
1337 if (data_len < 2)
1338 return -EINVAL;
1340 err = audit_filter(msg_type, AUDIT_FILTER_USER);
1341 if (err == 1) { /* match or error */
1342 char *str = data;
1344 err = 0;
1345 if (msg_type == AUDIT_USER_TTY) {
1346 err = tty_audit_push();
1347 if (err)
1348 break;
1350 audit_log_user_recv_msg(&ab, msg_type);
1351 if (msg_type != AUDIT_USER_TTY) {
1352 /* ensure NULL termination */
1353 str[data_len - 1] = '\0';
1354 audit_log_format(ab, " msg='%.*s'",
1355 AUDIT_MESSAGE_TEXT_MAX,
1356 str);
1357 } else {
1358 audit_log_format(ab, " data=");
1359 if (data_len > 0 && str[data_len - 1] == '\0')
1360 data_len--;
1361 audit_log_n_untrustedstring(ab, str, data_len);
1363 audit_log_end(ab);
1365 break;
1366 case AUDIT_ADD_RULE:
1367 case AUDIT_DEL_RULE:
1368 if (data_len < sizeof(struct audit_rule_data))
1369 return -EINVAL;
1370 if (audit_enabled == AUDIT_LOCKED) {
1371 audit_log_common_recv_msg(audit_context(), &ab,
1372 AUDIT_CONFIG_CHANGE);
1373 audit_log_format(ab, " op=%s audit_enabled=%d res=0",
1374 msg_type == AUDIT_ADD_RULE ?
1375 "add_rule" : "remove_rule",
1376 audit_enabled);
1377 audit_log_end(ab);
1378 return -EPERM;
1380 err = audit_rule_change(msg_type, seq, data, data_len);
1381 break;
1382 case AUDIT_LIST_RULES:
1383 err = audit_list_rules_send(skb, seq);
1384 break;
1385 case AUDIT_TRIM:
1386 audit_trim_trees();
1387 audit_log_common_recv_msg(audit_context(), &ab,
1388 AUDIT_CONFIG_CHANGE);
1389 audit_log_format(ab, " op=trim res=1");
1390 audit_log_end(ab);
1391 break;
1392 case AUDIT_MAKE_EQUIV: {
1393 void *bufp = data;
1394 u32 sizes[2];
1395 size_t msglen = data_len;
1396 char *old, *new;
1398 err = -EINVAL;
1399 if (msglen < 2 * sizeof(u32))
1400 break;
1401 memcpy(sizes, bufp, 2 * sizeof(u32));
1402 bufp += 2 * sizeof(u32);
1403 msglen -= 2 * sizeof(u32);
1404 old = audit_unpack_string(&bufp, &msglen, sizes[0]);
1405 if (IS_ERR(old)) {
1406 err = PTR_ERR(old);
1407 break;
1409 new = audit_unpack_string(&bufp, &msglen, sizes[1]);
1410 if (IS_ERR(new)) {
1411 err = PTR_ERR(new);
1412 kfree(old);
1413 break;
1415 /* OK, here comes... */
1416 err = audit_tag_tree(old, new);
1418 audit_log_common_recv_msg(audit_context(), &ab,
1419 AUDIT_CONFIG_CHANGE);
1420 audit_log_format(ab, " op=make_equiv old=");
1421 audit_log_untrustedstring(ab, old);
1422 audit_log_format(ab, " new=");
1423 audit_log_untrustedstring(ab, new);
1424 audit_log_format(ab, " res=%d", !err);
1425 audit_log_end(ab);
1426 kfree(old);
1427 kfree(new);
1428 break;
1430 case AUDIT_SIGNAL_INFO:
1431 len = 0;
1432 if (audit_sig_sid) {
1433 err = security_secid_to_secctx(audit_sig_sid, &ctx, &len);
1434 if (err)
1435 return err;
1437 sig_data = kmalloc(sizeof(*sig_data) + len, GFP_KERNEL);
1438 if (!sig_data) {
1439 if (audit_sig_sid)
1440 security_release_secctx(ctx, len);
1441 return -ENOMEM;
1443 sig_data->uid = from_kuid(&init_user_ns, audit_sig_uid);
1444 sig_data->pid = audit_sig_pid;
1445 if (audit_sig_sid) {
1446 memcpy(sig_data->ctx, ctx, len);
1447 security_release_secctx(ctx, len);
1449 audit_send_reply(skb, seq, AUDIT_SIGNAL_INFO, 0, 0,
1450 sig_data, sizeof(*sig_data) + len);
1451 kfree(sig_data);
1452 break;
1453 case AUDIT_TTY_GET: {
1454 struct audit_tty_status s;
1455 unsigned int t;
1457 t = READ_ONCE(current->signal->audit_tty);
1458 s.enabled = t & AUDIT_TTY_ENABLE;
1459 s.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1461 audit_send_reply(skb, seq, AUDIT_TTY_GET, 0, 0, &s, sizeof(s));
1462 break;
1464 case AUDIT_TTY_SET: {
1465 struct audit_tty_status s, old;
1466 struct audit_buffer *ab;
1467 unsigned int t;
1469 memset(&s, 0, sizeof(s));
1470 /* guard against past and future API changes */
1471 memcpy(&s, data, min_t(size_t, sizeof(s), data_len));
1472 /* check if new data is valid */
1473 if ((s.enabled != 0 && s.enabled != 1) ||
1474 (s.log_passwd != 0 && s.log_passwd != 1))
1475 err = -EINVAL;
1477 if (err)
1478 t = READ_ONCE(current->signal->audit_tty);
1479 else {
1480 t = s.enabled | (-s.log_passwd & AUDIT_TTY_LOG_PASSWD);
1481 t = xchg(&current->signal->audit_tty, t);
1483 old.enabled = t & AUDIT_TTY_ENABLE;
1484 old.log_passwd = !!(t & AUDIT_TTY_LOG_PASSWD);
1486 audit_log_common_recv_msg(audit_context(), &ab,
1487 AUDIT_CONFIG_CHANGE);
1488 audit_log_format(ab, " op=tty_set old-enabled=%d new-enabled=%d"
1489 " old-log_passwd=%d new-log_passwd=%d res=%d",
1490 old.enabled, s.enabled, old.log_passwd,
1491 s.log_passwd, !err);
1492 audit_log_end(ab);
1493 break;
1495 default:
1496 err = -EINVAL;
1497 break;
1500 return err < 0 ? err : 0;
1504 * audit_receive - receive messages from a netlink control socket
1505 * @skb: the message buffer
1507 * Parse the provided skb and deal with any messages that may be present,
1508 * malformed skbs are discarded.
1510 static void audit_receive(struct sk_buff *skb)
1512 struct nlmsghdr *nlh;
1514 * len MUST be signed for nlmsg_next to be able to dec it below 0
1515 * if the nlmsg_len was not aligned
1517 int len;
1518 int err;
1520 nlh = nlmsg_hdr(skb);
1521 len = skb->len;
1523 audit_ctl_lock();
1524 while (nlmsg_ok(nlh, len)) {
1525 err = audit_receive_msg(skb, nlh);
1526 /* if err or if this message says it wants a response */
1527 if (err || (nlh->nlmsg_flags & NLM_F_ACK))
1528 netlink_ack(skb, nlh, err, NULL);
1530 nlh = nlmsg_next(nlh, &len);
1532 audit_ctl_unlock();
1535 /* Run custom bind function on netlink socket group connect or bind requests. */
1536 static int audit_bind(struct net *net, int group)
1538 if (!capable(CAP_AUDIT_READ))
1539 return -EPERM;
1541 return 0;
1544 static int __net_init audit_net_init(struct net *net)
1546 struct netlink_kernel_cfg cfg = {
1547 .input = audit_receive,
1548 .bind = audit_bind,
1549 .flags = NL_CFG_F_NONROOT_RECV,
1550 .groups = AUDIT_NLGRP_MAX,
1553 struct audit_net *aunet = net_generic(net, audit_net_id);
1555 aunet->sk = netlink_kernel_create(net, NETLINK_AUDIT, &cfg);
1556 if (aunet->sk == NULL) {
1557 audit_panic("cannot initialize netlink socket in namespace");
1558 return -ENOMEM;
1560 aunet->sk->sk_sndtimeo = MAX_SCHEDULE_TIMEOUT;
1562 return 0;
1565 static void __net_exit audit_net_exit(struct net *net)
1567 struct audit_net *aunet = net_generic(net, audit_net_id);
1569 /* NOTE: you would think that we would want to check the auditd
1570 * connection and potentially reset it here if it lives in this
1571 * namespace, but since the auditd connection tracking struct holds a
1572 * reference to this namespace (see auditd_set()) we are only ever
1573 * going to get here after that connection has been released */
1575 netlink_kernel_release(aunet->sk);
1578 static struct pernet_operations audit_net_ops __net_initdata = {
1579 .init = audit_net_init,
1580 .exit = audit_net_exit,
1581 .id = &audit_net_id,
1582 .size = sizeof(struct audit_net),
1585 /* Initialize audit support at boot time. */
1586 static int __init audit_init(void)
1588 int i;
1590 if (audit_initialized == AUDIT_DISABLED)
1591 return 0;
1593 audit_buffer_cache = kmem_cache_create("audit_buffer",
1594 sizeof(struct audit_buffer),
1595 0, SLAB_PANIC, NULL);
1597 skb_queue_head_init(&audit_queue);
1598 skb_queue_head_init(&audit_retry_queue);
1599 skb_queue_head_init(&audit_hold_queue);
1601 for (i = 0; i < AUDIT_INODE_BUCKETS; i++)
1602 INIT_LIST_HEAD(&audit_inode_hash[i]);
1604 mutex_init(&audit_cmd_mutex.lock);
1605 audit_cmd_mutex.owner = NULL;
1607 pr_info("initializing netlink subsys (%s)\n",
1608 audit_default ? "enabled" : "disabled");
1609 register_pernet_subsys(&audit_net_ops);
1611 audit_initialized = AUDIT_INITIALIZED;
1613 kauditd_task = kthread_run(kauditd_thread, NULL, "kauditd");
1614 if (IS_ERR(kauditd_task)) {
1615 int err = PTR_ERR(kauditd_task);
1616 panic("audit: failed to start the kauditd thread (%d)\n", err);
1619 audit_log(NULL, GFP_KERNEL, AUDIT_KERNEL,
1620 "state=initialized audit_enabled=%u res=1",
1621 audit_enabled);
1623 return 0;
1625 postcore_initcall(audit_init);
1628 * Process kernel command-line parameter at boot time.
1629 * audit={0|off} or audit={1|on}.
1631 static int __init audit_enable(char *str)
1633 if (!strcasecmp(str, "off") || !strcmp(str, "0"))
1634 audit_default = AUDIT_OFF;
1635 else if (!strcasecmp(str, "on") || !strcmp(str, "1"))
1636 audit_default = AUDIT_ON;
1637 else {
1638 pr_err("audit: invalid 'audit' parameter value (%s)\n", str);
1639 audit_default = AUDIT_ON;
1642 if (audit_default == AUDIT_OFF)
1643 audit_initialized = AUDIT_DISABLED;
1644 if (audit_set_enabled(audit_default))
1645 pr_err("audit: error setting audit state (%d)\n",
1646 audit_default);
1648 pr_info("%s\n", audit_default ?
1649 "enabled (after initialization)" : "disabled (until reboot)");
1651 return 1;
1653 __setup("audit=", audit_enable);
1655 /* Process kernel command-line parameter at boot time.
1656 * audit_backlog_limit=<n> */
1657 static int __init audit_backlog_limit_set(char *str)
1659 u32 audit_backlog_limit_arg;
1661 pr_info("audit_backlog_limit: ");
1662 if (kstrtouint(str, 0, &audit_backlog_limit_arg)) {
1663 pr_cont("using default of %u, unable to parse %s\n",
1664 audit_backlog_limit, str);
1665 return 1;
1668 audit_backlog_limit = audit_backlog_limit_arg;
1669 pr_cont("%d\n", audit_backlog_limit);
1671 return 1;
1673 __setup("audit_backlog_limit=", audit_backlog_limit_set);
1675 static void audit_buffer_free(struct audit_buffer *ab)
1677 if (!ab)
1678 return;
1680 kfree_skb(ab->skb);
1681 kmem_cache_free(audit_buffer_cache, ab);
1684 static struct audit_buffer *audit_buffer_alloc(struct audit_context *ctx,
1685 gfp_t gfp_mask, int type)
1687 struct audit_buffer *ab;
1689 ab = kmem_cache_alloc(audit_buffer_cache, gfp_mask);
1690 if (!ab)
1691 return NULL;
1693 ab->skb = nlmsg_new(AUDIT_BUFSIZ, gfp_mask);
1694 if (!ab->skb)
1695 goto err;
1696 if (!nlmsg_put(ab->skb, 0, 0, type, 0, 0))
1697 goto err;
1699 ab->ctx = ctx;
1700 ab->gfp_mask = gfp_mask;
1702 return ab;
1704 err:
1705 audit_buffer_free(ab);
1706 return NULL;
1710 * audit_serial - compute a serial number for the audit record
1712 * Compute a serial number for the audit record. Audit records are
1713 * written to user-space as soon as they are generated, so a complete
1714 * audit record may be written in several pieces. The timestamp of the
1715 * record and this serial number are used by the user-space tools to
1716 * determine which pieces belong to the same audit record. The
1717 * (timestamp,serial) tuple is unique for each syscall and is live from
1718 * syscall entry to syscall exit.
1720 * NOTE: Another possibility is to store the formatted records off the
1721 * audit context (for those records that have a context), and emit them
1722 * all at syscall exit. However, this could delay the reporting of
1723 * significant errors until syscall exit (or never, if the system
1724 * halts).
1726 unsigned int audit_serial(void)
1728 static atomic_t serial = ATOMIC_INIT(0);
1730 return atomic_add_return(1, &serial);
1733 static inline void audit_get_stamp(struct audit_context *ctx,
1734 struct timespec64 *t, unsigned int *serial)
1736 if (!ctx || !auditsc_get_stamp(ctx, t, serial)) {
1737 ktime_get_coarse_real_ts64(t);
1738 *serial = audit_serial();
1743 * audit_log_start - obtain an audit buffer
1744 * @ctx: audit_context (may be NULL)
1745 * @gfp_mask: type of allocation
1746 * @type: audit message type
1748 * Returns audit_buffer pointer on success or NULL on error.
1750 * Obtain an audit buffer. This routine does locking to obtain the
1751 * audit buffer, but then no locking is required for calls to
1752 * audit_log_*format. If the task (ctx) is a task that is currently in a
1753 * syscall, then the syscall is marked as auditable and an audit record
1754 * will be written at syscall exit. If there is no associated task, then
1755 * task context (ctx) should be NULL.
1757 struct audit_buffer *audit_log_start(struct audit_context *ctx, gfp_t gfp_mask,
1758 int type)
1760 struct audit_buffer *ab;
1761 struct timespec64 t;
1762 unsigned int uninitialized_var(serial);
1764 if (audit_initialized != AUDIT_INITIALIZED)
1765 return NULL;
1767 if (unlikely(!audit_filter(type, AUDIT_FILTER_EXCLUDE)))
1768 return NULL;
1770 /* NOTE: don't ever fail/sleep on these two conditions:
1771 * 1. auditd generated record - since we need auditd to drain the
1772 * queue; also, when we are checking for auditd, compare PIDs using
1773 * task_tgid_vnr() since auditd_pid is set in audit_receive_msg()
1774 * using a PID anchored in the caller's namespace
1775 * 2. generator holding the audit_cmd_mutex - we don't want to block
1776 * while holding the mutex */
1777 if (!(auditd_test_task(current) || audit_ctl_owner_current())) {
1778 long stime = audit_backlog_wait_time;
1780 while (audit_backlog_limit &&
1781 (skb_queue_len(&audit_queue) > audit_backlog_limit)) {
1782 /* wake kauditd to try and flush the queue */
1783 wake_up_interruptible(&kauditd_wait);
1785 /* sleep if we are allowed and we haven't exhausted our
1786 * backlog wait limit */
1787 if (gfpflags_allow_blocking(gfp_mask) && (stime > 0)) {
1788 DECLARE_WAITQUEUE(wait, current);
1790 add_wait_queue_exclusive(&audit_backlog_wait,
1791 &wait);
1792 set_current_state(TASK_UNINTERRUPTIBLE);
1793 stime = schedule_timeout(stime);
1794 remove_wait_queue(&audit_backlog_wait, &wait);
1795 } else {
1796 if (audit_rate_check() && printk_ratelimit())
1797 pr_warn("audit_backlog=%d > audit_backlog_limit=%d\n",
1798 skb_queue_len(&audit_queue),
1799 audit_backlog_limit);
1800 audit_log_lost("backlog limit exceeded");
1801 return NULL;
1806 ab = audit_buffer_alloc(ctx, gfp_mask, type);
1807 if (!ab) {
1808 audit_log_lost("out of memory in audit_log_start");
1809 return NULL;
1812 audit_get_stamp(ab->ctx, &t, &serial);
1813 audit_log_format(ab, "audit(%llu.%03lu:%u): ",
1814 (unsigned long long)t.tv_sec, t.tv_nsec/1000000, serial);
1816 return ab;
1820 * audit_expand - expand skb in the audit buffer
1821 * @ab: audit_buffer
1822 * @extra: space to add at tail of the skb
1824 * Returns 0 (no space) on failed expansion, or available space if
1825 * successful.
1827 static inline int audit_expand(struct audit_buffer *ab, int extra)
1829 struct sk_buff *skb = ab->skb;
1830 int oldtail = skb_tailroom(skb);
1831 int ret = pskb_expand_head(skb, 0, extra, ab->gfp_mask);
1832 int newtail = skb_tailroom(skb);
1834 if (ret < 0) {
1835 audit_log_lost("out of memory in audit_expand");
1836 return 0;
1839 skb->truesize += newtail - oldtail;
1840 return newtail;
1844 * Format an audit message into the audit buffer. If there isn't enough
1845 * room in the audit buffer, more room will be allocated and vsnprint
1846 * will be called a second time. Currently, we assume that a printk
1847 * can't format message larger than 1024 bytes, so we don't either.
1849 static void audit_log_vformat(struct audit_buffer *ab, const char *fmt,
1850 va_list args)
1852 int len, avail;
1853 struct sk_buff *skb;
1854 va_list args2;
1856 if (!ab)
1857 return;
1859 BUG_ON(!ab->skb);
1860 skb = ab->skb;
1861 avail = skb_tailroom(skb);
1862 if (avail == 0) {
1863 avail = audit_expand(ab, AUDIT_BUFSIZ);
1864 if (!avail)
1865 goto out;
1867 va_copy(args2, args);
1868 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args);
1869 if (len >= avail) {
1870 /* The printk buffer is 1024 bytes long, so if we get
1871 * here and AUDIT_BUFSIZ is at least 1024, then we can
1872 * log everything that printk could have logged. */
1873 avail = audit_expand(ab,
1874 max_t(unsigned, AUDIT_BUFSIZ, 1+len-avail));
1875 if (!avail)
1876 goto out_va_end;
1877 len = vsnprintf(skb_tail_pointer(skb), avail, fmt, args2);
1879 if (len > 0)
1880 skb_put(skb, len);
1881 out_va_end:
1882 va_end(args2);
1883 out:
1884 return;
1888 * audit_log_format - format a message into the audit buffer.
1889 * @ab: audit_buffer
1890 * @fmt: format string
1891 * @...: optional parameters matching @fmt string
1893 * All the work is done in audit_log_vformat.
1895 void audit_log_format(struct audit_buffer *ab, const char *fmt, ...)
1897 va_list args;
1899 if (!ab)
1900 return;
1901 va_start(args, fmt);
1902 audit_log_vformat(ab, fmt, args);
1903 va_end(args);
1907 * audit_log_n_hex - convert a buffer to hex and append it to the audit skb
1908 * @ab: the audit_buffer
1909 * @buf: buffer to convert to hex
1910 * @len: length of @buf to be converted
1912 * No return value; failure to expand is silently ignored.
1914 * This function will take the passed buf and convert it into a string of
1915 * ascii hex digits. The new string is placed onto the skb.
1917 void audit_log_n_hex(struct audit_buffer *ab, const unsigned char *buf,
1918 size_t len)
1920 int i, avail, new_len;
1921 unsigned char *ptr;
1922 struct sk_buff *skb;
1924 if (!ab)
1925 return;
1927 BUG_ON(!ab->skb);
1928 skb = ab->skb;
1929 avail = skb_tailroom(skb);
1930 new_len = len<<1;
1931 if (new_len >= avail) {
1932 /* Round the buffer request up to the next multiple */
1933 new_len = AUDIT_BUFSIZ*(((new_len-avail)/AUDIT_BUFSIZ) + 1);
1934 avail = audit_expand(ab, new_len);
1935 if (!avail)
1936 return;
1939 ptr = skb_tail_pointer(skb);
1940 for (i = 0; i < len; i++)
1941 ptr = hex_byte_pack_upper(ptr, buf[i]);
1942 *ptr = 0;
1943 skb_put(skb, len << 1); /* new string is twice the old string */
1947 * Format a string of no more than slen characters into the audit buffer,
1948 * enclosed in quote marks.
1950 void audit_log_n_string(struct audit_buffer *ab, const char *string,
1951 size_t slen)
1953 int avail, new_len;
1954 unsigned char *ptr;
1955 struct sk_buff *skb;
1957 if (!ab)
1958 return;
1960 BUG_ON(!ab->skb);
1961 skb = ab->skb;
1962 avail = skb_tailroom(skb);
1963 new_len = slen + 3; /* enclosing quotes + null terminator */
1964 if (new_len > avail) {
1965 avail = audit_expand(ab, new_len);
1966 if (!avail)
1967 return;
1969 ptr = skb_tail_pointer(skb);
1970 *ptr++ = '"';
1971 memcpy(ptr, string, slen);
1972 ptr += slen;
1973 *ptr++ = '"';
1974 *ptr = 0;
1975 skb_put(skb, slen + 2); /* don't include null terminator */
1979 * audit_string_contains_control - does a string need to be logged in hex
1980 * @string: string to be checked
1981 * @len: max length of the string to check
1983 bool audit_string_contains_control(const char *string, size_t len)
1985 const unsigned char *p;
1986 for (p = string; p < (const unsigned char *)string + len; p++) {
1987 if (*p == '"' || *p < 0x21 || *p > 0x7e)
1988 return true;
1990 return false;
1994 * audit_log_n_untrustedstring - log a string that may contain random characters
1995 * @ab: audit_buffer
1996 * @len: length of string (not including trailing null)
1997 * @string: string to be logged
1999 * This code will escape a string that is passed to it if the string
2000 * contains a control character, unprintable character, double quote mark,
2001 * or a space. Unescaped strings will start and end with a double quote mark.
2002 * Strings that are escaped are printed in hex (2 digits per char).
2004 * The caller specifies the number of characters in the string to log, which may
2005 * or may not be the entire string.
2007 void audit_log_n_untrustedstring(struct audit_buffer *ab, const char *string,
2008 size_t len)
2010 if (audit_string_contains_control(string, len))
2011 audit_log_n_hex(ab, string, len);
2012 else
2013 audit_log_n_string(ab, string, len);
2017 * audit_log_untrustedstring - log a string that may contain random characters
2018 * @ab: audit_buffer
2019 * @string: string to be logged
2021 * Same as audit_log_n_untrustedstring(), except that strlen is used to
2022 * determine string length.
2024 void audit_log_untrustedstring(struct audit_buffer *ab, const char *string)
2026 audit_log_n_untrustedstring(ab, string, strlen(string));
2029 /* This is a helper-function to print the escaped d_path */
2030 void audit_log_d_path(struct audit_buffer *ab, const char *prefix,
2031 const struct path *path)
2033 char *p, *pathname;
2035 if (prefix)
2036 audit_log_format(ab, "%s", prefix);
2038 /* We will allow 11 spaces for ' (deleted)' to be appended */
2039 pathname = kmalloc(PATH_MAX+11, ab->gfp_mask);
2040 if (!pathname) {
2041 audit_log_string(ab, "<no_memory>");
2042 return;
2044 p = d_path(path, pathname, PATH_MAX+11);
2045 if (IS_ERR(p)) { /* Should never happen since we send PATH_MAX */
2046 /* FIXME: can we save some information here? */
2047 audit_log_string(ab, "<too_long>");
2048 } else
2049 audit_log_untrustedstring(ab, p);
2050 kfree(pathname);
2053 void audit_log_session_info(struct audit_buffer *ab)
2055 unsigned int sessionid = audit_get_sessionid(current);
2056 uid_t auid = from_kuid(&init_user_ns, audit_get_loginuid(current));
2058 audit_log_format(ab, "auid=%u ses=%u", auid, sessionid);
2061 void audit_log_key(struct audit_buffer *ab, char *key)
2063 audit_log_format(ab, " key=");
2064 if (key)
2065 audit_log_untrustedstring(ab, key);
2066 else
2067 audit_log_format(ab, "(null)");
2070 int audit_log_task_context(struct audit_buffer *ab)
2072 char *ctx = NULL;
2073 unsigned len;
2074 int error;
2075 u32 sid;
2077 security_task_getsecid(current, &sid);
2078 if (!sid)
2079 return 0;
2081 error = security_secid_to_secctx(sid, &ctx, &len);
2082 if (error) {
2083 if (error != -EINVAL)
2084 goto error_path;
2085 return 0;
2088 audit_log_format(ab, " subj=%s", ctx);
2089 security_release_secctx(ctx, len);
2090 return 0;
2092 error_path:
2093 audit_panic("error in audit_log_task_context");
2094 return error;
2096 EXPORT_SYMBOL(audit_log_task_context);
2098 void audit_log_d_path_exe(struct audit_buffer *ab,
2099 struct mm_struct *mm)
2101 struct file *exe_file;
2103 if (!mm)
2104 goto out_null;
2106 exe_file = get_mm_exe_file(mm);
2107 if (!exe_file)
2108 goto out_null;
2110 audit_log_d_path(ab, " exe=", &exe_file->f_path);
2111 fput(exe_file);
2112 return;
2113 out_null:
2114 audit_log_format(ab, " exe=(null)");
2117 struct tty_struct *audit_get_tty(void)
2119 struct tty_struct *tty = NULL;
2120 unsigned long flags;
2122 spin_lock_irqsave(&current->sighand->siglock, flags);
2123 if (current->signal)
2124 tty = tty_kref_get(current->signal->tty);
2125 spin_unlock_irqrestore(&current->sighand->siglock, flags);
2126 return tty;
2129 void audit_put_tty(struct tty_struct *tty)
2131 tty_kref_put(tty);
2134 void audit_log_task_info(struct audit_buffer *ab)
2136 const struct cred *cred;
2137 char comm[sizeof(current->comm)];
2138 struct tty_struct *tty;
2140 if (!ab)
2141 return;
2143 cred = current_cred();
2144 tty = audit_get_tty();
2145 audit_log_format(ab,
2146 " ppid=%d pid=%d auid=%u uid=%u gid=%u"
2147 " euid=%u suid=%u fsuid=%u"
2148 " egid=%u sgid=%u fsgid=%u tty=%s ses=%u",
2149 task_ppid_nr(current),
2150 task_tgid_nr(current),
2151 from_kuid(&init_user_ns, audit_get_loginuid(current)),
2152 from_kuid(&init_user_ns, cred->uid),
2153 from_kgid(&init_user_ns, cred->gid),
2154 from_kuid(&init_user_ns, cred->euid),
2155 from_kuid(&init_user_ns, cred->suid),
2156 from_kuid(&init_user_ns, cred->fsuid),
2157 from_kgid(&init_user_ns, cred->egid),
2158 from_kgid(&init_user_ns, cred->sgid),
2159 from_kgid(&init_user_ns, cred->fsgid),
2160 tty ? tty_name(tty) : "(none)",
2161 audit_get_sessionid(current));
2162 audit_put_tty(tty);
2163 audit_log_format(ab, " comm=");
2164 audit_log_untrustedstring(ab, get_task_comm(comm, current));
2165 audit_log_d_path_exe(ab, current->mm);
2166 audit_log_task_context(ab);
2168 EXPORT_SYMBOL(audit_log_task_info);
2171 * audit_log_link_denied - report a link restriction denial
2172 * @operation: specific link operation
2174 void audit_log_link_denied(const char *operation)
2176 struct audit_buffer *ab;
2178 if (!audit_enabled || audit_dummy_context())
2179 return;
2181 /* Generate AUDIT_ANOM_LINK with subject, operation, outcome. */
2182 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_ANOM_LINK);
2183 if (!ab)
2184 return;
2185 audit_log_format(ab, "op=%s", operation);
2186 audit_log_task_info(ab);
2187 audit_log_format(ab, " res=0");
2188 audit_log_end(ab);
2191 /* global counter which is incremented every time something logs in */
2192 static atomic_t session_id = ATOMIC_INIT(0);
2194 static int audit_set_loginuid_perm(kuid_t loginuid)
2196 /* if we are unset, we don't need privs */
2197 if (!audit_loginuid_set(current))
2198 return 0;
2199 /* if AUDIT_FEATURE_LOGINUID_IMMUTABLE means never ever allow a change*/
2200 if (is_audit_feature_set(AUDIT_FEATURE_LOGINUID_IMMUTABLE))
2201 return -EPERM;
2202 /* it is set, you need permission */
2203 if (!capable(CAP_AUDIT_CONTROL))
2204 return -EPERM;
2205 /* reject if this is not an unset and we don't allow that */
2206 if (is_audit_feature_set(AUDIT_FEATURE_ONLY_UNSET_LOGINUID)
2207 && uid_valid(loginuid))
2208 return -EPERM;
2209 return 0;
2212 static void audit_log_set_loginuid(kuid_t koldloginuid, kuid_t kloginuid,
2213 unsigned int oldsessionid,
2214 unsigned int sessionid, int rc)
2216 struct audit_buffer *ab;
2217 uid_t uid, oldloginuid, loginuid;
2218 struct tty_struct *tty;
2220 if (!audit_enabled)
2221 return;
2223 ab = audit_log_start(audit_context(), GFP_KERNEL, AUDIT_LOGIN);
2224 if (!ab)
2225 return;
2227 uid = from_kuid(&init_user_ns, task_uid(current));
2228 oldloginuid = from_kuid(&init_user_ns, koldloginuid);
2229 loginuid = from_kuid(&init_user_ns, kloginuid),
2230 tty = audit_get_tty();
2232 audit_log_format(ab, "pid=%d uid=%u", task_tgid_nr(current), uid);
2233 audit_log_task_context(ab);
2234 audit_log_format(ab, " old-auid=%u auid=%u tty=%s old-ses=%u ses=%u res=%d",
2235 oldloginuid, loginuid, tty ? tty_name(tty) : "(none)",
2236 oldsessionid, sessionid, !rc);
2237 audit_put_tty(tty);
2238 audit_log_end(ab);
2242 * audit_set_loginuid - set current task's loginuid
2243 * @loginuid: loginuid value
2245 * Returns 0.
2247 * Called (set) from fs/proc/base.c::proc_loginuid_write().
2249 int audit_set_loginuid(kuid_t loginuid)
2251 unsigned int oldsessionid, sessionid = AUDIT_SID_UNSET;
2252 kuid_t oldloginuid;
2253 int rc;
2255 oldloginuid = audit_get_loginuid(current);
2256 oldsessionid = audit_get_sessionid(current);
2258 rc = audit_set_loginuid_perm(loginuid);
2259 if (rc)
2260 goto out;
2262 /* are we setting or clearing? */
2263 if (uid_valid(loginuid)) {
2264 sessionid = (unsigned int)atomic_inc_return(&session_id);
2265 if (unlikely(sessionid == AUDIT_SID_UNSET))
2266 sessionid = (unsigned int)atomic_inc_return(&session_id);
2269 current->sessionid = sessionid;
2270 current->loginuid = loginuid;
2271 out:
2272 audit_log_set_loginuid(oldloginuid, loginuid, oldsessionid, sessionid, rc);
2273 return rc;
2277 * audit_signal_info - record signal info for shutting down audit subsystem
2278 * @sig: signal value
2279 * @t: task being signaled
2281 * If the audit subsystem is being terminated, record the task (pid)
2282 * and uid that is doing that.
2284 int audit_signal_info(int sig, struct task_struct *t)
2286 kuid_t uid = current_uid(), auid;
2288 if (auditd_test_task(t) &&
2289 (sig == SIGTERM || sig == SIGHUP ||
2290 sig == SIGUSR1 || sig == SIGUSR2)) {
2291 audit_sig_pid = task_tgid_nr(current);
2292 auid = audit_get_loginuid(current);
2293 if (uid_valid(auid))
2294 audit_sig_uid = auid;
2295 else
2296 audit_sig_uid = uid;
2297 security_task_getsecid(current, &audit_sig_sid);
2300 return audit_signal_info_syscall(t);
2304 * audit_log_end - end one audit record
2305 * @ab: the audit_buffer
2307 * We can not do a netlink send inside an irq context because it blocks (last
2308 * arg, flags, is not set to MSG_DONTWAIT), so the audit buffer is placed on a
2309 * queue and a tasklet is scheduled to remove them from the queue outside the
2310 * irq context. May be called in any context.
2312 void audit_log_end(struct audit_buffer *ab)
2314 struct sk_buff *skb;
2315 struct nlmsghdr *nlh;
2317 if (!ab)
2318 return;
2320 if (audit_rate_check()) {
2321 skb = ab->skb;
2322 ab->skb = NULL;
2324 /* setup the netlink header, see the comments in
2325 * kauditd_send_multicast_skb() for length quirks */
2326 nlh = nlmsg_hdr(skb);
2327 nlh->nlmsg_len = skb->len - NLMSG_HDRLEN;
2329 /* queue the netlink packet and poke the kauditd thread */
2330 skb_queue_tail(&audit_queue, skb);
2331 wake_up_interruptible(&kauditd_wait);
2332 } else
2333 audit_log_lost("rate limit exceeded");
2335 audit_buffer_free(ab);
2339 * audit_log - Log an audit record
2340 * @ctx: audit context
2341 * @gfp_mask: type of allocation
2342 * @type: audit message type
2343 * @fmt: format string to use
2344 * @...: variable parameters matching the format string
2346 * This is a convenience function that calls audit_log_start,
2347 * audit_log_vformat, and audit_log_end. It may be called
2348 * in any context.
2350 void audit_log(struct audit_context *ctx, gfp_t gfp_mask, int type,
2351 const char *fmt, ...)
2353 struct audit_buffer *ab;
2354 va_list args;
2356 ab = audit_log_start(ctx, gfp_mask, type);
2357 if (ab) {
2358 va_start(args, fmt);
2359 audit_log_vformat(ab, fmt, args);
2360 va_end(args);
2361 audit_log_end(ab);
2365 EXPORT_SYMBOL(audit_log_start);
2366 EXPORT_SYMBOL(audit_log_end);
2367 EXPORT_SYMBOL(audit_log_format);
2368 EXPORT_SYMBOL(audit_log);